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ANDRÉS IVÁN ADEMA YUSTA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:
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ABSTRACT

This thesis describes an analytical procedure for designing timber concrete compos-

ites (TCC) subjected to boundary conditions different than simply supported. Currently

available investigations of TCCs are mainly focused on simply supported slabs, as it is a

typical configuration for timber buildings. However, in other structural applications, and

remarkably for reinforced concrete buildings, the boundary conditions of the TCC slabs

are not likely to be simply supported. Such distinct boundary conditions can significantly

reduce the cross section height, mid-span deflection and self weight of the structure, the

last one being crucial in seismic regions. The proposed procedure is derived from two sim-

plified methods available in the literature, one being general in its nature while the other

being valid for simply supported beams. The short-term analytical model was compared

against finite element models (FEM) and to the only experimental investigation available

in the literature, while the long-term analytical model was compared only against FEM.

In the last section, the proposed procedure is explained through a design example. It was

concluded that the prediction of the models was satisfactory. Further experimental cam-

paigns are needed in the future to assess the versatility of the model in a wider range of

boundary conditions, including short-term and long-term tests, which should enhance the

applicability of TCC slabs in structures different from timber buildings and bridges.

Keywords: Timber-concrete composite, beam, slab, Load-deflection, short-term, design.
x



RESUMEN

En esta tesis se propone un procedimiento analı́tico para diseñar losas madera-hormigón

sujetas a condiciones de borde distintas a simplemente apoyadas. Las investigaciones ex-

istentes sobre losas madera-hormigón se enfocan principalmente en condiciones de simple

apoyo, lo cual es muy común en edificios de madera. Sin embargo, en otras aplicaciones

estructurales, y especı́ficamente para edificios de hormigón armado, es poco probable que

las losas estén simplemente apoyadas. Este cambio en las condiciones de apoyo puede

reducir de manera significativa el espesor total de la sección, deflexión máxima y peso

propio de la estructura, lo cual resulta crucial en paı́ses sı́smicos. El procedimiento prop-

uesto se derivó de dos modelos simplificados existentes en la literatura, uno que se puede

aplicar para cualquier condición de borde y el otro solo para la condición simplemente

apoyada. El modelo analı́tico para el comportamiento a corto plazo se comparó con mod-

elos de elementos finitos (FEM) y con la única investigación experimental existente en

la bibliografı́a, mientras que el modelo analı́tico para el comportamiento a largo plazo se

comparó solo con FEM. En el último capı́tulo, se muestra el procedimiento propuesto a

través de un ejemplo de diseño para un edificio habitacional considerando la normativa

chilena e internacional. La predicción de los modelos analı́ticos entregó resultados muy

cercanos a los de los modelos FEM. Se concluyó que se necesitan más campañas experi-

mentales para validar el procedimiento de diseño para un amplio rango de condiciones de

borde, incluyendo comportamiento a corto y largo plazo, lo cual debiera mejorar la apli-

cabilidad de las losas madera-hormigón para estructuras diferentes de edificios de madera

y puentes.

Palabras Claves: Losas madera-hormigón, carga-deflexión,corto plazo, largo plazo, diseño.

xi



1. INTRODUCTION

1.1. Background and Problematic

Timber concrete composites (TCC) floors consist in a concrete slab connected to the

timber below by shear connectors. Initially, the main TCC application was the upgrading

of existing timber floors by adding nails and a concrete layer, specifically after World Wars

I and II due to the shortage of reinforcement steel bars (Yeoh, Fragiacomo, & Deam, 2011).

Nowadays, TCC can be used in renovation of old timber structures, construction of new

bridges (Rodrigues, Dias, & Providência, 2013) and in multi-story buildings (Ceccotti,

2002).

One of the principal advantages of using a TCC is that the concrete component depth

can be reduced by about 50 % compared to a customary concrete slab (R. Gutkowski,

Brown, Shigidi, & Natterer, 2008), reducing the carbon footprint and decreasing the self

weight of the structure. The above becomes crucial in seismic regions since lighter floors

can reduce the lateral strength required in a structural system (Yeoh, Fragiacomo, De

Franceschi, & Heng Boon, 2011). Additionally, it does minimize the use of formwork

and props, considering that timber can perform as a structural element and as a formwork,

which allows for a higher degrees of prefabrication. All this together, makes TCCs as

an attractive solution for conventional reinforced concrete buildings, especially those of

seismic regions.

The use of TCC floors under simply supported conditions has been widely studied

by several authors through experimental investigations (Jiang & Crocetti, 2019; Ceccotti,

Fragiacomo, & Giordano, 2007; Mudie, Sebastian, Norman, & Bond, 2019; Yeoh, Fra-

giacomo, & Deam, 2011; Fragiacomo, 2012) or numerical/analytical ones (Fragiacomo

& Ceccotti, 2006a; Khorsandnia, Valipour, & Crews, 2014; A. M. Dias, Van de Kuilen,

Lopes, & Cruz, 2007; Zona, Barbato, & Fragiacomo, 2012). The main objective of that
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research, was to measure the short-term behavior, the long-term behavior, the mechani-

cal properties of the connection as well as predicting the stresses, deflections and internal

forces with numerical or analytical methods.

It has been stated that the main limitation of the TCC, and often the indicator which

controls the design, is the mid-span deflection (Khorsandnia, Valipour, Shrestha, Ger-

ber, & Crews, 2013; Yeoh, Fragiacomo, De Franceschi, & Heng Boon, 2011). To min-

imize the mid-span deflection it has been recommended the use of low-shrinkage con-

crete and pre-cambering the timber before casting the concrete (Fragiacomo, Gutkowski,

Balogh, & Fast, 2007; Tannert, Endacott, Brunner, & Vallée, 2017; Yeoh, Fragiacomo,

De Franceschi, & Heng Boon, 2011). However, even applying such improvements, the

TCCs typically results in thicker and economically more expensive slabs in comparison to

a conventional reinforced concrete slab.

Even though the assumption of simply supported condition does not usually represent

the real support conditions that the TCC will be subjected to, research about the behavior

of TCC under different boundary conditions is scarce (A. Dias, Schänzlin, & Dietsch,

2018). Since the TCC slabs supported on reinforced concrete wall buildings are connected

to the shear walls using steel reinforcement, the behavior obtained through the analysis

assuming simply supported conditions would not be accurate.

For the reasons mentioned above, a new design method for TCC was investigated. It

has to be said that no previous research has aimed the design of TCC floors under boundary

conditions different than simply supported.

1.2. Hypothesis

The short and long term behavior of a timber-concrete slab under support conditions

different than the traditional ones, such as a clamped end, can be correctly predicted with

analytical methods available in the literature.

2



1.3. Objectives

The main objective of this research is to develop an analytical procedure for analysis

and design of TCC floor slabs under boundary conditions different than simply supported,

considering the short term and long term behavior, the influence of the environmental

conditions, different load states and the behavior of the timber to concrete connectors.

The specific objectives are:

(i) To implement an analytical design method for the short term and long term be-

havior, based on existing models in the literature.

(ii) To validate the method through comparison with numerical models.

(iii) To validate the method through comparison with test results available in the

literature.

(iv) To design a TCC slab for a residential building in Chile using the proposed

procedure.

1.4. State of the art

After World Wars I and II, due to the shortage of reinforcement steel bars, the existing

timber floors began to be upgraded by adding nails and a concrete layer (Yeoh, Fragia-

como, & Deam, 2011). Since then, the use of TCC structures have been used not only for

upgrading existing floors, but also for the construction of new buildings or bridges. As

an example, in 1999 was constructed the Vihantasalmi Bridge in Finland, a 14 m wide

and 168 m long road bridge, which is part of the more than 100 TCC bridges that exist

worldwide (Balogh, Fragiacomo, Gutkowski, Atadero, & Ivanyi, 2013).

The advantage of the TCCs is that both concrete and timber are being used more

efficiently, since the concrete is subjected to compression and the timber is subjected to

tension and bending. This allows to reduce the depth of the concrete component by up

to 50 % compared to a solid concrete slab (R. Gutkowski et al., 2008). Since the cracked

3



lower part of a pure concrete slab is significantly reduced by adding the timber component,

the corrosion of the steel reinforcement due to moisture penetration is not an issue in the

TCCs (Lukaszewska, 2009).

In order to understand the behavior of a TCC, the interaction of the three main com-

ponents have to be considered. As mentioned before, when a TCC is subjected to a load,

the timber member experience bending and tensile stresses, and the concrete member ex-

periences mainly compression. The main purpose of the connection is to transfer the

longitudinal shear force between the concrete and the timber.

slip "s"

a) Full composite action

b) Partial composite action

c) No composite action

Strain diagram

Strain diagram

Strain diagram

Figure 1.1. Influence of the stiffness of the connection in a TCC.

As it can be seen in Figure 1.1, there are two limits of the composite action: the upper

limit, which is when the connection ensures full composite action and the concrete is

rigidly connected to the timber; and the lower limit, which is when there is no composite

action, and the timber and concrete work independently. In practice, a full composite

action is almost impossible to reach due the flexibility of the connection (Clouston &

4



Schreyer, 2008), which gives way to a relative horizontal displacement, or ”slip”. This

behavior is called ”partial composite action”.

The efficiency of the design highly depends of the connection stiffness. A connection

system which achieves a high degree of composite action, allows to obtain longer span

lengths and significantly smaller depths compared to a non composite action (Yeoh, Fra-

giacomo, De Franceschi, & Heng Boon, 2011). The efficiency is usually measured by the

quantity E,

E =
∆NC − ∆PC

∆NC − ∆FC

· 100 (1.1)

where ∆NC , ∆PC and ∆TC are the mid-span deflection for the cases of no composite

action, partial composite action and fully rigid connection, respectively (R. M. Gutkowski,

Balogh, & To, 2010).

1.4.1. Shear connectors

The connections between timber and concrete have been widely studied, since their

characteristics and behavior are responsible of the main mechanical properties of the

TCCs, such as composite stiffness, ductility, short-term and long-term deflections and

load capacity. Due to the wide variety of connectors available, it is hard to define an ideal

connection. Nevertheless, the ideal connection should be strong enough to transmit the

shear force produced between the concrete and timber, stiff enough to transmit the force

without involving large slips, and ductile enough to prevent the failure in the connectors

and distribute the loads between the timber and concrete along the element (A. Dias et al.,

2018).

Different types of connection systems have been investigated so far. They can be clas-

sified by their components as metal dowels, fasteners and screws, notches, notches with

fasteners, glued connections, steel plates and others, or by their mechanical properties, as

5



it was done by Yeoh, Fragiacomo, Franceschi and Heng Boon (2011) and shown in Figure

1.2. Moreover, they can be distinguished as discrete or continuos, vertical or inclined,

adhesive or mechanically bonded, and others.

Figure 1.2. Comparisons of different categories of connection systems
(Yeoh, Fragiacomo, De Franceschi, & Heng Boon, 2011).

According to Dias et al.(2018), most of the studies are focused on dowel type fasteners

(45 %). The studies about notches and notches combined with steel fasteners represent

33%, and other connections systems like nail plates, glued connections, friction systems,

among others, represent approximately 22 % of the studies. Some of this systems are

shown in Figure 1.3. The performance of the connectors is directly influenced by the

concrete type and the presence of an intermediate layer (Marchi, 2018), and in the case of

notched connections, by the type of timber.

