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Analytic QCD models are those versions of QCD in which the running coupling parameter aðQ2Þ has
the same analytic properties as the spacelike physical quantities, i.e., no singularities in the complex

Q2 plane except on the timelike semiaxis. In such models, aðQ2Þ usually differs from its perturbative

analog by power terms �ð�2=Q2Þk for large momenta, introducing thus nonperturbative terms

�ð�2=Q2Þk in spacelike physical quantities whose origin is the UV regime. Consequently, it contradicts

the ITEP operator product expansion philosophy which states that such terms can come only from the IR

regimes. We investigate whether it is possible to construct analytic QCD models which respect the

aforementioned ITEP philosophy and, at the same time, reproduce not just the high-energy QCD

observables, but also the low-energy ones, among them the well-measured semihadronic � decay ratio.
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I. INTRODUCTION

Today one of the main goals in strong interaction theory
is to technically enlarge the applicability of QCD to pro-
cesses involving lower momentum transfer q2. Thereby
several obstacles have to be overcome. One of them is
that the running QCD coupling aðQ2Þ ¼ �sðQ2Þ=�,
when calculated within the perturbative (‘‘pt’’) renormal-
ization group formalism (we call it apt), in the usual

(‘‘perturbative’’) renormalization schemes, yields singular-
ities of aptðQ2Þ at Q2 > 0, usually called Landau singular-

ities. Consequently, spacelike observables expressed in
terms of powers of aptðQ2Þ obtain singularities on the

spacelike semiaxis 0 � Q2 � �2 (Q2 ¼ �q2, with q de-
noting the typical momentum transfer within a given physi-
cal process or quantity). This is not acceptable due to
general principles of local quantum field theory [1].
Furthermore, studies of ghost-gluon vertex and gluon
self-energy using Schwinger-Dyson equations [2] and
large-volume lattice calculations [3] result in QCD cou-
pling aðQ2Þ without Landau singularities at Q2 > 0 and
even with a finite value at Q ¼ 0. Consequently, the be-
havior of the coupling aðQ2Þ at low values ofQ2 should be
corrected relative to that given by perturbative reasoning.

Several attempts at achieving such corrections have been
recorded during the last 14 years starting from (what we
call) the minimal analytic (MA) QCD of Shirkov and
Solovtsov [4]. Here, the trick lay in simply omitting the

wrong (spacelike) part of the branch cut within the dis-
persion relation formula for aðQ2Þ. Consequently, the re-

sulting analytized coupling AðMAÞ
1 ðQ2Þ � aðMAÞðQ2Þ is

analytic in the whole Euclidean part of theQ2 plane except
the nonpositive semiaxis: Q2 2 Cnð�1; 0�. Furthermore,
for evaluation of physical observables which are repre-
sented, in ordinary perturbation theory, as a (truncated)
series of powers of aptðQ2Þ, one also has to extend the

analytization procedure to anpt (n � 2). In MA this was

performed in Ref. [5] (see also Ref. [6]) and resulted in the

replacement of anpt by nonpower expressions AðMAÞ
n ðQ2Þ.

This specific procedure was dubbed by the authors of [5,6]
analytic perturbation theory (APT); whereas we will refer
to it generally as MA QCD.
Other analytic models for aðQ2Þ satisfy certain different

or additional constraints at low and/or at high Q2 [7–15].
Analytic QCD models have been used also in the physics
of mesons [16,17] within the Bethe-Salpeter approach, and
in calculation of analytic analogs of noninteger powers a�pt
[18] within the MA model (for reviews of various analytic
QCD models, and further references, see Refs. [19–21]).

We note that the MA couplings AðMAÞ
n (n � 1) defined

here are the MA couplings of Refs. [4,6,20] divided by �.
All of these versions of analytic QCD have one common

feature: their (analytized) coupling aðQ2Þ differs from the
perturbative coupling even at higher energies by a power
term:

j�aðQ2Þj� jaðQ2Þ�aptðQ2Þj�ð�2=Q2Þk ðQ2��2Þ;
(1)
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where k is a positive integer (usually k ¼ 1; for the models
of Refs. [12,15]: k ¼ 3). How can these power corrections
be interpreted? In a given (usual) renormalization scheme,
where aptðQ2Þ has (Landau) singularities on the positive

axis Q2 ��2ð�0:1 GeV2Þ> 0, analytization of aptðQ2Þ
can be understood to be achieved by a modification of the

discontinuity (‘‘spectral’’) function �
pt
1 ð�Þ � ImaptðQ2 ¼

��� i�Þ at energies j�j & �2, thereby subtracting the
Landau singularities from aptðQ2Þ. It is this subtraction, in
the given renormalization scheme, which leads to the power
deviations Eq. (1) and, as a consequence, to terms
�ð�2=Q2Þk in all spacelike physical quantities. But such
contributions are definitely of nonperturbative origin, since
they are proportional to expð�K=aptðQ2ÞÞ which is non-

analytic at apt ¼ 0 [cf. Eq. (10) in Sec. II].

Whether such terms, produced in spacelike observables
DðQ2Þ, can be interpreted as being of ultraviolet (UV)
origin or not, is not entirely clear. Interpretations of such
terms in the literature differ from each other. For example,
Ref. [22] suggests that the Landau pole is not of (entirely)
UV origin because the Landau pole persists in the renor-
malization group resummed expression for aptðQ2Þ even if

one uses, instead of UV logs, the mass-dependent polar-
ization expression (with a sufficiently small gluon mass).
On the other hand, the authors of Ref. [23] argue that the
aforementioned terms �ð�2=Q2Þk are of UVorigin due to
the following consideration: If one considers the
leading-	0 summation of an inclusive spacelike obser-
vable DðQ2Þ (cf. Appendix D)

D ðLBÞðQ2Þ �
Z 1

0

dt

t
FDðtÞaðtQ2e

�CÞ; (2)

where FDðtÞ is a characteristic function of the observable

and �C ¼ �5=3; then the quantity tQ2e
�C indicates the mag-

nitude of the (squares of) internal loopmomenta appearing in
the resummation. In the UV regime of these momenta, e.g.,
for t > 1 (see also Ref. [24]), the deviation (1) then leads to
power terms of apparently UVorigin in the observable

�DðLBÞðQ2Þ�ð�2=Q2Þk
Z 1

1

dt

tkþ1
FDðtÞ�ð�2=Q2Þk: (3)

Considering all these arguments, we come to the con-
clusion that the aforementioned ð�2=Q2Þk contributions in
physical quantities are at least partially due to UV effects.
The existence of nonperturbative contributions stemming
from the UV regime is not in accordance with the operator
product expansion (OPE) philosophy as advocated by the
ITEP group [23,25]. This philosophy rests on the assump-
tion that the OPE, which has originally been derived in
perturbation theory (PT), is valid in general (i.e., even
when including the nonperturbative contributions) and
consequently allows for a separation of short-range from
long-range contributions to (inclusive) QCD observables.
While the short-range contributions can be calculated per-
turbatively and lead to expressions for the OPE coefficient

functions, the long-range contributions show up as matrix
elements of local operators and can be parametrized in
terms of condensates (not accessible by PT). And it is this
long-range part which leads to power corrections reflecting
the contributions of nonperturbative origin to the observ-
able. Therefore, according to the ITEP interpretation, the
power term corrections stem from the IR region. This
ITEP-OPE approach rests on intuitive physical arguments
and has led to the success of QCD sum rules.
In this work we will adopt the aforementioned ITEP

philosophy when analytizing perturbative QCD and,
consequently, we will request that the analytic coupling
parameter A1ðQ2Þ � aðQ2Þ differ from the usual pertur-
bative one at high Q2 by less than any power of �2=Q2.
We wish to stress, however, that there is nothing in

quantum field theory (QFT) that would impose on us the
ITEP interpretation of the OPE. In this context, we mention
that the essential singularity at a ¼ 0 [such as expð�K=aÞ]
has quite a general and mysterious genesis—first men-
tioned in QFT by Dyson [26] on specific physical grounds,
and later by many authors on more formal grounds (for an
overview, see [27] and references therein).
An additional feature of most versions of analytized

QCD is that they fail to reproduce the correct value for
the most important (since most reliably measured) QCD
observable at low energies, namely r�, the strangeless
semihadronic � decay ratio, whose present-day experimen-
tal value is (cf. Appendix B) r�ðexpÞ ¼ 0:203� 0:004.
Most of the analytic QCD models are either unable to
predict unambiguously r� value, or they predict signifi-
cantly smaller values (e.g., in MA, Refs. [5,28]), unless
unusual additional assumptions are made, e.g., in MA that
the light quark masses are much higher than the values of
their current masses [29].
This finding (loss in the size of r�) in MA appears to be

connected with the elimination of the unphysical
(Euclidean) part of the branch cut contribution of perturba-
tive QCD. Since r� is the most preciselymeasured inclusive
low momentum QCD observable, its reproduction in ana-
lytic QCD models is of high importance. The apparent
failure of the MA model with light quark current masses
to reproduce the correct value of r� had even led to the
suggestion that the analyticQCD should be abandoned [30].
Here, we are investigating whether a modified version of

QCD can be defined which simultaneously fulfills the
following requirements:
(i) It is compatible with all analyticity requirements of

quantum field theory. In particular, it must not lead to
Landau singularities of aðQ2Þ, and furthermore we
expect (see Sec. II) that aðQ2Þ is analytic at Q2 ¼ 0,
and thus IR finite, with aðQ2 ¼ 0Þ � a0 <1.

(ii) It is in accordance with the ITEP-OPE philosophy
which means that the UV behavior of aðQ2Þ is such
that jaðQ2Þ � aptðQ2Þj< ð�2=Q2Þk for any integer k
at large Q2.
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(iii) The theory reproduces the experimental values for
r� (and other low energetic observables, e.g. the
Bjorken polarized sum rule at low Q2).

We will show that such a theory is attainable, but only at a
certain (acceptable, we think) price. Some of the main
results of the present work have been presented, in a
summarized form, in Ref. [31].

We are approaching our aim in an indirect way, namely,
by properly modifying the 	 function 	ðxÞ ½x ¼ aðQ2Þ� of
QCD. This approach, which has been used first by Ra̧czka
[32] in a somewhat different context, means that the starting
point in the construction is the beta function 	ðaÞ, rather
than the coupling parameter aðQ2Þ itself or its discontinuity
function �1ð�Þ ¼ ImaðQ2 ¼ ��� i�Þ. The ITEP-OPE
condition can be implemented in such an approach in a
particularly simple way (see below). Consequently, we are
trying to augment 	ðaÞ which, in general, is only specified
by its perturbation series around the point a ¼ 0

	ðaÞ ¼ �	0a
2ð1þ c1aþ c2a

2 þ c3a
3 þOða4ÞÞ; (4)

where	0 and c1 ¼ 	1=	0 are two universal constants. This
should be done in such a way that the augmented beta
function leads (via the renormalization group equation
RGE) to an effective analytic coupling aðQ2Þ which also
enables the correct evaluation of low-energy QCD observ-
ables in a perturbative way.

The above-mentioned requirements for aðQ2Þ imply the
following constraints on the modified beta-function 	ðaÞ:

(1) The 	 function must be such that the RGE gives a
running coupling aðQ2Þ analytic in the entire com-
plex plane of Q2, with the possible exception of the
nonpositive semiaxis: Q2 2 Cnð�1; 0�.

(2) For small jaj, 	ðaÞ has Taylor expansion (4) in
powers of a, i.e., the perturbative QCD (pQCD)
behavior of 	ðaÞ, with universal 	0 and c1, at high
Q2 is attained.

(3) 	ðaÞ is an analytic (holomorphic) function of a at
a ¼ 0 in order to ensure jaðQ2Þ � aptðQ2Þj<
ð�2=Q2Þk for any k > 0 at large Q2 (see Sec. II),
thus respecting the ITEP-OPE postulate that power-
like corrections can only be IR induced. At highQ2,
those pQCD values aptðQ2Þ which reproduce the

known high-energy QCD phenomenology are
attained by aðQ2Þ.

(4) It turns out to be difficult or impossible to achieve
analyticity (holomorphy) of aðQ2Þ in the Euclidean
complex plane Q2 2 Cnð�1; 0� unless the point
Q2 ¼ 0 is also included as a point of analyticity of
aðQ2Þ. This then implies that aðQ2Þ ! a0 when
Q2 ! 0, where a0 is finite positive, and that 	ðaÞ
has Taylor expansion around a ¼ a0 with Taylor
coefficient at the first term being unity:	ðaÞ ¼ ða�
a0Þ þOðða� a0Þ2Þ. Then, 	ðaÞ is a nonsingular
unambiguous function of a in the positive interval

a 2 ½0; a0�. Note that analyticity of aðQ2Þ atQ2 ¼ 0
is in full accordance with the general requirement
that hadronic transition amplitudes have only the
singularities which are enforced by unitarity.

We proceed in this work in the following way. In Sec. II
we construct various classes of beta functions which give
analytic aðQ2Þ at allQ2 2 Cnð�1; 0Þ and fulfill the ITEP-
OPE condition. We relegate to Appendix A details of the
analytic expressions for the implicit solution of RGE and
their implications for the (non)analyticity of aðQ2Þ. In
Sec. III we point out the persistent problem of such models
giving too low values of r�. In Sec. IV we present further
modification of the aforementioned beta functions, such
that, in addition, the correct value of r� is reproduced. In
Appendix B we present the extraction of the massless and
strangeless r� value from experimental data. We relegate to
Appendixes C, D, and E the presentation of formalisms for
the evaluation, in any analytic QCD (anQCD) model, of
massless observables, such as the Bjorken polarized sum
rule (BjPSR), the Adler function, and the related r�.
Appendix C presents construction of the higher order
anQCD couplings; Appendix D presents a formalism of
resummation of the leading-	0 (LB) contributions in
anQCD; Appendix E presents a calculation of the
beyond-the-leading-	0 (bLB) contributions in anQCD.
Section V contains conclusions and outlines prospects for
further use of the obtained anQCD models.

II. BETA FUNCTIONS FOR ANALYTIC QCD

Our starting point will be the construction of certain
classes of beta functions 	ðaÞ for the coupling aðQ2Þ
such that ITEP-OPE conditions

jaðQ2Þ � aptðQ2Þj<
�
�2

Q2

�
k
; ðk ¼ 1; 2; . . .Þ; (5)

are fulfilled and that, at the same time, they lead to anQCD,
i.e., the resulting aðQ2Þ is an analytic function for allQ2 2
Cnð�1; 0�. This procedure is in contrast to other anQCD
models which are usually constructed either via a direct
construction of aðQ2Þ, or via specification of the disconti-
nuity function �1ð�Þ � ImaðQ2 ¼ ��� i�Þ and the sub-
sequent application of the dispersion relation to construct
aðQ2Þ

aðQ2Þ ¼ 1

�

Z þ1

0
d�

�1ð�Þ
ð�þQ2Þ : (6)

In such approaches, it appears to be difficult to fulfill
the ITEP-OPE conditions (5),1 and difficult or impossible

1Instanton effects can modify the conditions (5) in the sense
that these conditions remain valid only for k ¼ 1; 2; . . . ; kmax,
where 2kmax is the largest dimension of condensates not affected
by the small-size instantons. Scenarios of instanton-antiinstanton
gas give kmax < 4	0 ( ¼ 9 for nf ¼ 3), cf. Ref. [23]. In this work
we do not consider such possible instanton effects.
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to extract the beta function 	ðaÞ as a function
of a.

On the other hand, starting with the construction of a
beta function 	ðaÞ, which appears in the RGE

Q2 daðQ2Þ
dQ2

¼ 	ðaðQ2ÞÞ; (7)

it turns out to be simple to fulfill conditions (5)
(cf. Ref. [32]). Namely, if one requires that 	ðaÞ be an
analytic function of a at a ¼ 0, then the corresponding
aðQ2Þ respects the ITEP-OPE conditions (5).

