
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

THE EXPRESSIVENESS OF SHACL AND A

TRACTABLE LANGUAGE FRAGMENT

PROPOSAL

FERNANDO ALBERTO FLORENZANO
HERNÁNDEZ

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JUAN REUTTER

Santiago de Chile, May 2020

© 2020, FERNANDO ALBERTO FLORENZANO HERNÁNDEZ

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

THE EXPRESSIVENESS OF SHACL AND A

TRACTABLE LANGUAGE FRAGMENT

PROPOSAL

FERNANDO ALBERTO FLORENZANO
HERNÁNDEZ

Members of the Committee:

JUAN REUTTER

CRISTIAN RIVEROS

JORGE PÉREZ

CRISTIAN ESCAURIAZA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, May 2020

© 2020, FERNANDO ALBERTO FLORENZANO HERNÁNDEZ

Gratefully to my family, friends,

teachers and myself.

ACKNOWLEDGEMENTS

I would like to thank a lot of people, so bear with me. Thanks to:

My dear family. My parents Victoria and Fernando, for dealing with me, loving me, and

always supporting me in every way. Also my loving siblings, for being present and helping

me grow. Specially my dear sisters Victoria and Andrea, for being exceptionally strong

and good women. Everyday I try to live following your example.

My dear friends and loved ones that I met along the way and have stuck by. Meeting every

single one of your has given me something that I cherish and will always remember. We

may not see each other as much, but you truly are my chosen family, the ones I’ll always

want around for the special moments. Let’s have coffee some time please.

The 2019 Advanced Programming course team. Being a teacher was an unexpectedly

emotional and intense experience that made me grow during my investigation, and was

great thanks to the awesome people that I worked with. Thanks to Daniela, Dante, Enzo,

Hernán, Ignacio, Cristian, Antonio, Vicente and all the other 54 teaching assistants that

were part of the teaching team during that year. Also, thanks to my dear students, all 162,

who taught me in a lot of ways too and helped me improve myself even more.

All the people that I met at the Computer Science Department at PUC: staff, teachers, and

fellow students. You taught me everything I know now about CS, and helped to create a

second home for me during all these years.

Cristian Riveros, one of my teachers. You taught me, you gave me opportunities to work

as a TA, to go into investigation, and to become a teacher. But most importantly, you

saw something in me, helped me to make the most of it and constantly inspired me as an

example and role model.

Juan Reutter, one of my teachers and my supervisor. Even though our working styles were

very different, times got tough and sometimes I wanted to give up, we made it through.

You did an incredible job as a supervisor, but more importantly, you helped me in amazing

iv

ways to grow as a professional, as a person, and to see the world in a different way. I

consider our experience together as important as this thesis.

Myself, for hanging on and asking for help when needed. It took a while, but I am im-

proving my mental health and I know me better than ever. You go girl.

And finally, Ariana Grande. Thanks, just for existing. You deserved the Grammy.

Thanks again, to every single one of you, you made me who I am today.

Love, Fernando.

Ugh, I’m crying.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

ABSTRACT . viii

RESUMEN . ix

1. Introduction . 1

2. Preliminaries . 7

3. Validation for non-recursive SHACL . 16

3.1. In-memory approaches . 17

3.2. Online approach . 23

4. Validation for recursive SHACL . 35

5. Rule patterns . 43

6. A tractable recursive fragment . 50

6.1. Definition and expressiveness . 50

6.2. Tractable algorithm . 59

7. Conclusions and future work . 78

REFERENCES . 80

vi

LIST OF FIGURES

1.1 Two SHACL shapes, about companies and employees 2

1.2 RDF graphs. Top and bottom ones are valid against the shapes of Figure 1.1,

while the middle one is invalid. 4

2.1 Three graphs from Figure 1.2 as RDF triples. 8

2.2 Two SPARQL queries that could be applied over the RDF stores in Figure 2.1. 9

2.3 Shape definition for trainees and bosses that uses negation. 10

2.4 Abstract representation for shape schema defined in Figure 1.1 and extended

with shapes from Figure 2.3. 11

2.5 Dependency graph for schema in Figure 2.4. 12

2.6 Graphs to be validated considering the schema in Figure2.3. 13

3.1 Example of dependency graph for non-recursive schema. 16

4.1 Example of a stratified schema. 36

4.2 Examples of positive and strictly stratified schemas. 37

4.3 Simple recursive schema for which validation can become intractable. 37

4.4 Instance graph G
'

reduction example. 39

6.1 Consistent labeling for acyclic, positive and strictly stratified schemas. 51

6.2 Counterexamples between stratified and consistent schemas. 54

6.3 SHACL fragments hierarchy. 58

6.4 SHACL fragment hierarchy considering running data-complexity. 77

vii

ABSTRACT

SHACL (Shapes Constraint Language) is a specification for describing and validating

RDF graphs that has recently become a W3C recommendation. The main difficulty with

its use is the absence of guidelines about the way recursive constraints should be handled.

In addition to that, is the fact that RDF graphs are often exposed as SPARQL endpoints, and

therefore only accessible via queries, which makes validation depend on this systems. In

this thesis, we extend previous work with the objective of providing a better understand-

ing of the validation problem as a whole. We first investigate the possibility of validating

a graph against non-recursive constraints through all in-memory processing and alterna-

tively through a single query evaluation. Then for the recursive case, since the problem

has been shown to be NP-hard, we review the known fragment hierarchy and their chal-

lenges. Finally, we propose a new fragment of SHACL schemas that contain previously

known groups and show an algorithm to evaluate efficiently this new fragment. The latter,

can be used when dealing with recursive but tractable fragments of SHACL, without the

need for an external help.

Keywords: SHACL, RDF validation, RDF schemas, recursive SHACL, logic

viii

RESUMEN

SHACL (Shapes Constraint Language) es una especificación para describir y validar

grafos RDF que recientemente se convirtió en recomendación de la W3C. La dificultad

principal que presenta su uso es la ausencia de una definición oficial para el manejo de re-

stricciones recursivas. Además, el hecho de que grafos RDF por lo general son accesibles

mediante alojamiento remoto a través de solo consultas SPARQL hace que la validación

dependa de dichos sistemas. En esta tesis, extendemos trabajo previo con el objetivo de

mejorar el entendimiento de lo conocido del problema de validación. Primero, investig-

amos la posibilidad de validar un grafo contra esquemas no recursivos utilizando solo

procesamiento en memoria, y mediante el procesamiento de una única consulta general.

Para el caso recursivo, cuyo problema es NP-duro, revisamos la jerarquı́a de fragmen-

tos de SHACL conocidos y sus respectivas dificultades. Finalmente, proponemos un nuevo

fragmento de restricciones y mostramos un algoritmo que resuelve eficientemente el prob-

lema de validación. Este último se puede utilizar cuando es necesario manejar restric-

ciones recursivas, pero manteniendo cotas de ejecución eficientes sin tener que recurrir a

maquinaria externa.

Palabras Claves: SHACL, validación RDF, esquemas RDF, SHACL recursivo, lógica

ix

1. INTRODUCTION

RDF (for Resource Description Framework),1 is a model for data interchange on the

Web that organizes data as a directed and labeled graph. It is based on the idea of mak-

ing statements about resources (in particular web resources) in expressions of the form

subject–predicate–object, known as triples. The subject denotes the resource, and the

predicate denotes traits or aspects of the resource, and expresses a relationship between

the subject and the object. Thus, the statements that form a RDF database can be seen as

nodes and edges declarations in a graph, where the subject and object are nodes, while

the predicate is a labeled edge between subject and object. This data model enables the

encoding of semantics into web databases, and therefore helps to make the internet data

computer-readable. The latter is the main goal of the Semantic Web, the proposal to make

the web that can be processed by machines, and uses RDF as one of its key technologies.

The success of RDF was largely due the fact that it can be easily published and queried

without bounding to a specific schema (Berners-Lee, Hendler, & Lassila, 2001). But RDF

over time has turned into more than a simple data exchange format (Arenas, Gutiérrez, &

Pérez, 2009), and a key challenge for current RDF-based applications is checking quality

(correctness and completeness) of a dataset. Several systems already provide facilities for

RDF validation (see e.g. (Ekaputra & Lin, 2016)), including commercial products (Stardog

ICV , n.d.; TopBraid Composer, n.d.). This created a need for standardizing a declarative

language for RDF constraints, and for formal mechanisms to detect and describe violations

of such constraints.

SHACL (for SHApes Constraint Language),2 is an expressive constraint language for

RDF graph, which became a W3C recommendation in 2017. The idea of SHACL is to

group constraints in so-called “shapes” to be verified by “target nodes” in the graph under

validation, where shapes can even reference each other. Consequently, SHACL schema

can also be seen as a way of describing a set of RDF graphs; precisely those that can be

validated against it.
1https://www.w3.org/rdf/
2https://www.w3.org/TR/shacl/

1

https://www.w3.org/rdf/
https://www.w3.org/TR/shacl/

:CompanyShape
a sh:NodeShape;
sh:targetClass ex:Company;
sh:property [

sh:path ex:name;
sh:minCount 1];

sh:property [
sh:path ex:employs;
sh:minCount 1;
sh:node :EmployeeShape].

:EmployeeShape
a sh:NodeShape;
sh:property [
sh:path ex:birthDate;
sh:minCount 1;
sh:maxCount 1];

sh:property [
sh:path ex:worksFor;
sh:minCount 1
sh:node :EmployeeShape].

FIGURE 1.1. Two SHACL shapes, about companies and employees

Figure 1.1 presents two simple SHACL shapes. The left one, called :CompanyShape,

is meant to verify constraints over company entities in a database. The second triple,

:CompanyShape sh:targetClass ex:Company, is the target definition of the shape,

and specifies that all instances of the class ex:Company must conform to this shape.

These are called the target nodes of a shape. The next triples specify the constraints that

must be satisfied by such nodes, namely that they must have at least one name, and at least

one employee (i.e. their ex:employs-successors in the graph), that must conform to the

shape :EmployeeShape.

The rightmost shape, called :EmployeeShape, is meant to define employees in this

example. It does not have a target definition (therefore no target node either), and states

that an employee must have exactly one birth date, and work for at least one entity that

also conforms to the shape :EmployeeShape.

A key feature of SHACL is the possibility for a shape to refer to another or to itself

(like :EmployeeShape refers to itself for instance). This allows designing schemas in a

modular fashion, but also reusing existing shapes in a new schema, thus favoring semantic

interoperability.

The SHACL specification provides semantics for graph validation, i.e. what it means

for a graph to conform to a set of shapes: a graph is valid against a set of shapes if

each target node of each shape satisfies the constraints associated to it. If these constraints

2

contain shape references, (e.g. companies requiring employees in the example above), then

the propagated constraints (to neighbors, neighbors of neighbors, etc.) must be satisfied

as well.

Unfortunately, the SHACL specification leaves explicitly undefined the semantics of

validation for schemas with circular references (called recursive below), such as the one

of Figure 1.1, where :EmployeeShape refers to itself. Such schemas can be expected to

appear in practice though, either by design (e.g. to characterize relations between events,

or a structure of unbounded size, such as a tree), or as a simple side-effect of the growth

of the number of shapes.

Semantics for graph validation against possibly recursive shapes was later proposed

in (Corman, Reutter, & Savkovic, 2018a) (for the so-called “core constraint components”

of the SHACL specification) that complies with the specification in the non-recursive case.

Based on to this semantics, the first graph in Figure 1.2 is valid against the shapes of

Figure 1.1. The second graph is not, because ex:Mark does not work for another entity

that satisfies :EmployeeShape. The third graph is trivially valid, since there is no target

node to initiate validation.

Negation is another important feature of the SHACL specification (allowing for in-

stance to state that a node cannot conform to two given shapes at the same time, or to

express functionality, like “exactly one birth date for employees” in Figure 1.1). But as

shown in (Corman et al., 2018a), the interplay between recursion and negation makes the

graph validation problem significantly more complex (NP-hard in the size of the graph).

As SHACL is gaining traction, more validation engines become available.3 However,

guidance about the way graph validation may be implemented is still lacking. In particular,

as far as we are aware all existing implementations deal with recursive schemas in their

own terms, without a principled approach to handle the interplay between recursion and

negation. Even tough some well behaved interplays were identified in (Corman et al.,

3https://w3c.github.io/data-shapes/data-shapes-test-suite/

3

https://w3c.github.io/data-shapes/data-shapes-test-suite/

ex:google"Google" ex:Company

ex:John"12-03-1978"

ex:Sundar"10-06-1972"

aex:name

ex:employs

ex:birthDate

ex:worksFor

ex:birthDate
ex:worksFor

ex:facebook"Facebook" ex:Company

ex:Mark"14-04-1984"

aex:name

ex:employs

ex:birthDate

ex:mozilla"Mozilla"

ex:Mitchell"1959"

ex:name

ex:employs

ex:birthDate

FIGURE 1.2. RDF graphs. Top and bottom ones are valid against the shapes of
Figure 1.1, while the middle one is invalid.

2018a), it failed to define a general case of how could recursion and negation be used

together.

Another key aspect of graph validation is the way the data can be accessed. RDF

graphs are generally exposed as SPARQL endpoints, i.e. primarily (and sometimes exclu-

sively) accessible via SPARQL queries. This is often the case for large graphs that may

not fit into memory, exposed via triple stores. Therefore an important feature of a SHACL

validation engine is the possibility to check conformance of a graph by issuing SPARQL

queries over it. This may also be needed when integrating several data sources not meant

to be materialized together, or simply to test conformance of data that one does not own.

4

Several engines can already perform validation via SPARQL queries for fragments of

SHACL. But there is no clear shared guideline between engines as how to approach the

problem and are solved independently.

Furthermore, none of these engines, to our knowledge, tackle the problem in the

presence of recursive constraints.4 This should not come as a surprise: as it was shown

in (Corman, Florenzano, Reutter, & Savkovic, 2019) that recursive shapes go beyond the

expressive power of SPARQL. This makes validation via SPARQL queries significantly

more involved: if the schema is recursive, it is not possible in general to retrieve target

nodes violating a given shape by issuing a single SPARQL query. This means that some

extra computation (in addition to SPARQL query evaluation) needs to be performed, in

memory.

This thesis provides a theoretical investigation of graph validation against SHACL

schemas that may be recursive and present negation, as well as considering graphs that are

only accessible via SPARQL queries or in-memory. First, we show different approaches

to validation for non-recursive schemas: two in-memory algorithms as well as an online

approach performed via SPARQL queries.

Then, we define a recursive fragment that along with allowing some in-memory com-

putation, while still accessing the endpoint via queries only, produces a tractable algorithm

for a more general case. For the proposed recursive fragment we show that an algorithm

that performs propositional inference on the fly can efficiently solve the validation prob-

lem.

The first half of the results presented in this thesis are also presented in (Corman et

al., 2019), while the second half is an extension and reviewed version of previous results

with completely new aspects, as for the new proposed tractable fragment.

4 with the exception of Shaclex (Shaclex, n.d.), which can handle recursion, but not recursion and negation
together in a principled way.

5

Organization. Section 2 introduces the original SHACL validation problem and the nec-

essary logic model used in this thesis. Section 3 studies different approaches for the non-

recursive case, whereas Sections 4, 5 and 6 focus on the recursive case of the problem and

proposes a recursive but tractable fragment. Section 7 discusses conclusions, future work

and perspectives.

