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Abstract: Non-dimensional similarity groups and analytically solvable proximity equations can be used to estimate 

integral fluid film parameters of elastohydrodynamically lubricated (EHL) contacts. In this contribution, we 

demonstrate that machine learning (ML) and artificial intelligence (AI) approaches (support vector machines, 

Gaussian process regressions, and artificial neural networks) can predict relevant film parameters more 

efficiently and with higher accuracy and flexibility compared to sophisticated EHL simulations and analytically 

solvable proximity equations, respectively. For this purpose, we use data from EHL simulations based upon the 

full-system finite element (FE) solution and a Latin hypercube sampling. We verify that the original input data 

are required to train ML approaches to achieve coefficients of determination above 0.99. It is revealed that the 

architecture of artificial neural networks (neurons per layer and number of hidden layers) and activation 

functions influence the prediction accuracy. The impact of the number of training data is exemplified, and 

recommendations for a minimum database size are given. We ultimately demonstrate that artificial neural 

networks can predict the locally-resolved film thickness values over the contact domain 25-times faster than 

FE-based EHL simulations (R² values above 0.999). We assume that this will boost the use of ML approaches 

to predict EHL parameters and traction losses in multibody system dynamics simulations. 

 

Keywords: machine learning; elastohydrodynamic lubrication; film thickness; support vector machine; Gaussian 

process regression; artificial neural network 

 

 
 

1  Introduction 

Reducing friction and wear losses in highly loaded 

lubricated tribo-contacts of machine elements or 

mechanical components is essential for developing 

energy-efficient and reliable systems [1–3]. In particular, 

the modeling of concentrated, elastohydrodynamically 

lubricated (EHL) contacts (see Fig. 1), in which local 

elastic deformation of the rubbing surfaces and 

hydrodynamic fluid film formation are superimposed, 

is comparatively complex and computationally 

expensive [4]. For a sufficiently accurate and 

computationally efficient incorporation of EHL 

effects into higher-level multibody system dynamics 

simulations, analytically solvable approximating 

equations are generally used to estimate integral 

fluid film parameters [4]. 

To generalize the EHL calculations and their results, 

non-dimensional similarity groups were introduced. 

Dowson and Higginson [5, 6] defined a group of  
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Nomenclature 

bH Half Hertzian contact width:  

 3
H,2D N H,3D N

(4 ) / 2 , (3 ) / 8b F E R l b F E R           

C Box constraint 

C Hooke’s law elasticity matrix 

d Test field distance 

E Equivalent Young’s modulus 

E’ Reduced Young’s modulus:  

     2 2
1 1 2 21/2[(1 )/ (1 ) / ]E E E   

Ei Young’s modulus 

f Optimization function 

FN Normal load 

Gk Kernel function 

G Material parameter 

hb Base function 

h Lubricant film thickness 

H Normalized lubricant film thickness 

hc Central lubricant film thickness 

Hc Central film thickness parameter 

hmin Minimum lubricant film thickness 

Hmin Minimum film thickness parameter 

h0 Rigid body distance 

J Objective function 

k Covariance function 

l Contact length 

Lg Lagrange dual formulation optimization problem 

L Viscosity parameter 

L  Linear ε-insensitive loss function 

m Mean function 

M Load parameter 

nf Number of factors 

ns Number of simulations 

N Number of observations 

p Fluid pressure 

P Normalized fluid pressure 

pH Hertzian contact pressure:  

 2

H,2D N H H,3D N H
(3 ) / (2 ), (2 ) / ( )p F b p F l b        

R Effective radius: 1 1

1 2
1 / ( )R R R    

R² Coefficient of determination 

Ri Radius 

U Displacement vector 

U Velocity parameter 

ui Surface velocity 
 

 um Entrainment speed: 
m 1 2

( ) / 2u u u   

 W Load parameter 

 x Cartesian spatial coordinate 

 xn Training point 

 X Normalized cartesian spatial coordinate 

 xij,LHD Latin hypercube design element 

 xij,LHS Latin hypercube sampling element 

 y Cartesian spatial coordinate 

y  Arithmetic mean of the target variables 

ŷ  Approximation value 

 Y Normalized cartesian spatial coordinate 

 z Cartesian spatial coordinate 

 Z Normalized cartesian spatial coordinate 

 Zr Random number 

 αn Nonnegative multiplier 
*

n
  Nonnegative multiplier 

 αp Pressure-viscosity coefficient 

 βb Base function coefficients 

 β SVM parameter 

 γ Penalty function 

 δ Elastic deformation 

  Normalized elastic deformation 

 εL Lagrangian small-strain tensor 

 ε Permitted error 

 η Fluid viscosity 

 η0 Base viscosity 

  Normalized fluid viscosity 

 θ Fractional film content 

 θk Kernel function hyperparameter 

 κ Ellipticity parameter 

 ξ MaxiMin factor 

n
  Slack variable 

*

n
  Slack variable 

 ρ Fluid density 

 ρ0 Base density 

  Normalized fluid density 

 σ² Error variance 

 υ Equivalent Poisson’s ratio 

 υi Poisson’s ratio 

 ψ Penalty factor 

 Ω Solution domain 

 Ωc Contact domain 
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Fig. 1 Schematic of an EHL infinite 2D line contact with relevant 
input variables. Reproduced with permission from Ref. [4], © The 
authors 2020. 

material, velocity, load, and lubricant film parameters, 

and proposed curve-fitted regression formulas 

(hereinafter referred to as “proximity equations”) 

relating those parameters from numerical simulation 

results. Blok and Moes [7, 8] proved that these  

four parameters could be transformed into three 

independent parameters, thus introducing a load and 

a viscosity parameter in addition to the fluid film 

parameter. Later, Johnson [9] proposed film thickness 

parameters for elasticity and a pressure viscosity 

coefficient, which, in turn, can be derived from the 

Blok/Moes notation. More recently, Habchi et al. [10] 

suggested using the Weissenberg number, the Nahme- 

Griffith number, a limiting shear stress-pressure 

coefficient, and a thermo-viscous regime indicator. 

However, the non-dimensional groups proposed by 

Dowson/Higginson and Blok/Moes are the most 

widely used ones in EHL literature [4, 11]. 