1.4.2. Short term behavior

Although the application of TCCs already started in central Europe by the 30s, the

short term behavior of TCCs under simply supported conditions still has been quite studied

the last few years. The investigations usually start with a push-out test of the connection,

6



Figure 1.3. Examples of timber-concrete connections. At the letter A, it
can be observed nails (1), glued reinforced steel bars (2), screws (3) and
inclined screws (4). At the letter B, it can be observed split rings (1),
toothed plates (2), steel tubes (3) and steel punched metal plates (4). At
the letter C, round notches in timber with fasteners (1), square notches with
fasteners(2), cup notches with prestressed steel bars (3) and nailed timber
planks dech and steel shear plates (4). At the letter D it can be observed a
steel mesh glued to the timber (1) and a steel plate glued to the timber (2).
(Lukaszewska, 2009)
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followed by a full-scale bending test loaded to failure, with the objective of quantifying

the actual composite action of the system, failure mechanisms and load-bearing capac-

ity; see for example (Brunner, Romer, & Schnüriger, 2007; R. Gutkowski et al., 2008;

Lukaszewska, Fragiacomo, & Johnsson, 2010; Yeoh, Fragiacomo, & Deam, 2011; Khor-

sandnia, Valipour, Schänzlin, & Crews, 2016; Boccadoro, Zweidler, Steiger, & Frangi,

2017; Müller & Frangi, 2018). It must be noted that none of the mentioned investigations

consider boundary conditions different than simply supported.

The only experimental tests considering external indeterminacy in the longitudinal di-

rection were conducted by Sebastian et al. (2016). They tested two propped cantilever

TCC beams up to failure, to understand the behavior of external indeterminacy in the lon-

gitudinal direction with presence of cracked concrete zones and changes in the connection

behavior (Sebastian et al., 2016). They observed that the beams primarily failed due to

connection fracture, and secondly by rupture of the LVL at the positive moment zone.

None analytical nor numerical models were reported concerning the test results.

Regarding the theoretical investigations, Girhammar (2006) proposed a simplified

method for designing composite beams with interlayer slip subjected to arbitrary bound-

ary or loading conditions. This method lead to identical results than the ones obtained

with the equations proposed by Eurocode 5 1-1 (European Commitee for Standarization,

1995), which are based on the widely spread γ- method, for estimating the maximum

deflection of a simply supported TCC beam. On the other hand, it was found that the

use of Eurocode 5 procedure can lead to errors up to 27 % for other boundary conditions

(Girhammar, 2009). It has to be mentioned that this method has not been validated with

experimental campaigns regarding TCCs subjected to boundary conditions different than

simply supported.

1.4.3. Long term behavior

The main limitation of the TCC, and usually the indicator which controls the design,

is the total long-term mid-span deflection (Khorsandnia et al., 2013; Yeoh, Fragiacomo,

8



Buchanan, & Gerber, 2009). Since concrete and timber has different rehological behavior,

it becomes necessary to include this aspect in the design. Several authors have performed

long-term bending tests in order to study the behavior of TCCs.

In 2006, two 10 m long beams were tested in outdoor conditions during 430 days.

It was concluded that pre-cambering the beams was imperative due the large deflections,

and that the environmental changes affect the mid-span deflection (Bathon & Bletz, 2006).

Fragiacomo (2007) tested eight deck systems during 133 days, in uncontrolled environ-

mental conditions. It was concluded that the effect of concrete shrinkage is quite impor-

tant, and that if a mid-span deflection limit is required, the use of low shrinkage concrete

and pre-cambering is recommended.

It has been found that long-term behavior of TCC floors is not easy to predict with

simple models, as it involves several phenomena such concrete shrinkage, creep and ther-

mal strains of concrete, timber creep, changes in moisture content of timber and creep

of the connection. Approximate analytical formulas, like the one proposed by Eurocode

5-Part 1-1 and 2 (European Commitee for Standarization, 1995, 2011), underestimate the

long term deflection of a TCC floor (Fragiacomo et al., 2007). The reason is that they

usually neglect effects such as timber and connection mechanosorptive creep and concrete

shrinkage (Fragiacomo, 2006; Ceccotti et al., 2007).

In order to predict the long term behavior, different authors have proposed analytical

and numerical procedures to represent accurately the strains, slip and specifically the de-

flection. Ceccotti (2002) proposed the use of the Effective Modulus method. The method

consists in reducing the modulus of elasticity of the timber and concrete to account the

effects of creep. This method disregards the effects of concrete shrinkage and inelastic

strains due to environmental variations, therefore it underestimates the final mid-span de-

flection (Yeoh, Fragiacomo, De Franceschi, & Heng Boon, 2011).
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Fragiacomo and Ceccotti (2006) developed a numerical model which was validated

and calibrated with experimental data. The procedure consists in a uniaxial finite ele-

ment (FE) model which applies to simply supported TCCs. The model consists in a lower

timber beam and an upper concrete beam joined by links which represent the connec-

tion, as is displayed in Figure 1.4. It takes into account all time-dependent phenomena

mentioned earlier, and it considers data such as the daily environmental relative humidity,

daily moisture content and daily and yearly thermal variations. However, such a specific

approach is not suitable for design, so a simplified method was proposed, demonstrating

its accuracy through comparisons with experimental data (Fragiacomo & Ceccotti, 2006a;

Fragiacomo, 2006) . A more detailed explanation of the method will be presented in 2.3.

Figure 1.4. Finite element model proposed by Fragiacomo and Ceccotti
(Fragiacomo & Ceccotti, 2006a).
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2. MODEL EXPLANATION

In this section the models used in this thesis for the analysis are explained. The γ-

method and the Girhammar method are explained first, followed by an explanation of

the analytical method used to predict the long-term behavior. Finally, the Finite Element

Models used to validate the analytical models are described.

2.1. γ - method

The γ- method is one of the most used methods for designing composite structures,

and it has been proved by several authors that provides a reasonably good prediction of

the deflection, stresses and slip under simply supported conditions (Yeoh, Fragiacomo, &

Deam, 2011; Tannert, Ebadi, & Gerber, 2019). The design equations can be found in the

Eurocode 5-Part 1-1 Annex B (European Commitee for Standarization, 1995).

The method is based on the linear elastic theory for a simply supported beam with a

span L, connecting the concrete and timber by mechanical fasteners with a slip modulus

K and spacing between them s.

As it has been said, the connection between the timber and concrete does not provide

a perfectly bonded connection, hence the assumption of plane sections remaining plane is

not valid in the full section, yet it is assumed for each component of the composite beam.

With the assumptions mentioned before, the γ-method defines an Effective Stiffness,

EIeff , which considers the stiffness provided by the shear connectors in the interface

between the components of the TCC. In order to address this effect, the γ factor ranges

between 0 (non composite action) to 1 (full composite action).

The equations of the method can be written in accordance to Figure 2.1

EIeff =
2∑
i=1

(EiIi + γiEiAia
2
i ) (2.1)
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γ1 = 1 + π2E1A1s

kL2
(2.2)

γ2 = 1 (2.3)

a1 =
h1 + h2

2
− a2 (2.4)

a2 = γ1
E1A1(h1 + h2)

2 (γ1E1A1 + E2A2)
(2.5)

where s is the spacing between the connectors, L is the length of the beam, k the slip

modulus of the connection, Ei, Ai and Ii are the elastic modulus, area and second moment

of area of the i component. The subscripts i = ,  refer to the top and bottom elements

of the composite beam. The missing parameters can be obtained from Figure 2.1.

d

h1

h2

b1

b2

0.5h1

0.5h2A1,I1,E1

A2,I2,E2

a1

a2
N.A

σ1 σm,1

σ2σm,2

Figure 2.1. Cross section (left) and stress distribution (right) of a TCC.

When the beam is subjected to support conditions different of simply supported, the

Eurocode 5 recommends a length of 0.8L for continuous beams, and 2L for cantilever

beams. However, this assumptions may lead to errors of up to 27% in the prediction

12



of the maximum deflection (Girhammar, 2009), so this method is not recommended for

boundary conditions different than simply supported.

2.2. Girhammar method

Girhammar (2009) proposed a simplified general method for analyzing and designing

composite beams with interlayer slip, which can be applied to arbitrary boundary or load-

ing conditions. The method is based on the theory for partial interaction beams with linear

elastic conditions (Girhammar & Pan, 2007), and it was proposed as a simplification of

the exact static analysis of composite beams, obtaining a method suitable for designing.

The method assumes that the mechanical fasteners with a constant shear flow stiffness,

K = k
s

[
N

mm

]
, where k is the slip stiffness and s the spacing of the fasteners, are equally

spaced, and the frictional effects and uplift are neglected. Linear-elastic behavior is con-

sidered for all the component materials, and the curvature of the different components of

the beam is assumed to be the same. Besides, the model considers the effective beam

length equal to the buckling length of the equivalent buckling problem.

An effective bending stiffness was introduced in the model in order to reflect the effect

of the interlayer slip and effective length. The effective bending stiffness depends of the

geometrical properties of the sub-components, the slip modulus of the connection and the

boundary conditions, as it can be seen in Equations 2.6 to 2.11.

EIeff =

[
1 +

EI∞
EI0

− 1

1 +
(
µ
π

)2
(αL)2

]−1

EI∞ (2.6)

α =

√√√√ Kd2

EI0

(
1 − EI0

EI∞

) (2.7)

EI0 = E1I1 + E2I2 (2.8)
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EA0 = E1A1 + E2A2 (2.9)

EAp = E1A1 · E2A2 (2.10)

EI∞ = EI0 +
EApd

2

EA0

(2.11)

whereEiIi,EI andEI∞ are the bending stiffness of the sub component i, the bending

stiffness of the non composite section and the bending stiffness of the fully composite sec-

tion respectively. The boundary conditions depend on the buckling length coefficient, µ,

which is available in engineering handbooks (Girhammar, 2009). The missing parameters

can be obtained from Figure 2.1.

In order to obtain the deflection of a composite beam for different boundary conditions,

the bending stiffness of the fully composite section has to be replaced by the effective stiff-

ness of the composite section (Equation 2.6). The procedure mentioned can be observed

in Figure 2.2. It should be mentioned that both the γ- method and the Girhammar method

give the exact same result when a simply supported beam is considered.

In addition to the deflection, the designers are usually interested in obtaining the inter-

nal forces. Knowing the force diagrams of a fully composite member, the internal forces

can be approximated using the following expressions:

Ni,eff = ±
(

1 − EI0

EIeff

)
M

d
(2.12)

Mi,eff =
EiIi
EIeff

M (2.13)
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Figure 2.2. Approximate deflection expressions for beams with different
loads and boundary conditions.

Fs,eff =

(
1 − EI0

EIeff

)
V s

d
(2.14)

where M , V , Ni,eff , Mi,eff and Fs,eff are the moment, shear, the normal force in

the i component, moment in the i component and the load in the fasteners respectively,

while i = 1, 2 according to the Figure 2.1. On the other hand, the maximum normal and

maximum shear stresses in the i sub component, σi,eff,max and τi,eff,max, for rectangular

sections, can be written as:

σi,eff,max = σi ∓ σi,b =

[(
1 − EI0

EIeff

)
1

Aid
∓ Eihi

2EIeff

]
M (2.15)
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τi,eff,max =
Eih

2
na,i,eff

2EIeff
V (2.16)

where σi is the normal stress of the i component, σi,b is the bending stress of the i

component and

hna,i,eff = min

hihi
2

+
(

1 − EI0
EIeff

)
EIeff
EiAid

(2.17)

2.3. Long-term simplified model

The aim of this section is to explain the analytical proposal to calculate the long-term

deflection and stresses of the slab. The model was based on the proposal by Fragiacomo

(2006) to calculate long-term deflections, method that only considers simply supported

conditions.