6

2. PRELIMINARIES

In this section we provide an overview of the constraint validation mechanism de-

scribed in the SHACL specification, discuss both its non-recursive case and its recursive

constraints case, and introduce the abstract syntax this thesis uses to model the SHACL

validation problem. Before explaining the SHACL specification and notation, we intro-

duce both the RDF specification and the query language SPARQL to new readers.

RDF. As mentioned earlier, RDF is a model and format to store data, based on the idea of

making statements about resources in expressions of the form subject–predicate–object,

known as triples. These triples can be modeled as edge definitions in a graph, so if we

abstract away from the concrete RDF syntax, an RDF graph G can be defined as: a labeled

oriented graph G = �VG ,EG�, where VG is the set of nodes of G, and EG is a set of triples

(edges) of the from (v1, p, v2), meaning that there is an edge in G from v1 to v2 labeled

with property p.

As an example, Figure 2.1 shows what would be the RDF triples that correspond

to the three graphs presented in Figure 1.2. Some nodes may be resources with mul-

tiple outgoing edges that describes them, while other might be object literals as inte-

gers and strings used to represent the latter nodes. In Figure 2.1, the triple ex:John

ex:birthDate "12-03-1978" describes the resource (and node) ex:John, specify-

ing it’s birth date (edge) with the literal (and also node) "12-03-1978". While, the

triple ex:John ex:worksFor ex:Sundar describes a relationship between the two re-

sources (and nodes) ex:John and ex:Sundar, by stating that the subject works for the

object (edge relationship).

SPARQL. On the other hand, SPARQL is a semantic query language for databases able to

retrieve and manipulate data stored in RDF format. SPARQL queries mainly consists of RDF

triple patterns, but also conjunctions, disjunctions, and even filtering (also through triple

patterns). Figure 2.2 shows two SPARQL queries that could be applied on our previous

example.

7

ex:google a ex:Company .
ex:google ex:name "Google" .
ex:google ex:employs ex:John .
ex:John ex:birthDate "12-03-1978" .
ex:John ex:worksFor ex:Sundar .
ex:Sundar ex:birthDate "10-06-1972" .
ex:Sundar ex:worksFor ex:Sundar .

ex:facebook a ex:Company .
ex:facebook ex:name "Facebook" .
ex:facebook ex:employs ex:Mark .
ex:Mark ex:birthDate "12-03-1978" .

ex:mozilla ex:name "Mozilla" .
ex:mozilla ex:employs ex:Mitchell .
ex:Mitchell ex:birthDate "1959" .

FIGURE 2.1. Three graphs from Figure 1.2 as RDF triples.

The top query exemplifies a simple SPARQL query. As a result it returns answers con-

sisting of two variables: ?x and ?y; by assigning resources in the target RDF dataset to each

variable if they satisfy certain conditions. These conditions are expressed in the WHERE

clause, where two triple patterns are needed to be matched in order to satisfy the query. In

this case, the query would match resources that are described as ex:Company, and also

have a name; and would return both the matching resource in ?x and the matched name

in ?y. In the example, the query on the first RDF store returns ?x � ex:google,?y �
"Google", while on the second ?x � ex:facebook,?y � "Facebook". In the third

one an empty answer is returned since ex:mozilla does not match the triple pattern

specified in the query, since the ex:Company relationship is missing.

The bottom query also applies a triple pattern, but adds a FILTER NOT EXISTS

clause that makes the main pattern match if it does not match with the ?z ex:employs

?x pattern. Therefore, this query returns all resources with a birth date, but does not

work for any other resource. In the example, the query on the second RDF store returns

?x� ex:Mark, on the third ?x� ex:Mitchell, while on the first one an empty answer

is returned since the are no resources that match the query.

8

SELECT ?x ?y
WHERE {

?x a ex:Company.
?x ex:name ?y.

}

SELECT ?x
WHERE {

?x ex:birthDate ?y.
FILTER NOT EXISTS {?x ex:worksFor ?z}

}

FIGURE 2.2. Two SPARQL queries that could be applied over the RDF stores in Figure 2.1.

We use JQKG to denote the evaluation of a SPARQL query Q over an RDF graph G.

This evaluation is given as a set of solution mappings, each of which maps variables of

Q to nodes of G. All solution mappings considered in this thesis are total functions over

the variables projected by Q. We use {?x1 � v1, . . . , ?xn

� v

n

} to denote the solution

mapping that maps ?x

i

to v

i

for i ∈ [1, . . . , n]. However, if Q is a unary query (i.e. if it

projects only one variable), we may also represent JQKG = {{?x � v1}, . . . ,{?x � v

m

}}
as the set of nodes {v1, . . . , vm}.
SHACL. As already mentioned, SHACL is a constraint language for RDF stores. Constraints

are established by defining a set of shapes also in a triple-like pattern fashion, each with

certain properties that a set of target nodes must conform to. Figure 1.1 showed a taste of

how these shapes can be defined and express, but many other features exists to establish

shapes.

An important one is the possibility to declare negated constraints. For instance in

Figure 2.3, shape :TraineeShape describes a trainee as someone with exactly one birth

date that works for a boss, while the shape :BossShape uses sh:not to describe a boss

as someone with exactly one birth date but that is not a trainee. In this case, the constraint

for :TraineeShape will hold for the target node ex:Fernando if a node successor via

property ex:worksFor violates the constraints for :TraineeShape.

9

:TraineeShape
a sh:NodeShape;
sh:targetNode ex:Fernando;
sh:property [

sh:path ex:birthDate;
sh:minCount 1;
sh:maxCount 1];

sh:property [
sh:path ex:worksFor;
sh:node :BossShape].

:BossShape
a sh:NodeShape;
sh:property [

sh:path ex:birthDate;
sh:minCount 1;
sh:maxCount 1];

sh:not :TraineeShape .

FIGURE 2.3. Shape definition for trainees and bosses that uses negation.

This thesis follows the abstract syntax for SHACL core constraint components intro-

duced in (Corman et al., 2018a), and also later used in (Corman et al., 2019). In the

following, we review this syntax and the associated semantics for graph validation.

A shape schema S is represented as a triple �S, targ,def�, where S is a set of shape

names, targ is a function that assigns a target query to each s ∈ S, and def is a function

that assigns a constraint to each s ∈ S.

For each s ∈ S, targ(s) is a unary query, which can be evaluated over the graph under

validation in order to retrieve the target nodes of s. The SHACL specification only allows

target queries with a limited expressivity, but for the purpose of this thesis, targ(s) can be

assumed to be an arbitrary unary SPARQL query. If a shape has no target definition (like

the shape :BossShape in Figure 2.3), we use an arbitrary empty SPARQL query (i.e.

with no answer, in any graph), denoted with �, meaning there is no target nodes for that

shape. Note that does not mean the shape is not used, as it may be referenced by other

shapes.

The constraint def(s) for shape s is represented as a formula � verifying the following

grammar:

� ∶∶= � � s � I � � ∧ � � ¬� � ≥
n

r.� � EQ(r1, r2)
10

S = {:CompanyShape,:EmployeeShape,
:TraineeShape,:BossShape}

targ(:CompanyShape) = SELECT ?x WHERE{?x a ex:Company}
targ(:EmployeeShape) = �
targ(:TraineeShape) = SELECT ?x WHERE{?x ?y ?z.FILTER { ?x = ex:Fernando }}

targ(:BossShape) = �
def(:CompanyShape) =(≥1 ex:name.�) ∧ (≥1 ex:employs.:EmployeeShape)

def(:EmployeeShape) =(=1 dbo:birthDate.�) ∧ (≥1 ex:worksFor.:EmployeeShape)
def(:TraineeShape) =(=1 dbo:birthDate.�) ∧ (≥1 ex:worksFor.:BossShape)

def(:BossShape) =(=1 dbo:birthDate.�) ∧ (¬:TraineeShape)
FIGURE 2.4. Abstract representation for shape schema defined in Figure 1.1 and
extended with shapes from Figure 2.3.

where s is a shape name, I is an IRI,1 r is a SHACL path2, and n ∈ N+. Syntactic

sugar can be considered to denote �1 ∨ �2 for ¬(¬�1 ∧ ¬�2), ≤n r.� for ¬(≥
n+1 r.�), and=

n

r.� for (≥
n

r.�) ∧ (≤
n

r.�). A translation from SHACL core constraint components to

this grammar and conversely can be found in (Corman, Reutter, & Savkovic, 2018b). As

an example, Figure 2.4 shows the translation of the previous example into the introduced

abstract representation.

Checking whether a graph is valid against a set of shapes may be viewed as a two-

step process. The first step consists in iterating over all shapes, and retrieve their respective

target nodes in the graph. The limited expressivity the target language has allows all targets

1More exactly, I is an abstraction, standing for any syntactic constraint over an RDF term: exact value, data
type, regex, etc.
2SHACL paths are built like SPARQL property paths, but without the NegatedPropertySet operator

11

:CompanyShape

:EmployeeShape :TraineeShape

:BossShape

¬

FIGURE 2.5. Dependency graph for schema in Figure 2.4.

of a shape in the graph to be retrieved before constraint validation in polynomial time in

data complexity, meaning in terms of the size of the graph.

The second step consists in iterating over each target node of each shape, and check

whether the node satisfies the corresponding constraint. Some of the constraints may be

validated by looking locally at the graph, i.e. at the IRI of a node and its outgoing paths.

But some others may also trigger a recursive call, over the constraint of another shape

referenced by the initial one, to be checked for even other nodes that are not target nodes.

This checking may also do another recursive call, and so on.

The recursive constraint calling is not much of a problem when if it stops eventually

and constraints for target node can be validated and answered. This is the case for what we

call later the non-recursive case: when the referencing between shapes is not cyclical. A

problem arises when considering referencing cycles between shapes, which would make

the previous description run without end since recursive calls could not end.

It also gets even trickier and unclear when considering negation in referencing cycles.

Situations can arise where constraint satisfaction as a boolean decision is not enough.

For instance, consider the graphs in 2.6 to be validated with our example schema from

Figure 2.3. The top graph is valid against our set of shapes, but the bottom graph is not.

If ex:Fernando is considered to satisfy :TraineeShape, then is because itself

also satisfies :BossShape, but this contradicts its own definition. Note that this is even

stronger, since if ex:Fernando is assigned to not be of :TraineeShape, this would

satisfy :BossShape, but then the conditions for :TraineeShape are met. Therefore,

12

ex:Fernando"04-09-1994"

ex:Juan"07-02-1983"

ex:birthDate

ex:worksFor

ex:birthDate

ex:Fernando"04-09-1994"
ex:birthDate

ex:worksFor

FIGURE 2.6. Graphs to be validated considering the schema in Figure2.3.

the idea of assigning shapes in only two options is not sufficient for these cases, and a

third option that assigns neither the shape or its negation is needed. This is understood as

partial assignments, which changes the validation problem and arises its own flavor for it.

The regular option of always assigning either a shape or its negation is known as total.

Semantics. Since the semantics for recursive schemas is left undefined in the SHACL

specification, we use the framework proposed in (Corman et al., 2018a). The evaluation

of a formula is defined with respect to a given assignment, i.e. intuitively a labeling of the

nodes of the graph with sets of shape names.

Formally, an assignment � for a graph G and a schema S = �S, targ,def� can be

represented as a set of atoms of the form s(v) or ¬s(v), with s ∈ S and v ∈ VG , that does

not contain both s(v) and ¬s(v) for any s ∈ S or v ∈ VG . An assignment � is total if for

every s ∈ S and v ∈ VG , one of s(v) or ¬s(v) belongs to �. Otherwise (if there are s and v

such that neither s(v) not ¬s(v) belong to �), the assignment is partial.

The semantics of a constraint � is given in terms of a function [�]G,v,�, for a graphG, node v and assignment �. This function evaluates whether v satisfies � given �. This

semantics depends on which type of assignments is considered. If we consider total as-

signments, then [�]G,v,� is always true (1) or false (0), but when considering partial as-

signments a third option unknown is used (1/2). To be complete, we provide in Table 2.1 the

13

[�]G,v,� = 1[¬�]G,v,� = 1 − [�]G,v,�[�1 ∧ �2]G,v,� = min{[�1]G,v,�, [�2]G,v,�}[EQ(r1, r2)]G,v,� = �1, if {v′ � (v, v′) ∈ Jr1KG} = {v′ � (v, v′) ∈ Jr2KG}
0 otherwise

[I]G,v,� = �1, if v is the IRI I
0 otherwise

[s]G,v,� = �����������
1, if s(v) ∈ �
0, if ¬s(v) ∈ �
1�2 otherwise

[≥
n

r.�]G,v,� =
�����������������
1, if �{v′ � (v, v′) ∈ JrKG and [�]G,v′,� = 1}� ≥ n
0, if �{v′ � (v, v′) ∈ JrKG}�−�{v′ � (v, v′) ∈ JrKG and [�]G,v′,� = 0}� < n
1�2 otherwise

TABLE 2.1. Evaluation of constraint � at node v in graph G given total assignment
�. We use (v, v′) ∈ JrKG to say that v and v′ are connected via SHACL path r.

partial semantics. This definition can be easily simplified to consider total assignments,

and can be found (Corman et al., 2019).

Validation problem. A graph G satisfies a schema S if there is a way to assign shapes

names to nodes of G such that all targets and constraints in S are satisfied. Since we con-

sider two kinds of assignments (total and partial), we also define two types of validation.

Specifically, a graph G is valid against a shape schema S = �S, targ,def� with respect

to total (resp. partial) assignments if and only if there is a total (resp. partial) assignment

� for G and S that verifies the following, for each shape name s ∈ S:

● s(v) ∈ � for each node v in Jtarg(s)KG , and● if s(v) ∈ �, then [def(s)]G,v,� = 1, and if ¬s(v) ∈ �, then [def(s)]G,v,� = 0.

The first condition ensures that all targets of a shape are assigned this shape, and the

second condition that the assignment is consistent with respect to shape constraints. Any

14

assignment � that verifies the previous conditions, is called faithful against the schema and

graph.

We note that a total assignment is a specific case of partial assignment. So if G is

valid against S with respect to total assignments, it is also valid with respect to partial

assignments. The converse does not necessarily hold though. But as seen in (Corman et

al., 2018b), there are several fragments for which this is true, and that holds for all the

tractable fragments considered in this thesis. We use this property several times in the

following sections.

Also as previous work, we describe schemas based on how shapes relate between each

other. The dependency graph GS of a schema S = �S, targ,def� is a graph whose nodes

are S, and such that there is an edge from s1 to s2 if and only if s2 appears in def(s1). This

edge is called negative if such reference is in the scope of at least one negation, and positive

otherwise. A schema is recursive if its dependency graph contains a cycle, and stratified

if the dependency graph does not contain a cycle with at least one negative edge. In Fig-

ure 2.5, we see that the example schema is recursive, since :EmployeeShape references

itself, and is not stratified since a negative cycle is present between :TraineeShape and

:BossShape.

15

3. VALIDATION FOR NON-RECURSIVE SHACL

In this section we tackle first the simplest fragment for SHACL schemas, non-recursive

schemas, and analyze two types of approaches to handle their corresponding validation

problem: first in-memory approaches and then an online approach.

By in-memory approaches we mean ways to give an answer to the problem through

algorithmic solutions supposing we have access to the database in the main memory of a

machine, and therefore leaving all computations to the current working machine. Whereas

by online approach we mean to give a solution by querying an endpoint that may be foreign

to the working machine, thus leaving query processing and evaluation to a remote server.