To estimate the minimum lubricant film thickness 

in an EHL infinite 2D line contact, Dowson and 

Higginson [5, 6] proposed an analytically solvable 

regression equation as a function of velocity, material, 

and load parameters. Based upon more advanced 

isothermal EHL simulations, these parameters have 

been modified [7, 12, 13] and extended by various 

authors to cover 3D circular and elliptical point contacts 

and estimate the central film thickness [14–21]. Due 

to the transformability, the Blok/Moes parameters  

can be used to calculate the EHL film parameters.  

However, since these are only proximity formulas 

with a limited validity range, Johnson [9] differentiated 

four regions depending on the viscosity and material 

behavior. Besides the classical EHL regime, proximity 

equations were suggested for the hydrodynamic as 

well as for two semi-elastohydrodynamic regimes 

with rigid bodies and iso-viscous fluid behavior, 

respectively. Finally, Moes et al. [19, 22] developed 

further approximations based upon precise EHL 

simulations with validity over a wider range of 

concentrated contacts. 

In these correlations, thermal effects, limited oil 

supply, and shear-thinning fluid behavior have not 

been considered. One way to account for these 

aspects is to apply correction factors to the EHL 

film thickness calculations [4]. Various authors have 

proposed thermal correction factors [23–27], each 

with a different range of validity, to adjust the central 

or minimum EHL film thickness. Similar approaches 

have also been developed to adjust the EHL film 

thickness for starvation [28–30], fluid compressibility 

[31, 32], non-Newtonian fluid behavior [33–35], and 

surface roughness effects under mixed lubrication 

conditions [36–38]. 

For more fundamentals and details about 

non-dimensional groups, film thickness equations, 

and applicable correction factors, the interested reader 

is referred to the recent review article by Marian    

et al. [4]. The latter [4, 39] also hypothesized that 

machine learning (ML) or artificial intelligence (AI) 

algorithms provide opportunities to predict relevant 

EHL film parameters more accurately and effectively. 

Currently, ML and AI methods are receiving growing 

attention in the field of tribology [40] and involve the 

development of computing systems that are able to 

learn from training data (input) and build/refine 

experience-based models to predict a certain behavior 

(output) [41]. ML algorithms can be categorized as 

supervised, unsupervised and reinforcement learning, 

whereby the selection of suitable approaches is 

highly task-dependent [40, 41]. For instance, support 

vector machine (SVM) represents an object set by a 

vector within a vector space. Hyperplanes within the 

space are used to separate the data points. Kernel 

functions are used to transform the vector space into  
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any higher-dimensional space so that interlaced 

vector groups are linearly separable [42, 43]. In the 

context of tribology, SVMs have been successfully 

applied to tailor composite materials [44, 45] as  

well as in the area of drive technology [46, 47] and 

manufacturing [48]. 

Furthermore, artificial neural network (ANN) is   

a flexible and the most widely used approach [40] 

with successful applications in the field of composite 

materials [44, 49–51], drive technology [52–56], 

manufacturing [48, 57], surface engineering [58–60], 

and lubricant formulation [61, 62]. ANN is inspired 

by natural brains’ architecture and involves a number 

of simple but highly interconnected information 

processing elements (neurons) [63], see Fig. 2. Transfer 

or propagation functions determine the neurons’ 

network input based on the output weighting, whereas 

the calculation of the outputs is achieved by activation 

functions considering a threshold value [41]. During 

training, the weightings and thresholds are adjusted 

to optimize the overall prediction quality. The topology 

or architecture of ANNs, i.e., how many neurons 

are parallelly arranged in each layer and how many 

hidden layers are between the input and output layer, 

needs to be tailored for the respective application, 

whereas overfitting must be avoided. ANN has also 

already been used in the context of predicting the 

behavior of EHL contacts. Even though there are 

first physics-informed ML approaches to predict the 

behavior of lubricated contacts [64], most of the work 

done so far was data-driven based upon designs of 

experiments (DoE) [40, 65]. Otero et al. [66] trained 

an ANN with 20 neurons in a single hidden layer to 

predict the coefficient of friction in micro-textured 

EHL contacts under various operating conditions and 

dependent on the textures’ dimensions and patterns. 

Thereby, the underlying data was obtained from 

experimental ball-on-disk experiments (mini-traction 

machine). Marian et al. [67, 68] demonstrated that 

numerical EHL simulations could also be utilized for 

training approximation or meta-models. Nevertheless, 

ML approaches have not yet been adapted to predict 

lubricant film parameters in EHL contacts as a function 

of standard input variables, as is also accomplished 

by the well-known proximity equations [4, 39], see 

Fig. 2. 

In this context, this contribution is based on the 

hypothesis that ML approaches can predict relevant 

EHL film parameters such as the central film thickness 

hc and the minimum lubricant gap hmin in 2D line and 

in 3D circular point contacts more efficiently than 

sophisticated simulation models and with higher 

accuracy and flexibility than analytically solvable 

proximity equations based upon non-dimensional 

 

Fig. 2 Schematic of the correlation between EHL contact parameters and film thickness parameters using ANN. 
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groups. Thereby, the following research questions 

will be addressed: 

1) How accurate are the predictions of SVMs, 

Gaussian process regression (GPR), and ANNs 

compared to the established analytically solvable 

proximity equations? 

2) Does using all available input parameters (see 

Fig. 2) instead of non-dimensional groups to train the 

ML approaches affect the prediction accuracy? 

3) How do the ANN architecture and structure 

affect prediction quality? 

4)What is the influence of the size of the data base 

on the prediction quality? 

5) Is it possible to determine locally resolved lubricant 

film thickness distributions, i.e., the lubricant gap as 

a function of the contact length h(x), with sufficient 

accuracy and more efficiently than by EHL contact 

simulation? 

2 Theory and methods 

To answer these questions, analytically solvable 

proximity equations (Section 2.1) are compared with 

SVM, GPR as well as ANN (Section 2.4) based upon 

designs of experiments (Section 2.2) and data sets 

generated by EHL simulations (Section 2.3) with respect 

to their prediction quality of EHL film parameters. 

The overall approach is illustrated in Fig. 3. 

2.1 Analytically solvable proximity equations 

The proximity equations used to predict lubricant 

film parameters in EHL infinite 2D line or 3D circular 

point contacts are based on the most widely used 

non-dimensional similarity group proposed by Dowson  

and Higginson [5, 6], as summarized in Table 1. 