This statement can be demonstrated in the following
indirect way: assuming that the conditions (5) do not
hold, we will show that 	ðaÞ must then be nonanalytic at
a ¼ 0. In fact, if the conditions (5) do not hold, then a
positive n0 exists such that

aðQ2Þ 	 aptðQ2Þ þ 
ð�2=Q2Þn0 (8)

for Q2 � �2. Asymptotic freedom of QCD implies that at
such largeQ2 the perturbative aptðQ2Þ has the expansion (if
the conventional, MS, scale � ¼ �� [33,34] is used)

aptðQ2Þ ¼ 1

	0 lnðQ2=�2Þ �
c1
	2

0

lnlnðQ2=�2Þ
ln2ðQ2=�2Þ

þO
�
ln2ðlnðQ2=�2ÞÞ
ln3ðQ2=�2Þ

�
; (9)

and consequently the power term can be written as

ð�2=Q2Þn0 ¼ expð�K=aptðQ2ÞÞð	0aptÞ�K0


 ð1þOðaln2aÞÞ; (10)

where K ¼ n0=	0 and K0 ¼ n0c1=	0. Applying d=d lnQ2

to the relation (8) and using expression (10), we obtain

	ðaðQ2ÞÞ 	 	ptðaptðQ2ÞÞ � n0
 expð�K=aptðQ2ÞÞ

 ð	0aptÞ�K0 ð1þOðaln2aÞÞ: (11)

Replacing aðQ2Þ in the first beta function in Eq. (11) by the
right-hand side (rhs) of Eq. (8), using Eq. (10), and Taylor
expanding the 	ðaðQ2ÞÞ function around aptðQ2Þ ( � 0),

gives

	ðaptÞ þ 
 expð�K=aptÞð	0aptÞ�K0 ð1þOðaln2aÞÞ


 d	ðaÞ
da

��������a¼apt

þOðexpð�2K=aptÞa�2K0
pt Þ

	 	ptðaptÞ � n0
 expð�K=aptÞð	0aptÞ�K0


 ð1þOðaln2aÞÞ: (12)

In this relation, valid for small values of japtj, the term with

derivative d	ðaÞ=da� apt on the left-hand side (lhs) can

be neglected in comparison with the corresponding term on
the rhs. Therefore, Eq. (12) obtains the form (with notation
apt � a)

	ðaÞ 	 	ptðaÞ � n0
 expð�K=aÞð	0aÞ�K0


 ð1þOðaln2aÞÞ: (13)

We note that 	ptðaÞ, being a polynomial, is analytic at

a ¼ 0. The term proportional to expð�K=aÞ is nonanalytic
at a ¼ 0, because expð�K=aÞ has an essential singularity
there. This shows that nonfulfillment of the ITEP-OPE
conditions (5) implies nonanalyticity of 	ðaÞ at a ¼ 0,
and the demonstration is concluded.
This proof shows that nonfulfillment of ITEP-OPE

conditions implies nonfulfillment of a ¼ 0 analyticity of
	ðaÞ. Or equivalently, fulfillment of a ¼ 0 analyticity of
	ðaÞ implies fulfillment of the ITEP-OPE conditions (5).
This does not mean the equivalence of a ¼ 0 analyticity
of 	ðaÞ with the ITEP-OPE conditions. But that will
suffice for our purpose, since in the following we will
simply restrict the Ansätze for the 	 function which are
analytic at a ¼ 0, thus having the ITEP-OPE conditions
secured.
Integration of RGE (7) must be performed for all

complex Q2. To achieve this, we first need an initial
condition [equivalent to the fixing of �2 scale (�
0:1 GeV2)]. This is a subtle point within our approach,
due to two reasons. First, when we choose a specific form
of the beta function 	ðaÞ, we automatically choose a
specific renormalization scheme (RSch) as well, as rep-
resented by the coefficients cj � 	j=	0 (j � 2) of the

power expansion of 	ðaÞ, Eq. (4). The running of the
corresponding aðQ2Þ can be in general significantly dif-

ferent from the running aðQ2;MSÞ in MS RSch.
Secondly, this running is also influenced by the number
of active quark flavors and by flavor threshold effects. In
our analyses of RGE with our specific 	 functions, we
will consider the number of active quark flavors to be
nf ¼ 3, i.e., the flavors of the three (almost) massless

quarks u, d, and s. We do not know how to include in a
consistent way the massive quark degrees (nf � 4) in

anQCD. On the other hand, the ITEP-OPE conditions
(5) tell us that the considered anQCD theories become
practically indistinguishable from pQCD at reasonably
high energies Q2 � �2. Therefore, we wish to keep
nf ¼ 3 in the RGE running to as high values of jQ2j as
possible, and to replace the theory at higher jQ2j by
pQCD, in the RSch dictated by the specific beta function.
Furthermore, in pQCD the threshold for nf ¼ 3 � nf ¼
4 can be chosen at Q2 � ðkmcÞ2 with k 	 1–3 [35–38],
where mc denotes the mass of the charmed quark. We will
use k ¼ 3, i.e., at jQ2j � ð3mcÞ2 ( 	 14:5 GeV2) the
anQCD theory will be replaced by pQCD theory.
In order to find the value of aðð3mcÞ2Þ � ain which will

define our initial condition, we start from the experimen-
tally best known value of the coupling parameter, namely

aðM2
Z;MSÞ. It is deduced, within pQCD, from all relevant

experiments at high jQ2j * 101 GeV2 and found to be
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aðM2
Z;MSÞ 	 0:119=�, Ref. [39]. We RGE run this value,

inMS RSch, down to the scale ð3mcÞ2, and incorporate the
quark threshold matching conditions at the three-loop level
according to Ref. [38] atQ2 ¼ 3m2

q (q ¼ b, c). We obtain2

�a � aðð3mcÞ2;MS; nf ¼ 3Þ ¼ 0:072 45. The value ain ¼
aðð3mcÞ2Þ, at the same renormalization scale (RScl) but
in the RSch as defined by our 	ðaÞ function, is then

obtained from the aformentioned MS value �a �
aðð3mcÞ2;MS; nf ¼ 3Þ by solving numerically the inte-

grated RGE in its subtracted form (Ref. [40],
Appendix A there)

1

a
þ c1 ln

�
c1a

1þ c1a

�
þ

Z a

0
dx

�
	ðxÞ þ 	0x

2ð1þ c1xÞ
x2ð1þ c1xÞ	ðxÞ

�

¼ 1

�a
þ c1 ln

�
c1 �a

1þ c1 �a

�
þ

Z �a

0
dx

� �	ðxÞ þ 	0x
2ð1þ c1xÞ

x2ð1þ c1xÞ �	ðxÞ
�
;

(14)

where a � aðð3mcÞ2Þ ¼ ain and �a � aðð3mcÞ2;MSÞ ¼
0:072 45, both with nf ¼ 3; further, �	 is the beta function

of the MS scheme. We note that in Eq. (14) our beta
functions have expansions around a ¼ 0 [cf. Eq. (4)],
with the RSch coefficients ðc2; c3; . . .Þ which may be con-

siderably different from the MS coefficients ð �c2; �c3; . . .Þ.
Therefore, in Eq. (14) expansions of	 in powers of x are in
general not justified.

Having the initial value ain ¼ aðQ2
in � �2

in ¼ ð3mcÞ2Þ
fixed, RGE (7) can be solved numerically in the
Q2-complex plane. It turns out that the numerical integra-
tion can be performed more efficiently and elegantly if,
instead of Q2, a new complex variable is introduced: z ¼
lnðQ2=�2

inÞ. Then the entire Q2-complex plane (the first

sheet) corresponds to the semiopen stripe �� � Imz <
þ� in the complex z plane. The Euclidean part Q2 2
Cnð�1; 0� where aðQ2Þ has to be analytic corresponds
to the open stripe ��< ImðzÞ<þ�; the Minkowskian
semiaxisQ2 � 0 is the z line Imz ¼ ��; the pointQ2 ¼ 0

corresponds to z ¼ �1; Q2 ¼ �2
in ( ¼ ð3mcÞ2 	

14:5 GeV2) corresponds to z ¼ 0; see Fig. 1. If we denote
aðQ2Þ � FðzÞ, RGE (7) can be rewritten

dFðzÞ
dz

¼ 	ðFðzÞÞ; (15)

in the semiopen stripe �� � Imz <þ�. The analyticity
requirement for aðQ2Þ now means analyticity of FðzÞ ( )
@F=@�z ¼ 0) in the open stripe��< ImðzÞ<þ�, and we
expect (physical) singularities solely on the line ImðzÞ ¼
��. Writing z ¼ xþ iy and F ¼ uþ iv, and assuming
analyticity (@F=@�z ¼ 0), we can rewrite RGE (15) as a
coupled system of partial differential equations for uðx; yÞ
and vðx; yÞ
@uðx;yÞ

@x
¼Re	ðuþ ivÞ; @vðx;yÞ

@x
¼ Im	ðuþ ivÞ; (16)

@uðx; yÞ
@y

¼ �Im	ðuþ ivÞ;
@vðx; yÞ

@y
¼ Re	ðuþ ivÞ:

(17)

Thus, beta functions 	ðFÞ are analytic at F ¼ 0 [ITEP-
OPE condition (5)], and the expansion of 	ðFÞ around
F ¼ 0 [cf. Eq. (4)] must reproduce the two universal
parameters 	0 and c1 ¼ 	1=	0 (‘‘pQCD condition,’’
where 	0 ¼ 9=4 and c1 ¼ 16=9 for nf ¼ 3), and solution

FðzÞ ¼ uðx; yÞ þ ivðx; yÞ of RGEs (16) and (17) satisfies
the initial condition Fð0Þ ¼ ain, where a ¼ ain is deter-
mined by Eq. (14).
We implement high precision numerical integration of

RGEs (16) and (17) with MATHEMATICA [41], for various
Ansätze of 	ðFðzÞÞ satisfying the aforementioned ITEP-
OPE and pQCD conditions. Numerical analyses indicate
that it is in general very difficult to obtain analyticity of
FðzÞ in the entire open stripe ��< ImðzÞ<þ�, equiva-
lent to the analyticity of aðQ2Þ for all complex Q2 except
Q2 2 ð�1; 0�. On the other hand, if we, in addition,
require also analyticity of aðQ2Þ at Q2 ¼ 0 ( , z ¼
�1), certain classes of 	ðaÞ functions do give us FðzÞ
with the correct analytic behavior. This Q2 ¼ 0 analyticity
condition in general implies

aðQ2Þ ¼ a0 þ a1ðQ2=�2Þ þO½ðQ2=�2Þ2�; (18)

FIG. 1. (a) Complex Q2 plane; (b) complex z plane where z ¼ lnðQ2=�2
inÞ; the physical stripe is �� � Imz <þ�.

2For �	ðaÞ � 	ða;MSÞ we used Padé ½2=3�ðaÞ based on the
known MS cj coefficients: �c2 and �c3. Using a truncated (poly-
nomial) series up to �	0 �c3a

5 instead changes the results almost
insignificantly, by less than 1 per mil. For the quark mass values
we use mc ¼ 1:27 GeV and mb ¼ 4:20 GeV (cf. Ref. [39]).

RECONCILING THE ANALYTIC QCD WITH THE ITEP . . . PHYSICAL REVIEW D 82, 114004 (2010)

114004-5



where 0< a0 � aðQ2 ¼ 0Þ ¼ Fðz ¼ �1Þ<1 and a1 �
0. Application of d=d lnQ2 ¼ d=dz to Eq. (18) then im-
plies that in the Taylor expansion of 	ðFÞ around F ¼ a0
the first coefficient is unity

	ðFÞ ¼ 1
 ðF� a0Þ þO½ðF� a0Þ2�; (19)

or equivalently3

	0ðFÞjF¼a0 ¼ þ1: (20)

We write our 	ðFÞ Ansätze in the form

	ðFÞ ¼ �	0F
2ð1� YÞfðYÞjY�F=a0 ; (21)

with function fðYÞ fulfilling the three aforementioned con-
ditions

fðYÞ analytic at Y ¼ 0 ðITEP-OPEÞ; (22)

fðYÞ ¼ 1þ ð1þ c1a0ÞY þOðY2Þ ðpQCDÞ; (23)

a0	0fð1Þ ¼ 1 ðQ2 ¼ 0 analyticityÞ: (24)

We always consider a0 [ � aðQ2 ¼ 0Þ] to be positive
[note: a ¼ ðgs=2=�Þ2 > 0].

We will argue in more detail why and how this addi-
tional constraint [analyticity of aðQ2Þ atQ2 ¼ 0] improves
the analytic behavior of aðQ2Þ � FðzÞ in the entire
Q2 plane (z stripe), in the sense of avoiding Landau singu-
larities. For this, it is helpful to consider some simple
classes of beta functions which, on the one hand, allow
for an implicit analytic solution z ¼ GðFÞ of RGE (15)
and, on the other hand, are representative because larger
classes of beta functions can be successively approximated
by them. Specifically, we consider fðYÞ in Eq. (21) to be
either a polynomial or a rational function4

fðYÞ ¼ 1þ XR
k¼1

rkY
k ¼ P½R=0�fðYÞ; (25)

fðYÞ ¼
�
1þ XM

k¼1

mkY
k

���
1þ XN

‘¼1

n‘Y
‘

�

¼ P½M=N�fðYÞ: (26)

Here, the degrees (R; M, N) are in principle arbitrary, and
the coefficients (rk; mk, n‘) as well. Such Ansätze appar-
ently can fulfill all constraints (22)–(24). It is also intui-
tively clear that they can approximate large classes of other
	 functions that fulfill the same constraints.

Now we undertake the following procedure. Formal
integration of RGE (15) leads to the solution

z ¼ GðFÞ; GðFðzÞÞ ¼
Z FðzÞ

ain

d ~F

	ð ~FÞ ; (27)

where ain is the aforementioned initial value ain ¼ aðQ2 ¼
�2

inÞ ¼ Fð0Þ. Equation (27) represents an implicit (in-

verted) equation for F ¼ FðzÞ ¼ G�1ðzÞ. In both cases,
Eqs. (25) and (26), the integration in Eq. (27) can be
performed explicitly. This is performed in Appendix A.
Here we quote, for orientation, the results for two simple

examples of fðYÞ, a quadratic5 polynomial P½2=0�f and a

rational function P½1=1�f.
In the case of quadratic polynomial we have

fðYÞ ¼ 1þ r1Y þ r2Y
2; (28)

where r1 ¼ ð1þ c1a0Þ due to the pQCD condition (23).
The (positive) quantity a0 � aðQ2 ¼ 0Þ is then obtained as
a function of the only free parameter r2 by the Q2 ¼ 0
analyticity condition (24)

a0ðr2Þ ¼ 1

2c1
½�ð2þ r2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ r2Þ2 þ 4c1=	0

q
�: (29)

For the integration (27), we need to rewrite the polynomial
(28) in a factorized form

fðY ¼ 1=tÞ ¼ 1

t2
ðt� t1Þðt� t2Þ; (30)

t1ðr2Þ
t2ðr2Þ

� �
¼ 1

2
½�r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � 4r2

q
�;

ðr1 ¼ 1þ c1a0ðr2ÞÞ:
(31)

Integration (27) then gives the following implicit equation
for FðzÞ � aðQ2Þ:

z ¼
8<
:ð�1Þ

	0

�
1

ain
� 1

FðzÞ
�
þ ln

�
a0=FðzÞ � 1

a0=ain � 1

�

þ 1

	0a0

X2
j¼1

Bj ln

�
a0=FðzÞ � tj
a0=ain � tj

�9=
;; (32)

where

B1¼ t31
ðt1�1Þðt1� t2Þ ; B2¼ t32

ðt2�1Þðt2� t1Þ : (33)

In this solution we took into account that the coefficient
B0=ð	0a0ÞÞ ¼ 1=ðð1� t1Þð1� t2Þð	0a0ÞÞ in front of the
first logarithm in Eq. (32) is simply unity by the Q2 ¼ 0
analyticity condition (24). The poles zp, at which FðzpÞ ¼
1, are obtained from Eq. (32) by simply replacing 1=FðzÞ
by zero

3If we assumed analyticity of aðQ2Þ in a special way, with
a1 ¼ 0 in Eq. (18), then we would have aðQ2Þ ¼ a0 þ
O½ðQ2=�2Þn� with n � 2 and 	0ðFÞjF¼a0 ¼ n. This would imply
a0	0fð1Þ ¼ n ( � 2). From considerations in Appendix A
[cf. Eqs. (A8)–(A11)] it follows then that in such a case the
RGE solution FðzÞ has poles at Imz ¼ ��=n, i.e., Landau poles.

4In the following we characterize such functions by the
corresponding Padé notations.