This option is possible and makes sense since RDF databases are meant to be accessible

through web endpoints and not necessarily as in-memory data.

As stated in Section 2, a shape schema S is non-recursive or acyclic if its dependency

graph GS does not have any shape reference cycles, as the one depicted in Figure 3.1.

We denote this fragment as Lnon-rec, and has already been showed that its validation is

tractable in data complexity, in (Corman et al., 2019). The validation problem for acyclic

schemas is easy because checking satisfiability of a constraint on any node can be done in

a bounded amount of calls. This gives as insight that when constructing schemas tractable

evaluation can be guaranteed if the schema does not contain cycle dependencies.

s0

s1

s2

s3

s4¬

FIGURE 3.1. Example of dependency graph for non-recursive schema.

16

3.1. In-memory approaches

First, we study two in-memory algorithmic approaches to the validation of acyclic

schemas over graph databases. Both of them are based on a specific order for the eval-

uation of the target nodes present in the schema and show a way to construct a valid

assignment, if one exists.

Both methods will consider an acyclic shape schema S = �S, targ,def� to be verified

over a graph database G and do so by constructing an assignment � to check validity of

the graph. Since S is acyclic, a topological order ≥S can be defined over the different

shapes in S based on the shape reference graph GS . This order assures a that a shape s

appears before any shape s

′ that is referenced in def(s). In Figure 3.1, nodes are labeled

in a topological order, i.e. s0, s1, s2, s3, s4 is a valid topological order for that schema. Let

min≥S and max≥S be the minimum and maximum shape based on this order ≥S .

Backward Chaining evaluation. This algorithm is based on building a total faithful

assignment shape by shape, following the reverse order of ≥S . Starting by max≥S , each

node in the graph is tested to suffice the corresponding condition def(max≥S). Following

the reverse order, verification starts by shapes that do not reference other shapes. Then,

when testing constraints that do reference other shapes, shape conditions are verified as

simple IRI, since those referenced shapes are already tested. If a target node that does

not satisfy its corresponding shape constraint, the algorithm stops and returns a negative

answer. A pseudo-implementation is showed in Algorithm 1.

Forward Chaining evaluation. This algorithm also answers the validation problem by

building a faithful assignment � shape by shape but following the actual topological order

of shapes ≥S and only checking for satisfaction of constrains over the nodes needed for

validity. By this we mean, starting with min≥S , the algorithm checks satisfaction for the

corresponding target nodes. This potentially involves checking satisfaction constrains of

other shapes over neighbor nodes, and does so recursively until it can answer for the

original checked node. It also does so in a way that keeps track of already checked nodes

so it does not check satisfaction of a shape over a node twice, and a partial assignment

17

Algorithm 1 BACKWARD CHAINING EVALUATION ALGORITHM

Require: Schema S = �S, targ,def�, graph G and topological order ≥S
1: � ← �
2: for all s ∈ S in reverse following ≥S do
3: T ← Jtarg(s)KG
4: for all v ∈ G do
5: if [def(s)]v,G,� = 1 then
6: � ← � ∪ {s(v)}
7: else
8: if v ∈ T then return FALSE
9: end if

10: � ← � ∪ {¬s(v)}
11: end if
12: end for
13: end for
14: return �

is built on the fly. A pseudo-implementation is showed in Algorithm 2. The main nodes

that are verified are target nodes for each shape, and if at some point any of them does

not satisfy its corresponding constraint, then the algorithm stops and returns a negative

answer. For simplicity, we omit the implementation of the procedure CHECK that verifies

satisfaction of a node v of a constraint formula def(s) considering the rest of the graphG and the current assignment �. CHECK does so in a way that may call itself to check

over neighbors of v if another constraint suffices, but always updates the same assignment

given � so that previous validations can be used.

We will state correctness and time execution bounds for both algorithms separately, in

the next two propositions. These will be in terms of the size of the set of shape names �S�,
the size of the graph �G� considered as the amount of nodes in it (�VG �) and a bound over

pattern edges �EG � named property maximum defined as MG = max:p ∈ IRI �{(v1,:p, v2) ∈
EG}�. Meaning MG is the maximum number of times a single edge label appears in the

graph. Even though MG could be similar in magnitude to the whole number of edges inG, general and real graph databases are heterogeneous and have multiple labels, thus the

bound generally should be just a small fraction of the total number of edges.

18

Algorithm 2 FORWARD CHAINING EVALUATION

Require: Schema S = �S, targ,def�, graph G and topological order ≥S
1: � ← �
2: for all s ∈ S in order following ≥S do
3: for all v ∈ Jtarg(s)KG do
4: if ¬s(v) ∈ � then return FALSE
5: else if s(v) ∉ � then
6: CHECK(v,def(s),�,G)
7: if ¬s(v) ∈ � then return FALSE
8: end if
9: end if

10: end for
11: end for
12: return �

Proposition 3.1. The Backward Chaining Algorithm returns a correct answer for

the validation problem of a non-recursive shape schema S = �S, targ,def� over a graph

database G with property maximum MG , and runs in O(MG ⋅ �G� ⋅ �S�).
PROOF. Correctness of the result follows directly from the iterative construction of

a valid assignment for each tested constraint def(s) and from the fact that for acyclic

schemas the satisfiability for each shape-node pair can be checked locally. As for running

complexity, we will prove it by analyzing different cases of shapes.

Since the Backwards Chaining follows the reverse topological order of shapes in S ,

all shapes that do not reference other shapes will be evaluated first. If we consider evalu-

ation of those constraints, the defined semantics suggests that they can generally be tested

locally over the node. The only exception arises when considering one or more path

statements (≥
n

r.�). These imply navigating thought the graph using the current node as

starting point and testing conditions over other nodes. This becomes harder if considering

nested path statements, such as: ≥2 r.(≥3 t.(≥1 w.�)). In general, the amount of nodes

that could be traversed to check the whole constraint grows exponentially. But, since MG
bounds the amount of edges that are equally labeled in the graph G, the amount of nodes at

each level of traversal is bounded by MG , since each level share the incoming edge label.

19

Therefore, in terms of MG , the leaf-traversal nodes are at most MG , and the total node tra-

versed is bounded by ⌘S ⋅MG , where ⌘S is the maximum number of times path statements

appear in a single constraint formulas for shapes in S .

Since the procedure follow the reverse order of ≥S to check constraint formulas, for

any shape s that references other shape in def(s), then the current constructed assignment

� already contains the positive or negative atoms of any shape that could be referenced.

Therefore, checking a sub-formula s

′ can be easily tested checking the membership of

s

′(v) or ¬s′(v) in the current assignment, instead of recursively testing def(s′). If im-

plemented correctly, this checking takes O(1). Therefore, since shape-referencing atoms

do take constant time to check in this setting, the path statements imply the most working

load, but still bounded as the previous argument.

This means, that this strategy takes O(⌘S ⋅MG ⋅ �G� ⋅ �S �) to construct an assignment

defined for all nodes in G. What is left is to construct the target sets for each shape and

check if are correctly assigned. Since target queries are also expressed through simple

monadic queries, each shape target evaluation is bounded by MG . Whereas, checking if

target nodes are correctly assigned is considered to take constant time. Therefore it takes

a total of O(MG ⋅ �S �), which is under O(⌘S ⋅MG ⋅ �G� ⋅ �S �).
If assuming bounded path statement appearance in constraints, then O(MG ⋅ �G� ⋅ �S �)

is reached. Also is important to consider that S could be re-written to equivalent shape

schema that reduces ⌘S , but this increases the size of �S � by introducing new shapes that

replace multiple path statements.

⇤

Proposition 3.2. The Forward Chaining Algorithm returns a correct answer for the

validation problem of a non-recursive shape schema S = �S, targ,def� over a graph data-

base G with property maximum MG , and runs in O(M2G ⋅ �S�2).
20

PROOF. As the previous algorithm, correctness of the result follows from the con-

struction of a valid assignment for each tested constraint def(s) and by checking satisfia-

bility for each shape-node pair locally. The order of evaluation of constraints is actually

the same as the previous algorithm, just the call of the procedure is what follows the topo-

logical order.

As for running complexity, the main difference with Backward Chaining is the fact it

does not evaluate for every possible node in the graph that may not be of interest, possibly

verifying shapes multiple times over different sets of nodes. The main loop of the algo-

rithm that verifies that target nodes have already been checked takesO(MG ⋅ �S�), since the

amount of nodes that can target statements is bounded by MG . It’s the procedure CHECK

that amplifies the complexity.

Similarly as stated in proof for Proposition 3.1, most shape constrains can be locally

checked assuming constant time, with the exception of path statements that reference other

shapes (≥
n

r.s

′). Both the graph traversal needed to check the path statement, and the

recursive calls to check other shapes over neighbors makes the verification harder. Node

traversal does not blow up exponentially when considered in terms of MG , similar as in

the previous proof, is bounded by ⌘S ⋅MG , where ⌘S is the maximum number of times

path statements appear in a single constraint formulas for shapes in S . On top of that,

recursive calls are also bounded since S is acyclic and references are set to end at some

point. On the best case, most of these recursive calls are done over nodes that have already

been checked, reducing the verification to constant time. Sadly, these calls can be called

over disjointed sets of nodes, meaning the whole recursive calling has to be done over

potentially �S� times. Therefore a CHECK call is bounded by O(MG ⋅ �S�), since the depth

of the the recursive calls are bounded by �S� and the number of each node traversal is

bounded by MG .

This reaches the proposed total complexity ofO(M2G ⋅ �S�2). It is important to note that

this considers that no node assignments are reused, and that the depth of recursive calls is

21

actually the longest path in the dependency graph GS , not actually S, and that successive

calls following topological order of shapes decreases the recursive depth by at least one.

⇤

This shows two basic ways to approach the problem in-memory for the non-recursive

case, as well that they present a trade-off in their use. On one hand, Backward Chaining

Evaluation is simple in implementation and returns a total assignment, but for larger graph

databases it may present unnecessary computation and therefore blow-up in running time.

But on the other, Forward Chaining only returns a partial assignment and presents bigger

implementation challenges, specifically for the CHECK procedure, but does improve in

performance for bigger graph, specially for heterogeneous ones that have a lower edge

pattern bound M .

These results are also a reflection over the fact that non-recursive schemas are easy

to validate over a graph, and it is the size of the graph its biggest challenge. Both ap-

proaches actually do the same verification but in different orders: they check satisfaction

of constrains directly for every needed pair of shapes and nodes. This property may not

be possible for recursive schemas, as a cycle of satisfaction dependencies can arise.

22

3.2. Online approach

Now, we analyze an online approach to validation evaluation. Specifically, we address

the question of whether the validation problem can be performed by evaluating a single

SPARQL query over an endpoint that exposes RDF graph database G. When possible, this

approach has a some advantages, as it allows us to validate graphs over endpoints without

doing any local computation. On the other hand, if the translation of a schema into SPARQL

is too complicated, endpoints may have too much trouble to compute the answer, or it may

even be forced to timeout. Thus, one also needs to be able to produce queries that can be

evaluated rather efficiently.

We say that a schema S can be expressed in SPARQL if there is a SPARQL query QS
such that, for every graph G, it holds that G is valid against S if and only if JQ

S

KG = �.

We will show that non-recursive schemas are indeed expressible in SPARQL, and will do

so by presenting an actual translation for it.

Given a non-recursive shape schema S = �S, targ,def�, we define a set of SPARQL

queries for each shape: QS = {qs � s ∈ S}. Each query q

s is a SELECT SPARQL query that

validates the faithfulness of that shapes target nodes in a specific RDF graph. It has the

following general form:

q

s ∶= SELECT ?x

WHERE { T (targ(s),?x)
FILTER NOT EXISTS { C(def(s),?x) }

}

23

Where:

● T (targ(s),?x) is the pattern that matches all targeting nodes as defined by targ(s) and

referenced inside the query with the variable ?x. Thanks to SPARQL subquery syntax,

this could literally translate to targ(s), but using ?x as the projection variable.● C(def(s),?x) is also a pattern, but defined recursively from def(s) such that the vari-

able ?x matches the constraint defined by def(s).
The proposed recursive conversion of C(def(s),?x) is defined as follows:C(�,?x) := adom(?x)C(I,?x) := adom(?x). FILTER(?x = I)C(EQ(r1, r2),?x) := adom(?x). FILTER NOT EXISTS{

{?x r1 ?y. FILTER NOT EXISTS { ?x r2 ?y } }

UNION

{?x r2 ?z. FILTER NOT EXISTS { ?x r1 ?z } }

}C(s,?x) := C(def(s),?x)C(� ∧ ,?x) := { C(�,?x) . C(,?x) }C(¬�,?x) := adom(?x). FILTER NOT EXISTS{ C(�,?x) }C(≥
n

r.�,?x) := { ?x r ?y1, ?y2, ..., ?yn.C(�,?y1) .C(�,?y2).
...C(�,?yn) .
FILTER(?y1 != ?y2) .

...

FILTER(?y1 != ?yn) .

...

}

24

Where adom(?x) = { ?x ?x1 ?x2 } UNION { ?x2 ?x ?x4 } UNION {

?x5 ?x6 ?x }. These translations apply for the general non-recursive case, but many

combinations can be further optimized in size of translation. The adom atom particularly

can be omitted in most translations if the variable is already declared on an outer scope.

Also, every time a new SPARQL variable, as ?y1, is introduced, it should be a variable that

has not been used before in the rest of the translation. This assures there is no incorrect

referencing in different scopes.

Is easy to see that the given translation for any finite constraint def(s) that does not

mention any shape name in it will directly result into a finite pattern. But, if we introduce

the use of referencing other shape names, the translation may not terminate as the transla-

tion may get stuck applying the rule: C(s,?x) ∶= C(def(s),?x). This is true in the general

case, but not for the non-recursive schemas, as showed by the following lemma:

Lemma 3.1. A non-recursive shape schema S = �S, targ,def� can be successfully

converted to a set of valid SPARQL queries QS .

PROOF. As stated before, QS = { qs � s ∈ S}, therefore, is suffices to show that each

individual qs is a valid SPARQL SELECT query.

Let s be an arbitrary shape name in S. First, note that every constrain def(s) is finite

and applying non-shape rules of translation always resolve in a finite valid pattern. Then,

if C(def(s),?x) does not resolve into a valid pattern using the previously described re-

cursive translation, then another shape name s

′ ∈ S must appear in def(s) such that the

translation continues. Furthermore, the same argument can be applied over s′, for the exis-

tence of another shape s′′. By applying this argument �S� times, a sequence of shape names

s1, s2, . . . , s�S�+1 can be defined such that each s

i+1 appears in def(s
i

). By pigeonhole prin-

ciple, two elements in the sequence must be the same shape, and therefore, a cycle exists

in the sequence. This directly means that a cycle must exists in the dependency graphGS ,

which is a contradiction. Therefore our initial assumption that C(def(s),?x) does not

resolve into a valid pattern must be false.

25

Consequently, for any shape s ∈ S, Qs is a valid SPARQL SELECT query, and QS is

a valid set of SPARQL queries.

⇤

The rest of this section is spent proving that the translation is indeed correct and make

non-recursive schemas expressible in SPARQL.

Proposition 3.3. Every schema in Lnon-rec

can be expressed in SPARQL.