According to the numerical procedure proposed by Fragiacomo (2006), the long term

solution of the TCCs can be obtained by superimposing the effects of the loads, concrete

shrinkage and inelastic strains due to environmental variations. A difficulty is, that the

actual environmental conditions to which the TCC will be subjected are usually unknown.

In this investigation, the relative humidity will be considered constant during its lifetime,

and the daily and yearly temperature variations will not be considered.

The effects due to live and dead load for the simply supported case are usually evalu-

ated through the ”γ - method”, formula widely employed in timber engineering. However,

the same effects will be evaluated through the ”Girhammar method” for other boundary

conditions.

The effects of creep and mechanosorptive creep are considered by using the effective

modulus method (Fragiacomo, 2006), as described in the following equations:
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Ei
c,eff =

Ec(ti)

1 + Φc(t, ti)
(2.18)

Ei
w,eff =

Ew(ti)

1 + Φw(t, ti)
(2.19)

kif,eff =
kf (ti)

1 + Φf (t, ti)
(2.20)

where Φc(t, ti) accounts for the creep phenomena in concrete, Φw(t, ti) accounts for the

creep and mechanosorptive creep of the timber, and Φf (t, ti) is the creep coefficient of the

connection.

To explain how to consider all the effects mentioned above, S represents a generic

effect (mid-span deflection, slip, internal forces) at the time t from the cast of the concrete.

In conformity with the superposition principle, the effect can be expressed as

S = SD+L
h + Ssh + Syel + Sdel (2.21)

where the subscripts el and h denote the type of analysis applied, elastic or hydroviscoelas-

tic, and the superscripts denote load conditions, whereD, L, s, y and d symbolize the Dead

Load, Live Load, concrete shrinkage, yearly inelastic strains due to thermohygrometric

variations and daily inelastic strains due to thermohygrometric variations, respectively.

As mentioned before, daily and yearly temperature variations will not be considered in

this model, so the last component of equation 2.21 can be disregarded, while Syel can be

considered as yearly inelastic strains due to hygrometric variations.

S = SD+L
h + Ssh + Syel (2.22)
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In order to determine the effect of the Dead and Live loads, it will be considered the

following:

SD+L
h = SDh + SLh (2.23)

Sih = F i
el(E

i
c,eff , E

i
w,eff , k

i
f,eff ) with i = D,L (2.24)

where F i
el is the load i evaluated with the γ-method or Girhammar method, depending of

the boundary conditions, by replacing the effective modulus as it is seen in equations 2.18,

2.19 and 2.20. In order to be consistent with the considerations of Fragiacomo (2006), the

CEB 90 (1993) will be used to calculate the creep coefficient of the concrete.

The effect of the concrete shrinkage in the TCC is considered as

Ssh = F∆εsh
el (Es

c,eff , E
s
w,eff , k

s
f,eff ) (2.25)

where F∆εsh
el is calculated by solving the differential equation of TCCs, which solution is

given by Fragiacomo (2006) for a simply supported beam. The solution of the differential

equation for boundary conditions different to simply supported is reported in Appendix

A. The inelastic strain, ∆εsh, will be estimated by following the expressions proposed in

CEB 90 (1993).

The Toratti model (1993) was used to define the timber and connection creep mod-

ulus. This model can predict the creep of timber in varying environment humidity, when

subjected to bending, tension or compresion parallel to the grain (Toratti, 1993). It con-

siders a piecewise linear moisture content history which varies ∆u in a period ∆t = 365

days. The model can be described as
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Φw(t, τ) = Φwc(t− τ) + Φwms(t− τ)

=
Ew(u)

Ew(uref )

(
t− τ

td

)m
+

0.7Ew(u)

Ew(uref )

[
1 − e−cw(2∆u/∆t)(t−τ)

] (2.26)

where Φwc is the creep part and Φwms is the mechanosorptive part of the total creep coef-

ficient Φw, τ is the current time, t the time at which creep starts (usually when the load is

applied), uref = 0.2 , cw = 2.5, td = 29500 days and m = 0.21 (Fragiacomo & Ceccotti,

2006b).

Figure 2.3 shows a comparison of the timber creep coefficient variation over the years,

considering different values of moisture content defined in terms of ∆u. It can be ob-

served that after 50 years the value of the timber creep coefficient Φw is independent of

the amplitudes of the moisture for values of ∆u larger than 1.65%, which is typical of

TCCs (Fragiacomo & Ceccotti, 2006b). For this reason, and since it is the average timber

moisture content measured by Fragiacomo (2006) for a real TCC beam, the value of ∆u

considered for this thesis is ∆u = 3.3%.

Because the variation of the timber elastic modulus due to moisture is usually in-

significant, the equation 2.26 can be simplified by considering Ew(u) = Ew(uref ) = Ew

(Fragiacomo, 2006). In absence of experimental tests of the long-term behavior of the

connection, the recommendation of the EC5 (1995) is to use kf = 2Φw.

2.4. Finite Element Modeling

In order to compare and validate the analytical models, finite element models were

developed using the software ANSYS. Three models were developed for this purpose: a

two dimensional linear model called FEM 2D, a three dimensional linear model called

FEM 3D L, and a three dimensional non linear model called FEM 3D NL. In this section,

it can be found an explanation of the material properties, adopted elements, constitutive
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Figure 2.3. Creep coefficients of timber considering different values of ∆u.

relations and assumptions made to develop the models, including the short-term and long-

term behavior.

2.4.1. Elements used

For the two dimensional linear model, the element PLANE183 was used for the short-

term and long-term behavior of the concrete and timber. This is an eight node element

(Quad) with two degrees of freedom at each node: translations in the x and y directions.

For the three dimensional linear model, the element SOLID186 was used for modeling

of the concrete and timber. The element has twenty nodes with three degrees of freedom

at each node: translations in the x, y and z directions. The element exhibit quadratic

displacement behavior and isotropic modules were considered for both materials.
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The three dimensional element SOLID65 was used for the purpose of modeling the

non linear behavior of the concrete. When the concrete material model is included, the

element can consider the presence of reinforcing bars and is capable of cracking in ten-

sion and crushing in compression. The steel reinforcement was modeled with an uniaxial

tension-compression element, LINK180, considering an elastic-perfectly plastic constitu-

tive relation.

An isotropic module was considered for modeling the timber in the non-linear model,

since when the behavior is flexure dominated and the timber is free of defects, the influence

of the properties in the direction perpendicular to the grain is negligible (Khorsandnia et

al., 2014). The element SOLID185 was used to model the timber, which is an eight node

element with three degrees of freedom at each node.

2.4.2. Connection system

The connection system is modeled by discrete longitudinal springs which connect the

upper component of the beam (concrete) with the lower component (timber). The model

does not consider the local effects caused by the connectors, since the objective of the

model is to observe the global behavior of the beam.

The joint between the timber and concrete section was modeled with COMBIN14

spring elements. Several authors have used spring elements at the position of the shear

connectors, to model mechanical fasteners (Fragiacomo et al., 2007; Lukaszewska et

al., 2010; Lopes, Jorge, & Cruz, 2012) or notches, screws and continuous connections

(Khorsandnia et al., 2014). Since the connection strength is designed to be larger than the

shear force in the connectors, a linear behavior is expected, and therefore, the connection

was modeled as linear with a slip modulus ks = K
s

.
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2.4.3. Concrete shrinkage

As it was mentioned in Section 1.4.3, the effect of the concrete shrinkage is quite

important in TCCs. In order to measure its effect, and in absence of the solution for

boundary conditions different to simply supported in the bibliography, the differential

equation of the TCC was solved and its solution is reported in Appendix A.

In the absence of the option of considering the concrete shrinkage in ANSYS, the

effect was introduced by applying a fictitious change of temperature which induces the

same value of strain in the concrete as free shrinkage does. The concrete coefficient of

thermal expansion was considered as α = 1.4E − 04 1
◦C , which is the default concrete

value in Ansys. Then, the time dependent temperature, T (t), was calculated as

T (t) =
εsh(t)

α
(2.27)

where εsh(t) is the free shrinkage strain calculated with the CEB 90 shrinkage model

(1993).

Figure 2.4 shows a comparison of the deflection induced by shrinkage for a simply

supported beam and a propped cantilever beam obtained using the FEM 3D L. The pre-

diction of the analytical method reported in Appendix A was plotted as a comparison.

It can be observed an almost perfect agreement between the two models, regardless the

boundary conditions.

2.4.4. Creep

For the long term behavior, creep effects were considered in the concrete and timber.

As mentioned in Section 2.3, CEB 90 (1993) Model code and Toratti model (1993) were

considered as creep models for concrete and timber respectively. However, ANSYS has

their own creep equations for modeling the behavior of the materials, with constants that

can be adjusted in order to fit the target model.
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Figure 2.4. Deflections in five years induced by concrete shrinkage for dif-
ferent support conditions.

Since the CEB 90 (1993) and Toratti (1993) models are functions of time, the model

”Modified Time Hardening” available in ANSYS was found to be the best option for

representing the creep models. The ANSYS model can be observed in Equation 2.28,

where C1, C2, C3 and C4 are constants, T is the temperature of the material, t is the

current time, σ is the material stress and εcr is the creep strain.

εcr =
C1σ

C2tC3+1e−
C4
T

C3 + 1
(2.28)

As it can be seen in Equation 2.28, creep strain is dependent of the stress of the ma-

terial, which during the analysis remains constant while the creep strain increases with a

time dependent rate. A comparison between the adjusted ANSYS models and the CEB
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90 (1993) or Toratti (1993) model can be observed in Figure B.1 and B.2 for a five years

period, and in Figures B.3 and B.4 for a fifty years period. The constants C1, C2, C3 and

C4 adjusted for each figure are shown in Table B.1, B.2 , B.3 and B.4 respectively.
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3. NUMERICAL AND EXPERIMENTAL VALIDATION

The objective of this section is to validate the analytical models presented in Chapter

2, using the Finite Element method by analyzing a slab designed in cooperation with a

Chilean company, ISiete, since they were interested in including a TCC slab in a residential

building.

3.1. Section Design and Material Properties

In order analyze a slab designed as real as possible, several restrictions were consid-

ered during the design process, which include geometrical, economical and code limita-

tions:

• The length of the slab shall be 6000 mm, considering that it is the largest slab

length in a typical residential building.

• The total depth of the slab shall be smaller than 170 mm, since larger depths are

not competitive with a traditional concrete slab, especially for mid and high rise

concrete buildings, where the space of one or more entire stories may be lost

when considering thicker slabs

• The concrete layer shall be thicker than 70 mm, since all the electrical conduits

and installations in the slab must be accommodated through inside the concrete.

• In absence of design regulations for TCCs, the deflection limits shall fulfill the

requirements of ACI318-14 (2014).

Considering the restrictions mentioned, a section of the final design can be observed

in Figure 3.1. The timber considered in this design is Laminated Strand Lumber (LSL).

Regarding the material properties, the concrete resistance was considered as f ′c = 41

MPa, the timber elastic modulus as Ew = 12065 MPa (Louisiana Pacific Corporation,

2019), the slip modulus of the connection Ks = 20 kN
mm

(Rothoblaas, n.d.) with a spacing

of s = 200 mm. The concrete elastic modulus and tensile strength were obtained by using
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Figure 3.1. Slab design.