Thereby, E’ is the reduced Youngs modulus, R the 

effective radius, l the contact length, η the fluid 

viscosity, αp the pressure-viscosity coefficient, um the 

entrainment velocity, and FN the normal load. These 

parameters can be transformed into the notation 

from Blok and Moes [7, 8], see Table 2. 

Given their widespread use, practicability and 

applicability to the overall scope covered within  

this contribution (see Section 2.2 and Refs. [4, 11]), 

the proximity equations derived by Dowson and 

Toyoda [14] 
 

 
Table 1 Non-dimensional parameters according to Dowson/ 
Higginson [5, 6]. 

Velocity parameter 
0 m 


 

u
U

E R
 (1)

Material parameter p  G E  (2)

N
2D 

 
F

W
E l R

 (3)

Load parameter 
N

3D 2


 
F

W
E R

 (4)

c
c 

h
H

R
 (5)

Film thickness parameter 
min

min 
h

H
R

 (6)

Table 2 Blok/Moes non-dimensional parameters according to 
Blok/Moes [7, 8]. 

1

2
2D 2D ( )2


 M W U  (7)

Load parameter 
3

4
3D 3D ( )2


 M W U  (8)

Viscosity parameter 
1

4(2 ) L G U  (9)

Film thickness parameter
1

2
min min


H h U  (10)

0.56 0.69 0.1

c,2D 2D
3.06H G U W              (11) 

Dowson and Higginson [5, 6] 

0.6 0.7 0.13

min,2D 2D
1.6H G U W              (12) 

and Hamrock and Dowson [16] 

     0.53 0.67 0.067 0.73
c,3D 3D2.69 1 0.61 e( )H G U W    (13) 

       0.49 0.67 0.073 0.68
min,3D 33.63 (1 e )DH G U W     (14) 

which represent polynomial regression equations, 

were used to estimate the central and minimum 

lubricant film thicknesses. Within this study, circular 

point contacts and, therefore, the same radii in x- (Rx) 

and in y-direction (Ry) were assumed for the ellipticity 

parameter 

0.64

1.03 x

y

R

R


 
  
 
 

              (15) 
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2.2 Design of experiments 

To generate a sufficient data base to determine 

correlations between input and output variables with 

minimum computational effort, statistical DoE methods 

can be employed to systematically plan and evaluate 

computer experiments. In addition to full and partial 

factorial, central composite, or Box-Behnken, designs 

tailored to the characteristics of numerical simulation 

and statistical modeling can be used. To generate a 

broad spectrum of approximation or meta-models, a 

Latin hypercube design (LHD) or Latin hypercube 

sampling (LHS) from the group of equally distributed 

test fields are particularly suitable. Thereby, the data 

points are distributed so that they fill the factor space 

as evenly as possible and provide information about 

almost every region of the factor space with little 

computational effort (small number of simulations ns) 

despite many factors nf. The LHS is based on a 

modification of a generated LHD, which represents 

an ns × nf matrix containing random permutations of  

the numbers {1, 2, 3, ... nf} within its columns. The 

LHS elements are generated by subtracting a random 

number between zero and one Zr [0, 1) from each LHD 

element xij,LHD and then dividing this value by the 

number of trial points [69]: 


 ,LHD r

,LHS

s

[0,1)ij

ij

x
x

n

Z
          (16) 

Unlike other DoEs, the number of data points is 

directly specified in the LHS. The resulting test field 

can then be transformed to the desired factor space. 

In this work, the desired factor space is delimited 

by the minimum and maximum values of the EHL 

parameters, as summarized in Table 3. The ranges of 

these values were based on typical machine elements 

that operate under hard EHL conditions, such as 

rolling bearings or gears [70], and were chosen to cover 

the parameter space without substantial changes to 

the individual simulation models (e.g., in terms of 

numerical stabilization, see Section 2.3) and with as 

many converged calculations as possible. Thus, the 

ranges of the non-dimensional Dowson/Higginson 

parameters (U, G, W) and Blok/Moes parameters (M, 

L), as shown in Table 3, could be covered. Thereby, 

the conventional cases of EHL infinite 2D line and 3D 

circular point contacts were sampled with 1,500 and 

1,000 data sets, respectively. The former was able to 

include more data points due to the lower computational 

effort. Moreover, it was investigated for the 2D case 

to what extent a reduced data base (600, 300, and 100 

data points) affects the prediction quality. According 

to Johnson et al. [71], the distances between the data 

points can be used to assess the quality of the test 

field regarding uniform distribution and freedom of 

correlation. The minimum distance between the 

individual test points was maximized for a suitable 

and uniformly distributed LHS test field. Considering 

all distances of the test field d, the MaxiMin criterion 

s

1

1

( , )MaxiMin i j
i j n

d x x  

  

    
         (17) 

was obtained, with the integer, positive, and 

application-dependent factor ξ [69]. Within the scope 

of this work, the MATLAB’s Statistics and Machine 

 

Fig. 3 Flowchart of the ML methodology proposed in the present contribution. 
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Learning Toolbox was used to generate an LHS 

optimized according to the MaxiMin criterion. 

2.3 EHL modeling 

Numerical EHL modeling was done by applying  

the steady-state isothermal Reynolds differential 

equation [72]: 

3 3
1 2

Couette termPoisuille term

0
12 12 2

u up ph h
h

x x x y x

   
 

           
                     

(18) 

in a slightly modified notation for hydrodynamics, 

whereby p is the pressure, h the lubricant film 

thickness, η the viscosity, ρ the density, θ the fractional 

film content, u1 and u2 the surface velocities (see Fig. 1). 

The fluid was assumed to be compressible and 

piezo-viscous with the density following Dowson 

and Higginson [73]: 

0

0.6
( ) 1

1 1.7

p
p

p
 





 

   
         (19) 

as well as the dynamic viscosity following Roelands [74]: 

   

81.96 10 Pap

ln 9.670
0 8

ln 9.67 1 1
1.96 10 Pa

0
( ) e

p

p






 



  
             
  




     (20) 

This is an important prerequisite to be consistent 

with the assumptions employed to obtain the EHL 

film thickness proximity equations (see Section 2.1). 