PROOF. For a given shape schema S and its SPARQL translation set QS , the SPARQL

query Q defined as the query that returns the union of results from every single shape

query q

s ∈ QS is a single query that can determine the validity of a graph G:

∶= SELECT ?x WHERE {qs1 UNION q

s2 UNION ... }

Then, for every non-recursive shape schema S , the mentioned SPARQL query Q can

be computed such that an RDF graph G is valid against S if and only if JQKG = �. We will

prove both directions of correctness separately, but nonetheless both assume that shape

schema S is in a certain normal form, simple shape normal form. S is in simple shape

normal form if for every shape s ∈ S, its corresponding constraint def(s) belong to the

language of:

� ∶∶= � � s � ¬s � I � s1 ∧ s2 � ≥n r.s � EQ(r1, r2)
Where I ∈ IRI , s, s1, s2 ∈ S, and r, r1, r2 are edge patterns. If a non-recursive schemaS is not in simple shape normal form, it can be easily converted by extending the shape

name set with new shapes with no target queries and replacing all non-atomic formulas

with these shapes. This ensures all conjunctions and negations are a separate shape in the

schema.

First, we will prove the right direction of correctness, i.e. if G is valid against S then

JQKG = �. If G = �VG ,EG� is valid against S = �S, targ,def�, then a faithful assignment for

26

G and S must exist. Furthermore, since a non-recursive schema is also stratified, a faithful

and total assignment � must exist, as showed in (Corman et al., 2018b) (Proposition 3).

The SELECT SPARQL queries semantics dictate that the result of evaluating such

query will be � if no triple can be found that suffices the given pattern in the WHERE

clause. Since Q is a union of different sub-queries q

s, an empty result means the same

result in every single sub-query. The general form for query q

s assures that all target nodes

are matched, but are filtered out by the NOT EXISTS clause. Therefore, in order to show

that JQsKG = � holds for every s ∈ S, it suffices to show that for every variable mapping

µ ∈ JT (targ(s),?x)KG , it also exists another variable mapping µ

′ ∈ JC(def(s),?x)KG
such that µ(?x) = µ′(?x). That way, every target node is then filtered out thanks to the

NOT EXISTS clause, and therefore � is obtained.

By structural induction over the simple shape normal form grammar, it can be showed

that given the total and faithful assignment � and shape constraint def(s), the assignment

is consistent with the constraint pattern in the NOT EXISTS clause of qs, i.e. :

[def(s)]G,v,� = 1⇐⇒ ∃µ ∈ JC(def(s),?x)KG. µ(?x) = v
First, the base cases:

● def(s) = �
JC(�,?x)KG = Jadom(?x)KG = {(?x→ u) � u ∈ VG}

For any node v in G, the mapping µ that assigns ?x to v must be in JC(def(s),?x)KG ,

since it exists for any node in VG . And, by � semantics, [�]G,v,� = 1 always holds.● def(s) = I
JC(I,?x)KG = Jadom(?x) FILTER(I = ?x)KG

= {(?x→ u) � u = I}
27

[I]G,v,� = 1, if and only if v = I , which is equivalent to the existence of the mapping µ

that assigns ?x to v in JC(I,?x)KG .● def(s) = EQ(r1, r2)
JC(EQ(r1, r2),?x)KG = Jadom(?x). FILTER NOT EXISTS{

{?x r1 ?y. FILTER NOT EXISTS{ ?x r2 ?y } }

UNION

{?x r2 ?z. FILTER NOT EXISTS{ ?x r1 ?z } }

}KG

= {(?x→ u) � ∀u′ ∈ VG. where

(u, u′) ∈ r1(G)↔ (u, u′) ∈ r2(G)}
[EQ(r1, r2)]G,v,� = 1 if and only if {v′ � (v, v′) ∈ r1(G)} = {v′ � (v, v′) ∈ r2(G)}. The

latter is equivalent to the property that there are no connected nodes to v only through an

r1-labeled or r2-labeled edges. This is what C(EQ(r1, r2),?x) captures, and therefore

mapping µ such that µ(?x) = v is in JC(EQ(r1, r2),?x)KG .

Given the base cases, we proceed to prove the induction step for all recursive cases:

● def(s) = s′
JC(s′,?x)KG = JC(def(s′),?x)KG

If [s′]G,v,� = 1 then by semantics, s′(v) ∈ �. Since � is faithful [def(s′)]G,v,� = 1 holds.

Thanks to the induction hypothesis since [def(s′)]G,v,� = 1, then a mapping µ must

exists in JC(def(s′),?x)KG , which is equivalent to JC(s′,?x)KG . For the other direction,

if ∃µ ∈ JC(s′,?x)KG where µ(?x) = v, then it also holds that µ ∈ JC(def(s′),?x)KG . By

28

induction hypothesis, [def(s′)]G,v,� = 1 then holds. Since � is total and faithful, then

s

′(v) ∈ �, and therefore [s′]G,v,� = 1.● def(s) = ¬s′
JC(¬s′,?x)KG = Jadom(?x). FILTER NOT EXISTS{C(s′,?x)}KG

= {(?x→ u) � �∃ µ ∈ JC(s′,?x)KG. µ(?x) = u}
[¬s′]G,v,� = 1 if and only if [s′]G,v,� = 0. Using the contrapositive of our hypothesis,[s′]G,v,� = 0 indicates that there is no mapping in JC(s′,?x)KG such that µ(?x) = v,

and vice versa. Therefore, the SPARQL pattern evaluation indicates a mapping µ ∈
JC(¬s′,?x)KG must exist for v.● def(s) = s1 ∧ s2

JC(s1 ∧ s2,?x)KG = J C(s1,?x) . C(s2,?x) KG

= {µ � ∃µ1, µ2.

µ1 ∈ JC(s1,?x)KG,
µ2 ∈ JC(s2,?x)KG.
µ1(?x) = µ2(?x) ∧ µ = µ1 ∪ µ2}

[s1 ∧ s2]G,v,� = 1 holds if and only if both [s1]G,v,� = 1 and [s2]G,v,� = 1 hold. By

induction hypothesis, ∃µ1, µ2 such that µ1(x) = v, µ1 ∈ JC(s1,?x)KG and µ2(x) =
v, µ2 ∈ JC(s2,?x)KG . Since it can be assumed that the intersection of variables between

µ1 and µ2 is only ?x, and they assign ?x to the same node v, then they are compatible

and can be joined without inconsistencies into µ = µ1 ∪ µ2. Note that for that same

reason, µ is equivalent to both when considering the corresponding pattern evaluations,

and therefore, µ ∈ J C(s1,?x) . C(s2,?x) KG .

29

● def(s) = ≥
n

r.s

′

JC(≥
n

r.s

′
,?x)KG = J{ ?x r ?y1, ?y2, ..., ?yn.

C(s′,?y1).
C(s′,?y2).
...

C(s′,?yn).
FILTER(?y1 != ?y2) .

...

FILTER(?y1 != ?yn) .

...

} KG

= {µ � ∃µ1 ∈ JC(s′,?y1)KG , ∃µ2 ∈ JC(s′,?y2)KG ,
. . . , ∃µ

n

∈ JC(s′,?yn)KG.
such that ∀i ∶ (u,µ

i

(?yi)) ∈ r(G),
�{µ1(?y1), µ2(?y2), . . . , µn

(?yn)}� = n,
and µ = µ1 ∪ µ2 ∪ . . . ∪ µn

∪ (?x→ u)}
[≥

n

r.s

′]G,v,� = 1 holds if and only if ∃v1, v2, . . . , vn such that are all different nodes,(v, v
i

) ∈ r(G) and [s′]G,vi,� = 1 for all 1 ≤ i ≤ n. Therefore, thanks to induction

hypothesis ∃µ
i

∈ JC(s′,?yi)KG such that µ
i

(?yi) = v

i

, for all i. Since x does not

appear in any pattern C(s′,?yi) and no pattern share variables, µ1, µ2, . . . , µn

can easily

be joined into µ and it can be extended by assigning µ(x) = v. Thus, µ ∈ JC(≥
n

r.s

′
,?x)KG .

30

This completes all inductive cases, thus proving that for a total and faithful assignment

� and formula def(s), � is consistent with the constraint pattern in the NOT EXISTS

clause of qs.

Now, let s ∈ S be any shape name in the schema and q

s its corresponding query.

Consider any node a from G such that for a mapping µ ∈ JT (targ(s),?x)KG and µ(?x) =
a. This means that a ∈ Jtarg(s)KG . Since � is faithful, s ∈ �(a) and [def(s)]G,a,� = 1.

The previous induction showed that a mapping µ

′ exists such that µ′(?x) = a and µ

′ ∈
JC(def(s),?x)KG . Then, for both arbitrary s and a, a mapping that assigns a to sufficeC(def(s),?x) exists. Then all target nodes of s are not contained in JQsKG , and therefore,

JqsKG = � for every shape s. Thus, the final result of the whole query Q on G is also:

JQKG = �.

The opposite direction states that if JQKG = � then G is valid against S . A faithful

assignment � must be found for G and S , given that JQKG = �. The latter implies that∀qs ∈ QS

, JqsKG = �. Consider the assignment � defined as follows for any v ∈ G and

s ∈ S:

s(v) ∈ � ←→ ∃µ ∈ JC(def(s),?x)KG. µ(?x) = v
¬s(v) ∈ � ←→�∃ µ ∈ JC(def(s),?x)KG. µ(?x) = v

What is left to prove, is that � is indeed faithful for graph G = �VG,EG� and schemaS = �S, targ,def�.
Given an arbitrary shape name s ∈ S, and node v ∈ Jtarg(s)KG , by definition a map-

ping must exists µ ∈ JT (targ(s),?x)KG such that µ(x) = v. Since JQsKG = �, there must

exists µ′ ∈ JC(def(s),?x)KG . µ′(x) = v and therefore, s(v) ∈ �. Then all target nodes are

correctly s-labeled: Jtarg(s)KG ⊆ {v � s(v) ∈ �}. Since the shape was also arbitrary, it

must hold for all shape names in S.

31

Now, given an arbitrary shape s ∈ S and node v ∈ G, the following should hold

for a faithful assignment: if s(v) ∈ �, then [def(s)]G,v,� = 1, and if ¬s(v) ∈ � then[def(s)]G,v,� = 0.

It can also be shown by structural induction over the simple shape normal form gram-

mar for def(s) that the latter holds. First, the base cases:

● def(s) = �:
If s(v) ∈ �, then a mapping that matches to v exists in JC(def(�),?x)KG . The existence

of µ validates v as a node in G, and as such, it should also hold that [�]v,G,� = 1.

On the other hand, if ¬s(v) ∈ �, since JC(�,?x)KG has mappings matching every node

in G, a contradiction is reached since it would mean v is not a valid node in G or that

there are no nodes in G. Then this base case can not occur for a not empty graph G.● def(s) = I:

If s(v) ∈ �, then a mapping that matches to v exists in JC(def(I),?x)KG , which matches

only equivalent nodes to I . Therefore v = I and [I]v,G,� = 1.

Whereas, if ¬s(v) ∈ �, then no mappings match to v, meaning v ≠ I , and therefore[I]v,G,� = 0.● def(s) = EQ(r1, r2):
If s(v) ∈ �, then a mapping µ that matches to v exists in JC(def(EQ(r1, r2)),?x)KG .

As showed in the previous direction proof, µ assigns only to nodes such that has no

neighbors that are only connected through r1 or r2, all of such neighbors are connected

with both labeled-edges. Therefore, [EQ(r1, r2)]v,G,� = 1.

If ¬s(v) ∈ �, then there is no mapping matching v in the evaluation of the SPARQL

pattern for C(EQ(r1, r2),?x), then the must exists at least one neighbor of v that it is

only connected through a r1-labeled edge or a r2-labeled edge. Therefore it holds that[EQ(r1, r2)]v,G,� = 0.

32

Now, the inductive steps:

● def(s) = s′:
If s(v) ∈ �, then a mapping µ that matches to v exists in JC(s′,?x)KG . The map-

ping µ is also in the evaluation of the SPARQL pattern for the formula for s

′: µ ∈
JC(def(s′),?x)KG . By the definition of assignment �, s

′(v) ∈ � holds. Therefore[s′]v,G,� = 1.

If ¬s(v) ∈ �, then no mapping exists in JC(def s′,?x)KG such that µ(?x) = v. By the

definition of �, ¬s′(v) ∈ �. And therefore [s′]v,G,� = 0.● def(s) = ¬s′:
If s(v) ∈ �, then a mapping µ that matches to v exists in JC(¬s′,?x)KG . The existence of

µ confirms the fact that no mappings matching v exists in JC(s′,?x)KG . Then, ¬s′(v) ∈
�, and by induction hypothesis, [s′]v,G,� = 0. Therefore [¬s′]v,G,� = 1.

If ¬s(v) ∈ �, then no mapping exists in JC(¬s′,?x)KG such that µ(?x) = v. Since the

first part of C(¬s′,?x)matches all nodes in G, then a mapping µ matching v must exists

that is in JC(s′,?x)KG . Therefore, s′(v) ∈ � and by induction hypothesis [s′]v,G,� = 1.

This implies [¬s′]v,G,� = 0.● def(s) = s1 ∧ s2:
If s(v) ∈ �, then a mapping µ that matches to v exists in JC(s1 ∧ s2,?x)KG . Mappings

µ1 and µ2 must exists such that µ1 ∈ JC(s1,?x)KG , µ2 ∈ JC(s2,?x)KG and µ1(?x) =
µ2(?x) = v. By induction hypothesis, [s1]v,G,� = 1 and [s2]v,G,� = 1 and therefore[s1 ∧ s2]v,G,� = 1.

If ¬s(v) ∈ �, then no mapping exists in JC(s1 ∧ s2,?x)KG such that µ(?x) = v. Since

JC(s1,?x)KG and JC(s2,?x)KG do not share variables except for ?x, then either one of

the mappings sets must be empty (if intersected with mappings that match to v). If that

is the case, then by induction hypothesis either [s1]v,G,� = 0 or [s2]v,G,� = 0 hold, and

therefore [s1 ∧ s2]v,G,� = 0.

33

● def(s) = ≥
n

r.s

′:
If s(v) ∈ �, then a mapping µ that matches to v exists in JC(≥

n

r.s

′
,?x)KG . Dif-

ferent nodes v1, . . . , vn from G and mappings µ1, . . . , µn

must exists such that µ
i

∈
JC(s′,?yi)KG , µ

i

(?yi) = v

i

and (v, v
i

) ∈ r(G), for all i. By induction hypothesis,[s′]vi,G,� = 1, and therefore, [≥
n

r.s

′]v,G,� = 1.

If ¬s(v) ∈ �, then no mapping µ exists in the evaluation of the corresponding pattern

such that µ(?x) = v, then there must be strictly less that n different nodes v

i

such

that (v, v
i

) ∈ r(G) and corresponding mappings such that µ
i

in JC(s′,?yi)KG where

µ

i

(yi) = v
i

. Therefore, [≥
n

r.s

′]v,G,� = 0.

Thus, proving that the defined assignment � is indeed faithful, guaranteed by the result

of the SPARQL query Q.

Finally, this proves that if G is valid against S if and only if JQKG = �. Therefore,

for any given graph G and non-recursive shape schema S , the set of SPARQL queries QS
can be constructed to build the single SPARQL query Q. The latter can then be evaluated

over G and if and only the results are �, then G is indeed valid against S . Therefore any

arbitrary non-recursive schema S is indeed expressible in SPARQL.