5A linear polynomial has at first only one free parameter r1 ¼ð1þ c1a0Þ by the condition (23); however, this a0 gets fixed by
the Q2 ¼ 0 analyticity condition (24): a0 	 0:1904.
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zp ¼
�
ln

� ð�1Þ
a0=ain � 1

�
� 1

	0ain
þ 1

	0a0


 X2
j¼1

Bj ln

� �tj
a0=ain � tj

�	
: (34)

It turns out that a0 > ain (typically, a0 	 0:1–0:2 and ain <
0:1). If, in addition, 0< r2 < r21=4, then Eqs. (31) imply t1,
t2 < 0. Therefore, when 0< r2 < r21=4, all the arguments
in logarithms in Eq. (34) are positive, except in the first
logarithm where lnð�1Þ ¼ �i� and thus the only poles of
FðzÞ in the physical stripe (� � � Imz < �) have

Im zp ¼ ��: (35)

This implies that for 0< r2 < r21=4 the considered singu-
larity must lie on the timelike axis (Q2 < 0) and hence does
not represent a Landau pole. We stress that for such a
conclusion, the Q2 ¼ 0 analyticity condition (24) is of
central importance, since it fixes the coefficient in front
of lnð�1Þ in Eq. (34) to be unity.6 We can derive from
Eq. (34) the location of the pole in the Q2 plane at

Q2
p ¼ �2

in expðzpÞ ¼ ��2
in expðRezpÞ

¼ ��2
in exp

�
� 1

	0ain

��
a0
ain

� 1

��1


Y2
j¼1

�
a0=ain � tj

�tj

��Bj=ð	0a0Þ
: (36)

On the other hand, if the aforementioned conditions are not
fulfilled, we obtain ��< Imzp <�, representing a pole

inside the physical z stripe and thus a Landau singularity.
Specifically, when r2 < 0, we have t1 > 0 and t2 < 0 by

Eqs. (31); numerically, we can check that in this case
always a0=ain � t1 > 0 and, consequently the j ¼ 1 loga-
rithm in Eq. (34) becomes nonreal and ��< Imzp < �,

i.e., Landau pole.
To observe in more detail the occurrence and the shape

of these singularities, we pursued the numerical solution of
RGE (15), i.e., RGEs (16) and (17), accounting for the
initial condition at �2

in ¼ ð3mcÞ2 in the aforementioned

way. In order to see the appearance of singularities of
FðzÞ � Fðxþ iyÞ in the physical z stripe, it is convenient
to inspect the behavior of j	ðFðzÞÞj which should show
similar singularities. The numerical results for j	ðFðzÞÞj, in
the case of r2 ¼ 0 and r2 ¼ �2, are given in Figs. 2(a) and
2(b), respectively. In these figures, we see clearly that the
singularities are on the timelike edge Imz ¼ �� in the
case of r2 ¼ 0, where we have a0 ¼ 1:901, t1 	 �1:338
[t2 is not present as fðYÞ is a linear polynomial]. The pole
moves inside the z stripe (i.e., become Landau singular-
ities) in the case of r2 ¼ �2, where we have a0 ¼ 0:5,
t1 	 0:756, and t2 	 �2:645. In Fig. 3(a) we present the
numerical results for the discontinuity function �1ð�Þ ¼
ImaðQ2 ¼ ��� i�Þ ¼ ImFðz ¼ x� i�Þ ¼ vðx; y ¼
��Þ as a function of x ¼ ReðzÞ ¼ lnð�=�2

inÞ, for the case
r2 ¼ 0. In Fig. 3(b) the analogous curve for ReaðQ2 ¼
��� i�Þ ¼ ReFðz ¼ x� i�Þ ¼ uðx; y ¼ ��Þ is pre-
sented, for the same r2 ¼ 0 case. In Figs. 4(a) and 4(b),
the corresponding curves for the r2 ¼ �2 case are
depicted.
We can try many other fðYÞ functions, for example, the

following set of functions involving (rescaled and trans-
lated) functions ðeY � 1Þ=Y and Y=ðeY � 1Þ:

EE: fðYÞ ¼ ðexp½�k1ðY � Y1Þ� � 1Þ
½k1ðY � Y1Þ�


 ½k2ðY � Y2Þ�
ðexp½�k2ðY � Y2Þ� � 1Þ 
Kðk1; Y1; k2; Y2Þ; (37)

FIG. 2 (color online). j	ðFðzÞÞj as a function of z ¼ xþ iy for the beta function (21) with fðYÞ having the form (28) with (a) r2 ¼ 0;
(b) r2 ¼ �2.

6This also explains why it is nearly impossible to obtain an
analytic aðQ2Þ if we abandon the Q2 ¼ 0 analyticity condition
(24).
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where the constant K ensures the required normalization
fðY ¼ 0Þ ¼ 1. In this ‘‘EE’’ case we have, at first, five real
parameters a0 � aðQ2 ¼ 0Þ and four parameters for trans-
lation and rescaling (Y1, k1, Y2, and k2). Two of the
parameters, e.g., Y2 and a0, are eliminated by conditions
(23) and (24). We need 0< k1 < k2 to get physically
acceptable behavior and fulfill the aforementioned two
conditions. It turns out that, in general, increasing the value
of Y1 tends to create Landau poles. We consider two typical
cases: (1) y1 ¼ 0:1; k1 ¼ 10; k2 ¼ 11; (2) y1 ¼ 1:1; k1 ¼
6; k2 ¼ 11. The numerical results for	ðFðzÞÞ for two cases
are presented in Figs. 5(a) and 5(b), respectively. We see
that the first case shows no sign of Landau poles, while the
second case strongly indicates Landau poles. In Figs. 6 and
7 we present the behavior of the imaginary (v) and real (u)
parts of the coupling Fðz ¼ x� i�Þ ¼ aðQ2 ¼ ��� i�Þ
along the timelike axis of the Q2 plane for the aforemen-
tioned two EE cases.

There is one interesting feature which can be seen most
clearly in Figs. 3(a) and 6(a): the discontinuity function
�1ð�Þ � ImaðQ2 ¼ ��� i�Þ is zero at negative
Q2 values above a ‘‘threshold’’ value (�M2

thr � )��thr <
Q2 < 0. For the two cases cited there (‘‘P½1=0�’’ which is

‘‘P½2=0�’’ with r2 ¼ 0, and EE with Y1 ¼ 0:1), we obtain
xthr ¼ �5:948 and �5:403, respectively, leading to the
threshold masses Mthr ¼ 195 MeV and 256 MeV, respec-
tively. These threshold masses are nonzero and comparable
to the low QCD scale �QCD or pion mass, a behavior that

appears physically reasonable.7 This nonzero threshold
behavior (see also Fig. 1) for the discontinuity function
�1ð�Þ appears because of the Q2 ¼ 0 analyticity require-
ment for aðQ2Þ, Eq. (24). On the other hand, earlier, we
saw that the condition Eq. (24) is practically a necessary
condition to avoid the appearance of Landau poles of
aðQ2Þ.
While Figs. 2 and 5 provide only a visual indication of

whether the coupling aðQ2Þ is analytic, there is a more
quantitative, numerical test for the analyticity. Namely,
application of the Cauchy theorem implies for an analytic
aðQ2Þ, with cut along the negative axis Q2 � �M2

thr, the

FIG. 3 (color online). (a) The discontinuity function �1ð�Þ ¼ ImaðQ2 ¼ ��� i�Þ ¼ ImFðz ¼ x� i�Þ ¼ vðx; y ¼ ��Þ as a
function of x ¼ ReðzÞ ¼ lnð�=�2

inÞ, for the case when fðYÞ has the form (28) with r2 ¼ 0, i.e., linear polynomial; (b) same as in

(a), but for ReaðQ2 ¼ ��� i�Þ ¼ ReFðz ¼ x� i�Þ ¼ uðx; y ¼ ��Þ.

FIG. 4 (color online). Same as in Figs. 3, but this time r2 ¼ �2.

7Furthermore, analytic couplings with nonzero Mthr have the
mathematical property of being Stieltjes functions, and therefore
their (para)diagonal Padé approximants are guaranteed, by con-
vergence theorems, to converge to them as the Padé index
increases [42].
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well-known dispersion relation (6) where the integration
starts effectively at � ¼ �thr ¼ M2

thr

aðQ2Þ ¼ 1

�

Z þ1

M2
thr

d�
�1ð�Þ

ð�þQ2Þ ; (38)

where �1ð�Þ ¼ ImaðQ2 ¼ ��� i�Þ. The high precision
numerical solution of RGE (15) gives us aðQ2Þ ¼ FðzÞ in
the entire complex Q2 plane, including the negative semi-
axis. This allows us to compare numerical values of the lhs
and rhs of dispersion relation (38), for various values ofQ2.

It turns out that, for low positive Q2 � 1 GeV2, the
numerical uncertainties of the obtained results for the rhs
of Eq. (38) are of the order of a per cent (using 64-bit
MATHEMATICA [41] for Linux), and they slowly increase

with increasing Q2. If the deviation of the rhs from the lhs
is more than a few percent, then this represents a strong
indication that the resulting aðQ2Þ is not analytic. In Table I
we present the relative deviations for the aforementioned

two P½2=0� and the two EE cases. Inspecting these devia-
tions, we can clearly see that aðQ2Þ in the P½2=0� case with
r2 ¼ �2 and the EE case with Y1 ¼ 1:1 is nonanalytic; in
the other two cases, the table gives strong indication that
aðQ2Þ is analytic.

III. EVALUATION OF LOW-ENERGY
OBSERVABLES

The semihadronic � decay ratio R� is the most precisely
measured low-energy QCD quantity to date. The measured
value of the ‘‘QCD-canonical’’ part r� ¼ aþOða2Þ, with
the strangeness and quark mass effects subtracted,

is r
ðexpÞ
� ¼ 0:203� 0:004 (cf. Appendix B). Experimental

values of other low-energy observables, such as (spacelike)
sum rules, among them the BjPSR dBjðQ2Þ, are known with
far less precision. The MA model [4–6,20], with the value

of �� such that high-energy QCD observables are repro-
duced, turns out to give for this quantity too low values

FIG. 6 (color online). (a) The discontinuity function �1ð�Þ ¼ ImaðQ2 ¼ ��� i�Þ ¼ ImFðz ¼ x� i�Þ ¼ vðx; y ¼ ��Þ as a
function of x ¼ ReðzÞ ¼ lnð�=�2

inÞ, for the case when fðYÞ is the exponential-related EE function (37) with y1 ¼ 0:1; k1 ¼ 10 k2 ¼
11; (b) same as in (a), but for ReaðQ2 ¼ ��� i�Þ ¼ ReFðz ¼ x� i�Þ ¼ uðx; y ¼ ��Þ.

FIG. 5 (color online). (a) j	ðFðzÞÞj as a function of z ¼ xþ iy, where 	 has the form (21) with fðYÞ having the EE form (37) with
the values of free parameters y1, k1, and k2 as indicated; (b) same as in (a), but with different values of parameters y1 and k1.
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r� 	 0:14 [5,28] unless the (current) masses of the light
quarks are taken to be unrealistically large (mq 	
0:25–0:45 GeV) or strong threshold effects are introduced
[29]. Further, MA does not fulfill the ITEP-OPE condition

(5) since jaðMAÞðQ2Þ � aptðQ2Þj � ð�2=Q2Þ.
The approach described in the previous Sec. II automati-

cally fulfills the ITEP-OPE condition (5); however, the
analyticity of aðQ2Þ, i.e., the absence of Landau poles, is
achieved only for limited regions of the otherwise free
parameters of the 	 function. For general anQCD models,
the evaluation of massless spacelike observables DðQ2Þ
such as BjPSR and Adler function, and for the timelike
observable r�, is presented in the sequence of
Appendixes C, D, and E, particularly Eqs. (E9)–(E12) for
spacelike and (E22)–(E25) for r�. In the cases considered
in this work, the beta function 	ðaÞ is analytic at a ¼ 0
(due to the ITEP-OPE condition), and therefore the higher
order analogs Anþ1 in those Appendixes are simply
Anþ1 ¼ anþ1, cf. Eq. (C29). Furthermore, here we use
all the time the notationA1 � a for the analytic coupling,

and ~Anþ1 � ~anþ1 for the logarithmic derivatives of a
[cf. Eq. (C5)].

In Table II we present the resulting values of RSch
parameters c2, c3, and c4 [cf. Eq. (4)], for some typical
choices of input parameters in four forms of fðYÞ: P½1=0�,
P½3=0�, P½1=1�, and EE. Here, P½M=N� is the general
notation for Padé form Eq. (A1) in Appendix A; P½M=0�
is thus a polynomial of degree M; EE is the Ansatz (37)
involving exponential functions. The otherwise free pa-
rameters (‘‘input’’) of the models are chosen such that

the analyticity is maintained, i.e., no Landau poles. The
case P½1=0� is in fact the aforementioned case of P½2=0�
with r2 ¼ 0, cf. Eq. (28), and it has no free parameters. The
cases P½3=0� and P½1=1� have each one free input parame-
ter; for P½3=0� the first root t1 is the specified input, and for
P½1=1� the first pole u1, where the notation (A1) of
Appendix A is used. The case EE is given in Eq. (37),
and has three free parameters. We recall that an apparently
additional parameter in the Ansätze for fðYÞ is fixed by the
pQCD condition (23). In addition, we present the values of
aðQ2Þ at the initial condition scale �2

in ¼ ð3mcÞ2 (mc ¼
1:27 GeV) and at Q2 ¼ 0; and the threshold value xthr of
the discontinuity function �1ð�Þ ¼ Imað��� i�Þ, where
zthr ¼ xthr � i�, �thr ¼ ð3mcÞ2 expðxthrÞ. Further, the cor-
responding threshold mass Mthr is given [Mthr ¼
3mc expðxthr=2Þ].
For two of these models (P½1=0�, and EE), we depict in

Figs. 8 and 9 the form of fðYÞ and 	ðxÞ functions for real
values of Y ¼ a=a0 and positive values of x � a > 0,
respectively. In Figs. 10 and 11 we present the running
coupling aðQ2Þ as a function of Q2 for positive Q2 in the
two models; there we include, in addition, the higher order
analytic couplings ~anþ1 (n ¼ 1, 2).
The model with f ¼ P½1=0� is, at first sight, very similar

to the model of Ref. [43] which was obtained on the basis
of the principle of minimal (renormalization scheme) sen-
sitivity (PMS) [44] applied to the QCD part of Reþe�ðsÞ
ratio. There, the beta function is also a polynomial of the
fourth degree, i.e., fðYÞ is linear, and it has a finite positive
value of aðQ2 ¼ 0Þ � a0. It turns out that for the beta

FIG. 7 (color online). Same as in Figs. 6, but this time y1 ¼ 1:1 and k1 ¼ 6.

TABLE I. The relative deviation R½Q2� ¼ ðrhs=lhs� 1Þ for the lhs and the rhs of dispersion
relation (38) as obtained numerically, for various low positiveQ2 (Q2 ¼ 0:0, 0.1, and 1:0 GeV2),
for the aforementioned cases of the beta function.

fðYÞ Parameters R½Q2 ¼ 0:0� R½Q2 ¼ 0:1� R½Q2 ¼ 1:0�
P½2=0� r2 ¼ 0:0 3:3
 10�3 4:6
 10�3 7:0
 10�3

P½2=0� r2 ¼ �2:0 �0:62 �0:38 �0:09
EE Y1 ¼ 0:1, k1 ¼ 10:0, k2 ¼ 11:0 4:7
 10�3 4:8
 10�3 6:5
 10�3

EE Y1 ¼ 1:1, k1 ¼ 6:0, k2 ¼ 11:0 �0:82 �0:68 �0:19
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function of Ref. [43] the conditions (22) and (23) are
fulfilled, but not the condition of Q2 ¼ 0 analyticity
Eq. (24). As argued in the present paper, such beta function
will give unphysical (Landau) poles, although in this case
not on the positive Q2 axis. Specifically, for nf ¼ 2 and

nf ¼ 3 the Q2 ¼ 0 analyticity condition (24) yields in the

P½1=0� case the values a0 ¼ 0:1761 and 0.1901, respec-
tively, while the values of a0 in Ref. [43] are a0 ¼ 0:263
and 0.244, respectively. We checked numerically that this
PMS solution leads to (Landau) poles of aðQ2Þ at Q2 	
ð�0:027� i0:065Þ GeV2 for nf ¼ 2, and at Q2 	
ð�0:031� i0:032Þ GeV2 for nf ¼ 3 (massless quarks).

Let us now apply these results to calculating low-energy
QCD observables.
We start with r�.
In Table III we present the predicted values of r� for the

choices of 	 functions and input parameters given in
Table II. Therein we separately give (in each line) the
four terms of the truncated analytic series for r� and then
quote their sum. Furthermore, for each model of fðYÞ we
present the results for basically two different ways of
treating the higher orders. In the first row of each model,
the results of the series (E22) are presented, which per-
forms LB resummation and adds the (three) bLB terms

TABLE II. Four cases of 	 function ðfðYÞÞ, with chosen input parameters. Given are the resulting RSch parameters cn (n ¼ 2, 3, and
4), and the values of aðQ2Þ at Q2 ¼ ð3mcÞ2 and Q2 ¼ 0. Further, the resulting threshold parameter xthr and the threshold massMthr (in
GeV) are given. Recall that aðð3mcÞ2;MSÞ ¼ 0:072 45.

f Input c2 c3 c4 aðð3mcÞ2Þ a0 � að0Þ xthr Mthr (GeV)

P½1=0� � � � �37:02 0 0 0.060 47 0.1901 �5:948 0.195

P½3=0� t1 ¼ 1þ i0:45 �39:55 115.88 �105:80 0.060 66 0.4562 �11:092 0.015

P½1=1� u1 ¼ �0:1 �37:54 18.84 �9:46 0.060 48 0.1992 �6:060 0.184

EE Y1 ¼ 0:1, k1 ¼ 10:0, k2 ¼ 11:0 �10:80 �157:62 �644:32 0.065 44 0.2360 �5:403 0.256

FIG. 8 (color online). (a) fðYÞ function as defined by Eq. (21), for real values of Y � a=að0Þ, for the case of f being P½1=0� linear
function ( , P½2=0� with r2 ¼ 0); (b) 	ðxÞ function for the same case, for positive x � a.

FIG. 9 (color online). Same as in Fig. 8, but this time fðYÞ being the exponential-related function EE, Eq. (37).
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organized in contour integrals of logarithmic derivatives
~anþ1 (n ¼ 1, 2, 3). In the second line, the analogous results
are presented, where now the (three) bLB terms are contour

integrals of powers Anþ1 � anþ1, Eq. (E24). At each of
the entries, the corresponding terms are given when no LB
resummation is performed, cf. Eqs. (E23) and (E25). The

FIG. 10. (a) Analytic coupling aðQ2Þ and its higher order analogs ~anþ1 (n ¼ 1, 2) as defined in Eq. (C5), for positive Q2, for the
model P½1=0�. For better visibility, the higher order analogs are scaled by factors of 5 and 52, respectively. (b) Same as in (a), but at
lower Q2. We recall that, formally ~anþ1 ¼ anþ1 þOðanþ2Þ.