Cavitation was addressed by a mass-conserving 

penalty formulation of the fractional film content [75] 

2( )( ) e p pp                 (21) 

where γ(p) is zero if p < 0 and otherwise a sufficiently 

high algebraic number ξ. The lubricant gap equation 

22

0
( , )

2 2

yx
h x y h

R R
   

 
         (22) 

was comprised by the rigid body motion h0, a 

quadratic approximation of the undeformed geometry 

and the elastic deformation δ. The latter was calculated 

by solving the steady-state linear elasticity equation 

for an equivalent elastic body with negligible body 

forces, which can be expressed in the contract matrix 

(Voigt) notation as 

Table 3 Factor space with minima (min.) and maxima (max.) values of various inputs of infinite 2D line and 3D circular EHL point 
contacts. 

 
EHL 2D line contact EHL 3D point contact 

Training data Input Unit 
min. max. min. max. 

E1,2 GPa 200 440 200 440 

ν1,2 — 0.30 0.35 0.30 0.35 

R m 0.0075 0.02 0.05 0.10 

l m 0.0025 0.01 — — 

FN N 750 1,500 100 1,000 

u1,2 m/s 0.025 0.4 0.025 5 

ρ0 kg/cm³ 850 1,100 850 1,100 

η0 Pa·s 0.005 0.05 0.01 0.2 

EHL contact 
parameters 

αp Pa-1 1.25×10-8 2.50×10-8 1.75×10-8 2.50×10-8 

G — 2,750 8,350 2,400 8,360 

U — 1.9×10-14 1.2×10-11 7.5×10-14 1.5×10-10 
Non-dimensional 

parameters 
W — 1.1×10-5 3.6×10-4 3.0×10-8 3.3×10-5 

M — 4.6 935 4.4 1,000 
Moes parameters 

L — 1.3 17 0.6 6.2 
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   L ( ) 0C U              (23) 

where C is the generalized Hooke’s law elasticity 

matrix, εL the contracted Lagrangian small-strain 

tensor, and U the displacement vector. The surface 

displacement is admitted being the normal component 

U, i.e., 

z
U                   (24) 

Furthermore, the equivalent body was assumed to be 

of a homogenous isotropic material with equivalent 

Youngs modulus 

2 2 2 2

1 2 2 1 2 1

2

1 2 2 1

1 1

1 1

( ) ( )

( ) ( )

E E E E
E

E E

 

 

   


 

 

    
      (25) 

and equivalent Poisson’s ratio 

1 2 2 2 1 1

1 2 2 1

1 1

1 1

( ) ( )

( ) ( )

E E

E E

   


 
     

 



       (26) 

by applying the linear elasticity equation. The integral 

of the hydrodynamic pressure over the contact domain 

Ωc balanced the normally applied load to satisfy the 

force equilibrium: 

c

N
d d

Ω

p x y F              (27) 

To solve the EHL problem and to ensure good 

conditioning, the relevant variables were normalized 

on Hertzian (subscript H) or reference values 

(subscript 0): 


   


  

2
H H H H

2
H 0 0

, , , ,

, ,

y px h R
X Y P H

b b p b

h R

b

   
 

     

(28)

 

The numerical solution scheme was based on the 

full-system approach [76], whose overall procedure is 

depicted in Fig. 4(a). After reading the inputs, initial 

values were determined following the Hertzian theory 

to define an initial guess for the elastic deformation 

solution. Subsequently, the Reynolds equation was 

solved in a weak formulation on the contact domain 

Ωc and fully (strongly) coupled with the calculation  

of the elastic deformation in the solution domain Ω 

based upon FEM. Especially for higher pressures, 

instabilities can occur in the solution of the Reynolds 

equation. This is because convection-diffusion equations 

converge to local oscillations of the solution variables 

when solved with Galerkin FEM in convection- 

dominated problems [77]. Partially, computational 

stability can be improved by finer discretization and 

higher-order approximation functions. In this work, 

5th and 7th order were used for the 2D and 3D models, 

respectively. Moreover, other stabilization methods 

can serve as artificial diffusion by introducing 

additional terms into the transport equations. In  

this study, the residual-based (consistent) stabilized 

Galerkin least squares (GLS) method [78] and the 

inconsistent method of isotropic diffusion (ID) [79] 

were used, whereby care was taken to minimize the 

influence of the stabilization on the numerical solution. 

Regarding the boundary conditions, zero pressure 

(Dirichlet) was applied at the contact domain’s (Ωc) 

in- and outlet. Furthermore, zero displacements on 

the bottom, the hydrodynamic pressure as normal 

stress on the top (Ωc), and free boundary with zero 

normal and shear stresses on the remaining borders 

were applied as boundary conditions of the elastic 

body (Ω). The domains differed between the 2D 

infinite line contact (Fig. 4(b)) and the 3D circular point 

contact case (Fig. 4(c)) and were chosen sufficiently 

large to avoid numerical starvation, thus ensuring that 

the results correspond to the ones predicted by an 

infinite elastic half-space approach. The 2D domain 

was discretized by triangular elements and the 3D 

domain by tetrahedral elements with refinements in 

the contact center of the upper surface. Symmetry 

boundary conditions were used for the 3D case to 

reduce computational efforts. The interested reader is 

referred to Refs. [77, 80, 81] for more details about the 

fundamentals of FEM applied to EHL problems and 

its implementation within the software COMSOL 

Multiphysics. 

2.4 Machine learning 

Various ML regression methods, including SVM, 

GPR, and ANN, were employed to predict EHL film 

parameters using the MATLAB’s Machine Learning 

and Deep Learning Toolbox [82]. All data (input and 
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output values) were normalized to values between 

‒1 and 1 using the MATLAB built-in function 

“mapminmax”. The ML models were developed using 

training data to provide the best possible predictions 

for unknown test data. For this purpose, the data  

sets (see Section 2.2) were divided into 85% for 

training and 15% for testing. Due to its superior 

expressiveness [83], the coefficient of determination 

defined as 

sum of squaredregression

2

2

2

totalsum of squares

( )

ˆ( )y y
R

y y











            (29) 

was used to evaluate the prediction quality. The above 

equation represents the proportion of the variation in 

the response variable y explained by the independent 

input variables, whereas y  is the arithmetic mean of 

the target variables, and ŷ  is the approximation value 

[84, 85]. The prediction quality of the ML approaches 

was compared after training with the original input 

data of the EHL simulations (please refer to Fig. 1 and 

Table 3) and after training with the non-dimensional 

parameters U, G, W, and M, L (please refer to Section 

2.1 and Table 3), respectively. 