⇤

This section shows that not only in-memory approaches are in the realm of possibil-

ities when considering validation of SHACL schemas. A whole fragment of schemas can

be translated to SPARQL and leave the computation problem to an endpoint instead of the

working machine. Sadly, it has been shown in (Corman et al., 2019) that multiple SHACL

fragments apart from the non-recursive case cannot be expressed in SPARQL. This will be

further described in the next section.

34

4. VALIDATION FOR RECURSIVE SHACL

In this section, we discuss the rest SHACL schemas, i.e. recursive schemas. Since it

was already showed in (Corman et al., 2018a), that validation of full SHACL in data com-

plexity is NP-hard, we revise the known recursive fragments and identify their tractability

in order to introduce in the two following sections a new proposed tractable fragment.

Straight away, the difference with the previous discussed fragment is the presence of

cycles in the dependency graph of an schema. This detail makes it impossible for ap-

proaches like the Backward and Forward Chaining evaluations to work, because checking

that a node satisfies a shapes constraint is not necessarily bounded to end. What happens

then is that checking satisfaction for a certain node and shape could be decided directly

with local information of the node, or dependencies between shape assignments are estab-

lished in a cyclical manner which leave unclear results. For example, a node v could be

assigned the shape s only if neighbor node v′ is assigned shape s′, while the assignment of

s

′ for v′ depends on another assignment that depends on the original s(v). The complexity

between these generated cyclical dependencies grows with the complexity of the schema.

Separately, Section 2 hinted that the presence of negation in dependency cycles make

the validation problem even harder as it introduced the need to differentiate between vali-

dation by total and partial assignments. It was also mentioned the categorization of strat-

ified schemas as the ones whose dependency graph do not contain a cycle with at least

one negation. In (Corman et al., 2018a) they are further described as schemas where a

well behaved shape stratum can be defined via a labeling function over the set of shapes of

the schema, which cannot be accomplished with negative cycles. For instance, Figure 4.1

shows an example of a recursive and stratified schema. A well behaved stratum can be

selected by assigning s2 the lowest level, and then all the rest a higher one to respect the

presence of a negation.

For the rest of this thesis, we will denote the fragment of stratified SHACL as Lstrat.

Even tough it was shown that for Lstrat the validation problems through total and partial

assignments coincide, their general validation problem is still NP-hard in data-complexity.

35

s0 s1

s2

s3 s4

s5

¬
FIGURE 4.1. Example of a stratified schema.

The main issue that arises, is the fact that even through negative cycles are not allowed,

multiple positive and negative paths still can arrive to a cycle. This happens in Figure 4.1

between the shapes s0 and s2. Then, in validation processing, assignments of the shape

s2 cannot be done independently without cheeking assignments for s0, because one path

may depend on only positive assignments, while the other translates into dependencies for

their negation.

On the bright side, there are two recursive but tractable schema fragments already

identified: L+∨ (introduced in (Corman et al., 2018b)) and Ls (introduced in (Corman,

Reutter, & Savkovic, 2018c)). The first fragment, L+∨, we call positive SHACL. It is de-

fined by simply disallowing negation to be used in constraints, but it does allow the use of

disjunction (∨) as a native operator. Whereas Ls, called strictly stratified SHACL, allows

the use of negation, but restricts the interplay between recursion and negation, even fur-

ther than Lstrat. The left dependency graph in Figure 4.2 corresponds to a positive schema,

while the right one corresponds to a strictly stratified schema. As one may guess, both

fragments are contained in Lstrat, therefore neither allow the use of negation inside a de-

pendency cycle between shapes.

These tractable fragments do achieve the property that stratified SHACL did not, where

the assignment of cyclic shapes can be done independently, and the assignment of shapes

that depend on them would not alter this decision.

As we can see, negation in the scope of a cycle is not the only source of intractabil-

ity, the interplay between recursion and negation in general arises problems. It turns out

that this interplay also arises between negation and shapes with target queries. Specifi-

cally, shapes with negations between them, where both of them have targets nodes to be

36

s0 s1

s2

s3 s4

s5

s0 s1

s2

s3 s4¬
FIGURE 4.2. Examples of positive and strictly stratified schemas.

s1

s2¬ s0

s1

s2¬

FIGURE 4.3. Simple recursive schema for which validation can become intractable.

validated, in the presence of all positive cycles, can also produce intractability. The left

of Figure 4.3 shows the dependency graph of a simple schema of two shapes s1 and s2,

where s2 depends on the negation of s1, while the latter has a loop dependency. If both

of them have target queries, then the validation problem can become intractable. Propo-

sition 4.1 proves it as a demonstration by establishing a reduction from the 3CNF-SAT to

shape validation using a schema with an equivalent dependency graph.

Proposition 4.1. A recursive schema S exists such that 3CNF-SAT is reducible to

validation of S and there are no negative cycles in GS .

PROOF. 3CNF-SAT takes a propositional formula ' in 3CNF form and then looks to

answer if said formula can be satisfied. Now, consider the schema S3CNF-SAT = �S, targ,def�
defined as follows:

S = {c, n}
targ(c) = SELECT ?x WHERE{ ?x :type :cla }

def(c) = ≥1 :l. ¬n
targ(n) = SELECT ?x WHERE{ ?x :type :var }

def(n) = ≥1 :r. n
37

Note that the dependency graph for S3CNF-SAT coincides with the left example in Fig-

ure 4.3. To show that 3CNF-SAT can be reduced to validation over S3CNF-SAT, a graph G
'

can be constructed such that ' can be satisfied if and only if G
'

is valid against S3CNF-SAT.

Then, consider the propositional formula ' in 3CNF form of n variables x1, . . . , xn

and ` clauses. Then the formula is of the form ' = C1 ∧C2 ∧ . . . C`

, and each clause is of

the form C

i

= l
i1 ∨ li2 ∨ li3. We define the instance graph G

'

= �V
'

,E

'

� as follows:

V

'

= {:cla,:var} ∪ {C
i

� i ∈ [1, `]}
∪ {x

i

� i ∈ [1, n]} ∪ {¬x
i

� i ∈ [1, n]}
∪ {x

i

� i ∈ [1, n]}
E

'

= {(C
i

,:type,:cla) � i ∈ [1, `]}
∪ {(C

i

,:l, l
ij

) � i ∈ [1, n], j ∈ [1,3]}
∪ {(x

i

,:type,:var) � i ∈ [1, n]}
∪ {(x

i

,:r, x
i

) � i ∈ [1, n]} ∪ {(x
i

,:r,¬x
i

) � i ∈ [1, n]}
∪ {(x

i

,:r, x
i

) � i ∈ [1, n]} ∪ {(¬x
i

,:r,¬x
i

) � i ∈ [1, n]}
As a reference, Figure 4.4 shows the resulting graph G

'

if the formula is ' = (x1 ∨¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).
To show the reduction is correct, we will prove that ' can be satisfied if and only ifG

'

is valid against S . First, for the right direction, if ' can be satisfied there is a boolean

assignment ↵ ∶ var(')→ {0,1} such that ↵(') = 1.

38

:var:cla

x1

:r

¬x1

:r

x1

:r

:r

:type

x2

¬x2

:r

x2

:r

:r

:type

x3

¬x3

:r

x3

:r

:r

:type

C1

:type

:l

:l

:l
C2

:type

:l

C3

:type

:l

:l

FIGURE 4.4. Instance graph G
'

reduction example.

Consider the shape assignment �
↵

for G
'

and S defined as

�

↵

= {c(C
i

) � i ∈ [1, `]}
∪ {n(x

i

) � i ∈ [1, n]}
∪ {¬n(x

i

) � ↵(x
i

) = 1}
∪ {n(x

i

) � ↵(x
i

) = 0}
∪ {n(¬x

i

) � ↵(x
i

) = 1}
∪ {¬n(¬x

i

) � ↵(x
i

) = 0}
39

First, �
↵

is valid since there is no pair of shape s and node v such that {s(v),¬s(v)} ⊆
�

↵

and it clearly contains the correct assignment for target queries over G
'

, because all

c(C
i

) and n(x
i

) are present. Second, the shape constraints must be satisfied. For every

node x
i

, �
↵

assigns the shape n to either one of its succesors x
i

or ¬x
i

, and ¬n to the other.

Since every pair of nodes x
i

and ¬x
i

have self :r loops, either assigning n of its negation

satisfies def(n) = ≥1 :r. n. Therefore, n(x
i

) → [def(n)]xi,G',�↵ = 1, and so does foe

every n(x
i

), n(¬x
i

), ¬n(x
i

) and ¬n(¬x
i

).
Since ' is in CNF, then ↵(C

i

) = 1 for every clause C

i

, meaning that for each one

there is one literal (of three) where ↵(l
i,j

) = 1. If l
i,j

is positive, then its a variable x

k

that

is assigned to 1, and the corresponding node in G
'

is assigned as ¬n(x
i

). While if l
i,j

is

negative, then its the negation of variable x

k

that is assigned to 0, and the corresponding

node in G
'

is assigned as ¬n(¬x
i

). Therefore, every node C
i

has at least one :l successor

with ¬n is assigned to it. Which means c(C
i

) → [def(c)]Ci,G',�↵ = 1. Thus, proving that

�

↵

is faithful for G
'

and S .

Now, for the left direction, if G
'

is valid against S then a faithful shape assignment

� for G
'

and S exists. Consider the boolean assignment ↵
�

defined as ↵
�

(x
i

) = 1 ↔¬n(x
i

) ∈ �.

For every clause C

i

in ', a corresponding node C

i

in the G
'

exists with only three

outgoing :l edges for other three nodes. Since � is faithful, C
i

is part of the target set for

shape c, meaning c(C
i

)→ [def(c)]Ci,G',�↵ = 1, which implies thanks to def(c) =≥1 :l. ¬n
that one of these three :l successors is assigned ¬n. Let’s call that node l, then ¬n(l) ∈ �.

Because of construction of G
'

, l is a successor because l is a literal in C

i

. If l is a positive

literal then is also a variable, by definition ¬n(l) ∈ � and then ↵

�

(l) = 1. If not, the

positive literal ¬l is also a node in G
'

, where both l and ¬l are successors to x

k

. x
k

is in

the target query for n, and therefore satisfies def(n) meaning l or ¬l is assigned n. But¬n(l) ∈ �, then n(¬l) ∈ �. And since � is a valid shape assignment, ¬n(¬l) ∉ �, then

↵

�

(¬l) = 0 and ↵
�

(l) = 1. Either case, for every clause C

i

in ' a literal l exists such that

↵

�

(l) = 1, and ↵
�

(C
i

) = 1. Thus ↵
�

(') = 1, which means ' can be satisfied.

40

This finally proves that 3CNF-SAT can be reduced to validation of S3CNF-SAT, where

GS3CNF-SAT does not contain an negative cycle.

⇤

This shows that even recursive schemas with very simple dependency graphs and

without negative cycles are as hard as 3CNF-SAT. But more specifically, it shows that

the interplay between targeted shapes and negation is also key in for tractability in the

validation problem. Although, the referenced definitions for stratified and strictly stratified

schemas already considered this aspect, both of them are specified over schemas with

single shape with target query as generalization of multiple shapes with target queries. Any

schema can be transformed to fit this form, by simply adding a new shape and redefining

target queries accordingly, as the right schema in Figure 4.3 that introduces the shape s0

as the single targeted shape. This consideration translates into adding edges into GS that

represent target query dependencies to be considered in the whole schema relation. Thus,

following the stratified family definition, the equivalent schema for the one used in the

reduction is indeed stratified but not strictly stratified, which explains intractability.

Thus far, three tractable fragments have been introduced, and each one avoids in-

tractability in different and almost exclusive ways. Lnon-rec avoids recursion all together

and is the easiest case. While L+∨ avoids the use of negation which simplifies how to han-

dle cyclic dependencies. Finally, Ls takes into account the interplay of negation, recursion

and targets. What it is common between the three, is that neither handle negations in the

scope of a cycle in any way, nor define a well behaved negative cycle which will later

show actually exists.

As for SPARQL expressivity, the results are negative. Since validation of full SHACL in

data complexity is NP-hard, full SHACL cannot be reduced to SPARQL evaluation (which

is PTIME in data complexity, as shown in (Pérez, Arenas, & Gutiérrez, 2009)). Even if we

focus on the introduced fragments for which it is known validation is tractable, we have a

negative result. Schemas in Ls and L+∨ exists such that they surpass SPARQL expressivity,

as shown in (Corman et al., 2019) (Section 4). Then if the schema is recursive, it is not

41

possible in general to retrieve target nodes violating a given shape by issuing a single

SPARQL query. This means that some extra computation (in addition to SPARQL query

evaluation) needs to be performed, in memory.

Even tough the general case has a negative result, we insist on the use of SPARQL

query evaluation for validation as most RDF datasets are only accessible through SPARQL

endpoints, and that it may be reasonable to consider using multiple queries instead of

one. The latter may bring a trade-off that simplifies the complexity of query evaluation.

This is exactly the case for an all general recursive schema validation approach that uses

multiple queries whose results then are processed in memory. We introduce a revision of

this approach in the next section, as we alter it into a tractable algorithm in Section 6.

42

5. RULE PATTERNS

This section provides a revision of the proposed approach in (Corman et al., 2019) to

validate arbitrary SHACL schemas over a SPARQL endpoint. Looking for a satisfying as-

signment using brute-force only is definitely out of the question. Instead, the problem can

be attacked by reducing validation to checking if a propositional formula can be satisfied,

possibly leveraging the optimization techniques of a SAT solver.

As previously shown, when testing if a shape s can be assigned to a node v, the

negative answer could be tested locally and easily, but it may also depend on the assign-

ment of another shape over a neighbor node v

′. How these dependencies chain and link

between them defines the complexity of the whole validation problem. Then, the rule pat-

tern approach arises as a way to keep track of all dependencies between potential shape

assignments for nodes, both acyclical and cyclical. And does so by constructing proposi-

tional formulas that encode these dependencies, and considering the whole set of formulas

as a satisfaction problem. If the set of formulas can be satisfied, then there is a way to

assign shapes following the dependencies, and vice versa.

Specifically, given a graph G to validate against a shape schema S , the road map of rule

pattern approach is as follows. First, a normal form for shape schemas is defined and it is

expected that the target schema follows this form. Second, one SPARQL query is associated

to each shape in the normalized schema, such that it will match all nodes in G that can

potentially be assigned to the corresponding shape. Third, from the evaluation of these

queries over the graph database we construct a set of rules of the form l0 ∧ .. ∧ ln → s(v),
where each l

i

is either s
i

(v
i

) or ¬s
i

(v
i

), for some s

i

∈ S and v

i

∈ VG . Intuitively, a rule

such as s1(v1) ∧ ¬s2(v2)→ s(v) means that, if node v1 conforms to shape s1 and node v2

does not conform to shape s2, then node v conforms to shape s. These rules alone are not

sufficient for a sound validation algorithm, so we complement them with additional rules

encoding targeted nodes, and other necessary information. Finally, by testing if the whole

set of propositional formulas generated can be satisfied, the verification of G over S can

be answered. Correctness of this method is proven in (Corman et al., 2019).