Ec = 4700
√
f ′c and ft = 0.62

√
f ′c respectively (American Concrete Institute, 2014). The

concrete reinforcement considered for the areas with negative moment in the FEM 3D NL

model were 8-mm bars spaced at 60 mm, with a yield stress of 420 MPa, simulating a real

reinforcement.

3.2. Short term behavior

For the short term behavior, two methods were used to analyze the performance of

the beam: analytical and FEM. Since the support conditions of the beam are different to

simply supported, the most adequate analytical model is the Girhammar Method (Section

2.2). Table 3.1 shows a comparison of the maximum deflections predicted by the FEM 2D

model and the Girhammar method (Analytical) model, for different boundary conditions

and subjected to service loads. As it can be observed in the table, the Analytical model

can accurately predict the maximum deflection regardless of the support conditions.

Table 3.1. Maximum deflection comparison under different support condi-
tions for service loads.

Model Simply Supported [mm] Propped cantilever [mm] Fixed [mm]

Analytical 15.35 7.56 4.42

FEM 2D 15.45 7.87 4.42

%Error 0.67% 3.94% 0.04 %
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The service loads were chosen according to the Chilean code specification, NCh1537.Of2009,

which defines the minimum values to be considered for the service and permanent loads

(Instituto Nacional de Normalización, 2009). Considering that the loads have to be con-

sistent with the solicitation of a residential building, the values selected were:

• Dead Load : D = 0.981 kPa

• Live Load : L = 1.962 kPa

With the loads defined, the first step to validate the analytical model is to compare the

deflections. This indicator is directly related to the stiffness of the TCC and the support

conditions, reason why it is a very important one. Besides, as it was mentioned in Sec-

tion 1.4, the deflection is often the indicator which controls the design. The results are

presented in Table 3.2.

Table 3.2. Instantaneous deflection for a propped cantilever beam sub-
jected to service loads.

Model Max deflection [mm]

Analytical 7.56

FEM 2D 7.77

FEM 3D L 7.60

FEM 3D NL 8.62

As it can be observed in Table 3.2, the analytical model gives a close prediction com-

pared to the FEM 2D and FEM 3D L model. However, when comparing the analytical

model with the FEM 3D NL model, the analytical result is 13.3 % smaller than the FEM

3D NL prediction. This result was expected since the analytical model does not consider

the cracking of the concrete, as the FEM 3D NL does.
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In addition to the deflections, to fully validate the analytical model all the design pa-

rameters were checked. In other words, the model has to give a reasonable accurate pre-

diction of the concrete and timber stresses, and interface forces. The main stresses of the

timber and concrete were calculated and are presented in Table 3.3. The table is divided

in two sections, in order to observe the main stresses at mid-span and at the fixed support.

Table 3.3. Stresses for a propped cantilever beam subjected to service loads.

Mid-span

Model Concrete compression [MPa] Timber tension [MPa]

Analytical 4.55 2.58

FEM 2D 4.64 2.64

FEM 3D L 4.95 2.65

FEM 3D NL 4.72 2.50

Fixed end

Model Concrete tension [MPa] Timber compression [MPa]

Analytical 8.09 7.56

FEM 2D 10.6 5.84

FEM 3D L 10.9 6.78

FEM 3D NL 3.36 8.95

Analyzing the mid-span stresses, it can be observed a good agreement between the

Analytical model and all the numerical ones. The largest difference occurs between the

Analytical model and the FEM 3D L model, yet the difference is less tan 8.1%. However,

it is expected that the prediction of the FEM 3D NL will be closer to the real case, since it

accounts for the concrete non linear behavior, yet the difference with the Analytical model

in the prediction of the stresses is near 3.6%.
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On the other hand, larger differences are observed in the fixed end case. Regarding

the concrete tensile stresses, the results of the linear models are not expected to be ac-

curate since they do not consider cracking of the concrete, while the FEM 3D NL does.

The analytical model underestimates the concrete tension compared to the linear numer-

ical models, which are in good agreement between them and overestimates the concrete

tension compared to the FEM 3D NL model by 140%. Regarding the timber compression

stresses, all the models gave different results. The analytical model and the FEM 3D NL

model are the larger stresses, being the analytical stresses 16 % smaller.

Table 3.4 shows a comparison of the interlayer forces obtained with the Analytical

model and the Finite Element Models, at five points along the length of the slab. The

interlayer force Fs at the fixed end (x = 0) draws attention, given the contradictory results

between the analytical and Finite Element Models. The explanation of this is that in order

to obtain the exact interlayer force, the interlayer slip must be calculated (Fs = ks(x)).

Due to the complexity of the procedure, the Equation 2.14 was proposed by Girhammar

(2009) as an approximation to estimate Fs as a function of the shear force. However, errors

in the prediction of the interlayer force at the fixed end are expected since, even though it

is known that the interlayer slip is 0, the shear force V is largestat this end so the Equation

2.14 provides a result different from 0.

When observing the interlayer forces along the length of the beam predicted by the

analytical and numerical models, it can be concluded that both approaches are in good

agreement with each other, since the maximum difference between them is less than 12

%. Comparing the Analytical model with the FEM 3D NL model, the maximum differ-

ence occurs near the fixed end (1
4
L) where the Analytical model overestimate the interlayer

force by 12 %, while at three quarters of the length (3
4
L) the interlayer force is underesti-

mated by 4 %.
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Table 3.4. Interlayer force along the x axis for the different models.

Model Fs (0) [kN] Fs (1
4
L) [kN] Fs (1

2
L) [kN] Fs (3

4
L) [kN] Fs (L) [kN]

Analytical 5.27 3.30 1.05 1.19 3.16

FEM 2D 0 3.20 1.16 1.10 3.07

FEM 3D L 0 2.99 1.12 1.35 2.85

FEM 3D NL 0 2.95 0.96 1.24 3.04

3.3. Long term behavior

In absence of long term experimental data of TCC beams or slabs subjected to bound-

ary conditions different than simply supported, a numerical long-term model was made

with ANSYS to compare with the analytical model proposed in Section 2.3.

The cross-section of the analyzed slab is shown in Figure 3.1, and the material proper-

ties were given in Section 3.1. Since the Live Load shall not be present during the entire

life cycle of the slab, the load combination usually applied to obtain the long-term effects

is D + 0.3L. The loads considered are equal to the ones mentioned in the previous sec-

tion, and they were applied 21 days after the concrete casting, in order to simulate real

conditions.

As mentioned in Section 2.3, the long-term behavior can be obtained by superimpos-

ing the effects of the loads, concrete shrinkage and inelastic strains due to hygrometric

variations. A comparison of the maximum deflections calculated with the Analytical and

FEM 2D models for a simply-supported slab can be seen in Figure 3.2 for a period of

five years since concrete casting. The contribution of each effect is represented by the

vertical arrows, being the concrete shrinkage the most influential effect over the long-term

deflection.

The same analysis was performed by changing the support conditions to a propped

cantilever slab, and the results are shown in Figure 3.3. As in Figure 3.2, the contribution
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Figure 3.2. Simply supported beam long term maximum deflection at mid-span.

of each effect is represented by vertical arrows, being the concrete shrinkage the most

influential effect over the long-term deflection. The maximum deflection predicted by

the FEM 2D model was 19.24 mm, while the Analytical model predicted 18.27 mm of

maximum deflection. This implies that the Analytical model prediction is very similar

to the numerical one, underestimating the deflection for the propped cantilever condition

by 5.1%. A comparison between the two different support conditions can be observed in

Figure 3.4.
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Figure 3.3. Propped cantilever beam long term maximum deflection.
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Figure 3.4. Long term deflection (5 years).

It can be observed from Figure 3.2 and Figure 3.3 that the analytical prediction is in

good agreement with the numerical one, regardless the boundary conditions. The 5 years

deflection is approximately 3 times the instant deflection for the simply supported case,

and 2.6 times the instant deflection for the propped cantilever case. Additionally, it can

be observed from Figure 3.4 that the maximum deflection of a propped cantilever slab at

5 years since concrete casting is at least 50% smaller than the maximum deflection of a

simply-supported slab.

For a fifty years period since concrete casting, it was not possible to emulate in AN-

SYS the CEB 90 (1993) and Toratti (1993) creep model with precision, since neither the

”Modified Time Hardening” or other models available in ANSYS fitted those models (see

Figure B.3, B.4). Even so, the comparisons of the deflections calculated for fifty years

since concrete casting were done and are shown in Figure 3.5.
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Figure 3.5. Long term deflection (50 years).

From Figure 3.5, it can be observed that the 50 years deflection is approximately 4

times the instant deflection for a simply supported beam, and 3.3 times the instant deflec-

tion for the propped cantilever case. Additionally, the maximum deflection of a propped

cantilever slab at fifty years since concrete casting is at least 50% smaller than the maxi-

mum deflection of a simply-supported slab, as in the five years analysis. However, in 10

years up to 88% of the 50 years deflection developed for the simply supported case, while

up to 85% developed for the propped cantilever case, consequently a 50 years analysis

might not be necessary.

3.4. Experimental validation

For the purpose of experimental validation of the Girhammar method, the prediction

of the analytical model was compared with the test results of Sebastian et al.(2016). The

authors tested two propped cantilever TCC beams, to understand the behavior of external
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indeterminacy in the longitudinal direction with presence of cracked concrete zones and

changes in the connection behavior (Sebastian et al., 2016). The geometry of the beams

can be observed in Figure 3.6.

Figure 3.6. Dimensions [mm] of the TCC beam. (Sebastian et al.,2016).

In addition to the TCC bending tests, the concrete, timber and the connection were

tested by Sebastian et. al. (2016) to obtain their properties. Partially Threaded Screws

(PT) and Fully Threaded Screws (FT) were tested to obtain the slip modulus and the

failure load of the connection. Tests were performed to obtain the connection behavior

when the concrete is compressed (traditional test) and when the concrete develops tension

stresses and eventually cracks (Sebastian et al., 2016). Only the results of the tests of

the PT screws are shown in Table 3.6 since the beam modeled in this article used those

connectors. More details of all the tests can be found in Sebastian et. al. (2016).
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Table 3.5. Timber and concrete properties.

Concrete Timber Steel

Ec [GPa] 31.0 Ew [GPa] 15.7 Es [GPa] 191.0

f ′c [MPa] 32.7 fy [MPa] 354.0

Table 3.6. PT connection properties from tests.

Screw/Test Failure load [kN] Slip modulus [ kN
mm

]

PT/compression 39.0 23.2

PT/tension 10.4 8.0

Three numerical models were used to estimate the short-term behavior of the slab.

The first one, ”Ansys L Fixed”, consists of a 4 m beam perfectly fixed on one end, and

simply supported at the other end. The timber and concrete were modeled as linear, and

the dimensions of the cross section are shown in Figure 3.6 b). The second and third

numerical models (”Ansys L” and ”Ansys NL”) correspond to full models of the beams,

in an attempt to emulate the actual conditions of the tests with a linear and a non-linear

behavior, since it was believed that the test set up did not emulate a perfect fixed support.

In Figure 3.7 can be observed the geometry of these models, with text labels for better

understanding.

A 35 mm thick steel plate connected to the floor by two φ28 steel bars, was used to

restrain the uplift of the cantilever end of the beam. Another 35 mm thick steel plate was

used to distribute the applied load, and 50 mm thick steel plates were used to model the

supports. The behavior of the concrete was considered linear in the Ansys L model and

non-linear in the Ansys NL model, while the behavior of the timber was considered linear

in both cases. Regarding the analytical model, the Girhammar method was used to predict
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the short-term behavior of the beam, as described in Section 2.2. The beam was modeled

as a 4m element, simply supported in one end and perfectly fixed at the other end.