FIG. 11. Same as in Fig. 10, but for the model EE, Eq. (37).

TABLE III. The four terms in truncated analytic expansions (E22) and (E24) for r�, i.e., with LB contributions resummed and the
three bLB terms organized in contour integrals of ~Anþ1 � ~anþ1 (first line) and of Anþ1 ¼ anþ1 (second line of each model). In
parentheses are the corresponding results when no LB resummation is performed, i.e., the truncated analytic expansions Eqs. (E23) and
(E25), respectively. The RScl parameter is C ¼ 0. The last column contains variations of these truncated sums when the RScl
parameter C increases from 0 to ln2.

f r�: LB (LO) NLB (NLO) N2LB (N2LO) N3LB (N3LO) Sum (sum) � (C dependence)

P½1=0� 0.1135(0.0940) 0.0006(0.0123) 0.0139(0.0214) 0.0007(0.0012) 0.1287(0.1289) �0:2%ð�0:4%Þ
0.1135(0.0940) 0.0007(0.0137) 0.0209(0.0340) 0.0091(0.0113) 0.1442(0.1529) �2:8%ð�2:7%Þ

P½3=0� 0.1200(0.0954) 0.0007(0.0131) 0.0184(0.0275) �0:0009ð0:0000Þ 0.1381(0.1360) �0:3%ð�0:8%Þ
0.1200(0.0954) 0.0007(0.0141) 0.0233(0.0369) 0.0067(0.0087) 0.1507(0.1550) �2:4%ð�2:9%Þ

P½1=1� 0.1142(0.0941) 0.0006(0.0124) 0.0146(0.0224) 0.0005(0.0011) 0.1300(0.1300) �0:2%ð�0:5%Þ
0.1142(0.0941) 0.0007(0.0138) 0.0213(0.0344) 0.0088(0.0109) 0.1450(0.1532) �2:8%ð�2:7%Þ

EE
0.1348(0.1088) 0.0009(0.0173) 0.0025(0.0156) 0.0048(0.0061) 0.1466(0.1478) �0:8%ð�1:2%Þ
0.1348(0.1088) 0.0009(0.0180) 0.0033(0.0224) 0.0102(0.0173) 0.1528(0.1666) �2:8%ð�3:7%Þ
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RScl parameter used is C ¼ 0, i.e., the radius of the contour
in the Q2 plane is m2

�. In the last column, the relative
variation of the sum is given when the RScl parameter is
increased from C ¼ 0 to ln2, i.e., the radius of the contour
integration is increased to 2m2

�. The results using the
powers anþ1 for the bLB (or higher order) contributions
show significantly less stability under the RScl variation;
the reason for this lies in two numerical facts:

(i) The expansion coefficient ðtAdlÞ3 of the latter series is
usually larger than the corresponding coefficient
ðTAdlÞ3 of the series containing ~anþ1: jðtAdlÞ3j>
jðTAdlÞ3j; this seems to be true in all the RSch’s
dictated by the presented 	 functions.

(ii) Apparently in all cases we have j~anþ1j< janþ1j,
although formally ~anþ1 ¼ anþ1 þOðanþ2Þ.

Furthermore, the variations of the result under variations of
RScl are generally smaller when LB resummation is per-
formed. Therefore, wewill consider as our preferred choice
the evaluated values of the first lines (not in parentheses) of
each model in Table III, i.e., the evaluations using ~anþ1 for
the higher order contributions, i.e., Eq. (E22).

We note that the obtained values of r� (see the ‘‘sum’’
in Table III) are all much too low when compared

with the experimental value rðexpÞ� ¼ 0:203� 0:004
(cf. Appendix B). In fact, the free parameters in the
Ansätze for fðYÞ of the beta function were chosen in
Tables II and III in such a way as to (approximately) max-
imize the result for r� while still maintaining analyticity of
aðQ2Þ (i.e., no Landau singularities).8 We can see that the

preferred evaluation method, i.e., the first line of each case,
gives us always a value r� < 0:15. We tried many choices
for the function fðYÞ of Eq. (21), fulfilling all conditions
(22)–(24), and scanning over the remaining free parameters
in fðYÞ. It turned out that r� < 0:16 always as long as
Landau poles were absent.9 Only when free parameters
were chosen such that Landau poles appeared, was it
possible to increase r� beyond 0.16.
As the second example we consider the BjPSR dBjðQ2Þ.
In Table IV we present results for dBjðQ2Þ in the afore-

mentioned cases, at three of those low values of Q2 where
experimental results are available: Q2 ¼ 1:01, 2.05, and
2:92 GeV2. As in the previous Table III, the first line of
each model contains the results with our preferred method,
i.e., LB resummation and usage of ~anþ1 for the bLB
contributions, Eq. (E9); the second line represents the
results of LB resummation and the usage of anþ1 powers
for the bLB contributions, Eq. (E11). In the parentheses,
the corresponding results are given when no LB resumma-
tion is performed, Eqs. (E10) and (E12), respectively. In
the corresponding brackets, the variations of the results are
given when the RScl parameter varies either from C ¼ 0
(�2 ¼ Q2) to C ¼ ln2 (�2 ¼ 2Q2), or from C ¼ 0 to C ¼
lnð1=2Þ (�2 ¼ Q2=2)—the larger of the variations is given.
As in the case of r�, we see that the most stable evaluation
under variations of RScl is the LB resummation and the
usage of ~anþ1 for the bLB contributions, Eq. (E9).

TABLE IV. Bjorken polarized sum rule (BjPSR) results dBjðQ2Þ for the four considered 	 Ansätze, evaluated with the truncated
analytic expansions (E9) and (E11), i.e., with LB contributions resummed and the three bLB terms / ~Anþ1 � ~anþ1 (first line) and
/ Anþ1 ¼ anþ1 (second line). In parentheses are the corresponding results when no LB resummation is performed, i.e., truncated
analytic expansions Eqs. (E10) and (E12), respectively. The RScl parameter is C ¼ 0. In brackets, the corresponding variations of the
results under the RScl variation are given (see the text for details). For explanation of the experimental values in the last (four) lines,
see the text for details.

f dBjðQ2Þ: Q2 ¼ 1:01 GeV2 Q2 ¼ 2:05 GeV2 Q2 ¼ 2:92 GeV2

P½1=0� 0:1343½þ0:3%� ð0:1420½�1:9%�Þ 0:1208½�0:1%� ð0:1255½�0:5%�Þ 0:1140½�0:2%� ð0:1173½�0:7%�Þ
0:1535½�4:1%� ð0:1974½�5:1%�Þ 0:1313½þ2:8%� ð0:1552½�4:1%�Þ 0:1218½�2:4%� ð0:1393½�3:6%�Þ

P½3=0� 0:1609½�0:4%� ð0:1630½�1:9%�Þ 0:1366½�0:4%� ð0:1361½�2:0%�Þ 0:1261½�0:4%� ð0:1249½�1:9%�Þ
0:1773½�3:7%� ð0:2053½�6:3%�Þ 0:1456½�2:6%� ð0:1587½�4:6%�Þ 0:1329½�2:2%� ð0:1417½�4:0%�Þ

P11
0:1373½þ0:2%� ð0:1450½�1:5%�Þ 0:1226½�0:1%� ð0:1270½�0:6%�Þ 0:1154½�0:2%� ð0:1184½�0:9%�Þ
0:1561½�4:0%� ð0:1985½�5:3%�Þ 0:1329½�2:8%� ð0:1557½�4:2%�Þ 0:1231½�2:4%� ð0:1396½�3:7%�Þ

EE
0:1507½þ0:3%� ð0:1659½�3:7%�Þ 0:1338½þ0:1%� ð0:1434½�1:0%�Þ 0:1256½þ0:1%� ð0:1324½�1:0%�Þ
0:1436½þ0:7%� ð0:2300½�6:8%�Þ 0:1304½þ0:5%� ð0:1725½�5:1%�Þ 0:1232½þ0:4%� ð0:1521½�4:4%�Þ

Exp. (a): 0:23� 0:18 0:11� 0:11 0:09� 0:07
�

p�n
4 ¼ �0:040� 0:028 0:23� 0:12� 0:13 0:11� 0:09� 0:06 0:09� 0:05� 0:05

Exp. (b): 0:30� 0:18 0:15� 0:11 0:11� 0:07
�

p�n
4 ¼ �0:024� 0:028 0:30� 0:12� 0:13 0:15� 0:09� 0:06 0:11� 0:05� 0:05

8When fðYÞ is P½2=0�, it turns out that the largest evaluated
value of r� is obtained when r2 ¼ 0 in Eq. (28), i.e., when fðYÞ
reduces to a linear function P½1=0�.

9In some cases, e.g., when increasing the value of Y1 in the
case EE, the preferred evaluation method, Eq. (E22), gives us
values of r� between 0.15 and 0.16. However, in such cases, it is
not any more clear that the analyticity is maintained; increasing
Y1 even further leads to a clear appearance of Landau poles.
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For comparison, we include in Table IV (last lines) three
sets of experimental data based on the JLab CLAS EG1b
(2006) measurements [45] of the �

p�n
1 ðQ2Þ sum rule for

spin-dependent proton and neutron structure functions gp;n1

[46]. �
p�n
1 is connected to dBj in the following way:

�p�n
1 ðQ2Þ �

Z 1

0
dxBjðgp1ðxBj; Q2Þ � gn1ðxBj; Q2ÞÞ (39)

¼ gA
6
ð1� dBjðQ2ÞÞ þ X1

j¼2

�p�n
2j ðQ2Þ
ðQ2Þj�1

; (40)

where gA ¼ 1:267� 0:004 [39] is the triplet axial charge,
1� dBjðQ2Þ ¼ 1� aðQ2Þ þOða2Þ is the nonsinglet

leading-twist Wilson coefficient, and �
p�n
2j =Q2j�2 (j � 2)

are the higher-twist contributions. If we take into account
the data with the elastic contribution excluded, we can
restrict ourselves to the first higher-twist term �

p�n
4 =Q2.

The elastic contribution affects largely only the other
higher-twist terms �1=ðQ2Þj�1 with j � 3, as has been
noted in Refs. [47,48]. Moreover, the exclusion of the
elastic contribution leads to strongly suppressed higher-
twist terms �1=ðQ2Þj�1 with j � 3 [47] in pQCD and
MA (APT) approaches. The first experimental set (a) for
dBjðQ2Þ in Table IV is obtained from themeasured values of

�p�n
1 ðQ2Þ (with the elastic part excluded) by subtracting the

�
p�n
4 =Q2 contribution as obtained by a 3-parameter pQCD

fit [45]: �p�n
4 	 �p�n

4 ðQ ¼ 1 GeVÞ ¼ �0:040� 0:02810;
the second set (b) is obtained in the same way, but now by
subtracting the �p�n

4 =Q2 contribution obtained by a 4-

parameter pQCD fit [45]: �
p�n
4 	 �

p�n
4 ðQ ¼ 1 GeVÞ ¼

�0:024� 0:028. In the second line of each experimental
set, the uncertaintieswere split into the contribution coming
from the uncertainty of themeasured value of�p�n

1 ðQ2Þ and
the one from the uncertainty of the fitted value �

p�n
4 [45].

We see from Table IV that the evaluated values for
BjPSR lie in general relatively close to the central experi-
mental values dBjðQ2Þexp: dBjðQ2Þexp ¼ 0:23 (or 0.30) for

Q2 ¼ 1:01 GeV2; 0.11 (or 0.15) forQ2 ¼ 2:05 GeV2; 0.09
(or 0.11) for Q2 ¼ 2:92 GeV2. However, in contrast to r�,
the experimental uncertainties are now much larger and the
theoretical predictions lie well within the large intervals of
experimental uncertainties.

IV. TACKLING THE PROBLEM OF TOO LOW r�

The problem of too low r�, encountered in the previous
section, appears to be common to all or most of the anQCD
models. For example, in the MA of Shirkov, Solovtsov, and

Milton [4–6,20,28], when adjusting �� to such a value as
to reproduce higher energy QCD observables (Q2 *

101 GeV2), i.e., �� 	 0:4 GeV, the resulting11 value of
(massless and strangeless) r� is about 0.140–0.141
[5,14,28], much too low. The results of the previous section
indicate that this problem persists even in anQCD models
which, unlike MA, fulfill the ITEP-OPE condition (5). The
aspect of anQCD models which appears to cause the
tendency toward too low values of r� is the absence of
(unphysical) Landau cut along the positive Q2 axis
(0 � Q2 <Q2

LP).
12 Therefore, we are apparently facing a

strange situation:
(i) In pQCD the Landau cut of the coupling gives a

numerically positive contribution to r�, and pQCD
is able to reproduce the experimental value of r�
(cf. Refs. [30,50–61], because of this (unphysical)
feature of the theory.

(ii) In anQCD the physically unacceptable low-energy
(Landau) singularities of the coupling are elimi-
nated, but then the values of r� tend to decrease
too much.

Here we indicate one possible solution to this problem
(cf. also our shorter version [31]). Table III indicates that
the LB-resummed contribution to r� cannot surpass the
values 0.14–0.15. We performed many trials with various
forms of fðYÞ functions and were not able to obtain larger

values of rðLBÞ� . But the N2LB term, which is the only non-
negligible bLB term in Table III, can be increased by
increasing the coefficient ðTAdlÞ2 of expansion (E22) while
maintaining, at least approximately, the values of aðQ2Þ
and ~anþ1ðQ2Þ for most of the complex Q2. It can be
deduced from the presentation in Appendix E that the
RSch dependence of coefficient ðTAdlÞ2 is in the contribu-
tion ð�c2 þ �c2Þ. Therefore, if we multiply the fðYÞ func-
tion by a factor ffactðYÞ, which is close to unity for most of
the values of Y ( � a=a0) but which significantly decreases
the RSch parameter c2, the value of ðTAdlÞ2 will increase
while the values of aðQ2Þ and ~anþ1ðQ2Þ will not change
strongly for most of the complex Q2 values.13 This can be
achieved by the following replacement:

10Almost the same value was obtained by the authors of
Refs. [47,48]: �

p�n
4 =M2

p 	 �0:048 corresponding to �
p�n
4 	

�0:042 (Ref. [47]), and �
p�n
4 =M2

p 	 �0:042 corresponding to
�p�n

4 	 �0:037 (Ref. [48], accounting for theQ2 dependence of
�

p�n
4 due to RG evolution). The interesting aspect is that they

applied the MA (i.e., APT) model of Refs. [4,5] to the fit of the
aforementioned JLab data, then obtaining the 1=Q2 term as
the sum of the contribution from the MA (APT) series and the
contribution of the explicit 1=Q2 term (obtained through fit).
Such a sum of 1=Q2 terms, in their model, is not interpreted as
originating entirely from the IR regime since MA does not
satisfy the conditions of Eq. (5).

11The value �� ¼ 0:4 GeV corresponds to the � value in the
Lambert function [49] for the (MA) coupling A1ðQ2Þ in the
’t Hooft RSch �Lambert ¼ 0:551 GeV. In general, it can be
checked that the following relation holds: �Lambert 	
�� expð0:3205Þ, and this holds irrespective of whether we con-
sider pQCD or MA couplings.
12A somewhat similar reasoning can be found in Ref. [30].
13The next-to-leading-	0 (NLB) term cannot be increased in
this way, because the coefficient ðTAdlÞ1 ¼ 1=12 turns out to be
RSch independent (and small).
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foldðYÞ � fnewðYÞ ¼ foldðYÞffactðYÞ; (41)

with ffactðYÞ ¼ ð1þ BY2Þ
ð1þ ðBþ KÞY2Þ ð1 � K � BÞ:

(42)

The function ffactðYÞ is really close to unity for most Y’s
because K � B; and it decreases the c2 RSch parameter to
low negative values [cf. Eq. (4)] because 1 � K (c2 �
�K). More specifically, expansion in powers of Y �
a=a0 then gives the RSch coefficients cn with large abso-
lute values c2 	 �K=a20ð� � KÞ; c3 	 �c1K=a

2
0ð� �

KÞ; c4 	 BK=a40ð�BKÞ; etc. This implies that the coeffi-

cients ðTAdlÞn, ðtAdlÞn, ð~dAdlÞn, and ðdAdlÞn appearing in
analytic expansions Eqs. (E20)–(E25) behave as	 �c2 �
K for n ¼ 2; �� c2, �c3 ��K for n ¼ 3; �� c4 �
�BK for n ¼ 4; etc. Therefore, these coefficients are large
for n ¼ 2, 3, and even much larger for n � 4. In fact, it
turns out that the larger B is, the less the LB contribution

rðLBÞ� decreases. However, then the absolute values of co-
efficients of analytic expansions Eqs. (E20)–(E25) increase
explosively for n � 4. On the other hand, when B ( � 1)
decreases, the aforementioned divergence of the series

(E20) at n � 4 becomes less dramatic, but then rðLBÞ�

decreases and it becomes difficult to reproduce the experi-
mental value r� 	 0:203. We chose the values of B in each

model such that, roughly, rðLBÞ� 	 0:10 or above (if
possible).