43

This approach can handle validations with respect to either total or partial assign-

ments. For validation with respect to partial assignments the set of rules can be satisfied

under 3-valued (Kleene’s) logic, while for validation with respect to total assignments, the

set of rules can be satisfied under standard (2-valued) propositional logic. We will focus

on the latter alternative.

As shown in (Corman et al., 2019), the machinery of this approach could be used to

design more efficient algorithms for certain tractable fragments, without the need of a SAT

solver. By reviewing this approach and analyzing the form and nature of the constructed

formulas, we have found a new bigger and tractable fragment of SHACL schemas. To intro-

duce this fragment on Section 6, we spend the rest of this section to review the necessary

notation, definitions for each of its components and changes made in this version.

Normal form. A shape schema S = �S, targ,def� is in normal form if the set S of shape

names can be partitioned into three sets S+, S− and S

NEQ, such that for each s ∈ S+ (resp.

s ∈ S− and s ∈ SNEQ), def(s) verifies �
s

+ (resp. �
s

− and �
s

NEQ) in the following grammar:

�

s

+ ∶∶= ↵ � ≥
n

r.↵ � �
s

+ ∧ �
s

+

↵ ∶∶= � � I � s
�

s

− ∶∶= ¬s
�

s

NEQ ∶∶= ¬EQ(r1, r2)
It is easy to verify that a shape schema can be transformed in linear time into an

equivalent normalized one, by introducing fresh shape names (without target). We mean

equivalent by that both schemas validate exactly the same graphs, with exactly the same

target violations. This is a revised version of the normal form proposed in (Corman et al.,

2019), where the main change was the normalized use of negation. Now negation can only

be used through a single shape definition, leaving all other constraints as “positive”.

44

SPARQL queries. Normalization allows us to associate a SPARQL query qdef(s) to each

shape name in the normalized schema. The purpose is that the query qdef(s) retrieves all

nodes that potentially validates def(s), and also the corresponding neighboring nodes to

which satisfaction may depend on.

For instance, let def(s0) = (≥1 :p1.s1)∧ (≥1 :p2.s2). For a node to be assigned s0, it

needs to have at least one :p1-neighbor and one one :p2-neighbor. Then, the following

query filters out any nodes that do not have these local properties:1

qdef(s0) = SELECT ?x ?y1 ?y2 WHERE {?x :p1 ?y1 . ?x :p2 ?y2 }
The inductive definition of qdef(s) can be found in (Corman et al., 2019) (Figure 3), we

omit it as it does not change for our purposes and can also be applied over the updated nor-

mal form. A notable aspect of this translation is that it originates altogether such simpler

queries to be processed by the SPARQL endpoint than the one presented for non-recursive

schemas.

Rule patterns. The next step consists in generating a set of propositional formulas, based

on the evaluation of the queries that have just been defined. To generate such formulas,

we associate a rule pattern pdef(s) to each shape s ∈ S. This rule pattern is of the form

l1 ∧ .. ∧ ln → s(?x), where each l

i

is either �, s
i

(w
i

) or ¬s
i

(w
i

), for some shape s

i

∈ S
and variable w. The definition of pdef(s) is inductive on the structure of def(s), and can be

found in (Corman et al., 2019) (Figure 4).

Continuing the example above, if def(s0) = (≥1 :p1.s1) ∧ (≥1 :p2.s2), then:

qdef(s0) = SELECT ?x ?y1 ?y2 WHERE {?x :p1 ?y1 . ?x :p2 ?y2 }
pdef(s0) = s1(?y1) ∧ s2(?y2)→ s0(?x)

Rule formulas. Each rule pattern pdef(s) is then instantiated as propositional formulas

using the answers of qdef(s) over the SPARQL endpoint, which yields a set Jpdef(s)KG of

1 We omit a trivial FILTER (?y1 = ?y1 AND ?y2 = ?y2) for readability.

45

formulas, called rule formulas. Intuitively, each rule represents a shape assignment depen-

dency from the neighbors of a node v, when trying to validate that node against a shape

s. This step transformes potential dependencies in the schema, into the actual assignment

dependencies that appear in a graph. For instance, assume that the endpoint returns the

following mappings for qdef(s0):

Jqdef(s0)KG = {{?x � v0,?y1 � v1,?y2 � v2},
{?x � v0,?y1 � v3,?y2 � v4}}

Jpdef(s0)KG = {s1(v1) ∧ s2(v2)→ s0(v0),
s1(v3) ∧ s2(v4)→ s0(v0)}

The first rule means if v1 verifies def(s1), and v2 verifies def(s2), then one can infer that

v0 verifies def(s0) (and similarly for the second rule). For every rule formula l1∧..∧ln → l,

we will call l the head of the formula, while l1∧ ..∧ ln is the body of the formula. Also, we

use JpSKG to designate the set of all generated rule formulas, i.e. JpSKG = �
s∈SJpdef(s)KG .

So far, rule formulas capture the shape constrains definitions grounded to possible

nodes. Unfortunately, these are not enough to reflect the whole shape assignment problem.

So additional formulas are introduced to achieve that. These are complement formulas,

target formulas and non-retrieval formulas.

Complement formulas. So far, with a rule s1(v1) ∧ s2(v2) → s0(v0), we are capturing

the idea that v0 must be assigned shape s0 whenever v1 is assigned s1 and v2 is assigned

s2. But we also need to encode that the only way for v0 to be assigned shape s0 is to

satisfy one of these rules. If there is just one rule with s0(v0) as its head, we only need

to extend our set of rules with s0(v0) → s1(v1) ∧ s2(v2). But for more generality, we

construct a second set Jp←S KG of propositional formulas called complement formulas as

follows. For every literal s(v) that appears as the head of a rule C → s(v) in JpSKG ,

let C1 → s(v), .., C
`

→ s(v) be all the rules that have s(v) as head. Then we extend

Jp←S KG with the formula s(v) → (C1 ∨ .. ∨ C`

). Now, for every complement formula

46

l → (C1 ∨ .. ∨C`

), we will call l the head of the formula, while C1 ∨ .. ∨C`

is the body of

the formula.

Target formulas. Next, we add the information about all target nodes, with the set JtSKG
of (atomic) formulas, defined by JtSKG = {s(v) � s ∈ S, v ∈ Jtarg(s)KG}.
Non-retrieval formulas. Finally, we use a last set of formulas to ensure that the algorithm

is sound and complete. Intuitively, the query qdef(s) retrieves all nodes that may verify

shape s (bound to variable ?x). But evaluating qdef(s) also provides information about the

nodes that are not retrieved: namely that they cannot verify shape s. A first naive idea is

to extend our set of propositional formulas with every literal ¬s(v) for which Jqdef(s)KG
does not contain any mapping where v is bound to ?x. But this may require retrieving

all nodes in G beforehand, which is inefficient. One can do better, by considering only

combinations of shapes and nodes that are already in our rules. We thus construct another

set JaSKG of facts called non-retrieval formulas. It contains all literals of the form ¬s(v)
such that: ¬s(v) or s(v) appears in some formula in JpSKG ∪ JtSKG , and s(v) is not the

head of any formula in JpSKG (i.e. there is no rule of the form → s(v) in JpSKG).

Validation formula set. Let �G,S be the validation formula set, which is the union of all

the sets of formulas constructed so far: �G,S = JpSKG ∪ Jp←S KG ∪ JtSKG ∪ JaSKG . We treat

�G,S as a set of propositional formulas over the set {s(v) � s ∈ S, v ∈ VG} of propositions.

As shown in (Corman et al., 2019), the set �G,S is polynomial in the size of the evaluation

of all queries def(s) and targ(s). And more importantly, �G,S can be satisfied if and only

if G is valid against S .

Hence, validity of schemas over graphs can be checked by constructing �G,S and

checking if it can be satisfied with a SAT solver. This algorithm matches the NP upper

bound in data complexity mentioned earlier, since each of Jqdef(s)KG and Jtarg(s)KG can

be computed in polynomial time, when S is considered to be fixed, and thus the set �G,S
of rules can be computed in polynomial time in data complexity.

Rule pattern evaluation reflects the dependencies between shape assignments that

will form when checking satisfaction of shape constraints. As an example, we show in

47

Table 5.1 the produced validation formula set �G,S for the schema and example graph

showed in the proof for Proposition 4.1. Cyclical dependencies appear as for every pair

n(x
i

) and n(¬x
i

), while other assignments (like c(C
j

) and n(x
i

)) depend on either those

assignments or their negation. The original approach proposed would then make use of an

external SAT solver to check satisfiability for this set.

Contrarily, it was also shown in (Corman et al., 2019) that for some tractable frag-

ments, as Lnon-rec, L+∨ and Ls, an in-memory processing of these formulas by applying

inference can achieve tractability. We continued developing this idea, by studying the re-

sulting set of formulas that rule patterns generates and if by applying logical resolution

rules a sound algorithm can be reached.

For example, literals in JtSKG and JaSKG that need to be true give information about

formulas that may already be satisfied in JpSKG and Jp←S KG , and therefore do not contribute

relevant information, or others formulas that may simplify and result in new information

about assignments. Table 5.2 shows an example of newly derived formulas by taking these

literals as true.

Unfortunately, and as one might expect, in the general case this simplification will

need help of a SAT solver anyways. But, if we restrict the properties for a certain recursive

fragment, we find that this process arrives to a sound and complete validation process. This

is shown in Section 6.

48

JpSKG Jp←S KG
n(x1)→ n(x1) ¬n(x1)→ c(C1) n(x1)→ n(x1)
n(¬x1)→ n(¬x1) ¬n(¬x2)→ c(C1) n(¬x1)→ n(¬x1)
n(x2)→ n(x2) ¬n(x3)→ c(C1) n(x2)→ n(x2)
n(¬x2)→ n(¬x2) ¬n(¬x1)→ c(C2) n(¬x2)→ n(¬x2)
n(x3)→ n(x3) ¬n(x2)→ c(C2) n(x3)→ n(x3)
n(¬x3)→ n(¬x3) ¬n(¬x3)→ c(C2) n(¬x3)→ n(¬x3)
n(x1)→ n(x1) ¬n(¬x3)→ c(C2) n(x1)→ n(x1) ∨ n(¬x1)
n(¬x1)→ n(x1) ¬n(¬x2)→ c(C3) n(x2)→ n(x2) ∨ n(¬x2)
n(x2)→ n(x2) ¬n(¬x3)→ c(C3) n(x3)→ n(x3) ∨ n(¬x3)
n(¬x2)→ n(x2) c(C1)→ ¬n(x1) ∨ ¬n(¬x2) ∨ ¬n(x3)
n(x3)→ n(x3) c(C2)→ ¬n(¬x1) ∨ ¬n(x2) ∨ ¬n(¬x3)
n(¬x3)→ n(x3) c(C3)→ ¬n(¬x1) ∨ ¬n(¬x2) ∨ ¬n(¬x3)
JtSKG JaSKG
n(x1) c(C1) �
n(x2) c(C1)
n(x3) c(C3)

TABLE 5.1. Example of constructed �G,S for reduction in Figure 4.4

JpSKG Jp←S KG JtSKG
n(x1)→ n(x1) n(x1)→ n(x1) n(x1) ∨ n(¬x1) n(x1)
n(¬x1)→ n(¬x1) n(¬x1)→ n(¬x1) n(x2) ∨ n(¬x2) n(x2)
n(x2)→ n(x2) n(x2)→ n(x2) n(x3) ∨ n(¬x3) n(x3)
n(¬x2)→ n(¬x2) n(¬x2)→ n(¬x2) ¬n(x1) ∨ ¬n(¬x2) ∨ ¬n(x3) c(C1)
n(x3)→ n(x3) n(x3)→ n(x3) ¬n(¬x1) ∨ ¬n(x2) ∨ ¬n(¬x3) c(C2)
n(¬x3)→ n(¬x3) n(¬x3)→ n(¬x3) ¬n(¬x1) ∨ ¬n(¬x2) ∨ ¬n(¬x3) c(C3)

TABLE 5.2. Filtered and simplified formulas from Figure 5.1

49

6. A TRACTABLE RECURSIVE FRAGMENT

In this section, we will define a SHACL fragment that is an extension of previous

identified tractable fragments, and then we will proceed to show it is tractable as well by

stating an algorithm using the rule pattern approach. First, we will define the needed terms

to identify it, and then we will propose the tractable algorithm.

6.1. Definition and expressiveness

As for the rest of this document, for all definitions we consider S = �S, targ,def� as a

shape schema, GS its corresponding dependency graph and G a graph database to validate.

First, a shape s ∈ S is considered terminal if and only if one of the following holds: s

is a sink node in GS , i.e. s has no outgoing edges; or s is not part in of a cycle in GS , and

all of its node successors are also terminal shapes. Terminal shapes represent all shapes

that can be actually completely validated without cyclical dependencies, as for the case ofLnon-rec. Furthermore, if S ∈ Lnon-rec, then all shapes in S are terminal.

This introduces the idea of detecting a two set partition in the shape schema: termi-

nal shapes, and non-terminal shapes. Our proposal considers that depending on how the

non-terminal shapes are specified and relate between each other, then tractability can be

assured.

Specifically, we define consistent SHACL (Lcons) as the fragment of shape schemas

that are consistent. A shape schema S is consistent if and only if it is in normal form (as

defined in Section 5) and a labeling function ⌧ ∶ S → {0, 1�2,1} exists such that:

● For any shape s ∈ S, ⌧(s) = 1�2 if and only if s is a terminal shape.● For any shape s ∈ S, if targ(s) ≠ � then ⌧(s) ≥ 1�2.● For every pair of non-terminal shapes s, s′ ∈ S:

– if there is a negative edge between s and s

′ in GS then ⌧(s) = 1 − ⌧(s′);
– if there is a positive edge between then, then ⌧(s) = ⌧(s′)

50

s01�2
s11�2

s2 1�2
s3 1�2
s4 1�2s51�2

s61�2 s7 1�2

¬
¬

s01

s11

s2 1�2
s3 1

s4 1s51

s61 s7 1�2

s01

s11

s2 1�2
s3 1

s4 0s51

s61 s7 0

¬

FIGURE 6.1. Consistent labeling for acyclic, positive and strictly stratified schemas.

This definition extends the idea well behaved dependencies found in the other tractable

fragments. On one hand, identifies terminal shapes as the ones where satisfaction check-

ing is direct (label 1�2), and thus identifies the recursive portions of the schema (labels 1

and 0). And on the other, establishes conditions that need to be met considering negation

in dependencies and target queries dependencies. Figure 6.1 shows some labeling exam-

ples for dependency graphs of tractable schemas: Lnon-rec at the left, L+∨ in the middle, andLs at the right. Proposition 6.1 shows that consistent SHACL indeed extends the tractable

fragments revised in Section 4 and also captures strictly more schemas.

Proposition 6.1. (Lnon-rec ∪L+∨ ∪Ls) � Lcons

PROOF. We will show for each fragment separately that all contained schemas are

also consistent. Then, by example we can prove a consistent schema exists that is in

neither of the other tractable mentioned fragments.

Consider S = �S, targ,def� ∈ Lnon-rec. By definition, all s ∈ S are terminal shapes

in GS . Otherwise, a cycle should exists in GS . Therefore, an equivalent schema S

′ can

be constructed introducing new shapes such that S′ is in normal form, and the constant

labeling function ⌧(s) = 1�2 assigns all shapes the same value as they are all terminal. ⌧

suffices the needed properties trivially, thus S ∈ Lcons.