2.4.1 Support vector machines 

The linear epsilon-insensitive SVM (ε-SVM) regression 

was implemented in MATLAB’s Machine Learning 

and Deep Learning Toolbox [82]. The goal was to find 

a function 

( )f x x b               (30) 

for each training point xn of a multi-variate set of N 

observations that was as flat as possible through 

formulation as a convex optimization problem and 

deviated from the response value yn by a value smaller 

than ε [82]. The slack variables 
n
  and *

n
  are included 

to deal with otherwise infeasible constraints results in 

the objective function (primal formula) 

*

1

1
( ) ( )

2

N

n n
n

J C    


           (31) 

constrained by [82, 86]: 

: ( ) ,
n n n

n y x b        

*: ( ) ,
n n n

n x b y        

: 0,
n

n    

*: 0
n

n                   (32) 

with the box constraint C, a numeric value to control 

the penalty imposed on observations outside the 

ε-margin. The linear ε-insensitive loss function is 

described by [82]: 

    

0 if ( )

( ) otherwiseε

y f x
L

y f x


       (33) 

To computationally simplify this optimization problem, 

 

Fig. 4 (a) Schematic of the numerical solution of the EHL model and computational domains with meshing and boundary conditions
for (b) infinite 2D line and (c) 3D circular point contacts. 
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its Lagrange dual formulation 

 

 

  

   



 

* *
g

1 1

* *

1 1

1
( ) ( )( ) (

( )

, )
2

( )

N N

i i j j i j
i j

N N

i i i i i
i j

L G x x

y

    

    
    

(34)

 

with the nonnegative multipliers αn and *

n
  for 

each observation xn, was used and subjected to the 

constraints [82] 

*

1

( ) 0,
N

n n
n

 


   

: 0 ,
n

n C    

*: 0
n

n C                  (35) 

The parameter 

*

1

( )
N

n n n
n

x  


               (36) 

was described as a linear combination of the training 

observations, and the function 



   *
k

1

( ) ( ) ( , )
N

n n n
n

f x G x x b          (37) 

was used to predict new values which depend only 

on the support vectors [82]. Thereby, Gk(xj, xk) was 

a linear 

k ( , )j k j kG x x x x              (38) 

Gaussian 

 
2( )

k ( , ) e j kx x

j kG x x
 

            (39) 

or polynomial 

  k ( , ) (1 ) , with {2,3,...}q
j k j kG x x x x q  (40) 

semidefinite kernel function to map x to a higher 

dimensional space [82]. Finally, the Karush‒Kuhn‒ 

Tucker (KKT) complementarity conditions were applied 

to find optimal solutions [82]: 

: ( ) 0( ) ,
n n n n

n y f x        

* *: ( ) 0( ,)
n n n n

n y f x        

0): ,(
n n

n C      

* *(: 0)
n n

n C                 (41) 

The minimization problem was solved by an iterative 

single data algorithm (ISDA) [82, 87]. 

2.4.2 Gaussian process regression 

A GPR non-parametric probabilistic model was 

implemented in MATLAB’s Machine Learning and 

Deep Learning Toolbox [88]. The GPR explained the 

response by latent variables f (xi) from a Gaussian 

process (GP) and explicit base functions. The covariance 

function of the latent variables described the smoothness 

of the response, and base functions hb(x) transferred 

the inputs into a p-dimensional space. A GP is a set of 

random variables with Gaussian distribution, and was 

defined by its mean m(x) and kernel parametrized or 

hyper-parametrized covariance function k(x, x’) [88] 

 
k( ) ~ ( ), ( , , )f x GP m x k x x            (42) 

With the error variance σ² and the p-by-1 vector of the 

base function coefficients βb, the response of the GPR 

was modeled as [88]: 

T 2
b( | ( ), ) ~ ( | ( ) ( ), )i i i i i iP y f x x N y h x f x    (43) 

During training, the MATLAB built-in function “fitrgp” 

estimated the base function coefficients βb, the noise 

variance σ², and the hyperparameter θk of the kernel 

function [88]. 

2.4.3 Artificial neural networks 

Multi-hidden layer feedforward backpropagation 

ANNs were trained by the MATLAB’s app “nnstart” 

utilizing the Levenberg-Marquart algorithm [89–91]. 

Thereby, the neuron weights were adjusted layer-by- 

layer, starting backwards with the connection to the 

output layer [92]. 10% of the training data was used 

for validation to avoid overfitting. At first, the most 

favorable architecture of the ANNs was determined, 

for which the number of neurons per layer varied 

between 10 and 20, while the number of hidden layers 

was assumed to lay between zero and three. If not 

explicitly mentioned, the hyperbolic tangent function 
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 
 2

2
tanh( ) 1

1 e x
x              (44) 

was used as activation function, linear identity 

identity( )x x                (45) 

as output function and 

net
j kj k

k

o                 (46) 

as propagation function [92, 93]. After having identified 

the best architecture, the prediction was compared to 

training with sigmoid (logistic): 

2
sigmoid( )

1 e x
x





            (47) 

and identity activation functions [93]. The results were 

compared with data obtained after training with 

reduced data sets (600, 300, and 100 data points) to 

study the influence of the number of training data. 

In the FEM simulations used for data generation, 

the global central and minimum lubricant film 

thicknesses and the spatially resolved field quantities 

(e.g., fluid pressure, surface elastic deformation, 

lubricant film gap) were calculated. To use the ANNs 

to predict the local lubricant film thickness in the 

EHL infinite 2D line contact, the position along the 

contact length (–1.2 ≤ X ≤ 1.2) was used as an additional 

input variable. With a resolution of 86 uniformly 

distributed points in this length domain, a total 

number of 128 914 data sets were obtained, which 

were divided into training, test and testing data. 

3 Results and discussion 

3.1 EHL simulations 

Representative distributions of the lubricant film gap 

and the hydrodynamic pressure along the contact 

length of the infinite 2D line contact for four 

exemplary cases (lower M and higher L, higher M 

and higher L, lower M and lower L, and higher M 

and lower L) are shown in Fig. 5. The presented 

diagrams illustrate typical characteristics of EHL 

contacts, such as the elastic flattening in the contact 

center and the additional constriction in the lubricant 

gap near the contact outlet. Compared to the Hertzian  

 

Fig. 5 Representative distributions of the lubricant film and the hydrodynamic pressure along the contact length for the infinite 2D
line contact with four exemplary cases including (a) lower M and higher L, (b) higher M and higher L, (c) lower M and lower L, and 
(d) higher M and lower L. 
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theory, the fluid pressure distribution increased earlier 

due to lubricant compression at the contact inlet and 

displayed the additional Petrusevich peak at the 

contact outlet. The same holds for the 3D circular point 

contact (not shown for spatial reasons), whereby the film 

thickness showed the characteristic horseshoe shape. 