Further, it turns out that these modifications (i.e., inclu-
sion of ffact) do not destroy the analyticity of aðQ2Þ. The
(two- and three-dimensional) diagrams presented in the
figures of the previous section change only little when
the modification factor (42) is introduced in the corre-
sponding beta functions.

The numerical results in the models of Tables II, III, and
IV of the previous section, modified by replacements (41)
and (42) in the aforementioned way so that the preferred
evaluation method Eq. (E22) gives r� ¼ 0:203, are given in
the corresponding Tables V, VI, and VII.

When comparing Table VI with Table III, we see that the
modification (41) and (42) really results in a significantly
larger N2LB contribution (and a somewhat larger N3LB
contribution) to r�, reaching in this way the middle experi-
mental value r� ¼ 0:203. The variations � under the

variations of RScl are now larger in Table VI than in III;
nonetheless, the evaluation method of Eq. (E22) is still the
most stable under the RScl variations. However, now the
series for r� is strongly divergent when terms N4LB and
higher are included, for the reasons mentioned earlier in
this section. For example, the N4LB contribution to r�,
in the methods of Eqs. (E22) and (E23) which use ~anþ1 in
higher order contributions, is estimated to be �� 100 ¼
�1. Specifically, when the RScl parameter is C ¼ 0, these
terms are estimated to be �3:1 (P½1=0�); �2:0 (P½3=0�);
�3:7 (P½1=1]); �1:0 (EE).14

It remains unclear how to deal with such an analytic
series, which has relatively reasonable convergence behav-
ior in its first four contributions and behaves uncontrollably
for n � 4. One might consider this behavior as an indica-
tion of the asymptotic series nature of the expansion (‘‘pre-
cocious asymptoticity’’). Certainly, this divergence
problem appears to be the price that is paid to achieve in
anQCD the correct value r� 	 0:20 via 	-function modi-
fication Eqs. (41) and (42). The modified beta functions
	ðaÞ now acquire poles and zeros on the imaginary axis

close to the origin in the complex a plane: apole ¼
�iað0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ K
p

, azero ¼ �iað0Þ= ffiffiffiffi
B

p
. Consequently, the

convergence radius of the perturbation expansion of 	ðaÞ
in powers of a becomes short: R ¼ að0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ K
p

.
Nonetheless, 	ðaÞ remains an analytic function of a at a ¼
0, fulfilling thus the ITEP-OPE condition (5). We note that
such a modification of the beta function brings us into an
RSch where the absolute values of the (perturbative) RSch
parameters cn rise fast when n increases. There is no
physical equivalence of such RSch’s with the usual

RSch’s such asMS or ’t Hooft RSch (where cn ¼ 0 for n �
2). For example, in these two latter RSch’s, the coupling
aðQ2Þ is not even analytic. Physical nonequivalence can

TABLE V. Four models of 	 function ðfðYÞÞ of the previous section, with modification Eqs. (41) and (42), with inputs as given in
Table II, and the values of the additional input parameters K and B (1 � K � B) adjusted so that the evaluation method Eq. (E22)
gives r� ¼ 0:203. Given are the resulting RSch parameters cn (n ¼ 2, 3, and 4), and the values of aðQ2Þ at Q2 ¼ ð3mcÞ2 and Q2 ¼ 0,
as well as the resulting threshold parameter xthr and the threshold mass Mthr (in GeV).

fold Input ffact c2 c3 c4 aðð3mcÞ2Þ a0 � að0Þ xthr Mthr (GeV)

P½1=0� B ¼ 4000, K ¼ 6:71 �222:06 �329:13 2:047
 107 0.057 63 0.1904 �6:331 0.161

P½3=0� B ¼ 5000, K ¼ 44:5 �249:65 �260:93 5:036
 106 0.054 30 0.4597 �12:023 0.009

P½1=1� B ¼ 4000, K ¼ 7:11 �216:04 �298:77 1:799
 107 0.057 61 0.1995 �6:448 0.152

EE B ¼ 1000, K ¼ 5:4 �106:80 �326:71 1:721
 106 0.061 25 0.2370 �5:887 0.201

14When using evaluation methods of Eqs. (E24) and (E25)
which use powers anþ1 instead, these estimated terms are
�22:9 (P½1=0�); �3:9 (P½3=0�); �20:1 (P½1=1�); �2:9 (EE).
These terms have significantly higher absolute values than those
for the methods of Eqs. (E22) and (E23), although the estimated
coefficients are the same in both cases. The reason for this
difference lies in the fact that ja5ðQ2Þj> j~a5ðQ2Þj for most
values of (complex) Q2. It appears to be a general numerical
fact in all models presented in this work that janþ1ðQ2Þj>
j~anþ1ðQ2Þj (n � 1), although formally ~anþ1 ¼ anþ1 þOðanþ2Þ.
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even be discerned between, on the one hand, the much
‘‘tamer’’ RSch’s of the previous section which give ana-
lytic aðQ2Þ (see Table II) and, on the other hand, the

aforementioned nonanalytic RSch’s MS or ’t Hooft.
When comparing the evaluated BjPSR values for the

beta functions modified by Eqs. (41) and (42), as presented
in Table VII, with those of unmodified beta functions as
presented in Table IV, we note that the modification in-
creases the values of BjPSR, generally to above the experi-
mental middle values. Nonetheless, the results generally
remain inside the large intervals of experimental uncer-
tainties. The variations of the results under the variation of
the RScl are now larger.

The evaluation methods of Eqs. (E9) and (E10), for
spacelike observables such as BjPSR, and the analogous
methods of Eqs. (E22) and (E23) for the timelike r�, which
use logarithmic derivatives ~anþ1, are significantly more
stable under the variation of RScl than the methods of Eqs.
(E11), (E12), (E24), and (E25), which use powers anþ1.
This can be seen clearly by comparing the variations
(percentages) of the first and the second line of each
anQCD model in Tables VI and VII. In this sense, the
method of Eqs. (E9) for spacelike, and (E22) for timelike
observables, which performs LB resummation and uses
logarithmic derivatives ~anþ1 for the bLB contributions,
remains the preferred method, as in the previous section.

We wish to add a minor numerical observation. Unlike
the results of the previous section where the LB

resummation improved significantly the stability under
the RScl variation, this improvement becomes less clear
in the results of the present section, as can be seen by
comparing the variations (percentages) outside the paren-
theses with the corresponding ones inside the parentheses.
This can be understood in the following way: the modi-
fication of 	 functions by Eqs. (41) and (42) introduced,
via large values of jcnj’s, in the expansion coefficients
~dnþ1 and dnþ1 of the (spacelike) observables (here the
Adler function and BjPSR) numerically large contribu-
tions 	 �cnþ1=n which are not a large-	0 part of these
coefficients. The latter is true because the LB part of
~dnþ1 and dnþ1 is �	nþ1

0 , while cnþ1 ¼ 	nþ1=	0 � 	n
0

(cf. Appendixes D and E). Therefore, the LB parts of the
coefficients are now not dominant, and the LB resumma-
tion cannot be expected to improve significantly the RScl
stability of the result.

V. CONCLUSIONS

In this work we tried to address two aspects which are
not addressed by most of the anQCD models presented up
to now in the literature:
(i) Several anQCD models, in particular, the most

widely used anQCD model ( MA) of Shirkov,
Solovtsov, and Milton [4–6,20], give significantly
too low values of the well-measured (QCD-
canonical) semihadronic �-decay ratio r� once the

TABLE VII. The evaluated quantity BjPSR dBjðQ2Þ as in Table IV, but now with modifications Eqs. (41) and (42), as given in
Table V. The experimentally measured values are given in the last four lines of Table IV (see the text there for details).

fold ¼ f=ffact dBjðQ2Þ: Q2 ¼ 1:01 GeV2 Q2 ¼ 2:05 GeV2 Q2 ¼ 2:92 GeV2

P½1=0� 0:2138½�2:9%� ð0:2199½�3:5%�Þ 0:1895½�1:7%� ð0:1927½�2:0%�Þ 0:1761½�2:2%� ð0:1782½�2:6%�Þ
0:3795½þ15:0%� ð0:3673½þ15:2%�Þ 0:2803½þ12:4%� ð0:2697½þ12:9%�Þ 0:2442½þ11:1%� ð0:2344½þ11:8%�Þ

P½3=0� 0:2485½�4:9%� ð0:2476½�5:7%�Þ 0:2008½�4:5%� ð0:1991½�5:3%�Þ 0:1813½�4:3%� ð0:1795½�5:0%�Þ
0:3485½þ14:8%� ð0:3221½þ16:0%�Þ 0:2579½þ11:5%� ð0:2392½þ12:8%�Þ 0:2252½þ10:2%� ð0:2093½þ11:5%�Þ

P11
0:2185½�2:1%� ð0:2244½�2:5%�Þ 0:1909½�2:1%� ð0:1938½�2:5%�Þ 0:1767½�2:5%� ð0:1785½�3:0%�Þ

0:3742½þ15:2%� ð0:3618½þ15:4%�Þ 0:2761½þ12:3%� ð0:2654½þ13:0%�Þ 0:2406½þ11:0%� ð0:2308½þ11:8%�Þ
EE

0:2166½�3:0%� ð0:2281½�4:1%�Þ 0:1879½�2:3%� ð0:1938½�3:0%�Þ 0:1728½�2:7%� ð0:1765½�3:6%�Þ
0:3246½þ18:4%� ð0:3416½þ18:3%�Þ 0:2380½þ13:6%� ð0:2421½þ14:6%�Þ 0:2074½þ11:6%� ð0:2081½þ12:8%�Þ

TABLE VI. The evaluated quantity r� as in Table III, but now with modifications Eqs. (41) and (42), as given in Table V, so that the
evaluation method Eq. (E22) gives r� ¼ 0:203.

fold ¼ f=ffact r�: LB (LO) NLB (NLO) N2LB (N2LO) N3LB (N3LO) Sum (sum) � (C dependence)

P½1=0� 0.1060(0.0880) 0.0006(0.0110) 0.0907(0.0974) 0.0057(0.0063) 0.2030(0.2026) �1:4%ð�1:5%Þ
0.1060(0.0880) 0.0006(0.0121) 0.1264(0.1373) 0.0552(0.0438) 0.2882(0.2812) �8:4%ð�10:1%Þ

P½3=0� 0.0997(0.0815) 0.0005(0.0099) 0.0967(0.1029) 0.0061(0.0068) 0.2030(0.2011) �2:5%ð�2:7%Þ
0.0997(0.0815) 0.0005(0.0104) 0.1143(0.1230) 0.0447(0.0347) 0.2592(0.2496) �7:6%ð�9:6%Þ

P½1=1� 0.1064(0.0880) 0.0006(0.0111) 0.0902(0.0971) 0.0058(0.0063) 0.2030(0.2025) �1:6%ð�1:7%Þ
0.1064(0.0880) 0.0006(0.0121) 0.1229(0.1338) 0.0532(0.0423) 0.2832(0.2762) �8:3%ð�10:0%Þ

EE
0.1247(0.0987) 0.0007(0.0146) 0.0678(0.0786) 0.0097(0.0108) 0.2030(0.2027) �2:4%ð�2:8%Þ
0.1247(0.0987) 0.0008(0.0149) 0.0787(0.0934) 0.0432(0.0385) 0.2474(0.2456) �8:8%ð�10:3%Þ
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free parameter(s) (such as ��) are adjusted so that the
models reproduce the experimental values of high-
energy QCD observables (jQ2j * 101 GeV2),
cf. Refs. [5,28].

(ii) In most of the anQCD models presented up to now,
the ITEP-OPE condition (5) is not fulfilled.15 Hence
such models give nonperturbative power contribu-

tions �ð ��2=Q2Þk of ultraviolet origin in the
(leading-twist part of the) spacelike observables
DðQ2Þ, contravening the ITEP-OPE philosophy
[23,25] which postulates that nonperturbative con-
tributions have exclusively infrared origin. If the
latter philosophy is not respected by a model, ap-
plication of the OPE evaluation method in such a
model becomes questionable.

In this work, the second aspect (ITEP-OPE) was addressed

via construction of the analytic coupling aðQ2Þ ¼
�ðanÞ
s ðQ2Þ=� by starting from beta functions 	ðaÞ analytic

at a ¼ 0 and performing integration of the corresponding
RGE in the complex Q2 plane. It then turned out that, in
order to avoid the occurrence of Landau singularities of
aðQ2Þ, it was virtually necessary to impose on the coupling
aðQ2Þ analyticity atQ2 ¼ 0. We tried the construction with
many different 	 functions which fulfill such conditions
and which, at the same time, give relatively tame pertur-
bation RSch coefficients cn � 	n=	0 (n ¼ 2; 3; . . . ), i.e.,
where the sequence fjcnj; n ¼ 2; 3; . . .g is not increasing
very fast. It turned out that all such beta functions resulted
either in analytic coupling aðQ2Þ which gave r� < 0:16,
significantly below the well-measured experimental value
r�ðexpÞ ¼ 0:203� 0:004 of the (strangeless and massless)
r�, or the coupling aðQ2Þ gave r� > 0:16 at the price of
developing Landau singularities.

This persistent problem was then addressed by a specific
modification of the aforementioned beta functions,
Eqs. (41) and (42), introducing in 	ðaÞ complex poles
and zeros on the imaginary axis of the complex a plane
close to the origin. In this way, the correct value r� ¼
0:203 was reproduced, and the analyticity of aðQ2Þ and
the ITEP-OPE condition were maintained. However, the
sequence of perturbation RSch coefficients fjcnj; n ¼
2; 3; . . .g in such cases increases very fast starting at n ¼
4. As a consequence, in such cases the analytic evaluation
series of QCD observables (including r�) starts showing
strong divergent behavior when terms �~a5 � a5 are in-
cluded, because the coefficients at such terms become
large. It remains unclear how to deal properly with this
problem.

In this work we evaluated, in the aforementioned
anQCDmodels, the (timelike) observable r� and the space-
like observable BjPSR dBjðQ2Þ at low Q2, by evaluating

only the leading-twist contribution, and accounting for the
chirality-violating higher-twist OPE terms by estimating
and subtracting those ‘‘mass’’ terms in the case of r� (see
Appendix B). This means that the chirality-conserving
higher-twist contributions, such as the gluon condensate
contribution, were not taken into account. While the values
of the chirality-violating condensates are known with rela-
tively high degree of precision and are expected to be the
same in perturbative QCD (pQCDþ OPE) and in anQCD
(anQCDþ OPE), the values of the chirality-conserving
condensates have in pQCDþ OPE very high levels of
uncertainty. For example, the dimension-four gluon con-
densate, which is the numerically relevant chirality-
conserving condensate with the lowest dimension in the
evaluation of r�, acquires (in pQCDþ OPE) value almost
compatible with zero: haG2

��i ¼ 0:005� 0:004 GeV4

[57], obtained by fitting pQCDþ OPE evaluations of the
current-current polarization operators with the correspond-
ing integrals of the experimentally measured spectral func-
tions of the � decay. In anQCD models, before fitting, the
value of haG2

��i is a free parameter. In principle, the

inclusion of this parameter, i.e., inclusion of the corre-
sponding dimension-four term in the anQCDþ OPE
evaluation of r� can give us the correct value of r� once
the value of the parameter is adjusted accordingly, without
the need to perform the modification (41) and (42) of the
beta function. It appears that the resulting value of this
parameter haG2

��i in such anQCD models will be large,

especially since it enters the dimension-four term for r�
with an additional suppression factor a. Another, more
systematic, approach [62] would be to extract the value
of haG2

��i, in anQCD models presented here, by perform-

ing analyses similar to those of Refs. [57,58], involving
�-decay spectral functions and suppressing the OPE con-
tributions with dimension larger than four by employing
specific (finite energy) sum rules. One of the attractive
features of the anQCD models presented in this work is
that most of them give results very similar to each other
[for að0Þ, Mthr, r�, BjPSR—see Tables. II, III, and IV for
nonmodified, and V, VI, and VII for modified 	 functions]
when the fðYÞ function appearing in the 	 function has
various different forms, of the type P½1=0�, P½1=1�, or EE.
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APPENDIX A: IMPLICIT SOLUTIONS OF RGE
AND SINGULARITY STRUCTURE

It is evident that for an arbitrary choice of 	ðFÞ, even
when constrained by conditions (21)–(24), RGE Eq. (15)
cannot be solved analytically and one has to resort to
numerical methods. On the other hand, if one concentrates
on the question of which type of 	 function the resulting
coupling may have no Landau singularities, more general
statements can be derived by analytic methods as shown
below.