51

Now, consider S = �S, targ,def� ∈ L+∨. Since this fragment uses disjunction freely,

it can not be directly compared. But, to match semantics, every use of disjunction, say

as def(s) = s1 ∨ s2, can be converted to def(s) = ¬((¬s1) ∧ (¬s2)). This introduces

negation to the schema only in the scope of disjunctions, but it may appear in the path

of a cycle. Because the dependency between s and potential shapes s1 and s2 entails two

negations, the consistency labeling of the schema can be achieved easily. An equivalent

schema S ′ can be constructed so that it is in normal form and that takes into account the

normalization of converted disjunction, that may be as follows for the previous example:

def(s) = ¬s′, def(s′) = s′1 ∧ s′2, def(s′1) = ¬s1 and def(s′2) = ¬s2. By doing so, a function

⌧ can be defined such that for every terminal shape original to S are labeled as 1�2, and all

non-terminal shapes original to S are labeled as 1, while introduced shapes in S ′ for the

normalization of disjunctions are labeled as: ⌧(s′) = 0, ⌧(s′1) = 0 and ⌧(s′2) = 0 (shape

names are in reference to the used example). ⌧ makes S ′ consistent since: there is no use

of negation apart from disjunctions, and therefore labeling 1 or 1�2 to shapes original toS is fitting; and since the only labeled shapes as 0 are added shapes enclosed by negative

edges, they do not violate the target query condition and also have fitting labeling with

their neighbors in GS . Thus, S ∈ L+∨.
Now, consider S = �S, targ,def� ∈ Ls. The definiton in (Corman et al., 2018c) takes

as assumption that schemas have only one target query defined for a single shape s0 and

node v0. With that in mind, and taking an equivalent schema S ′ in normal form, we can

define a consistent labeling function ⌧ as follows. First, ⌧(s) = 1�2 for all terminal shapes

in the schema, if s0 is not terminal, then ⌧(s0) = 1. Then, for every non-terminal shape s

such that a path from s0 to s exists, if the path is negative and then number of negations

in the path is odd then ⌧(s) = 0, for all other cases with the existence of a path, ⌧(s) = 1.

Since there is no guarantee that all shapes are contained in the same component as s0

in GS′ , the same labeling definition can be extended by taking an arbitrary node s

′
0 in a

separated component as fixed such that ⌧(s′0) = 1 and applying the previous definition with

that shape as reference. Labeling function ⌧ directly satisfies the target query and terminal

shapes labeling. For every pair of non-terminal shapes s′ and s

′′ that are connected through

52

an edge in GS′ , this edge may be positive or negative. In the positive case and if both are

contained in the same component as s0, because S ′ ∈ Ls, then from s0 both s

′ and s

′′
must be connected through positive paths, or by negative paths with the same amount of

negations in it. Therefore, in either case ⌧(s′) = ⌧(s′′). Now, if they are connected by a

negative edge and both are contained in the same component as s0, all paths from s0 and

s

′′ must pass by s

′. Then, independent if the paths between s0 and s

′ have negation of not,

then a path between s0 and s

′′ has an extra negation which ⌧ would label s′′ the opposite

as s′. The previous arguments can be extended if s′ and s

′′ are not contained in the same

component as s0, but have s

′
0 as a reference. Thus, ⌧ is a valid consistent labeling.

Now, we define the counterexample. Consider the schema Scons = �S, targ,def�, de-

fined as follows1:

S = {s1, s2, s3, s4}
targ(s1) = v1 def(s1) = ≥1 p1.s2
targ(s2) = v2 def(s2) = ¬s3
targ(s3) = � def(s3) = ≥1 p2.s4
targ(s4) = � def(s4) = ¬s1

Scons is consistent since a consistent labeling function ⌧ for S can be defined. Let

⌧(s) = 1 for s ∈ {s1, s2} and ⌧(s) = 0 for s ∈ {s3, s4}. Since all shapes are part of the

s1, s2, s3, s4 cycle, there are no terminal shapes to be labeled 1�2. s1 and s2 are correctly

labeled since both have target queries. ⌧ also takes into account the positive edge between

s1 and s2; the positive edge between s3 and s4; the negative edge between s2 and s3; and

the negative edge between s4 and s1. Its clear S ∉ Lnon-rec ∪L+∨ ∪Ls since there is negation

used in a dependency cycle in GS . Thus, Scons ∈ Lcons but Scons ∉ Lnon-rec ∪L+∨ ∪Ls.
⇤

The last part of the proof for the previous proposition showed that consistent SHACL

does include dependencies cycles with negations in them. This, directly means that not

1 The target definition for shapes s1 and s2 is an abuse of notation to indicate that their evaluation will result
in specific nodes v1 and v2.

53

s1 s2

s3s4

¬¬
s1

s4

s2 s3¬

FIGURE 6.2. Counterexamples between stratified and consistent schemas.

all consistent schemas are necessarily stratified, but it also turns out that not all stratified

schemas are consistent. Proposition 6.2 shows this, meaning that consistent schemas form

a separate family of schemas.

Proposition 6.2. Lstrat

and Lcons

are incomparable. i.e. Lstrat �⊆ Lcons

and Lcons �⊆ Lstrat

.

PROOF. To show that Lcons �⊆ Lstrat, the same counterexample Scons used in the proof

for Proposition 6.1 can be used. The right graph in Figure 6.2 shows the dependency graph

of this counterexample. Because the graph is a negative cycle, Scons cannot be stratified

since a valid stratum labeling cannot be defined.

To show that Lstrat �⊆ Lcons, we define S strat = �S, targ,def�, as follows2:

S = {s1, s2, s3, s4}
targ(s1) = v1 def(s1) = (≥1 p1.s2) ∧ (≥1 p1.s3)
targ(s2) = � def(s2) = ≥1 p2.s4
targ(s3) = � def(s3) = ≥1 p2.¬s4
targ(s4) = � def(s4) = ≥1 p3s4

The left dependency graph in Figure 6.2 corresponds to GSstrat . S strat ∈ Lstrat cause the

number labeling str ∶ S → N can be defined as follows: str(s1) = 2, str(s2) = 1, str(s3) = 1,

str(s4) = 0. This labeling successfully implies a well defined stratum in S, thus S strat is

stratified. Now, let’s assume a consistent labeling function ⌧ does exists for S strat. First,

2 Again, the target definition for shape s1 is an abuse of notation to indicate that its evaluation will result in
the specific nodes v1.

54

since there are no terminal shapes in GSstrat , then ⌧(s) ≠ 1�2 for every shape. Second,

targ(s1) ≠ � then ⌧(s1) = 1. Third, positive edges exists such that 1 = ⌧(s1) = ⌧(s2) =
⌧(s3) = ⌧(s4). But, a negative edge exists between s3 and s4, but ⌧(s3) ≠ 1 − ⌧(s4). Then

a contradiction is met and ⌧ cannot exists. Thus, S strat ∉ Lcons.

⇤

The fact that consistent and stratified schemas form non-inclusive families of schemas

raises the question if the validation problem by partial and total assignments coincide for

consistent schemas. After all, the main case where they did not coincide was because

of the presence of negation in a cycle, which stratified schemas avoid. Proposition 6.3

answers this question with a positive.

Proposition 6.3. Let S be a consistent shape schema and G a graph. Then there

exists a partial faithful assignment for G and S if and only if there exists a total faithful

assignment for G and S .

PROOF. The left direction of the proposition is trivial, as a total faithful assignment

is also a partial assignment. For the right direction, from a partial and faithful assignment

�0 for S and G, we will construct a total and faithful assignment �′.
To this end, we need to revise the immediate evaluation operator T, introduced

in (Corman et al., 2018a). As to update its definition to the notation used in this work,

⌃

G,S is the set of all possible shape assignments for S and G. Then, the immediate evalu-

ation operator maps an assignment to another T(�) ∶ ⌃G,S → ⌃

G,S as follows:

T(�) = {s(v) � [def(s)]v,G,� = 1} ∪ {¬s(v) � [def(s)]v,G,� = 0}
Some properties can be shown for the T operator:

(i) First, if � is faithful, then for every atom s(v) or ¬s(v) in � it holds that[def(s)]G,v,� = 1 or 0 respectively, and therefore by definition should also be

in T(�). Therefore, if � is faithful, then � ⊆ T(�).
55

(ii) All newly introduced atoms in T(�) follow the defined semantics for function[�]v,G,�, so if � is faithful, then T(�) is also faithful.

(iii) For any �1,�2 ∈ ⌃G,S , if �1 ⊆ �2, then any element s(v) or ¬s(v) in T(�1)
it holds that [def(s)]G,v,� = 1 or 0 respectively by definition. Since �2 only

extends on the content of �1 and this cannot change the evaluation of the same

constraints, then it also holds that the element should be in T(�2). Therefore,

if �1 ⊆ �2 then T(�1) ⊆ T(�2), meaning T is monotone.

Now, consider the set of assignments ⌃0 ⊆ ⌃G,S that extend �0. Meaning, � ∈ ⌃0 if

and only if �0 ⊆ �. Thanks to monotonicity, for all � ∈ ⌃0, T(�0) ⊆ T(�). And because

�0 is faithful, �0 ⊆ T(�0). Therefore �0 ⊆ T(�), meaning T(�) ∈ ⌃0 for all � ∈ ⌃0. The

latter, in addition with the fact that T is monotone over �⌃0,⊆�, by the weaker version of

the Knaster-Tarski Theorem, T admits a fixed-point �1 over ⌃0. Because �0 ⊆ �1 and �0

is faithful, then also is �1.

The assignment �1 can be computed by recursively applying T starting with �0 until

a fixed-point is reached. Now, �1 is not necessarily a total assignment, i.e. a pair of shape

s and node v can exist such that neither s(v) or ¬s(v) is in �1. If that is the case, then the

corresponding shape s cannot be terminal. This holds because it can be shown that assign-

ments for terminal shapes should be computed for all nodes when applying T recursively,

and therefore is included in the fixed point �1. Because s is not terminal, then def(s)must

include a reference to another shape (or to itself) that is also not terminal.

Consider the set N(�1) of all atoms s(v) for shapes in S and nodes in G, such that

neither s(v) or ¬s(v) is in �1. Then, �1 can be further extended into �′, by the following

definition, by considering the labeling function ⌧ that makes S consistent:

�

′ = �1
∪ {s(v) � s(v) ∈ N(�1) and ⌧(s) = 1}
∪ {¬s(v) � s(v) ∈ N(�1) and ⌧(s) = 0}

56

First, note that �′ is total, since all non-terminal options are covered for every atom

that is not covered by �1.

We will show that �′ is faithful, by analyzing case by case over its items. For every

atom s(v) or ¬s(v) in �

′ such that its also in �1, we already showed that the latter is

faithful and therefore the corresponding constraint holds. Now, consider atoms that are

not in �1:

● s(v) ∈ �′ such that s(v) ∈ N(�1) and def(s) = ¬s′. In this case, ⌧(s) = 1 (by definition

of N), and ⌧(s′) = 0 (because of consistency). Neither s′(v) or ¬s′(v) can be in �1,

if so then s(v) or ¬s(v) should had been in the fixed point of T by definition. Since

⌧(s′) = 0, then ¬s′(v) ∈ �′ by definition, and therefore [def(s)]v,G,�′ = 1.● s(v) ∈ �′ such that s(v) ∈ N(�1) and def(s) ≠ ¬s′. Since S is in normal form, all

mentions of other shapes s

′
, s

′′
, . . . in def(s) must all be positive. Since neither s(v)

or its negation are part of �1 originally, then its because of the absence of other atoms

for s

′
, s

′′
, . . . in �1 too. Since all mentions are positive and ⌧(s) = 1, then ⌧(s′) =

⌧(s′′) = � = 1 because of consistency. Therefore all unmentioned atoms for s′, s′′, . . .
are included as positive atoms, which can only produce [def(s)]v,G,�′ = 1 since there is

no negation involved.● ¬s(v) ∈ �′ such that s(v) ∈ N(�1) and def(s) = ¬s′. Similarly as the first case, neither

s

′(v) or ¬s′(v) can be in �1, but now ⌧(s) = 0 and ⌧(s′) = 1. Then s

′(v) ∈ �′ by

definition, and therefore [def(s)]v,G,�′ = 0.● ¬s(v) ∈ �′ such that s(v) ∈ N(�1) and def(s) ≠ ¬s′. Similarly as the second case,

but now ⌧(s) = ⌧(s′) = ⌧(s′′) = � = 0 with all positive mentions in def(s). All un-

mentioned atoms for s′, s′′, . . . are included as negative atoms, which can only produce[def(s)]v,G,�′ = 0.

Therefore, for all cases, if s(v) ∈ �′ then [def(s)]v,G,�′ = 1; and if ¬s(v) ∈ �′ then[def(s)]v,G,�′ = 0. Since �0 was faithful, and �0 ⊆ �′, then all target constraints were

already satisfied. Thus, �′ is a faithful and total assignment for S and G.

57

Lstrat Lnon-rec

L+∨ Ls
Lcons

PARTIAL ≡ TOTAL

¬
¬¬

FIGURE 6.3. SHACL fragments hierarchy.

Therefore this proves that the partial and total validation problems coincide for Lcons.

⇤

Then, although consistent SHACL and stratified SHACL form non-inclusive families,

both of them are part of a bigger family of schemas if we consider the coincidence of

partial and total validation problems as a fragment. Figure 6.3 shows the known SHACL

fragments with the inclusion of the newly proposed Lcons.

Nonetheless, tractability is not guaranteed for every schema in this bigger fragment,

as we already showed that stratified SHACL can become NP-hard in data complexity. The

good news is that for the case of consistent SHACL, the validation problem is tractable,

which is proven in the next subsection.

58

6.2. Tractable algorithm

The fragment definition and the corresponding validation algorithm were both con-

ceived by analyzing formulas from rule pattern evaluation explained in Section 5. The

algorithm simply takes the resulting formula set for a schema and graph and applies logic

resolution in an iterative manner until it cannot continue. Consistent schemas ensure that

this unit propagation resolution fulfills certain properties that guarantee tractability.

Firstly, consistent schemas ensure that the generated formulas can fit a certain form

by an appropriate renaming of propositional variables.

Consistent validation formula set. Consider consistent schema S , and function ⌧ as its

corresponding labeling function. The consistent validation formula set �G,S,⌧ is defined

as the set of formulas, originally from the validation formula set �G,S , after renaming its

propositional variables and formulas as follows. For every shape s ∈ S such that ⌧(s) = 0,

then for every s(v) variable present in �G,S its corresponding negation variable s(v) =¬s(v) is introduced and extends the variable set. Then, for every shape s ∈ S such that

⌧(s) = 0 and every formula f in �G,S with mentions of s(v) or ¬s(v) is renamed by

replacing ¬s(v) and s(v) respectively. Algorithm 3 shows this process, as it reassigns

literals depending on its corresponding label. It also receives a boolean argument r that

specifies in which way the renaming will be done, so that the same algorithm can be used

to turn the renaming back to the original set of variables.

It is clear that �G,S,⌧ is equivalent to �G,S when considering the equivalence between

replaced variables s(v) = ¬s(v). On the other hand, the appearance of renamed variables

in formulas is very structured thanks to the schema being consistent and in normal form.