Generally, a higher M led to a fluid pressure distribution 

approaching the Hertzian theory and, with constant L, 

to a decrease in the lubricant film thickness. A higher 

L with constant M, in turn, increased the magnitude 

of the Petrusevich spike and the fluid film thickness. 

From the performed calculations within the LHS, 

1,499 converged data sets for the 2D case and 764 for 

the 3D case were ultimately obtained to compare with 

the proximity equations (Section 3.2.1) and train the 

ML models (Section 3.2.2). 

3.2 Prediction of EHL parameters 

3.2.1 Analytically solvable film thickness equations 

As shown in Table 4, the coefficients of determination 

of the analytically solvable proximity equations 

featured good prediction quality despite the DoE 

slightly exceeding these equations’ validity range, see 

Table 3 and Ref. [4]. All data sets were used for the 

calculation, which reduces the influence of individual 

errors and outliers. The R² values were in a similar 

range as the fits between proximity equations and  

experimental film thickness measurements using an 

optical ball-on-disk tribometer as reported by van 

Leeuwen [11]. However, the comparison with calculated 

values derived from EHL simulations (Fig. 6) revealed 

that the film thicknesses tended to be slightly 

overestimated by the proximity equations, especially 

for larger lubricant gaps. This can be attributed to the 

partly different modeling aspects (e.g., the rheological 

and cavitation models) between the EHL simulations 

employed here and the original data used to obtain 

the proximity equations. 

3.2.2 Machine learning 

3.2.2.1 Global EHL film parameters 

The R2 values of the central and minimum film 

thicknesses for the infinite 2D line and 3D circular 

point contacts against testing data as predicted by 

SVM and GPE methods are summarized in Table 5 

and graphically compared in Fig. 7. With the original 

input data (see Fig. 1 and Table 3), the values calculated 

with EHL simulations were accurately predicted by 

both SVM and GPR methods (Figs. 7(a)–7(h)). The 

coefficients of determination with values larger than 

0.99 (Table 5) reached higher values than the analytically 

solved proximity equations (Section 3.2.1). An 

overestimation, as seen for the analytically solved 

proximity equations, was not verifiable. Comparing 

both ML approaches, GPR proved to be slightly 

superior to SVM (Table 5). 

Table 4 Coefficients of determination of the analytically solved proximity equations for the central and minimum film thickness for 
the infinite 2D line and 3D circular point contacts, respectively. 

 
EHL 2D line contact EHL 3D point contact  

hc hmin hc hmin 

R² 0.996 0.999 0.991 0.986 

 

Fig. 6 Central and minimum film thickness predicted from the proximity equations (vertical axis) versus the calculated ones from EHL 
simulations (horizontal axis) for the (a, b) infinite 2D line and (c, d) 3D circular point contacts. 
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Table 5 Coefficients of determination of the SVM and GPR predictions for the central and minimum film thicknesses for the infinite 
2D line and 3D circular point contacts against testing data after training with the original EHL inputs, the non-dimensional parameters 
U, G, W, or M, L. 

 
EHL 2D line contact EHL 3D point contact 

R2 
SVM GPR SVM GPR 

Training data hc hmin hc hmin hc hmin hc hmin 

Original EHL inputs 0.997 0.997 1.000 1.000 0.996 0,997 0.998 0.998 

U, G, W 0.797 0.794 0.100 0.091 0.875 0.901 0.013 0.901 

M, L 0.732 0.722 0.732 0.723 0.680 0.740 0.678 0.739 

 
Fig. 7 Predicted versus calculated values (testing data) of the central and minimum film thicknesses for the infinite 2D line and 
3D circular point contacts using (a–d, i–l, q–t) SVM and (e–h, m–p, u–x) GPR trained with (a–h) the original EHL inputs, (i–p) the 
non-dimensional parameters U, G, W, or (q–x) M, L. 
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 When using the non-dimensional groups U, G, W, 

or M, L instead of the original input data for training 

purposes, the values were predicted with significantly 

lower accuracy (Figs. 7(j)–7(l), 7(p)–7(v), and 7(x)) or  

even totally insufficiently (Figs. 7(m)–7(o) and 7(w)). 

The R2 values fell well below 0.9 and almost zero  

for some cases (Table 5). The substantially inferior 

prediction quality can be traced back to redundant 

input variables for different output variables. Since 

similar dimensionless parameters can result from 

different original input data, it is possible that similar 

dimensionless variables can lead to different film 

parameters (Table 6). These inconsistencies in the 

data base led to problems in the training of SVM and, 

particularly, GPR (Table 5). A possibility to overcome 

this issue is the use of the dimensionless film thickness 

H as output of the regression equations for training the 

ML approaches without prior dimensionalization. 

Table 6 Exemplary points from the data base for the infinite 2D 
line contact with inconsistency in the film thickness when using 
the non-dimensional parameters G, U, W, or M, L instead of the 
original input data. 

 Input Unit #110 #1073 #1338

E1 GPa 236 298 307 

E2 GPa 204 217 206 

ν1 — 0.33 0.31 0.34 

ν2 — 0.34 0.35 0.30 

R mm 8.1 11.5 18.7 

l mm 8.1 5.8 3.1 

FN N 1,133 1,145 778 

u1,2 m/s 0.36 0.16 0.16 

u1,2 m/s 0.26 0.36 0.31 

ρ0 Pa·s 897 870 1,069

η0 g/cm³ 0.03 0.04 0.05 

EHL contact 
parameters 

αp Pa-1 1.5×10-8 1.4×10-8 1.7×10-8

G — 3,695 3,980 4,585

U — 4.7×10-12 3.5×10-12 2.2×10-12
Non- 

dimensional 
parameters 

W — 7.0×10-5 6.1×10-5 4.9×10-5

M — 23.0 23.0 23.0 Moes 
parameters L — 6.5 6.5 6.7 

hc μm 0.080 0.097 0.131Film 
thickness hmin μm 0.067 0.082 0.110

      

The unambigious prediction of the film thickness 

becomes possible by using only dimensionless 

parameters as input of the ANN and the 

dimensionless film thickness H as output since the 

latter is unique. Subsequently, the film thickness can 

be dimensionalized in the post-processing using the 

radius R. 