We suppose that the 	 function has the form Eq. (21) of
Sec. II. Wewill show that, if fðYÞ of Eq. (21) is any rational
function (Padé) of type P½M=N� (with real coefficients and
M � N � 1), with the Q2 ¼ 0 analyticity condition (24)
fulfilled, then there exists in the physical z stripe of FðzÞ of
Fig. 1 (� � � Imz < �) at least one pole zp of FðzÞ
[FðzpÞ ¼ 1] such that ImðzpÞ ¼ ��. The latter means

that this is a physically acceptable pole of aðQ2Þ for
Q2 < 0, i.e., not a Landau pole. The function fðYÞ being
a Padé of the type P½M=N�ðYÞ means

fðYÞ ¼ fð1=tÞ ¼ ð1� t1=tÞ � � � ð1� tM=tÞ
ð1� u1=tÞ � � � ð1� uN=tÞ ; (A1)

where the normalization conditionfð1Þ ¼ 1, a consequence
of the pQCD condition Eq. (23), is evidently fulfilled. The
fact that this Padé has real coefficients must be reflected in
the fact that the zeros tj are either real, or (some of them)

appear in complex conjugate pairs, the same being valid for
the poles uj. When using the form (A1) in the 	 function

(21) and the latter in the integral (27) of the implicit solution
of RGE, we end up with the following integral:

1

	0a0

Z a0=FðzÞ

a0=ain

dttM�Nþ1 ðt� u1Þ � � � ðt� uNÞ
ðt� t0Þðt� t1Þ � � � ðt� tMÞ ¼ z;

(A2)

where t0 ¼ 1 is the value coming from the first factor
(1� y) in the 	 function Eq. (21). When M � N � 1, the
integrand in Eq. (A2) can be split into a sum of simple
partial fractions 1=ðt� tjÞ

1

	0a0

Z a0=FðzÞ

a0=ain

dt

�
1þ XM

j¼0

Bj

1

ðt� tjÞ
	
¼ z; (A3)

where

Bj ¼
Nj

Dj

; (A4)

with

Nj¼ tM�Nþ1
j ðtj�u1Þ���ðtj�uNÞ ðj¼0;1; . . .MÞ; (A5)

Dj ¼ ðtj � t0Þ � � � ðtj � tj�1Þðtj � tjþ1Þ � � � ðtj � tMÞ
ðj ¼ 1; . . .MÞ; (A6)

D0 ¼ ðt0 � t1Þðt0 � t2Þ � � � ðt0 � tMÞ: (A7)

These formulas can be obtained by direct algebraicmanipu-
lations, or by using a symbolic software. Integration in
Eq. (A3) then gives the following implicit solution of the
RGE for F ¼ FðzÞ in the form z ¼ GðFÞ:

z ¼
�
1

	0

�
1

FðzÞ �
1

ain

�
þ 1

	0a0

XM
j¼0

Bj ln

�
a0=FðzÞ � tj
a0=ain � tj

�	
:

(A8)

Within the sumon the rhs of Eq. (A8), the termwith j ¼ 0 is
(using t0 ¼ 1)

1

	0a0
B0 ln

�
a0=FðzÞ � 1

a0=ain � 1

�
with

B0 ¼ ð1� u1Þ � � � ð1� uNÞ
ð1� t1Þ � � � ð1� tMÞ :

(A9)

Comparing B0 with fðYÞ in Eq. (A1) we realize that B0 ¼
1=fð1Þ. Consequently, the Q2 ¼ 0 analyticity condition
(24) yields B0 ¼ 	0a0 [where a0 � aðQ2 ¼ 0Þ].
Therefore, the total coefficient at the j ¼ 0 logarithm on
the rhs of Eq. (A8) is equal exactly to 1

1

	0a0
B0 ¼ 1: (A10)

On the other hand, this implies that the pole locations zp at

which FðzpÞ ¼ 1 are given by

zp ¼
�
� 1

	0ain
þ lnð�1Þ � ln

�
a0
ain

� 1

�

þ 1

	0a0

XM
j¼1

Bj ln

� �tj
a0=ain � tj

�	
: (A11)

Let us now investigatewhere these poles can be localized in
the z plane. In the cases considered here, we have 0< ain <
a0 [ � aðQ2 ¼ 0Þ], because otherwise (i.e., if 0< a0 < ain)
the resulting coupling would give significantly too low
values of low-energy QCD observables such as semiha-
dronic � decay ratio16 (r�) or BjPSR at low positive Q2’s.
Therefore, a0=ain > 1. In the following, we discuss several
scenarios for locations of poles zp:

(1) If, on the one hand, the roots tj are all real negative,

then in the sum over j’s (j � 1) on the rhs of
Eq. (A11) all logarithms ln½�tj=ða0=ain � tjÞ� are
unique and real, as are the coefficients Bj. Hence,

this sum is real. The only nonreal term on the rhs of
Eq. (A11) is lnð�1Þ ¼ �i�þ i2�n. Therefore,17

16It can be deduced from Appendix D, Eq. (D13) and Fig. 13,
that ~FrðtÞ< 1 and thus the leading-	0 contribution to r� is
rðLBÞ� < a0. On the other hand, ain � aðð3mcÞ2Þ< 0:075.
Hence, when 0< a0 < ain, we have rðLBÞ� < 0:075, significantly
too low to achieve r� 	 0:20.
17Note: �� � Imz < � is the physical considered stripe in the
complex z plane.
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Imzp ¼ ��. This means that in such a case there is

only one pole and this pole lies on the timelike
Q2 axis (Q2 < 0); hence, no Landau poles. One of
such cases is the one illustrated in Fig. 2(a), i.e., the
case of fðYÞ being P½1=0� (r2 ¼ 0; M ¼ 1, N ¼ 0)
with t1 	 �1:338.

(2) If, on the other hand, some of the roots tj appear as

complex conjugate pairs, the sum over j’s (j � 1)
on the rhs of Eq. (A11) can be real and the same
conclusion would apply. However, that sum can turn
out to be nonreal and we end up with Landau poles.
How can this occur? If, for example, tjþ1 ¼ tj , then
Eqs. (A4)–(A7) imply Bjþ1 ¼ B

j . However, the

corresponding logarithms for j and jþ 1 in the
sum of the rhs of Eq. (A11) are not necessarily
complex conjugate to each other, but can have a
modified relation due to nonuniqueness of loga-
rithms of complex arguments

ln

� �tj
a0=ain � tj

�
¼

�
ln

� �tjþ1

a0=ain � tjþ1

�� þ i2�nj:

(A12)

Here, integers nj can be nonzero, but their values

must be such that the requirement is fulfilled so that
zp is within the physical stripe: �� � Imzp <�.

Thus, in this case, we can get several poles, some of
them with��< Imzp <�, i.e., Landau poles. This

case is illustrated in the case of fðYÞ being cubic
polynomial (P½3=0�) in Figs. 12(a) and 12(b), for the
case of two different complex values of roots t1:
t1 ¼ 1þ i0:5 and t1 ¼ 1þ i0:4. Here, the root t2 is
then a complex conjugate of t1; and t3 is determined
by the pQCD condition (23) and turns out to be
negative. We can see that in the case t1 ¼ 1þ i0:5
there are no Landau poles, just a pole at

zp ¼ �11:6312� i�. The numerical test with the

use of dispersion relation (38) of Sec. II (cf. also
Table I) also confirms that aðQ2Þ � FðzÞ is analytic
in this case. However, in the case t1 ¼ 1þ i0:4
there are, besides the pole at zp ¼ �10:5023� i�,

Landau poles at z ¼ �6:323 36� i2:6005. This can
be understood in the following way. The expression
for the location of poles zp is given by Eq. (A11),

with the sum there over j ¼ 1, 2, 3. Usually soft-
wares such as MATHEMATICA give for logarithms
lnU of complex arguments U expressions with
imaginary part ��< ImðlnUÞ � �. In this case, if
only the term lnð�1Þ in Eq. (A11) gets replaced by
½lnð�1Þ � i2�� ¼ �i�, the resulting zp has Imzp ¼
�i�, in both cases t1 ¼ 1þ i0:5 and t1 ¼ 1þ i0:4.
Namely, zp ¼ �11:6312� i� and zp ¼
�10:5023� i�, respectively. However, if we, in
addition, replace ln½�t2=ða0=ain � t2Þ� by
ln½�t2=ða0=ain � t2Þ� þ i2�, we get in the case of
t1 ¼ 1þ i0:4 a pole location zp inside the physical

stripe �� � Imz < �: zp ¼ �6:323 36� i2:6005,

which is the location of one of the Landau poles
seen in Fig. 12(b); the other Landau pole is at zp �
6:323 36þ i2:6005.
In general, by adding to each of the logarithms of
complex arguments in Eq. (A11) multiples of i2�,
we end up with a set of possible pole locations zp.

Only those values which lie within the physical
stripe �� � Imz < � are candidates for the loca-
tion of (Landau) poles. However, in practice, only
some of them represent poles FðzpÞ ¼ 1, while

others may have finite values of FðzpÞ. This is so

because the RGE integration, for the physical stripe
of z’s, with a specific initial condition at z ¼ 0, will
not cover all the possibilities of these multiples.

FIG. 12 (color online). (a) j	ðFðzÞÞj as a function of z ¼ xþ iy for the beta function (21) with fðYÞ being cubic polynomial with
t1 ¼ 1þ i0:5 (t2 ¼ 1� i0:5, t3 ¼ �3:67591); (b) the same as in (a), but with t1 ¼ 1þ i0:4 (t2 ¼ 1� i0:4, t3 ¼ �3:989 69).
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(3) Yet another possibility is to have some roots tj real

positive. Since we have a0 � aðQ2 ¼ 0Þ by our
notation, the value a ¼ a0 is a root of the beta
function 	ðaÞ, and there are no other roots of 	ðaÞ
in the positive interval 0< a< a0 [note that	ð0Þ ¼
0 by asymptotic freedom]. Therefore, we are not
allowed to have tj > 1 since this would imply that

aj ¼ a0=tj < a0 is a root of 	ðaÞ; hence if tj is

positive it must lie in the interval 0< tj < 1. Such

tj’s then fulfill the relations ð0< tj < 1< a0=ainÞ
and hence give a nonreal value of the logarithm
lnð�tj=ða0=ain � tjÞÞ in Eq. (A11); the value of Bj

is real. Therefore, in such a case we generally obtain
Imzp � ��, i.e., we generally obtain a Landau

pole.
(4) We may obtain Landau poles, or Landau singular-

ities, in several other cases, e.g., when some of the
poles uk of the beta function are larger than unity.
However, a systematic (semi-)analytic analysis of
these problems appears to be too difficult here. We
just mention, as an aside, that the appearance of
Landau singularities [e.g., finite discontinuities of
FðzÞ] usually implies the appearance of Landau
poles [infinities of FðzÞ].

WhenM � N � 2, the implicit solution of the type (A8)
obtains additional terms on the rhs: lnðFðzÞÞ, FðzÞ; . . . ,
FðzÞN�M�2 (if M � N � 3) [if M ¼ N � 2: only lnFðzÞ].
In this case the poles jFðzpÞj ¼ 1 are reached at zp ¼ �1,

i.e., Q2 ¼ 0. This implies that in such cases the condition
aðQ2 ¼ 0Þ � a0 <1 cannot be fulfilled.

APPENDIX B: MASSLESS PART OF THE
STRANGELESS TAU DECAY RATIO

At present, the most precisely measured low-energy
observable referring to an inclusive process is the ratio
R�ð�S ¼ 0Þ, which is proportional to the branching ratio
of � decays into nonstrange hadrons. Consequently, it plays
a central role for testing the validity of our anQCD
approach. However, for a careful comparison of the avail-
able experimental result with our theoretical prediction it is
essential to extract from the quantity R�ð�S ¼ 0Þ the pure
massless QCD-canonic part r� � r�ð�S ¼ 0; mq ¼ 0Þ.
This analysis has already been presented in Appendix E
of Ref. [14]. Here we redo it, but with updated experimen-
tal values of R�ð�S ¼ 0Þ, of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element jVudj and of higher-twist
contributions. The strangeless (Vþ A)-decay ratio ex-
tracted from measurements by the ALEPH Collaboration
[54,55] and updated in Ref. [56] is

R�ð4S ¼ 0Þ � �ð�� ! ��hadronsð�ÞÞ
�ð�� ! ��e

� ��eð�ÞÞ � R�ð4S � 0Þ
(B1)

¼ 3:479� 0:011: (B2)

The canonic massless quantity r�ð4S ¼ 0; mq ¼ 0Þ is ob-
tained from the above quantity by removing the non-QCD
[CKM and electroweak (EW)] factors and contributions, as
well as chirality-violating (quark mass) contributions

r�ð4S ¼ 0; mq ¼ 0Þ

¼ R�ð4S ¼ 0Þ
3jVudj2ð1þ �EWÞ

� ð1þ �0
EWÞ

� �r�ð4S ¼ 0; mu;d � 0Þ: (B3)

This quantity is massless QCD canonic, i.e., its pQCD
expansion is r�ð4S ¼ 0; mq ¼ 0Þpt ¼ aþOða2Þ. The up-
dated value of the CKM matrix element jVudj is [39]

jVudj ¼ 0:974 18� 0:000 27: (B4)

The EW correction parameters are 1þ �EW ¼ 1:0198�
0:0006 [54,55] and �0

EW ¼ 0:0010 [63]. The (Vþ A)-
channel corrections �r�ð4S ¼ 0; mu;d � 0Þ due to the

nonzero quark masses are [50,55] the sum of corrections

ð�ðDÞ
ud;V þ �ðDÞ

ud;AÞ=2 with dimensions D ¼ 2, 4, 6, and 8. It

appears that, among the chirality-nonviolating D � 2
contributions, the only possibly non-negligible [57] is the
D ¼ 4 contribution �hGGi ¼ ð11=4Þ�2

sðm2
�ÞhaGGi=m4

�

from gluon condensate. The authors of Ref. [56] obtained
from their fit the gluon condensate value haGGi ¼
ð�1:5� 0:3Þ 
 10�2 GeV4, giving thus �hGGi 	
�5
 10�4; their entire value of higher dimension contri-
butions (2 � D � 8) to r�ð4S ¼ 0; mu;d � 0Þ is ð�6:3�
1:4Þ 
 10�3. On the other hand, the value of the gluon
condensate may be compatible with zero; e.g., the �-decay
analysis of Ref. [57] based on sum rules gives haGGi ¼
ð0:005� 0:004Þ GeV4 which is almost compatible with
zero. In our analysis we assume that this is the case, i.e.,
zero value of the gluon condensate. With this assumption,
the higher dimension contributions to r�ð4S ¼ 0; mu;d �
0Þ are only the chirality-violating (i.e., due to nonzero
quark mass) terms, their value being thus

�r�ð4S ¼ 0; mu;d � 0Þ ¼ ð�5:8� 1:4Þ 
 10�3: (B5)

Using the aforementioned results in Eq. (B3) leads to

r�ð4S ¼ 0; mq ¼ 0Þexp ¼ 0:203� 0:004; (B6)

where the experimental uncertainties were added in quad-
rature. The uncertainty here is dominated by the experi-
mental uncertainty �R� ¼ �0:011, Eq. (B2). The central
value (B6) would increase to 0.204 if the gluon condensate
value haGGi ¼ ð�1:5� 0:3Þ 
 10�2 GeV4 of Ref. [56]
was taken. The central value 0.203 of Eq. (B6) is also
obtained by using the analysis and results of Ref. [57],
but with the updated values R�ð4S ¼ 0Þ of Eq. (B2) and
jVudj of Eq. (B4).
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APPENDIX C: HIGHER ORDER
TERMS IN ANALYTIC QCD

Here we summarize the general approach to calculate
higher order corrections in anQCD models, as described
first in our earlier works [13,14]. In order not to confuse the
general analytic coupling aðQ2Þ with pQCD coupling
aptðQ2Þ, we will use in this Appendix the notation

A1ðQ2Þ for the analytic coupling.
First we note that the analytic couplingA1ðQ2Þ does not

fulfill the ITEP-OPE conditions (5) in any of the anQCD
models that have appeared in the literature up to now.18

Nonfulfillment of ITEP-OPE conditions implies that the
respective beta function 	ðA1Þ � @A1ðQ2Þ=@ lnQ2 is
not analytic in A1 (cf. arguments in Sec. II).
Consequently, in these models the beta function, which is
usually not known explicitly, cannot be Taylor expanded
around A1 ¼ 0, and therefore the powers An

1 cannot be
expected to be the analytized analogs of anpt. In fact, they

usually are not. The construction of AnðQ2Þ, the analytic
analogs of aptðQ2Þn (n � 2), is yet another important in-

gredient in anQCD.
A spacelike massless observableDðQ2Þ, in its canonical

form, has the following perturbation series:

D ðQ2Þpt ¼ apt þ d1a
2
pt þ d2a

3
pt þ � � � ; (C1)

and the corresponding truncated perturbation series (TPS)
is

D ðQ2Þ½N�
pt ¼ apt þ d1a

2
pt þ � � �dN�1a

N
pt: (C2)

Here, apt and dj’s have given RScl RSch dependences.