Upper Restraint Impactor

Support

Support

Concrete Slab

LVL joist

Figure 3.7. Ansys NL and Ansys L model. Images used courtesy of ANSYS,inc.

Both connection slip modulus were used in the numerical models, using the tension

slip modulus for the zone near the fixed support, where the concrete develops tension,

and the compression slip modulus for the rest of the beam. On the other hand, since

the analytical model can only consider one slip modulus, one model was done with each

connection. A summary of the models is presented in Table 3.7. It is important to mention

that linear behavior of the connectors was considered for the analytical and numerical

models, since the peak forces measured during the test of the beam were still on the linear

portion of the behavior of the connection (Sebastian et al., 2016).

Table 3.7 shows that the Ansys NL model is the one which better represents the actual

conditions of the test, since it considers the upper restraint and the non-linear behavior of

the concrete. The Ansys L model does represent the support conditions of the test, but

it does not consider the real behavior of the materials since linear behavior of concrete is

considered, while the Ansys L Fixed model simplifies the conditions at the fixed support

considering a perfectly fixed support. Lastly, the analytical models consider a perfectly

fixed support, and does not account the variation of the connectors slip stiffness along the

beam.
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Table 3.7. Summary of the models.

Model Model Type Fixed Support
Connection

Slip Modulus
Concrete behavior

Analytical 8 kN/mm Analytical Perfectly fixed Tension Linear
Analytical 23 kN/mm Analytical Perfectly fixed Compression Linear

Ansys L Fixed Numerical Perfectly fixed Both Linear
Ansys L Numerical Test Setup Both Linear

Ansys NL Numerical Test Setup Both Non Linear

In Figure 3.8 can be observed a comparison of the load-deflection response obtained

with the models from Table 3.7 and the test results, which were adapted from Sebastian

et al.(2016). Regarding the test results, the response of the beam is approximately linear

until 140 kN, when longitudinal cracks appeared in the concrete, leading to a sharp drop

of stiffness (Sebastian et al., 2016). The Ansys NL model is in very close agreement with

the test results after the 40 kN load. In addition, 2.22 mm uplift of the Upper Restraint

(see Figure 3.7) was calculated in the Ansys NL model at 120 kN load. All this together

suggests that the test setup did not provide a perfectly fixed support.

As expected, the linear Ansys L model is stiffer than the non linear one, and the dif-

ference between the two models is less than 9% for loads smaller than 140 kN. The Ansys

L model underestimates by 16 % the deflection of the test at 120 kN load.

As it is shown in Table 3.7, the difference between the Ansys L and the Ansys L Fixed

model is the configuration of the fixed support: while the Ansys L model emulates the test

configuration, the Ansys L Fixed model has one of its ends perfectly fixed. That consider-

ation led the Ansys L Fixed model to be the stiffest numerical model and to underestimate

the experimental deflection by 23 % for a 120 kN load.

Among all the models, the analytical model which considers the largest slip modulus

is the stiffest of all models. This occurs because the model assumes a perfectly fixed end,

and also the largest possible connection slip modulus. On the other hand, the Analytical 8
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Figure 3.8. Deflection of the PT beam. Test results adapted from Sebastian
et al. (2016).

kN/mm model is more flexible than the Analytical 23 kN/mm, and also more flexible than

the Ansys L Fixed. This relation was expected, since the Ansys L Fixed model considers

both slip modulus of the connection, 8 kN
mm

near the fixed support and 23.2 kN
mm

on the rest

of the beam, hence its equivalent beam effective stiffness is in between the two analytical

models.

The good agreement of the Analytical 8 kN with the Ansys NL model shown in Figure

3.8, thus with the test result, is believed to be a coincidence, since neither the fixed support

behavior, the non linear behavior of the concrete nor the correct distribution of the con-

nection slip modulus along the beam were considered in this analytical model. However,

further experimental data is required before concluding remarks.
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To consider the correct distribution of the connection slip modulus along the beam

in the Girhammar method, it is proposed to replace the slip modulus of the connection

with an effective slip modulus. The recommendation is equivalent to the one made by

EC5 (European Commitee for Standarization, 1995) for the case when the spacing of the

fasteners varies along the longitudinal axis of the beam, and it can be seen in the following

equation:

keff = 0.75ktension + 0.25kcompression (3.1)

where ktension, kcompression and keff are the slip modulus obtained through the test where

the concrete is in tension, the slip modulus obtained through the test were the concrete

is in compression (traditional push-out test) and the effective slip modulus respectively.

Figure 3.9 shows a comparison between the mentioned procedure (Proposed Analytical

in the legend) and the Ansys L model. A good agreement between the results was found

using the proposed effective slip modulus, since at a load of 120 kN a difference of 6 % of

the deflection prediction was found between the proposed method and the Ansys L model.

Figure 3.10 shows the slip between the concrete and timber at 80 kN load for the

test results, the Ansys L Fixed, Ansys NL and the Analytical model prediction. For the

Analytical model, the results shown from 0 m to 2.9 m relate to the results of the Analytical

8kN/mm model, while the results of the Analytical 23 kN/mm model were plotted from

2.9 to 4.0 m. The mentioned distances correspond to the inflection point of the moment

diagram on a propped cantilever beam, since at 2.9 m from the simple support the moment

changes sign.

A good agreement between the numerical results and the test results can be observed

in Figure 3.10, even though they tend to underestimate the slip between 0 and 2.0 m, and

overestimate it between 2.0 and 4.0 m. The Ansys NL predicts accurately the slip at the

simple support, underestimate it by 37.5% at 1.0 m and overestimate it by 25% at 3.0

m. Additionally, the difference between a perfectly fixed support and the actual support

40



Figure 3.9. Comparison of maximum deflection calculated with the Pro-
posed analytical model and Ansys L model.

conditions of the test can be observed at 4.0 m, where the Ansys L Fixed model predict

0.0 mm of slip, but the test results and the Ansys NL model predict slips of -0.25 mm and

-0.48 mm respectively.

Since the approximation given by Girhammar (2009) to obtain the interlayer force

is proportional to the shear force V , the interlayer slip behaves equally. Thus, it can

be observed from Figure 3.10 a piecewise linear prediction of the interlayer slip by the

analytical model, similar to the test results or the numerical prediction between 0 and 2.9

m. In the first 2 m the analytical model underestimates the interlayer slip by up 41%

maximum. At 3 m the analytical model overestimates the slip by 145%. Between 2.9 and

4.0 m the analytical model largely overestimates the slip, which was expected since even
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Figure 3.10. Slip along the beam at 80 kN Load. Test results adapted from
Sebastian et al. (2016).

though the shear force is maximum over the fixed support, the interlayer slip is negligible,

and then Equation 2.14 fails estimating the value of slip near fixed supports. However,

considering the maximum interlayer slip obtained with the analytical model is always

conservative.
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4. PROPOSAL OF DESIGN PROCEDURE

The objective of this section is to present a design procedure for a TCC system under

different boundary conditions in accordance with the methods presented earlier. The pro-

cedure is based on the current standard (European Commitee for Standarization, 1995),

but modified with the provisions given in this thesis, and it will be explained trough a

design example in Section 4.1. The procedure is divided in two main sections: ultimate

limit states (ULS) and serviceability limit states (SLS), according with the requirements

of EC5 (European Commitee for Standarization, 1995). The proposed design procedure

is summarized in Figure 4.2 and 4.3, and a comparison between the proposed design pro-

cedure and the provisions given by the current standard EC5 is shown in Table 4.1. For

more details about the design according to the provisions of EC5 (European Commitee for

Standarization, 1995), a design example was developed by Dias et al. (2018).

Table 4.1. Comparison between the proposed design procedure and the
EC5 design procedure.

Variable Proposed design procedure EC5 design procedure (European Com-
mitee for Standarization, 1995)

Design method Girhammar method γ- method
Boundary conditions differ-
ent to simply supported

Yes No

Statically indeterminate sys-
tems

Yes No

Load distribution It can consider any load distribution Only uniformly distributed loads
Environmental conditions It considers varying environmental

conditions through the Toratti model
and CEB 90 model

It considers only one environmental con-
dition through the assignment of a Ser-
vice Class (only 3 classes)

Concrete creep factor Calculated through the CEB 90
model

From tables depending of the Service
Class

Timber creep factor Calculated using the Toratti model From tables depending of the Service
Class and type of timber

Connection creep factor Considering 2φw Considering 2φw
Concrete shrinkage contribu-
tion

Yes, through the formulas shown in
Appendix A

No

Evolution of the deflection
over time

Yes No, just the instant and final deflection
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The difference of the proposed design procedure with the traditional design according

to the requirements of EC5, is that EC5 suggest the use of the γ-method (Section 2.1)

regardless the boundary conditions of the beam, simply adjusting the length of the beam

to 0.8 times the span for continuous beams, and to twice the span for cantilever beams

(European Commitee for Standarization, 1995). On the other hand, in the proposed de-

sign procedure it is suggested to use the Girhammar method (Section 2.2) for boundary

conditions different to simply supported. The equations of the method were explained in

Section 2.2 and can be observed in equations 4.1, 4.2, 4.3, 4.4, 4.5, 4.6,4.7, 4.8, 4.9, 4.9

and 4.10. The properties of the cross section are shown in Figure 4.1.

EIeff =

[
1 +

EI∞
EI0

− 1

1 +
(
µ
π

)2
(αL)2

]−1

EI∞ (4.1)

α =

√√√√ Kd2

EI0

(
1 − EI0

EI∞

) (4.2)

EI0 = E1I1 + E2I2 (4.3)

EA0 = E1A1 + E2A2 (4.4)

EAp = E1A1 · E2A2 (4.5)

EI∞ = EI0 +
EApd

2

EA0

(4.6)

Fs,eff =

(
1 − EI0

EIeff

)
V s

d
(4.7)
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σi,eff,max = σi ∓ σi,b =

[(
1 − EI0

EIeff

)
1

Aid
∓ Eihi

2EIeff

]
M (4.8)

τi,eff,max =
Eih

2
na,i,eff

2EIeff
V (4.9)

hna,i,eff = min

hihi
2

+
(

1 − EI0
EIeff

)
EIeff
EiAid

(4.10)
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σ1 σm,1

σ2σm,2

Figure 4.1. Cross section (left) and stress distribution (right) of a TCC.