The coefficients of determination for the prediction 

of the central and minimum film thicknesses for the 

infinite 2D line and the 3D circular point contacts 

against testing data using ANNs with 10, 12, 15, or 20 

neurons in one, two, or three hidden layers are 

summarized in Tables 7 and 8. Thereby, the original 

input values have been used for training. It can be 

observed that the EHL film parameters were 

predicted with high accuracy (R2 values above 0.99) 

by some ANN configurations. While the number of 

neurons played a less dominant role, the number of 

hidden layers had a decisive impact on the prediction 

quality. Therefore, the lowest R² values resulted in 

only one hidden layer, followed by three and 

finally two hidden layers with the highest accuracy. 

Regarding the number of neurons, the configurations 

with more than 10 neurons proved to be favorable. 

Since 12 neurons in 2 hidden layers gave the best 

results in the more complex 3D circular point contact 

(Table 8), this configuration was kept constant for 

the following predictions. The comparison of the 

calculated and predicted central and minimum film 

thicknesses for this configuration is depicted in 

Fig. 8. The prediction was more precise than that of 

the analytically solvable proximity equations (Section 

3.2.1) and comparable to SVM or GPR (Table 5). The 

3D circular point contact case featured higher R2 

values against the testing data compared to the 2D 

line contact, which may be due to the considerably 

larger data base for the latter and thus some 

overfitting. 

Similar to SVM and GPR, training the ANN with 

dimensionless groups instead of the original input 

parameters resulted in a considerable reduction of 

prediction quality (Table 9) due to inconsistencies in 

the training data set (Table 6). 

The coefficients of determination of the prediction 

with an ANN with 12 neurons in each of two hidden 

layers after training with hyperbolic tangent, logistic   
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Table 9 Coefficients of determination of the prediction for the 
central and minimum film thicknesses for the infinite 2D line  
and 3D circular point contacts against testing data using an ANN 
with 12 neurons in each of two hidden layers after training with 
the original EHL inputs, the non-dimensional parameters U, G,  
W, or M, L. 

 

R2 EHL 2D 
line contact 

EHL 3D 
point contact 

Training with hc hmin hc hmin 

Original EHL inputs 0.988 0.988 1.000 1.000

U, G, W 0.750 0.757 0.834 0.853

M, L 0.724 0.695 0.598 0.661

 

and identity activation functions are compared in 

Table 10. Please note that the output and propagation 

functions were kept constant and only the activation 

function was varied. The sigmoid activation function 

Table 10 Coefficients of determination of the prediction for the 
central and minimum film thicknesses for the infinite 2D line and 
3D point contacts using an ANN with 12 neurons in each of two 
hidden layers after training with hyperbolic tangent, sigmoid and 
identity activation functions. 

 

R2 EHL 2D  
line contact 

EHL 3D  
point contact 

Activation  
function 

hc hmin hc hmin 

tanh 0.988 0.988 1.000 1.000 

Sigmoid 1.000 1.000 0.995 0.999 

Identity 0.961 0.96 0.932 0.933 

 

and the previously employed hyperbolic tangent 

function led to high R2 values beyond 0.99, while  

the linear identity function resulted in a slightly 

downgraded prediction quality. 

Table 7 Coefficients of determination for the prediction of the central and minimum film thicknesses for the infinite 2D line contact 
against testing data using ANNs with variable numbers of hidden layers and neurons per hidden layer. 

Number of neurons per hidden layer 
 

10 12 15 20 R2 

hc hmin hc hmin hc hmin hc hmin 

1 0.987 0.987 0.979 0.978 0.978 0.9779 0.981 0.983 

2 0.690 0.690 0.988 0.988 1.000 1.000 0.999 0.999 
Number of 

hidden layers 
3 0.977 0.978 0.999 0.999 0.927 0.930 0.986 0.985 

          

Table 8 Coefficients of determination for the prediction of the central and minimum film thicknesses for the 3D circular point contact 
against testing data using ANNs with variable numbers of hidden layers and neurons per hidden layer. 

Number of neurons per hidden layer 
 

10 12 15 20 R2 

hc hmin hc hmin hc hmin hc hmin 

1 0.998 0.996 0.984 0.9828 0.992 0.989 0.995 0.995 

2 0.994 0.995 1.000 1.000 0.993 0.991 0.999 0.999 
Number of  

hidden layers 
3 0.978 0.971 1.000 1.000 0.978 0.970 0.999 0.999 

          

 

Fig. 8 Predicted versus calculated values (testing data) of the central and minimum film thicknesses for the (a, b) infinite 2D line and 
(c, d) 3D circular point contacts using an ANN with 12 neurons in each of the two hidden layers. 
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To minimize the efforts required to generate the 

training data base, it is advisable to keep the number 

of training data as small as possible without affecting 

the prediction quality. The prediction coefficients of 

the central and minimum film thicknesses for the 

infinite 2D line contact with a varying number of 

training data are shown in Table 11. Even when the 

original training data set was reduced to 600 data 

points, the R² values remained at a very high level 

above 0.99, thus showing slightly better R² values 

compared to the 1,249 training data sets. This may 

imply some overfitting for the original 1,249 training 

data set. For 300 or 100 training data points, the 

coefficients of determination showed a decreasing 

tendency but stayed above 0.9. The deteriorated 

prediction accuracy due to an insufficient data base 

can also be seen from the comparison between the 

calculated and predicted values in Fig. 9. It can be 

concluded that for the present case with 12 varying 

input variables, at least 600 data points are required 

for the training. This also fits the data consisting of 

600 sets used for the 3D circular point contact at 

the same number of input variables and explains its 

sufficient prediction quality. 

Table 11 Coefficients of determination of the prediction for the 
central and minimum film thicknesses for the infinite 2D line 
contact using an ANN with 12 neurons in each of two hidden 
layers after training with differently sized data sets. 