Analytization means, in the first instance, to replace in
the first term apt by A1ðQ2Þ. For treating the higher order

terms, there are, in principle, several options at hand. For
instance, one could replace all powers of apt by the corre-

sponding powers of A1 (anpt � An
1). Or, as is done in

MA, one could subject each anpt to an analogous analytiza-

tion procedure as A1 (if such an analogous procedure
unambiguously exists), yielding additional analytic cou-
plings anpt � An, where, in general, An � An

1 . In MA

such a prescription unambiguously exists. The advantage
of such a prescription in MA lies in the fact that the RGEs

governing the running of AðMAÞ
n ’s, as well as the RSch

dependence ofAðMAÞ
n ’s, are identical to the corresponding

pQCD RGEs and RSch dependence once the replacements

anpt � AðMAÞ
n are performed there [64]. We consider this

property as physically important, especially because there

is a clear hierarchyAðMAÞ
1 > jAðMAÞ

2 j> jAðMAÞ
3 j � � � at all

positive Q2 values. Among other things, this hierarchy
implies that the MA-analytized version of the TPS
Eq. (C2)

D ðQ2Þ½N�
ðMAÞ ¼ AðMAÞ

1 þ d1A
ðMAÞ
2 þ � � � dN�1A

ðMAÞ
N ;

(C3)

becomes systematically more RScl and RSch independent
when the truncation index N increases

@DðQ2; RSÞ½N�
ðMAÞ

@ðRSÞ
¼ kNA

ðMAÞ
Nþ1 þOðAðMAÞ

Nþ2 Þ: (C4)

Here, ‘‘RS’’ stands for logarithm ln�2 of RScl �, or for
any RSch parameter cj ¼ 	j=	0 (j � 2).

However, when constructing anQCD models beyond
MA, by changing the discontinuity function �1ð�Þ ¼
Imaptð��� i�Þ appearing in the dispersion relation (6)

forAðMAÞ
1 ðQ2Þ [11,13,14], or by different constructions of

A1ðQ2Þ (cf. [7–10,12] and references therein), the mean-
ing of ‘‘analogous analytization’’ of higher powers anpt
becomes unclear or, at best, ambiguous. On the other
hand, it is almost imperative to maintain relations (C4) in
any anQCD model with hierarchy A1 > jA2j>
jA3j � � � , because then the physical condition of RScl
and RSch independence of the evaluated observables is
guaranteed to be increasingly well fulfilled at anyQ2 when
the number of terms increases.
Furthermore, it is preferable to have the higher power

analogs anpt � An not simply constructed as An �
ðA1Þn, but rather by application of linear (in A1) opera-
tions on A1, such as, e.g., derivatives and linear combi-
nations thereof. The underlying reason is the compatibility
with linear integral transformations (such as Fourier and
Laplace) [65]. In linear transformations, the image of a
power of a function is not the power of the image of the
function.19

The construction of higher order analogs An (appli-
cable to any anQCD model) which obey all these condi-
tions was first presented in Refs. [13,14]. The procedure
proposed there for obtaining An from a given anQCD
coupling A1, in a given RSch, is the following: First we
define the logarithmic derivatives ofA1ð�2Þ (where�2 ¼

Q2 is any chosen RScl), i.e., we define

~A nþ1ð�2Þð� ~anþ1ð�2ÞÞ ¼ ð�1Þn
	n

0n!

@nA1ð�2Þ
@ðln�2Þn

ðn ¼ 1; 2; . . .Þ:
(C5)

In order to understand the following construction of An ’s
given below, it is convenient to consider first the corre-
sponding logarithmic derivatives in pQCD

18Except for Ref. [31], where some of the main results of the
present work have already been summarized, and Ref. [24],
where a direct construction of an analytic coupling A1 with
several parameters was performed (cf. footnote 15 in this work).
The anQCD model of Ref. [12] fulfills this condition
approximately.

19Such a construction of AnðQ2Þ, as a linear operation applied
on A1ðQ2Þ, was presented in anQCD in Refs. [13,14,20].
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~a pt;nþ1ð�2Þ � ð�1Þn
	n

0n!

@naptð�2Þ
@ðln�2Þn ðn ¼ 1; 2; . . .Þ:

(C6)

These20 are related to the powers anpt via relations involving

the cj coefficients of the pQCD RGE Eq. (4)

~a pt;2 ¼ a2pt þ c1a
3
pt þ c2a

4
pt þ � � � ; (C7)

~a pt;3 ¼ a3pt þ 5
2c1a

4
pt þ � � � ; (C8)

~a pt;4 ¼ a4pt þ � � � ; etc: (C9)

The above relations are obtained by (repeatedly) applying
the pQCD RGE. The inverse relations are

a2pt ¼ ~apt;2 � c1~apt;3 þ ð52c21 � c2Þ~apt;4 þ � � � ; (C10)

a3pt ¼ ~apt;3 � 5
2c1~apt;4 þ � � � ; (C11)

a4pt ¼ ~apt;4 þ � � � ; etc: (C12)

Now we adopt the following replacement on the rhs of
Eqs. (C10)–(C12):

apt � A1; ~apt;nþ1 � ~Anþ1 ðn ¼ 1; 2; . . .Þ;
(C13)

and use the generated expressions as definitions ofAn, the
higher power analogs of pQCD powers anpt

A 2 ¼ ~A2 � c1
~A3 þ ð52c21 � c2Þ ~A4 þ � � � ; (C14)

A 3 ¼ ~A3 � 5
2c1

~A4 þ � � � ; (C15)

A 4 ¼ ~A4 þ � � � ; etc: (C16)

It is then straightforward to see that the analytic (‘‘an’’)
series obtained from the perturbation series (C1) via re-
placements apt � A1, a

n
pt � An

D ðQ2Þan ¼ A1 þ d1A2 þ d2A3 þ � � � ; (C17)

gives the corresponding truncated analytic series

D ðQ2Þ½N�
an ¼ A1 þ d1A2 þ � � �dN�1AN; (C18)

which really fulfills the condition (C4) of increasingly
good RS independence, now in any anQCD model

@DðQ2; RSÞ½N�
an

@ðRSÞ ¼ kNANþ1 þOðANþ2Þ

ðRS ¼ ln�2; c2; c3; . . .Þ:
(C19)

This relation continues to hold even if we truncate relations
(C14)–(C16) at the order �AN (including the latter).
The above presentation suggests that, instead of the

perturbation series (C1) in powers of apt, a modified per-

turbation series in logarithmic derivatives ~apt;nþ1 (C6) can

be used

D ðQ2Þmpt ¼ apt þ ~d1~apt;2 þ ~d2~apt;3 þ � � � ; (C20)

whose truncated form is

D ðQ2Þ½N�
mpt ¼ apt þ ~d1~apt;2 þ � � � ~dN�1~apt;N; (C21)

where ‘‘m’’ in the subscript stands for ‘‘modified,’’ and the

modified coefficients ~dj (j ¼ 1; . . . ; N � 1) are related to

the original coefficients dj

~d 1 ¼ d1; (C22)

~d 2 ¼ d2 � c1d1; (C23)

~d 3 ¼ d3 � 5

2
c1d2 þ

�
5

2
c21 � c2

�
d1; etc: (C24)

When applying analytization to the modified perturbation
series (C20), via replacements (C13), we obtain a modified
analytic series (‘‘man’’)

D ðQ2Þman ¼ A1 þ ~d1
~A2 þ ~d2

~A3 þ � � � ; (C25)

whose truncated version is

D ðQ2Þ½N�
man ¼ A1 þ ~d1

~A2 þ � � � ~dN�1
~AN: (C26)

Its RS dependence is

@DðQ2; RSÞ½N�
man

@ðRSÞ ¼ ~kN
~ANþ1 þOð ~ANþ2Þ ð�ANþ1Þ

ðRS ¼ ln�2; c2; c3; . . .Þ: (C27)

It is interesting that in virtually all anQCD models [i.e.,

models that define A1ðQ2Þ] holds the hierarchy A1 >

j ~A2j> j ~A3j> � � � at (almost) all complex Q2.
Therefore, Eq. (C27) signals an increasingly weak RS

dependence of DðQ2Þ½N�
man when N increases, at any value

of Q2 and RScl �2.
We stress that the analytic (‘‘an’’) and modified analytic

(‘‘man’’) series [Eqs. (C17) and (C25), respectively], if
they converge, are identical to each other due to relations
(C22)–(C24) and (C14)–(C16).

In the specific case of MA, i.e., when A1 ¼ AðMAÞ
1 of

Ref. [4], it can be shown (using the results of Ref. [64]) that

20An expansion of the Adler function in terms of ~apt;nþ1ð�2Þ is
used in Ref. [66] for an evaluation of r� in the context of pQCD;
this ‘‘modified’’ contour improved perturbation theory (mCIPT)
was shown there to have advantages over the standard (CIPT)
approach, most notably a lower RScl dependence of the result.
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the above procedure, Eqs. (C14)–(C16), gives the same

higher power analogs AðMAÞ
n as the analytization proce-

dure of Ref. [5] (APT) that uses the MA-type dispersion
relation involving ImanptðQ2 ¼ ��� i�Þ

A ðMAÞ
n ðQ2Þ ¼ 1

�

Z 1

0
d�

�
ðptÞ
n ð�Þ

�þQ2
; (C28)

where �
ðptÞ
n ð�Þ ¼ Imanptð��� i�Þ (n ¼ 2; . . . ). We note

that AðMAÞ
n � ðAðMAÞ

1 Þn. Furthermore, construction of

An according to relations (C14)–(C16) in other models
of anQCD (e.g., where A1 is constructed from a modified

�1 � �
ðptÞ
1 , e.g. Refs. [11,13,14]) also in general leads to

An � An
1 . However, if analytic A1ðQ2Þ � aðQ2Þ is con-

structed from RGE with beta function 	ðaÞ analytic at a ¼
0, as is the case in the present work and Ref. [31], it is
straightforward to see that construction (C14)–(C16) gives

A n ¼ an ðn ¼ 1; 2; . . .Þ: (C29)

In those anQCD models of analytic A1ðQ2Þ where the
aforedescribed construction gives An � An

1 for n � 2
(such models do not appear in the present work), using
An

1 instead of An is not a good idea for at least two
reasons: (1) such a construction is formally not linear in
A1 [see the discussion before Eq. (C5)]; (2) the RS
dependence of the resulting truncated ‘‘power’’ analytic
series

D panðQ2Þ½N� ¼ A1 þ d1A2
1 þ � � �dN�1AN

1 (C30)

is not entirely analogous to Eq. (C19) or Eq. (C27), but is
rather

@DðQ2; RSÞ½N�
pan

@ðRSÞ ¼ kNANþ1
1 þOðANþ2

1 Þ þ NPðNÞ;

(C31)

where NPðNÞ is an increasingly complicated expression of

nonperturbative terms (such as 1=Q2n) when N increases,
and jNPðNÞj in general does not decrease whenN increases.

APPENDIX D: LEADING-�0 (SKELETON-
MOTIVATED) RESUMMATION IN ANQCD

First we summarize here the resummation formalism for
the LB part of inclusive spacelike QCD observables in
anQCD models, as presented in [13,14]. Subsequently,
we present application of this formalism to LB resumma-
tion for the BjPSR dBjðQ2Þ and, in a newly modified form,

to the � decay ratio r�.
Massless spacelike QCD observablesDðQ2Þ, in canoni-

cal form, have the pQCD (‘‘pt’’) expansion (C1) in powers
of apt, where apt ¼ aptð�2; c2; . . .Þ is defined at a given

RScl � and in a given RSch (c2; c3; . . . ). In the scaling

definition of � we use the convention � ¼ ��, which is the

MS reference scale for RScl’s � [the so-called V scheme

�V is related to �� via ��2 ¼ �2
V expð �CÞ, where �C ¼ �5=3].

The considered RSch classes will be such that the RSch
coefficients 	k � 	0ck (k � 2) are polynomials in nf, and

consequently in 	0 ¼ ð11� 2nf=3Þ=4

	k � 	0ck ¼
Xk
j¼0

bkj	
j
0 ðk ¼ 2; 3; . . .Þ: (D1)

We recall that 	0 ¼ ð11� 2nf=3Þ=4 and 	1 ¼
ð102� 38nf=3Þ=16 are both universal (RSch-independent)
parameters. RSch’s MS and ’t Hooft are clearly special
cases of such RSch’s. The RSch independence of DðQ2Þ
implies a specific dependence of coefficients dn on the
RSch parameters [44]; this and relations (D1) imply that
the coefficients dn have specific expansions in powers
of 	0

d1 ¼ cð1Þ11	0 þ cð1Þ10 ; dn ¼
Xn

k¼�1

cð1Þnk	
k
0: (D2)

We note that cð1Þ1;�1 ¼ 0. In MS RSch, the negative power

term / 1=	0 does not appear. Relations (C22)–(C24) and
(D2) imply that the modified perturbation (‘‘mpt’’) expan-
sion (C20) of DðQ2Þ in logarithmic derivatives ~apt;nþ1 of

Eq. (C6) have coefficients ~dn of a form similar to (D2)

~d n ¼
Xn

k¼�1

~cð1Þnk	
k
0: (D3)

Specifically, the leading-	0 terms in Eqs. (D2) and (D3)
coincide21

~c ð1Þ
nn ¼ cð1Þnn: (D4)

The LB resummation of the inclusive spacelike DðQ2Þ is
obtained in pQCD via integration of aptð�2Þ over various
scales �2 ¼ tQ2 expð �CÞ and weighted with a characteristic
function FE

DðtÞ according22 to formalism of Ref. [67]

D ðLBÞ
pt ðQ2Þ �

Z 1

0

dt

t
FE
DðtÞaptðtQ2e

�CÞ: (D5)

The integration cannot be performed unambiguously, due
to the Landau poles of apt at low values of t. In anQCD apt
here is simply replaced by analytic A1 ( � a)

D ðLBÞ
an ðQ2Þ �

Z 1

0

dt

t
FE
DðtÞA1ðtQ2e

�CÞ; (D6)

where now the integration is unambiguous since there are
no Landau poles. Expansion of the analytic coupling

A1ðtQ2e
�CÞ around the RScl scale �2, i.e., Taylor expan-

sion in powers of L ¼ ln½�2=ðtQ2e
�CÞ�, gives

21Note that 	1 ¼ b10 þ b11	0 (with b10 ¼ �107=16
and b11 ¼ 19=4); therefore, c1 � 	1=	0 is�	0

0 in the LB limit.
22The superscript E indicates here that the observable is
Euclidean, i.e., spacelike.
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D ðLBÞ
an ðQ2Þ ¼ A1 þ

X1
n¼1

cð1Þnn	n
0
~Anþ1: (D7)

We thus see that integral (D6), in anQCD, represents exactly
the LB part of the modified analytic (‘‘man’’) expansion
(C25) in Appendix C. The truncated series of the latter is
given in Eq. (C26). We stress that the above expansion is
performed at a given RScl � and in a given RSch
[c2; c3; . . .—cf. Eq. (D1)]. In anQCD it is convenient to
perform explicitly the LB resummation (D6) since the in-
tegral there is finite, unambiguous, and RScl independent.

The characteristic function FE
DðtÞ for BjPSR DðQ2Þ ¼

dBjðQ2Þ was calculated and used in Ref. [13] (on the basis

of the known [68] coefficients cð1Þnn for it), and was pre-
sented in Ref. [14]

FBjðtÞ ¼

8>>><
>>>:

8
9 t

�
1� 5

8 t

�
t � 1

4
9t

�
1� 1

4t

�
t � 1

9>>>=
>>>;
: (D8)

The (nonstrange massless) canonical23 semihadronic �
decay ratio r� � r�ð�S ¼ 0; mq ¼ 0Þ is a timelike

quantity, and can be expressed in terms of the massless
current-current correlation function (V-V or A-A, both
equal since massless) [69]

r� ¼ 2

�

Z m2
�

0

ds

m2
�

�
1� s

m2
�

�
2
�
1þ 2

s

m2
�

�
Im�ðQ2 ¼ �sÞ:

(D9)

Use of the Cauchy theorem in the Q2 plane and then
integration by parts leads to the following contour integral
form [50,59]:

r� ¼ 1

2�

Z þ�

��
dð1þ eiÞ3ð1� eiÞdAdlðQ2 ¼ m2

�e
iÞ;

(D10)

with dAdlðQ2Þ ¼ �d�ðQ2Þ=d lnQ2 being the massless
Adler function. In pQCD, use of the Cauchy theorem to
the expression (D9) is formally not allowed. This is so
because �ptðQ2Þ, being a power series in aptðQ2Þ [or

aptð
Q2Þ], has Landau singularities along the positive

axis 0<Q2 � �2. In pQCD, expressions (D9) and
(D10) are two different quantities; in anQCD models
they are always the same.