For the long-term behavior, the main difference between the proposed procedure and

the EC5 design procedure is that in the first one the effects of the concrete shrinkage are

considered through the formulas presented in Appendix A, while in the second one it is not

considered. Additionally, the proposed design procedure takes into account the inelastic

strains due to hygrometric variations, whereas the EC5 does not. The procedure where

explained in Section 2.3, while the equations are the following:

Ei
c,eff =

Ec(ti)

1 + Φc(t, ti)
(4.11)

45



Ei
w,eff =

Ew(ti)

1 + Φw(t, ti)
(4.12)

kif,eff =
kf (ti)

1 + 2Φw(t, ti)
(4.13)

Loads definition

Variable loads
 as live load

Permanent loads 
as dead load

Enviromental conditions
definition

Annual relative 
humidity

Annual timber moisture 
content variation

Annual temperature
 variation 

Determination of the long-term concrete
 and timber modulus of elasticity, and 

connection stiffnes, using the 
effective modulus method

Determination of the Effective Stiffness,
using the Girhammar method

Combination of the loads,
obtention of the internal forces 

and obtention of the stresses 
using the Girhammar method

Combination of the loads,
obtention of the internal forces 

and obtention of the stresses 
using the Girhammar method

Determination of the design concrete
 and timber modulus of elasticity, and 

connection stiffnes

Proof of the cross section
and the connection

Proof of the cross section
and the connection

Determination of the Effective Stiffness,
using the Girhammar method

Neglected in this thesis

Short-term behavior Long-term behavior 

Neglected in this thesis

Figure 4.2. Summary of the proposed design procedure for the Ultimate
Limit States
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Loads definition

Variable loads
 as live load

Permanent loads 
as dead load

Enviromental conditions
definition

Annual relative 
humidity

Annual timber moisture 
content variation

Annual temperature
 variation 

Determination of the long-term concrete
 and timber modulus of elasticity, and 

connection stiffnes, using the 
effective modulus method

Determination of the Effective Stiffness,
using the Girhammar method

Combination of the loads
and obtention of the deflection 
using the Girhammar method

Determination of the design concrete
 and timber modulus of elasticity, and 

connection stiffnes

Comparison with deflection
limit

Combination of the
deflection

Determination of the Effective Stiffness,
using the Girhammar method

Neglected in this thesis

Short-term behavior Long-term behavior 

Neglected in this thesis

Combination of the loads
and obtention of the deflection 
using the Girhammar method

Determination of the deflection
due to concrete shrinkage

Comparison with deflection
limit

Figure 4.3. Summary of the proposed design procedure for the Service-
ability Limit States.

4.1. Design example

A design example is shown in this section, according to the provisions given in this

thesis, and using the current standard, EN1995-1-1 (1995). The geometry of the slab is

shown in Figure 4.4, and the material properties are in accordance with the ones presented

in Section 3.1.

Regarding the considerations made for this procedure, the remarks of ACI318-14

(American Concrete Institute, 2014) was used for the deflection limits, since they are
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81 mm

89 mm

180 mm Concrete G40

Timber (LSL) 

Figure 4.4. Slab design.

more restrictive than EC5 (European Commitee for Standarization, 1995). The modifi-

cation factors to obtain the timber and concrete design forces were obtained from EC5

(European Commitee for Standarization, 1995) and EC2 (European Commitee for Stan-

darization, 1992), while a very conservative assumption was made to obtain the design

force for the connectors.

4.1.1. Basic information

4.1.1.1. Cross section dimensions and properties

Concrete depth: h1 = 81mm Figure 4.4
Concrete width: b1 = 180mm Figure 4.4
Concrete Area: A1 = b1h1 = 14.58× 103 mm2

Concrete second mo-
ment of area:

I1 = b1
h31
12 = 79.71× 105 mm4

Timber depth: h2 = 89mm Figure 4.4
Timber width: b2 = 180mm Figure 4.4
Timber Area: A2 = b2h2 = 16.02× 103 mm2

Timber second moment
of area:

I2 = b2
h32
12 = 10.57× 106 mm4

Distance between both
neutral axis:

d = h1
2 + h2

2 = 85mm Figure 4.1
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4.1.1.2. Connection properties

Type of fasteners: Rothoblaas VB 7.5 x 100
Diameter: d1 = 7.5mm (Rothoblaas, n.d.)
Fastener length: l1 = 145mm (Rothoblaas, n.d.)
Penetration length: lef = 100mm (Rothoblaas, n.d.)
Fastener inclination: α = 45◦

Slip modulus for a pair
of VB:

Kser = 240lef = 24000 N
mm (Rothoblaas, n.d.)

Tensile capacity for a
pair of VB:

ftens,k = 16 kN (Rothoblaas, n.d.)

Spacing between the
fasteners:

s = 240mm

Fasteners per row: 2

4.1.1.3. Concrete properties

Concrete type : Normal weight concrete
Compressive strength
at 28 days:

f ′c = 41MPa

Tensile strength: ft = 0.62
√
f ′c = 3.97MPa (American Concrete Insti-

tute, 2014)
Modulus of elasticity: Ec = 4700

√
f ′c = 30095MPa (American Concrete Insti-

tute, 2014)
Characteristic density: ρ1 = 2400 kg

m3 (American Concrete Insti-
tute, 2014)

Partial factor: γc = 1.5 (European Commitee for
Standarization, 1992)

4.1.1.4. Timber properties

Timber type: Laminated Strand Lumber (Louisiana Pacific Corpora-
tion, 2019)

Bending strength: fb,0 = 17.24MPa (Louisiana Pacific Corpora-
tion, 2019)

Tensile strength: ft,0 = 0.6fb,0 = 10.344MPa (European Commitee for
Standarization, 2009)

Modulus of elasticity: Et = 12065MPa (Louisiana Pacific Corpora-
tion, 2019)

Shear strength: fv = 2.83MPa (Louisiana Pacific Corpora-
tion, 2019)

Compression strength
parallel to grain:

fct = 16.82MPa (Louisiana Pacific Corpora-
tion, 2019)

Characteristic density: ρ2 = 770 kg
m3 (Louisiana Pacific Corpora-

tion, 2019)
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Service class: 1 (residential building) (European Commitee for
Standarization, 1995)

Partial factor: γm = 1.2 (European Commitee for
Standarization, 1995)

Partial factor: kmod = 0.8 (medium term action) (European Commitee for
Standarization, 1995)

4.1.1.5. Loads and Load Combinations
Self weight: SW = 2.56 kPa
Dead Load: D = 0.981 kPa
Live Load: L = 1.962 kPa
SLS short-term load
combination:

SW +D + L (European Commitee for
Standarization, 1990)

SLS long-term load
combination:

SW +D + 0.3L (European Commitee for
Standarization, 1990)

ULS short-term load
combination:

1.35(SW +D) + 1.5L (European Commitee for
Standarization, 1990)

ULS long-term load
combination:

1.35(SW +D) + 1.5L (European Commitee for
Standarization, 1990)

4.1.1.6. Internal forces analysis

Figure 4.5 shows the shear and moment diagram of a propped cantilever beam. These

diagrams were used above to obtain the design shear and moment values.

Boundary conditions: Fixed end & simply supported end.
Permanent Load: qD = (D + SW )b1 = 0.64 N

mm
Variable Load: qL = Lb1 = 0.35 N

mm
Load for the ULS: q = 1.35qD + 1.5qL = 1.39 N

mm
ULS positive bending
moment:

Mmax = 9
128qL

2 = 3.52 kNm

ULS negative bending
moment:

MB = −1
8qL

2 = 6.26 kNm

ULS maximum design
shear force:

VB = 5
8qL = 5.21 kN

ULS minimum design
shear force:

VB = 3
8qL = 3.13 kN
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Figure 4.5. Moment and shear diagram of a propped cantilever beam.

4.1.2. Verification of the ultimate limit state at the short-term

4.1.2.1. Material properties

Concrete modulus of
elasticity:

E1 = Ec = 30095MPa

Timber modulus of
elasticity:

E2 = Et = 12065MPa

Connection slip modu-
lus:

ku = 2
3kser = 16000 N

mm (European Commitee for
Standarization, 1995)

4.1.2.2. Effective bending stiffness

Bending stiffness of the
non composite section:

EI0 = 3.68× 1011 Nmm2 Equation 4.3

Bending stiffness of the
fully composite sec-
tion:

EI∞ = 13.37× 1011 Nmm2 Equation 4.6

α value: α = 0.0013 1
mm Equation 4.2

Effective bending stiff-
ness:

EIeff = 8.23× 1011 Nmm2 Equation 4.1
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4.1.2.3. Concrete normal stresses at the mid-span

Normal stress: σ1 =
(
1− EI0

EIeff

)
1
A1d

Mmax = 1.58MPa Equation 4.8

Bending stress: σ1,b =
(

E1h1
2EIeff

)
Mmax = 5.23MPa Equation 4.8

Stress at the top: σ1,top = −σ1 − σ1,b = −6.81MPa
Stress at the bottom: σ1,bot = −σ1 + σ1,b = 3.65MPa

Design compressive
strength:

fc,d =
f ′c
γc

= 27.33MPa (European Commitee for
Standarization, 1992)

Design tensile strength: ft,d =
ft
γc

= 2.65MPa (European Commitee for
Standarization, 1992)

Compressive safety
factor:

σ1,bot
fc,d

= 6.81
27.33 = 0.25 ≤ 1 Satisfied

Tensile safety factor: σ1,top
ft,d

= 3.65
2.65 = 1.38 > 1 Require steel reinforce-

ment

4.1.2.4. Concrete normal stresses at the fixed support

Normal stress: σ1 =
(
1− EI0

EIeff

)
1
A1d

MB = −2.8MPa Equation 4.8

Bending stress: σ1,b =
(

E1h1
2EIeff

)
MB = −9.3MPa Equation 4.8

Stress at the top: σ1,top = −σ1 − σ1,b = 12.1MPa
Stress at the bottom: σ1,bot = −σ1 + σ1,b = −6.5MPa

Design compressive
strength:

fc,d =
f ′c
γc

= 27.33MPa (European Commitee for
Standarization, 1995)

Design tensile strength: ft,d =
ft
γc

= 2.65MPa (European Commitee for
Standarization, 1995)

Compressive safety
factor:

σ1,bot
fc,d

= 6.5
27.33 = 0.24 ≤ 1 Satisfied

Tensile safety factor: σ1,top
ft,d

= 12.1
2.65 = 4.6 > 1 Require steel reinforce-

ment

4.1.2.5. Timber normal stresses at the mid-span

Normal stress: σ2 =
(
1− EI0

EIeff

)
1
A2d

Mmax = 1.43MPa Equation 4.8

Bending stress: σ2,b =
(

E2h2
2EIeff

)
Mmax = 2.3MPa Equation 4.8

Stress at the top: σ2,top = σ2 − σ2,b = −0.87MPa
Stress at the bottom: σ2,bot = σ2 + σ2,b = 3.73MPa

Design tensile strength: ft,td = kmod
ft,0
γm

= 11.49MPa (European Commitee for
Standarization, 1995)

Design bending
strength

fb,td = kmod
fb,0
γm

= 6.9MPa (European Commitee for
Standarization, 1995)
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Compressive safety
factor:

σ2,top
ft,cd

= 0.87
11.21 = 0.08 ≤ 1 Satisfied

Flexural tensile safety
factor:

σ2
ft,td

+
σ2,b
fb,td

= 1.43
11.49 + 2.3

6.9 = 0.46 ≤ 1 Satisfied

4.1.2.6. Timber normal stresses at the fixed support

Normal stress: σ2 =
(
1− EI0

EIeff

)
1
A2d

MB = −2.55MPa Equation 4.8

Bending stress: σ2,b =
(

E2h2
2EIeff

)
MB = −4.1MPa Equation 4.8

Stress at the top: σ2,top = σ2 − σ2,b = 1.55MPa
Stress at the bottom: σ2,bot = σ2 + σ2,b = −6.65MPa

Design compressive
strength:

ft,cd = kmod
fct
γm

= 11.21MPa (European Commitee for
Standarization, 1995)

Design bending
strength:

fb,td = kmod
fb,0
γm

= 6.9MPa (European Commitee for
Standarization, 1995)

Compressive safety
factor:

σ2,bot
ft,cd

= 4.74
11.21 = 0.42 ≤ 1 Satisfied

Flexural compressive
safety factor:

σ2
fc,td

+
σ2,b
fb,td

= 2.55
11.21 + 4.1

6.9 = 0.82 ≤ 1 Satisfied

4.1.2.7. Timber shear stress
Distance to neutral
axis:

hna,2,eff = 72.2mm Equation 4.10

Shear stress: τi,eff,max =
E2h2na,i,eff

2EIeff
VB = 0.2MPa Equation 4.9

Design shear strength: fv,td = kmod
fv
γm

= 1.89MPa (European Commitee for
Standarization, 1995)

Shear strength safety
factor:

τi,eff,max

fv,td
= 0.1 ≤ 1 Satisfied

4.1.2.8. Connection shear strength

Since it has been found that the use of Equation 2.14 lead to overestimate the loads in

the connectors at the fixed-end (see Table 3.4), it is proposed to verify the shear force at

the simply supported end, to obtain a more realistic value of the load.