Number of training data sets hc hmin 

1,249 0.988 0.988 

600 1.000 1.000 

300 0.961 0.963 

100 0.922 0.927 
 

3.2.2.2 Local EHL film distribution 

For the prediction of the local lubricant film distribution 

for the infinite 2D line contact by an ANN with 12 

neurons in 2 hidden layers, an overall coefficient of 

determination of 1.000 against testing data including 

all data sets and positions along the contact length 

was obtained. Thus, the model exhibited excellent 

prognosis accuracy, which can be recognized in the 

direct comparison of the lubricant film distribution 

calculated by FEM and the values predicted by ANN 

as depicted in Fig. 10. While the two curves were 

congruent over almost the entire contact length, 

including the minimum film thickness, only minor 

deviations were predicted close to the upstream of 

the film constriction at the contact outlet (slight 

overshooting of the ANN prediction as enlarged detail 

in Fig. 10). Regarding computational time, training 

and execution tasks must be differentiated. The training 

of the ANN with the locally resolved data required 

several minutes. To finally compare the execution 

time of the FEM simulation and the ANN, the lubricant 

film thickness for a data set not included in the 

training data was calculated using both methods on 

the same computer. Although the ANN was trained 

with 86 uniformly distributed data points along the 

contact length, it is possible to query any desired 

discretization. Since the EHL simulation provided the 

lubricant film thickness at 8,641 positions in the relevant 

contact length range, the same number of values was 

predicted with the ML algorithm for consistency. As 

illustrated in Table 12, ANN was over 25 times faster 

than the FEM model, while the calculation time is 

comparable to the analytically solvable proximity  
  

 

Fig. 9 Predicted versus calculated values of the central and minimum film thicknesses for the infinite 2D line contact using an ANN
with 12 neurons in each of the two hidden layers after training with (a, b) 600 and (c, d) 100 data sets. 
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Table 12 Computational time for determining the lubricant film 
distribution over the contact length for a representative infinite 
2D line contact using the FEM-based EHL simulation and an 
ANN with 15 neurons in each of the two hidden layers. 

 FEM-based 
EHL simulation 

ANN prediction

Computational time 19 s 0.74 s 

 

Fig. 10 Comparison of calculated (blue) and predicted (orange) 
lubricant film distribution over the contact length for a 
representative infinite 2D line contact using FEM and an ANN 
with 12 neurons in each of the two hidden layers. 

equations solution. However, ANN offers the possibility 

to predict the lubricant film distribution locally. 

Moreover, the computational time could even be 

further improved when implementing the ANN in 

programming languages with a stronger focus on 

computational speed. By incorporating the ANN into 

multibody system simulations, their accuracy in 

friction and dynamics analyses or the identification 

of critical operating conditions could become even 

more precise without negatively affecting the required 

computational time. 

4 Conclusions 

This contribution demonstrated that ML approaches 

could predict relevant film parameters more efficiently 

than sophisticated EHL simulation models. Moreover, 

we verified that ML outperforms analytically solvable 

proximity equations based upon non-dimensional 

groups in terms of accuracy and flexibility. Based 

upon the presented results, we derive the following 

conclusions to address the introduced research 

questions: 

1) Compared to the proximity equations according 

to Dowson/Toyoda/Higginson [5, 6, 14] for infinite 

2D line contacts and Hamrock/Dowson [16] for 3D 

circular point contacts, all ML approaches (SVM,  

GPR, and ANNs) reproduced the behavior calculated 

by the FEM-based EHL simulations more accurately. 

Thereby, coefficients of determinations up to 1 were 

verified when predicting EHL film parameters within 

the operating conditions covered by the training  

data. Other film thickness equations, e.g., from 

Nijenbanning et al. [19], Wolf et al. [21], or Moes [22], 

may also enable accurate predictions. However, the 

implementation of these equations requires the 

definition of more complicated analytical expressions 

to fit the simulation results, which, in turn, increases 

the computational effort and the proneness to errors. 

In this regard, the omission of a large range of 

dimensionless parameters represents another benefit 

of the ML approaches employed to efficiently predict 

EHL film thickness without the need to define complex 

proximity equations. In contrast to proximity equations, 

the usage of original EHL input parameters is crucial 

for ML approaches. Using only the parameters G, U, 

W, or M, L notably decreases the prediction quality. 

We anticipate that this aspect can be overcome by 

training ML approaches with dimensionless film 

thickness as output instead of the dimensional one.  

2) The architecture of ANNs and, especially, the 

number of hidden layers notably influences the 

accuracy. For the data set of this contribution, ANNs 

with 12 neurons in two hidden layers were most 

favorable. Suitable activation functions are hyperbolic 

tangent and sigmoid functions, while linear identity 

functions deteriorated the prediction accuracy. 

3) The size of the data base affects the prediction 

quality. For ML approaches trained using 12 input 

parameters, roughly 600 training data proved sufficient 

to reach high R² values without overfitting. 

4) It should be noted that the trained ML approaches 

were not physics-informed and, therefore, cannot 

provide physical explanations. Although not reflected 

in the results, the predictions have to be considered 

carefully as it is possible to obtain negative film 

thicknesses. Nevertheless, the trained ML approaches 

provided meaningful results when employed for the 

operating conditions covered in the training data 

base of this article. In the future, the architecture of 

ANNs can be further modified to exclude unphysical 

results by using a strictly positive linear function (e.g., 

the poslin function in MATLAB) instead of linear  
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identity in combination with a normalization of the 

ouput data in the range of [0, 1]. This would help to 

ensure that the ANN will not predict negative film 

thicknesses for any input parameters. 

5) In addition to global parameters, ML approaches 

can also predict the local lubricant film distribution. 

Compared to FEM-based EHL simulations, the trained 

ANNs achieved 25 times shorter computation times 

at prediction coefficients above 0.999. At present, 

lubrication behavior and dynamics calculations in 

multibody system simulations typically employ 

analytically solvable proximity equations and the 

Hertzian theory to account for fluid film formation 

and pressure distribution. We hypothesize that in the 

future, the incorporation of ML approaches such as 

ANNs into these higher-level simulations will add 

value to the engineering system design process. 

6) In the future, other contact conditions and physical 

effects should be considered by training novel ML 

approaches without the need to define complex 

proximity equations or introduce further correction 

factors. Thereby, elliptical contacts, thermal effects 

and other rheological models should be considered. 

It is also conceivable that time-dependent squeeze, 

starvation effects, and the influences of surface 

roughness and solid asperity contact may be also 

taken into account.  
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