The massless Adler function dAdlðQ2Þ is a spacelike
(quasi)observable. On the basis of the known coefficients

cð1Þnn for it [70,71], its characteristic function FAdlð�Þ was
obtained in Ref. [67], and from it and using relation (D10)
the characteristic function for r� was obtained in Ref. [72],
in the timelike LB form

r�ð�S¼0;mq¼0ÞðLBÞ ¼
Z 1

0

dt

t
FM
r ðtÞA1ðteCm2

�Þ: (D11)

Here, the superscript M indicates that these are
Minkowskian (timelike) quantities;A1 is the timelike cou-
pling

A 1ðsÞ ¼ 1

�

Z 1

s

d�

�
�1ð�Þ; (D12)

and the characteristic function FM
r ðtÞ was obtained in

[72].24

It turns out that, in the calculations in the present work, it
is inconvenient to calculate the LB contribution to r� by
using formula (D11) which involves function A1ðsÞ. This
inconvenience consists in the following: in this work, RGE
(15) [ , Eqs. (16) and (17)] is integrated in the entire
physical stripe in the complex z plane, and as a result of
this we numerically obtain, among other things, the quan-
tity �1ð�Þ ¼ ImaðQ2 ¼ ��� i�Þ ¼ ImFðz ¼ jzj � i�Þ
[with jzj ¼ lnð�=�2

inÞ]; to obtain the quantity A1ðsÞ, yet
another numerical integration (D12) is needed, and then we
go with thisA1ðsÞ into the integration (D11). There are too
many successive numerical integrations involved, and the
precision of calculation is expected to be low.
Therefore, we perform in integral (D11) integration

by parts, using relation dA1ðsÞ=d lns ¼ ��1ðsÞ=�
[cf. Eq. (D12)], and we obtain the expression of rðLBÞ�

in terms of the discontinuity function �1ðsÞ:

rðLBÞ� ¼ 1

�

Z 1

0

dt

t
~FrðtÞ�1ðte �Cm2

�Þ; (D13)

where

~F rðtÞ ¼
Z t

0

dt0

t0
FM
r ðt0Þ: (D14)

Integration in (D14) can be performed analytically, and
the result for ~FrðtÞ is (CF ¼ 4=3):

~FrðtÞ=ð4CFÞ
¼ � 1

12
Li2ð�tÞðt4 þ 6t3 þ 18t2 þ 10t� 12t lnðtÞ � 3Þ

� 2tLi3ð�tÞ þ 1

1728
f�72 lnðtÞ½tð�2t2 � 47tþ 6Þ

þ 2ðt4 þ 6t3 þ 18t2 þ 10t� 3Þ lnðtþ 1Þ� � 259t4

� 600t3 � 6948t2 � 5184t�ð3Þ þ 7344t

þ 72ðtþ 6Þt3ln2ðtÞg ðt � 1Þ; (D15)

23Canonical form, in the sense that its pQCD expansion is r� ¼
apt þOða2ptÞ.

24In fact, the quantity W� of Ref. [72] is related to FM
r here via

FM
r ðtÞ ¼ ðt=4ÞW�ðtÞ. Full expression for FM

r ðtÞ is given in
Eqs. (C10) and (C11) of Ref. [14]; however, a typo appears in
the last line of Eq. (11) there: in a parenthesis there, the termþ3
should be written as 3t2; the correct expression was used in
calculations in Refs. [13,14].
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~FrðtÞ=ð4CFÞ ¼ 1

432

�
�36tðt3 þ 6t2 þ 18t� 2ÞLi2

�
� 1

t

�
� 108Li2ð�tÞ þ 864tLi3

�
� 1

t

�
þ 432tLi2

�
� 1

t

�
ðlnðtÞ � 1Þ

� 9½ðt2 þ 8tþ 36Þt2 þ 96� lnðtþ 1Þ � t½9tð4tþ 23Þ þ 598� � 18½2tðt3 þ 6t2 þ 18tþ 22Þ � 3�ln2ðtÞ
þ 3½ð3t4 þ 12t3 þ 42t2 � 184tþ 111Þ þ 12ðt2 þ 4tþ 9Þðtþ 1Þ2 lnðtþ 1Þ� lnðtÞ
þ 9tðt3 þ 8t2 þ 36t� 96Þ ln

�
1

t
þ 1

�
þ 432ðlnðtÞ � 2Þ½t lnðtÞ � ðtþ 1Þ lnðtþ 1Þ�

þ 648�ð3Þ � 114�2 þ 841

	
� 3�ð3Þ

2
þ 2�2

9
� 463

1728
ðt � 1Þ: (D16)

The function ~FrðtÞ is continuous and monotonously in-
creases when t increases. Its value is zero at t ¼ 0, and
one at t ¼ þ1. It is depicted in Figs. 13 as a function of t
and lnt.

APPENDIX E: INCLUSION OF BEYOND-THE-
LEADING-�0 TERMS IN ANQCD

In pQCD, perturbation expansion of any massless space-
like observable DðQ2Þ can be written in the form (C1) or
(C20). In the considered (large) RSch classes (D1), the

coefficients dn and ~dn can be written in the form (D2) and
(D3), respectively. Leading-	0 resummation (D6) repro-
duces one part of these terms, Eq. (D7). In practice, for
inclusive spacelike observables only the leading-	0 parts

cð1Þnn	n
0 of coefficients dn and

~dn are known for all n [cf. also

Eq. (D4)], while the coefficients known in their entirety are

only the first two or three: d1, d2, and d3 [ , ~d1, ~d2, ~d3,
cf. Eqs. (C22)–(C24)]. For this reason, the most that one
can include in the evaluation of any such observable in
anQCD are all the LB contributions, Eq. (D7), and the bLB
terms of order a2, a3, and a4 ( , of order ~a2, ~a3, ~a4].

In practice, the coefficients d1, d2, d3, and cð1Þnn	n
0 are

calculated and given in the literature in the MS RSch

[c2ðMSÞ, c3ðMSÞ; . . . ] and with25 RScl �2 ¼ Q2; we will

denote such quantities with the bar over them. In general,
the evaluations are performed in another RSch (c2; c3; . . . )
(e.g., in the present work the RSch as dictated by the
chosen 	 function used), and another RScl

�2 ¼ Q2 expðCÞ ðC� 1Þ: (E1)

The LB contribution (D6) is RScl independent; however, it
depends on the RSch. The truncated bLB contribution still
has some remnant RScl dependence due to truncation, and
is RSch dependent.

The dependence of the coefficients ~dj on RScl and RSch

can be deduced systematically, by the requirement of RScl
and RSch independence of the observableD and using the
known RScl and RSch dependence of the pQCD coupling

aptðC; c2; c3; . . .Þ [44]. The resulting dependence of ~dj is

~d 1 ¼ �~d1 þ 	0C ð¼ d1Þ; (E2)

~d 2 ¼ �~d2 þ ½2	0C
�~d1 þ 	2

0C
2� � ðc2 � �c2Þ; (E3)

~d3¼ �~d3þ½3	0C
�~d2þ3	2

0C
2 �~d1þ	3

0C
3�

þ½�3ð �~d1þ	0CÞþ 5
2c1�ðc2� �c2Þ� 1

2ðc3� �c3Þ; (E4)

etc. On the other hand, the RScl independence of LB
contribution (D6) and (D7) implies for the LB coefficients
(D4) the following RScl dependence (they are RSch
independent)

FIG. 13. Characteristic function ~FrðtÞ which appears in the LB integral (D13) of r�: (a) as a function of t; (b) as a function of lnt.

25Sometimes, cð1Þnn’s are calculated and given in the literature at
RScl �2 ¼ Q2 expð �CÞ ¼ Q2 expð�5=3Þ.

RECONCILING THE ANALYTIC QCD WITH THE ITEP . . . PHYSICAL REVIEW D 82, 114004 (2010)

114004-25



cð1Þnn ¼ Xn
k¼0

n
k

� �
�cð1Þkk C

n�k; (E5)

where �cð1Þ00 ¼ 1 by definition. When we subtract from the

‘‘man’’ series (C25) the LB contribution (D7), we obtain
the bLB contribution separately

D ðLBþbLBÞ
man ðQ2Þ ¼ DðLBÞ

an ðQ2Þ þDðbLBÞ
man ðQ2Þ

¼
Z 1

0

dt

t
FE
DðtÞA1ðtQ2e

�CÞ

þ X1
n¼1

ðTDÞn ~Anþ1; (E6)

where �C ¼ �5=3 as mentioned earlier in Appendix D,
~Anþ1 are in RSch (c2; c3; . . . ) and at RScl �2 ¼
Q2 expðCÞ, and the coefficients ðTDÞn are

ðTDÞn ¼ ~dn � cð1Þnn	n
0 ; (E7)

where ~dn and cð1Þnn are related with the corresponding (bar)

quantities in MS RSch and RScl �2 ¼ Q2 via relations
(E2)–(E5). This, and application of relations (C22)–(C24)

in MS RSch and RScl �2 ¼ Q2, allows us to obtain the
first three coefficients ðTDÞn by knowing the first three

coefficients �dn (n ¼ 1, 2, 3) (all �cð1Þkk are known).

Another variant of evaluation of D in anQCD is not to
perform the LB resummation (D6) in (E6), but rather use
its expanded form (D7). This leads to

D manðQ2Þ ¼ A1 þ
X1
n¼1

~dn
~Anþ1; (E8)

where a � A1 � A1ðQ2 expðCÞ; c2; . . .Þ. Series (E8) was
obtained in Appendix C in Eq. (C25).

In principle, both series (E6) and (E8) must lead to the
same result if the series are convergent. However, in prac-
tice, only the first three terms in the sums there (n ¼ 1, 2,
3) are known. Hence the series (E6) and (E8) truncated at
n ¼ 3

D ðLBþbLBÞ
man ðQ2Þ½4� ¼

Z 1

0

dt

t
FE
DðtÞA1ðtQ2e

�CÞ

þ X3
n¼1

ðTDÞn ~Anþ1; (E9)

D manðQ2Þ½4� ¼ A1 þ
X3
n¼1

~dn
~Anþ1; (E10)

will give in general somewhat different results, the differ-

ence being � ~A5ð�A5Þ. In theory, the LB-resummed
truncated version (E9) is better since it includes more
contributions than the simple truncated version (E10).
Which of the two is better in practice, in the case of a
specific considered inclusive observable DðQ2Þ, can be
decided numerically, e.g., by establishing which of the

two truncated series has weaker variation under the varia-
tion of the RScl ( , under the variation of C). If DðQ2Þ is
not an inclusive observable (e.g., jet observables, etc.), LB
resummation cannot be performed since FE

DðtÞ does not

exist, and only the expression (E10) is applicable in such a
case.
The bLB part of expression (E6), and the sum over

~Anþ1 in Eq. (E8), can be reorganized into sums over
Anþ1’s as defined in Eqs. (C14)–(C16) [Anþ1 ¼ anþ1

in our paper since 	ðaÞ is analytic in a ¼ 0, Eq. (C29)]. In
such a case, the truncated analytic expressions analogous
to (E9) and (E10) are

D ðLBþbLBÞ
an ðQ2Þ½4� ¼

Z 1

0

dt

t
FE
DðtÞA1ðtQ2e

�CÞ

þ X3
n¼1

ðtDÞnAnþ1; (E11)

D anðQ2Þ½4� ¼ A1 þ
X3
n¼1

dnAnþ1: (E12)

The truncated series (E12) was obtained in Appendix C in
Eq. (C18). Again, theoretically, the truncated expansion
(E11) is better than (E12). All the truncated expansions

(E9)–(E12) differ from each other by � ~A5 �A5. Our
numerically preferred version of evaluation will be the
truncated expansion (E9).
Expressions for bLB coefficients ðTDÞn (n ¼ 1, 2, 3),

appearing in Eqs. (E7) and (E9), are obtained from the
(usually known) coefficients �dj (j ¼ 1, 2, 3) via successive

use of Eqs. (C22)–(C24) [ �dj �
�~dj]; Eqs. (E2)–(E4) [

�~dj �
~dj]; Eq. (E5) [ �c

ð1Þ
jj � cð1Þjj ]; and Eq. (E7).

It turns out that these coefficients are equal to the
coefficients ~tnþ1 as derived in Appendix A of Ref. [14],
~tnþ1 ¼ ðTDÞn, as it should be.26 The bLB coefficients ðtDÞn
(n ¼ 1, 2, 3) appearing in Eq. (E11), on the other hand,

turn out to be equal to expressions tnþ1 ¼ tð2Þnþ1 þ � � � tðnþ1Þ
nþ1

of Appendix A of Ref. [14] when the RScl parameters Ck
there are all set equal to C.

26In Eq. (A18) for ~t4 ¼ ðTDÞ3 of Ref. [14] there is a typo: in the
first line the last term should be ��b213ð �cð1Þ11 þ CÞ instead of
��b213 �c

ð1Þ
11 . The correct formula was used in the calculations

there; Eqs. (89)–(92) in Ref. [14], which follow from Eq. (A18)
there, are correct. In terms of the quantities of Ref. [14],
Eq. (A18) there (without the typo) can be rewritten in the form:

~t4 ¼ ðTDÞ3
¼ �~t4 � ð1=2Þðc3 � �c3Þ � ðc2 � �c2Þ


 ½3�cð1Þ10 þ 3ð �cð1Þ11 þ CÞ	0 � ð5=2Þc1� þ 3C	0
�~t3 þ 3C2	2

0 �c
ð1Þ
10 :

(E13)
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In our evaluations of BjPSR and r�, we will use �dn (n ¼
1, 2, 3) coefficients (in MS RSch with RScl �2 ¼ Q2) for
massless BjPSR DðQ2Þ ¼ dBjðQ2Þ and massless Adler

function DðQ2Þ ¼ dAdlðQ2Þ.
Coefficients �d1 and �d2 for massless BjPSR were ob-

tained in Ref. [73],

ð �dBjÞ1 ¼ � 11

12
þ 2	0; (E14)

ð �dBjÞ2 ¼ �35:7644þ 10:5048	0 þ 6:388 89	2
0; (E15)

and �d3 was estimated in Ref. [74]

ð �dBjÞ3 	 130 ðnf ¼ 3Þ: (E16)

The leading-	0 coefficients c
ð1Þ
nn for BjPSR were calculated

in Ref. [68] in the MS RSch and at RScl �2 ¼ Q2 expð �CÞ
(where �C ¼ �5=3). When changing RScl to �2 ¼ Q2

using an ‘‘inverted’’ version of relations (E5) (with cð1Þnn �

�cð1Þnn , �c
ð1Þ
kk � cð1Þkk , and C � � �C ¼ þ5=3), we obtain �cð1Þ11 ¼ 2

[cf. Eq. (E14)]; �cð1Þ22 ¼ 115=18ð	 6:388 89Þ [cf. Eq. (E15)];
and �cð1Þ33 ¼ 605=27ð	 22:4074Þ.

Coefficients �dn (n ¼ 1, 2, 3) for the massless Adler
function were obtained in Refs. [75–77], respectively

ð �dAdlÞ1 ¼ 1
12 þ 0:691 772	0; (E17)

ð �dAdlÞ2 ¼ �27:849þ 8:226 12	0 þ 3:103 45	2
0; (E18)

ð �dAdlÞ3 ¼ 32:727� 115:199	0 þ 49:5237	2
0

þ 2:180 04	3
0: (E19)

The light-by-light contributions are not included in these
coefficients; however, they are zero when nf ¼ 3, and the

value nf ¼ 3 is used in the evaluation of dAdlðQ2Þ and

subsequently in the evaluation of r�. The latter observable
(with�S ¼ 0 and the mass effects subtracted) is calculated
by using the massless Adler function dAdlðQ2 ¼
m2

� expðiÞÞ in the contour integration (D10).

Specifically, applying this contour integration to the ana-
lytic expansion (E6) of the Adler function, we obtain

ðr�ÞðLBþnLBÞ
man ¼ rðLBÞ� þ X1

n¼1

ðTAdlÞnIð ~Anþ1; CÞ; (E20)

where

Ið ~Anþ1;CÞ
¼ 1

2�

Z þ�

��
dð1þeiÞ3ð1�eiÞ ~Anþ1ðeCm2

�e
iÞ; (E21)

and rðLBÞ� is given in Eq. (D13). In practical evaluation, the
sum in (E20) is truncated at n ¼ 3

ðr�ÞðLBþnLBÞ;½4�
man ¼ 1

�

Z 1

0

dt

t
~FrðtÞ�1ðte �Cm2

�Þ

þ X3
n¼1

ðTAdlÞnIð ~Anþ1; CÞ: (E22)

The other three analytic versions of evaluation are obtained
by contour integrating, via (D10), the analytic truncated
series (E10)–(E12) of massless Adler function DðQ2Þ ¼
dAdlðQ2Þ:

ðr�Þ½4�man ¼ IðA1; CÞ þ
X3
n¼1

ð~dAdlÞnIð ~Anþ1; CÞ; (E23)

ðr�ÞðLBþnLBÞ;½4�
an ¼ 1

�

Z 1

0

dt

t
~FrðtÞ�1ðte �Cm2

�Þ

þ X3
n¼1

ðtAdlÞnIðAnþ1; CÞ; (E24)

ðr�Þ½4�an ¼ IðA1; CÞ þ
X3
n¼1

ðdAdlÞnIðAnþ1; CÞ: (E25)

Again, all four versions of the anQCD evaluation of r�
differ from each other by � ~A5 �A5. The truncated
expansion (E22) is our numerically preferred version.
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[55] M. Davier, A. Höcker, and Z. Zhang, Rev. Mod. Phys. 78,
1043 (2006).

[56] M. Davier, S. Descotes-Genon, A. Höcker, B. Malaescu,
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