Shear load at the sim-
ply support:

VA = 3.13 kN

Load on the fasteners: Fs,eff =
(
1− EI0

EIeff

)
VAs
d = 4.9 kN Equation 4.7

Design load capacity: ftens,des =
1
3ftens,k = 5.33 kN (Clouston & Schreyer,

2008)
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Shear safety factor: Fs,eff

ftens,des
= 4.9

5.33 = 0.92 ≤ 1 Satisfied

4.1.3. Verification of the ultimate limit state at the long-term

4.1.3.1. Material properties

Concrete creep coeffi-
cient:

φc(50years) = 2.18 (Comité Euro-International
du Béton, 1993)

Timber creep coeffi-
cient:

φw(50years) = 0.94 (Toratti, 1993)

Connection creep coef-
ficient:

φf (50years) = 1.88 (Toratti, 1993)

Concrete modulus of
elasticity:

E1 = Ec
1+φc(50) = 9447.1MPa Equation 4.11

Timber modulus of
elasticity:

E2 = Et
1+φw(50) = 6198.6MPa Equation 4.12

Connection slip modu-
lus:

k = kser
1+2φf (50) = 8296.4 N

mm Equation 4.13

4.1.3.2. Effective bending stiffness

Bending stiffness of the
non composite section:

EI0 = 1.41× 1011 Nmm2 Equation 4.3

Bending stiffness of the
fully composite sec-
tion:

EI∞ = 5.58× 1011 Nmm2 Equation 4.6

α value: α = 0.0015 1
mm Equation 4.2

Effective bending stiff-
ness:

EIeff = 3.56× 1011 Nmm2 Equation 4.1

4.1.3.3. Concrete normal stresses at the mid-span

Normal stress: σ1 =
(
1− EI0

EIeff

)
1
A1d

Mmax = 1.72MPa Equation 4.8

Bending stress: σ1,b =
(

E1h1
2EIeff

)
Mmax = 3.79MPa Equation 4.8

Stress at the top: σ1,top = −σ1 − σ1,b = −5.51MPa
Stress at the bottom: σ1,bot = −σ1 + σ1,b = 2.07MPa

Design compressive
strength:

fc,d =
f ′c
γc

= 27.33MPa (European Commitee for
Standarization, 1992)

Design tensile strength: ft,d =
ft
γc

= 2.65MPa (European Commitee for
Standarization, 1992)
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Compressive safety
factor:

σ1,bot
fc,d

= 5.51
27.33 = 0.2 ≤ 1 Satisfied

Tensile safety factor: σ1,top
ft,d

= 2.07
2.65 = 0.78 ≤ 1 Satisfied

4.1.3.4. Concrete normal stresses at the fixed support

Normal stress: σ1 =
(
1− EI0

EIeff

)
1
A1d

MB = −3.06MPa Equation 4.8

Bending stress: σ1,b =
(

E1h1
2EIeff

)
MB = −6.74MPa Equation 4.8

Stress at the top: σ1,top = −σ1 − σ1,b = 9.8MPa
Stress at the bottom: σ1,bot = −σ1 + σ1,b = −3.68MPa

Design compressive
strength:

fc,d =
f ′c
γc

= 27.33MPa (European Commitee for
Standarization, 1995)

Design tensile strength: ft,d =
ft
γc

= 2.65MPa (European Commitee for
Standarization, 1995)

Compressive safety
factor:

σ1,bot
fc,d

= 3.68
27.33 = 0.13 ≤ 1 Satisfied

Tensile safety factor: σ1,top
ft,d

= 9.8
2.65 = 3.70 > 1 Require steel reinforce-

ment

4.1.3.5. Timber normal stresses at the mid-span

Normal stress: σ2 =
(
1− EI0

EIeff

)
1
A2d

Mmax = 1.57MPa Equation 4.8

Bending stress: σ2,b =
(

E2h2
2EIeff

)
Mmax = 2.73MPa Equation 4.8

Stress at the top: σ2,top = σ2 − σ2,b = −1.16MPa
Stress at the bottom: σ2,bot = σ2 + σ2,b = 4.3MPa

Design tensile strength: ft,td = kmod
ft,0
γm

= 11.49MPa (European Commitee for
Standarization, 1995)

Design bending
strength

fb,td = kmod
fb,0
γm

= 6.9MPa (European Commitee for
Standarization, 1995)

Compressive safety
factor:

σ2,top
ft,cd

= 1.16
11.21 = 0.1 ≤ 1 Satisfied

Flexural tensile safety
factor:

σ2
ft,td

+
σ2,b
fb,td

= 1.57
11.49 + 2.73

6.9 = 0.53 ≤ 1 Satisfied

4.1.3.6. Timber normal stresses at the fixed support

Normal stress: σ2 =
(
1− EI0

EIeff

)
1
A2d

MB = −2.79MPa Equation 4.8

Bending stress: σ2,b =
(

E2h2
2EIeff

)
MB = −4.86MPa Equation 4.8

Stress at the top: σ2,top = σ2 − σ2,b = 2.07MPa
Stress at the bottom: σ2,bot = σ2 + σ2,b = −7.65MPa
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Design compressive
strength:

ft,cd = kmod
fct
γm

= 11.21MPa (European Commitee for
Standarization, 1995)

Design bending
strength:

fb,td = kmod
fb,0
γm

= 6.9MPa (European Commitee for
Standarization, 1995)

Compressive safety
factor:

σ2,bot
ft,cd

= 7.65
11.21 = 0.68 ≤ 1 Satisfied

Flexural compressive
safety factor:

σ2
fc,td

+
σ2,b
fb,td

= 2.79
11.21 + 4.86

6.9 = 0.95 ≤ 1 Satisfied

4.1.3.7. Timber shear stress
Distance to neutral
axis:

hna,2,eff = 70.00mm Equation 4.10

Shear stress: τi,eff,max =
E2h2na,i,eff

2EIeff
VB = 0.13MPa Equation 4.9

Design shear strength: fv,td = kmod
fv
γm

= 1.89MPa (European Commitee for
Standarization, 1995)

Shear strength safety
factor:

τi,eff,max

fv,td
= 0.07 ≤ 1 Satisfied

4.1.3.8. Connection shear strength

Since it has been found that the use of Equation 2.14 lead to overestimate the loads in

the connectors (see Table 3.4) at the fixed end, it is proposed to verify the shear force at

the simply supported end, to obtain a more realistic value of the load.

Shear load at the sim-
ply support:

VA = 3.13 kN

Load on the fasteners: Fs,eff =
(
1− EI0

EIeff

)
VAs
d = 5.33 kN Equation 4.7

Design load capacity: ftens,des =
1
3ftens,k = 5.33 kN (Clouston & Schreyer,

2008)
Shear safety factor: Fs,eff

ftens,des
= 5.33

5.33 = 1 ≤ 1 Satisfied

4.1.4. Verification of the serviceability limit state at the short-term

4.1.4.1. Material properties

Concrete modulus of
elasticity:

E1 = Ec = 30095MPa
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Timber modulus of
elasticity:

E2 = Et = 12065MPa

Connection slip modu-
lus:

k = kser = 24000 N
mm

4.1.4.2. Effective bending stiffness

Bending stiffness of the
non composite section:

EI0 = 3.68× 1011 Nmm2 Equation 4.3

Bending stiffness of the
fully composite sec-
tion:

EI∞ = 13.37× 1011 Nmm2 Equation 4.6

α value: α = 0.0016 1
mm Equation 4.2

Effective bending stiff-
ness:

EIeff = 9.2× 1011 Nmm2 Equation 4.1

4.1.4.3. Deflection

Deflection of the slab: winst =
(qD+qL)L4

185EIeff
= 7.56mm Figure 2.2

Deflection limit: wmax = L
480 = 12.5mm (American Concrete Insti-

tute, 2014)
Deflection safety fac-
tor:

winst
wmax

= 0.6 ≤ 1 Satisfied

4.1.5. Verification of the serviceability limit state at the long-term

4.1.5.1. Material properties

Concrete creep coeffi-
cient:

φc(50years) = 2.18 (Comité Euro-International
du Béton, 1993)

Timber creep coeffi-
cient:

φw(50years) = 0.94 (Toratti, 1993)

Connection creep coef-
ficient:

φf (50years) = 1.88 (Toratti, 1993)

Concrete modulus of
elasticity:

E1 = Ec
1+φc(50) = 9447.1MPa Equation 4.11

Timber modulus of
elasticity:

E2 = Et
1+φw(50) = 6198.6MPa Equation 4.12

Connection slip modu-
lus:

k = kser
1+2φf (50) = 8296.4MPa Equation 4.13
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4.1.5.2. Effective bending stiffness

Bending stiffness of the
non composite section:

EI0 = 1.41× 1011 Nmm2 Equation 4.3

Bending stiffness of the
fully composite sec-
tion:

EI∞ = 5.58× 1011 Nmm2 Equation 4.6

α value: α = 0.0015 1
mm Equation 4.2

Effective bending stiff-
ness:

EIeff = 3.56× 1011 Nmm2 Equation 4.1

4.1.5.3. Deflection

Deflection of the slab: wLT = (qD+0.3qL)L4

185EIeff
= 14.69mm Figure 2.2

Deflection due to con-
crete shrinkage:

wsh = 3.92mm Appendix A

Total deflection: wtotal = wLT + wsh = 18.61mm
Deflection limit: wmax = L

480 = 12.5mm (American Concrete Insti-
tute, 2014)

Deflection safety fac-
tor:

FFw = wtotal
wmax

= 1.49 > 1 Not satisfied

Since the deflection safety factor is not satisfied, it is suggested to apply a precam-

bering of 10 mm to fulfill the requirements of ACI318-14 (American Concrete Institute,

2014).
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5. CONCLUSIONS

An analytical and numerical analysis about TCC slabs subjected to boundary con-

ditions different than simply supported was proposed in this thesis. The prediction of

deflection, stresses and internal forces by the proposed analytical models were compared

with different numerical models. Lastly, an analytical design procedure was proposed con-

sidering the results shown in this thesis, and a design example of a slab for a residential

building in Chile was developed. The main conclusions of this thesis are presented in the

next paragraphs.

Considering that the FE models are able to reproduce the observed behavior of a TCC,

and that the analytical models (such as Girhammar) results are in good agreement with the

FEM ones, it can be concluded that the hypothesis is true. The objective of developing an

analytical method for analysis and design of TCC floor slabs under boundary conditions

different than simply supported was achieved. The models were described in Section 2,

validated numerically and experimentally in Section 3, and the proposed design procedure

was explained and detailed through a design example in Section 4.

The Girhammar method provided a good approximation of the deflection compared

with nonlinear and linear short-term numerical models, regardless the boundary condi-

tions of the slab. Additionally, for a propped cantilever slab subjected to service loads,

the stresses obtained with the Girhammar method were in good agreement with the ones

obtained with numerical models. The mid-term (5 years) and long-term (50 years) de-

flections obtained with the proposed analytical method were in good agreement with the

numerical results, regardless the boundary conditions.

The proposed analytical model was validated with experimental results available in

the literature. It was found through numerical models that the experimental setup reported

in Sebastian et al. (2016) did not provide a perfectly fixed support. Thus, the deflection

predicted by the Girhammar method considering a fixed end did not provide a good esti-

mation of the maximum deflection. Since the prediction of the Girhammar method highly
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depends on the boundary conditions, it is important for designing to consider the proper

support conditions, to obtain a realistic prediction of the behavior of the slab.

Without considering the fixed end, where the slip tends to zero, the shear force Fs

obtained with the Girhammar method for a distributed load was in good agreement with

numerical results. However, the analytical model did not provide a good estimation of

the interlayer slip reported by Sebastian et al. (2016), while the numerical models results

were closer. More experimental data is needed to study this behavior, which should be

reinforced with a study of the local effects near the shear connectors (neglected in this

research).

Changing the boundary conditions of a slab from simply supported to propped can-

tilever can reduce the long-term deflection by 50%. Thus, the deflection of the slab can

be reduced without pre-cambering or increasing the thickness, but changing the support

conditions. As it was proved in this thesis, it is possible to design a TCC slab considering

the requirements of a Chilean real state, proving its feasibility and making it competitive

with a traditional concrete slab.

Since the experimental data of TCC slabs subjected to boundary conditions different to

simply supported is scarce, more experimental campaigns are needed in order to validate

the proposed design method. In order to start implementing this composite floor system

in reinforced concrete buildings, further research is needed, including the following:

(i) Short-term and long-term (at least 3 years) experimental campaigns regarding

the behavior of TCC slabs with boundary conditions different to simply sup-

ported.

(ii) Theoretical and experimental campaigns regarding the dynamic behavior (seis-

mic) of TCC slabs regardless the boundary conditions.

(iii) Theoretical and experimental campaigns regarding the connection of the TCC

slabs to reinforced concrete shear walls.

60



REFERENCES

American Concrete Institute. (2014). Building Code Requirements for Structural Concrete

(ACI 318-14) and Commentary (ACI 318R-14). Farmington Hills.

Balogh, J., Fragiacomo, M., Gutkowski, R., Atadero, R., & Ivanyi, P. (2013). Low-to-

high cycle fatigue behavior of wood-concrete composite beams with notched interlayer

connections. Pollack Periodica, 8(1), 3–14. doi: 10.1556/Pollack.8.2013.1.1

Bathon, L. A., & Bletz, O. (2006). Long term performance of continuous wood-concrete-

composite systems. In 9th world conference on timber engineering 2006, wcte 2006 (pp.

502–507).

Boccadoro, L., Zweidler, S., Steiger, R., & Frangi, A. (2017). Bending tests on timber-

concrete composite members made of beech laminated veneer lumber with notched con-

nection. Engineering Structures, 132, 14–28. Retrieved from http://dx.doi.org/

10.1016/j.engstruct.2016.11.029 doi: 10.1016/j.engstruct.2016.11.029

Brunner, M., Romer, M., & Schnüriger, M. (2007). Timber-concrete-composite with an

adhesive connector (wet on wet process). Materials and Structures/Materiaux et Con-

structions, 40(1), 119–126. doi: 10.1617/s11527-006-9154-4

Ceccotti, A. (2002). Composite concrete-timber structures. Progress in Structural Engi-

neering and Materials, 4(3), 264–275. doi: 10.1002/pse.126

Ceccotti, A., Fragiacomo, M., & Giordano, S. (2007). Long-term and collapse tests

on a timber-concrete composite beam with glued-in connection. Materials and Struc-

tures/Materiaux et Constructions, 40(1), 15–25. doi: 10.1617/s11527-006-9094-z

Clouston, P., & Schreyer, A. (2008). Design and Use of Wood Concrete Composites. ,

13(November), 167–174. doi: 10.1061/(ASCE)1084-0680(2008)13

61

http://dx.doi.org/10.1556/Pollack.8.2013.1.1
http://dx.doi.org/10.1016/j.engstruct.2016.11.029
http://dx.doi.org/10.1016/j.engstruct.2016.11.029
http://dx.doi.org/10.1016/j.engstruct.2016.11.029
http://dx.doi.org/10.1617/s11527-006-9154-4
http://dx.doi.org/10.1002/pse.126
http://dx.doi.org/10.1617/s11527-006-9094-z
http://dx.doi.org/10.1061/(ASCE)1084-0680(2008)13
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A. ELASTIC ANALYSIS OF INELASTIC STRAINS FOR DIFFERENT BOUND-

ARY CONDITIONS

In this appendix it is shown the analytical procedure to quantify deflection due to an

imposed deformation in a sub component of a TCC. Specifically, the procedure is ori-

ented to obtain the closed-form solution of a fixed end- simply supported beam. However,

the solution can be obtained for every kind of support state, applying the correspondent

boundary conditions.

The area and bending stiffness of the beam sub components ”i” are assumed uniform

along the element, i.e., E(x)iI(x)i = EiIi and A(x)i = Ai. Consider and imposed

uniform deformation εimp,i on each sub component of the beam, and assume that vertical

separation between the concrete and timber is restricted.

Figure A.1. Differential element of a TCC subjected to axial deformations
of each component.

Consider the differential element shown in Figure A.1. From the right part of the

Figure, the slip strain can be defined as:

ds

dx
= εc − εt + κd (A.1)

where d = dc + dt and the curvature of the beam is assumed to be:
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κ =
Mc

EcIc
=

Mt

EtIt
(A.2)

Linear behavior is assumed for all materials. Therefore:

εc =
Nc

EcAc
(A.3)

εt =
Nt

EtAt
(A.4)

From the global equilibrium of the structure, three equations can be obtained:

M0 +Mc +Mt −Ncd− EcAcεimp,cd = 0 (A.5)

N0 +Nc +Nt + EcAcεimp,c + EtAtεimp,t = 0 (A.6)

Vc + Vt + V0 = 0 (A.7)

If linear behavior is assumed in the connection, the force per unit length at the interface

can be defined as:

τ = Ks (A.8)

Then, from the differential equilibrum of the structure, the following relations can be

obtained:

dMc

dx
= −Vc + τdc (A.9)
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dMt

dx
= −Vt + τdt (A.10)

dNc

dx
= τ (A.11)

dNt

dx
= −τ (A.12)

Adding the equation A.9 and A.10:

dMc

dx
+
dMt

dx
= V0 + τd (A.13)

From A.2 and A.7, the previous equation can be expressed as

dκ

dx
=

V0

EI0

+
τd

EI0

(A.14)

where EI0 = EIc + EIt. The equation A.1 can be differentiated once again in order

to use the equation A.8, A.11, A.12 and A.14:

d2s

dx2
= α2s+ β (A.15)

where α = K( 1
EIc

+ 1
EIt

+ 1
EI0

), and β = V0
EI0

d, which can be considered as constant. The

solution of the equation A.15 set out the relative slip between the concrete and timber, and

can be expressed as:

s(x) = C1 [cosh(αx) + sinh(αx)] + C2 [cosh(αx) − sinh(αx)] − β

α2
(A.16)
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where C1 and C2 are constants which depend of the boundary conditions. Given the

boundary conditions of a propped cantilever beam,

s(x = 0) = 0 (A.17)

ds

dx
(x = L) = ∆ε (A.18)

with ∆ε = εimp,t − εimp,c. Solving C1 and C2, the slip between the concrete and timber

can be expressed as:

s(x) = β

[
cosh(α(L− x)) − 1

α2

]
+ ∆ε

sinh(αx)

α cosh(αL)
(A.19)

The equation A.19 and A.8 can be replaced in A.14, obtaining:

dκ

dx
=
β

d
+
Ks(x)d

EI0

(A.20)

The differential equation A.20 can be solved by applying boundary conditions. Since

this model is aimed to a propped cantilever beam, it can be said that κ(x = L) = 0. Said

that,

κ(x) = − (1 − EI0

EIinf
)

1

αd

[
∆εα− βα(L− x) + β

sinh(α(L− x))

cosh(αL)
− ∆ε

α cosh(αx)

cosh(αL)

]
− β

(L− x)

d
(A.21)

whereEIinf = EI0+EA∗d2,EA∗ = EAp

EA0
,EAp = EAc·EAt andEA0 = EAc+EAt.

Aditionally, the deflection of the beam can be derived by integrating twice the equation

A.21, since w(x) =
∫
θ(x)dx =

∫ ∫
κ(x)dx2:
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w(x) =C4 + C3x+
x2

2d

(
−∆ε

(
1 − EI0

EI∞

)
− β

EI0

EI∞

(
L− x

3

))
−
(

1 − EI0

EIinf

)
β sinh(L− x) − α∆ε cosh(λx)

α3d cosh(αL)

(A.22)

To obtain the values of the constants C1, C2 and β, the following set of boundary

conditions has to be used in equation A.22:

w(x = 0) = 0 (A.23)

w(x = 0) = L (A.24)

θ(x = 0) = 0 (A.25)

Replacing the previous conditions in equation A.22:

C3 =
3∆ε (EI∞ − EI0)2 [cosh(αL) (α2L2 − 2) + 2]

2EI∞αd [3 (EI∞ − EI0) (αL cosh(αL) − sinh(αL)) + EI0L3α3 cosh(αL)]
(A.26)

C4 =
−∆ε (EI∞ − EI0) [(sinh(αL)(α2L2 − 2) + 6αL) (EI∞ − EIo) + 2EIoL

3α3]

2EI∞α2d [3 (EI∞ − EI0) (αL cosh(αL) − sinh(αL)) + EI0L3α3 cosh(αL)]
(A.27)

β =
−3α∆ε (EI∞ − EI0) [cosh(αL) (α2L2 − 2) + 2]

2 [3 (EI∞ − EI0) (αL cosh(αL) − sinh(αL)) + EI0L3α3 cosh(αL)]
(A.28)
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B. COMPARISON OF CREEP MODELS FOR CONCRETE AND TIMBER

This appendix contains a comparison between the Toratti creep model (Toratti, 1993)

and CEB 90 creep model (Comité Euro-International du Béton, 1993) with the adjusted

model used in Ansys. The value of the constants used for each analysis are in a table above

each figure. The analysis was done for five and fifty years since concrete casting.

Figure B.1. Concrete creep model comparison for five years.

Table B.1. Constant values for concrete creep model for five years.

Constant Value

C1 4.25 × 10−7

C2 1

C3 −0.813

C4 0
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Figure B.2. Timber creep and mechanosorptive model comparison for five years.

Table B.2. Constant values for concrete creep model for five years.

Constant Value

C1 3.74 × 10−8

C2 1

C3 −0.652

C4 0
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Figure B.3. Concrete creep model comparison for fifty years.

Table B.3. Constant values for concrete creep model for fifty years.

Constant Value

C1 9.72 × 10−7

C2 1

C3 −0.895

C4 0
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Figure B.4. Timber creep and mechanosorptive model comparison for fifty years.

Table B.4. Constant values for concrete creep model for fifty years.

Constant Value

C1 7.02 × 10−8

C2 1

C3 −0.695

C4 0
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