By definition terminal shapes only have terminal shapes mentions in their corresponding

rule pattern, so no formula that has a terminal shape atom as a head has any mention of

renamed variables. Then renamed atoms may appear only in non-terminal shape headed

formulas or as literals. Furthermore, formulas from non-terminal shapes involve at least

one atom of non-terminal shapes with the same label value from ⌧ . The only exceptions

to the latter are formulas for negation constraints def(s) = ¬s′, which by definition are the

59

Algorithm 3 RENAME ALGORITHM

Require: Schema S = �S, targ,def�, labeling function ⌧ set F of formulas, and boolean
argument r.

1: for all f ∈ F do
2: for all s ∈ S where ⌧(s) = 0 do
3: if r = 1 then
4: Replace s(v) in f for ¬s(v)
5: Replace ¬s(v) in f for s(v)
6: else
7: Replace ¬s(v) in f for s(v)
8: Replace s(v) in f for ¬s(v)
9: end if

10: end for
11: end for return F

only formulas that involve renamed and non-renamed atoms between only non-terminal

shapes.

This shows that the renaming is only needed for a subset of formulas. We define the

terminal partition PG,S,⌧ = (T ,C) of �G,S,⌧ as the formula partition that takes into account

the type of shape that generated it. We say a shape s generated a formula f if either f or

its head is a literal for s and some node v, or a renamed version of one.

● T = {f ∈ �G,S,⌧ � f is generated from shape s such that ⌧(s) = 1�2}● C = {f ∈ �G,S,⌧ � f is generated from shape s such that ⌧(s) ≠ 1�2}
Now, we define three algorithms designed to carry out the logical resolution over

a set of implication formulas in order to generate an proper assignment or proving that

the set can not be satisfied. In these algorithms, we represent every formula as C →
C1 ∨ C2 ∨ . . . ∨ C`

, since this form adjust to every type of formula from the validation

formula set. C and every C

i

represent conjunctive clauses, and are treated as sets of the

literals that compose the clause, or as � or � for readability. RESOLUTION ALGORITHM is

the main loop that performs unit propagation resolution over a set of implication formulas

F using literals from a set �. Then, in an iterative manner, it updates a set of literals known

to be true and infers from implication formulas new literals that are satisfied. To achieve

60

this, it calls the other two procedures: REDUCE and INFER. The REDUCE ALGORITHM

filters out any formulas that already are satisfied by the given literals; while the INFER

ALGORITHM removes non-satisfied atoms out of formulas, which may potentially derive

new literals to be introduced.

Algorithm 4 RESOLUTION ALGORITHM

Require: Set F of implication formulas and set � of facts.
1: if {s(v) � s(v) ∈ �} ∩ {s(v) � ¬s(v) ∈ �} ≠ � then
2: � ← � ∪ {�}
3: return F,�

4: end if
5: F

′ ← F

6: �

′ ← �

7: repeat
8: F

′′ ← F

′
9: �

′′ ← �

′
10: F

′ ← REDUCE(F ′′,�′′)
11: F

′
,�

′ ← INFER(F ′,�′′)
12: until � ∈ �′ ∨ F

′ = F ′′
13: return F

′
,�

′

Algorithm 5 REDUCE ALGORITHM

Require: Set F of implication formulas and set � of facts.
1: F

′ ← F

2: for all f = C → C1 ∨C2 ∨ . . . C`

∈ F do
3: if � ∩ {¬l � l ∈ C} ≠ � then
4: F

′ ← F

′ − {f}
5: end if
6: for all i, 1 ≤ i ≤ ` do
7: if C

i

⊆ � then
8: F

′ ← F

′ − {f}
9: end if

10: end for
11: end for return F

′

First, as we claim this is a method of logical resolution, is imperative that these pro-

cedures are correct, i.e. they produce equivalent sets of formulas, which is shown in the

next proposition.

61

Algorithm 6 INFER ALGORITHM

Require: Set F of implication formulas and set � of facts.
1: F

′ ← �
2: �

′ ← �

3: for all f = C → C1 ∨C2 ∨ . . . C`

∈ F do
4: C

′ ← {l ∈ C � l ∉ �}
5: if �C ′� = 0 then
6: C

′ ← �
7: end if
8: for all i, 1 ≤ i ≤ ` do
9: if � ∩ {¬l � l ∈ C

i

} ≠ � then
10: C

′
i

← �
11: else
12: C

′
i

← {l ∈ C � l ∉ �}
13: end if
14: end for
15: C

′′ ← {C ′
i

� C
i

≠ �}
16: if �C ′′� = 0 then
17: f

′ ← C

′ → �
18: else
19: f

′ ← C

′ → �C

′′
20: end if
21: if f ′ = �→ � then
22: �

′ ← �

′ ∪ {�}
23: else if f ′ = �→ C

′
1 then

24: �

′ ← �

′ ∪ {l � l ∈ C ′1}
25: else if f ′ = C ′ → � ∧ �C ′� = 1 then
26: �

′ ← �

′ ∪ {¬l � l ∈ C ′}
27: else
28: F

′ ← F

′ ∪ {f ′}
29: end if
30: end for
31: return F

′
,�

′

Proposition 6.4. If F

′
and �

′
are the result that RESOLUTION(F,�) produces, then

the sets of formulas F ∪ � and F

′ ∪ �′ are equivalent.

62

PROOF. First, note that sets � and �′ contain only literals, while F and F

′ contain

non-literal implication formulas. This proof will be separated in two, by showing equiva-

lence of these formula sets first between the input and output of REDUCE algorithm, and

then the same for the INFER algorithm.

In REDUCE, the compared sets are F ∪ � and F

′ ∪ �, where F is the input set of

non-literal formulas, and F

′ the output. Since F

′ is result of removing formulas from F ,

then F

′ ⊆ F holds, and therefore F ∪� � F ′∪�. Now, let � be a propositional assignment

such that � � F ′ ∪ �. It is direct that �(f) = 1 for all common formulas f ∈ (F ∩ F ′) ∪ �.

Then, what is left to show is that any formula f = C → C1 ∨ . . . C`

∈ F − F ′ also must be

satisfied. If f was filtered out, then there was a reason for it and it was done either at line

4 or 8 in REDUCE.

● If it was at line 4, then � ∩ {¬l � l ∈ C} ≠ �. Therefore literal l exists in C such

that �(¬l) = 1 (by also being in �), meaning �(l) = 0, and �(C) = 0. Since f is an

implication, �(f) = 1.● While if it was at line 8, then a clause C

i

exists such that C
i

⊆ �. Therefore meaning

that �(C
i

) = 1 = �(C1 ∨ . . . C`

) = �(f).
Thus, F ′ ∪ � � F ∪ �, meaning F ∪ � and F

′ ∪ � are equivalent.

Now for INFER, the compared sets are F ∪ � and F

′ ∪ �′. Since �′ is result of adding

literals to �, then � ⊆ �′ holds. Every iteration of the algorithm takes a formula f ∈ F , and

may alter it and then add it to either F ′ or add literals to �′. For any iteration, let f = C →
C1 ∨ . . .∨C`

be the formula at the beginning of the iteration, and f

′ = C ′ → C

′
1 ∨ . . .∨C ′m

be its value right after line 20.

First, we will show that for any assignment � that satisfies �, then �(f) = 1 ↔
�(f ′) = 1. By cases for the right direction, if �(f) = 1 and �(C) = 0, then for at

least one literal l ∈ C, �(l) = 0. Since � satisfies � then l cannot be in it. This means

l ∈ C ′ (beacuse of line 4), and therefore �(C ′) = 0, while �(f ′) = 1. The other case

for �(f) = 1 is when �(C1 ∨ . . . ∨ Cn

) = 1. This means there is a clause C

i

such that

63

�(C
i

) = 1, where all literals l in it are valuated to true (�(l) = 1). For the satisfied clause

C

i

, an altered clause C

′
j

is defined in lines 9 through 12. Since no negated literal ¬l can

be in � with �(¬l) = 0, then C

′
j

≠ � and therefore C

′
j

⊆ C

i

. Thus the valuation for f ′
is met: �(C ′

j

) = 1 = �(C ′1 ∨ . . . ∨ C ′m) = �(f ′). For the left direction we will prove

the contrapositive of the right direction. If �(f) = 0, then the one possible valuation is

�(C) = 1 and �(C1 ∨ . . . ∨Cn

) = 0. If so, then it hold for all literals l from clause C that

�(l) = 1, and since C ′ ⊆ C then �(C ′) = 1. Now, since �(C1∨ . . .∨Cn

) = 0, then for every

C

i

there is a literal l
i

in it such that �(l
i

) = 0. Clauses in C

′
1 ∨ . . . ∨ C ′m by construction

(line 12) are such that there is a corresponding C

i

in f where C

′
j

= {l ∈ C � l ∉ �}. Since

the mentioned literals l

i

satisfy �(l
i

) = 0, then l

i

are not contained in �, and therefore

l

i

∈ C ′
j

. Then, every clause in C

′
1 ∨ . . .∨C ′m contains a literal l such that �(l) = 0 = �(C ′

j

),
and therefore �(C ′1 ∨ . . . ∨ C ′m) = 0. Thus �(f ′) = 0, because �(C ′1 ∨ . . . ∨ C ′m) = 0 and

�(C ′) = 1.

What is left to prove is that F ∪ � and F

′ ∪ �′ are equivalent in INFER. First the

right direction, for any assignment � that � � F ∪ �, then � � � and �(f) = 1 for all

f ∈ F . Thanks to the latter property shown, then for all altered formulas f ′ it also holds

that �(f ′) = 1. Since �(f ′) = 1, then one of the options between lines 23 and 28 added

formulas into either �′ or F ′. If f ′ = � → C

′
1, then �(C ′1) = 1 as for all literals l ∈ C ′1:

�(l) = 1. If f

′ = C

′ → � and �C ′� = 1, then �(C ′) = 0 as for the only literal l ∈ C ′,
therefore �(¬l) = 1. If neither of the previous cases hold, then f

′ is added which also

holds �(f ′) = 1. Then, for any case of added formula into �′ or F ′ it holds that � assigns

to 1, then � � F

′ ∪ �′. For the left direction, for any assignment � that � � F

′ ∪ �′, then

� � �′, and since � ⊆ �′ then � � �. Cases left to prove are for formulas f ∈ F . These cases

apply the same argument as the previous direction, since all iterations of INFER transform

a formula f

′ for each f ∈ F that is equivalent for assignments �′ such that �′ � �. Then,

depending on the form of the resulting formula f

′, formulas are added into F

′ ∪ �′, and

since all of these have �(f ′) = 1, then the corresponding initial formula f also �(f) = 1.

Finally, since the input and output formula sets in REDUCE and in INFER are equiva-

lent, then so are the initial and final formula sets at each iteration of RESOLUTION.

64

⇤

Equivalence holds and the procedure does so by reducing the atoms in each implica-

tion formula by the presence of the expanding set of literals. This procedure then simulates

the satisfaction checking of shape constraints by only focusing on shape assignment de-

pendencies. Conditions concerning locality of a node are previously checked and filtered

by the corresponding queries that then gave origin to these formulas.

As discussed before, the revision of constraint satisfaction is easy for terminal shapes,

since they behave as non-recursive schemas. In the context of the RESOLUTION algorithm,

the following proposition shows that formulas for terminal shapes always completely re-

solve.

Proposition 6.5. Let S be an consistent shape schema, ⌧ the corresponding labeling

function, G a graph and PG,S,⌧ = (T ,C) the terminal partition of the consistent validation

formula set. Consider the execution of RESOLUTION(F,�) where F is the set of all im-

plication formulas in T and � is the set of literals in T . If the algorithm returns �

′
and

F

′
, and � ∉ �′, then F

′ = �.

PROOF. Firstly, all formulas considered come from rule patterns for terminal shapes,

atomic and non-atomic, none have renamed literals, and all mentioned literals also come

from terminal shapes, by definition. Then, none of this shapes are part of a cycle in the

dependency graph GS , and all of their rule patterns either do not depend on other shapes,

or depend only of other terminal shapes.

Let’s assume RESOLUTION(F,�) returns F

′ and �

′ such that � ∉ �′ and F

′ ≠ �.

Then, at least one implication formula f ∈ F ′ exists at the end of the procedure. Since� ∉ �′, the only way for the main loop to stop is if in one iteration the condition F

′ = F ′′
holds. Therefore, at the last iteration all implication formulas in F

′′ at the beginning are

also at the end in F

′.
This includes f , it may be an original formula from T , or a simplified formula derived

in the INFER procedure. But, it must come from either a rule or a complement formula

65

for a terminal shape s. At the same time, s must depend on other shapes for this to

happen, since sink nodes only produce simple rule patterns as � → s(v), which is derived

into atomic formulas in INFER (line 23 and 24). Then, f is an implication with at least

two literals l1, l2, for different terminal shapes. Since f was not filtered out or simplified

in either the REDUCE or INFER procedures, this means neither of those literals or their

negations are part of the atomic formulas derived: {l1, l2,¬l1,¬l2} ∩ �′′ = �. Thanks to

the original �G,S formulas construction, another appearance for either literal must exists in

another implication formula f ′ ∈ F ′′. The same argument can be applied over f ′, implying

the existence of a third formula f

′′, as for the latter, and so on. If we apply this argument

enough times and use the the pigeonhole principle, this results in a necessary cycle of

dependencies between terminal shapes.

Therefore, our initial assumption arrived as to a contradiction over the definition of

terminal shapes. Implying that if � ∉ �′, then F

′ = �, and thus proving the proposition.

⇤

Now, Proposition 6.6 shows a more interesting result about the resolution evaluation

for non-terminal shape formulas. Consistency guarantees that any final set of formulas left

in the algorithm can be trivially satisfied by assigning value true to every left variables in

the set. This property is the key aspect that was identified for consistent schemas, and is

what ensures tractability of the general validation algorithm.

Proposition 6.6. Let S be an consistent shape schema, ⌧ its corresponding labeling

function, G a graph and �G,S,⌧ the corresponding consistent validation formula set. Con-

sider the execution of RESOLUTION(F,�) where F is the set of all implication formulas

in �G,S,⌧ and � is the set of literals in �G,S,⌧ . If the algorithm returns �

′
and F

′
, and � ∉ �′,

then F

′
can be trivially satisfied.

PROOF. Firstly, note that if � ∉ �′ then Proposition 6.5 holds when considering for-

mulas that correspond to terminal shapes, therefore all formulas left in F

′, if any, must

correspond to non-terminal shapes. The inclusion of non-terminal shape formulas do not

66

affect that result, because terminal shapes can resolve completely by themselves. We take

this detail into account since it will simplify the proposed proof if we ignore terminal

shape formulas all together.

Specifically, we can consider the execution of RESOLUTION(F,�) as equivalent to

doing it in a two step process: first execute RESOLUTION(F1,�1) using only the terminal

shape formulas F1 and literals �1, which produces the literal set �T ; and then second

execute RESOLUTION(F2,�2 ∪�T) using the non-terminal shape formulas F2 and literals

�2 in addition to the resulting literals �T from the previous execution.

Then, to prove the statement we will focus on the second execution where terminal

formulas are already resolved. First, we will show that the initial set of formulas can

be trivially satisfied by assigning value true to every left variables, and then that during

execution of RESOLUTION this property does not change.

The initial set of formulas F are taken from C, and since they come from non-terminal

shapes, all rule patterns depend on other shapes. And on the other hand, since variable

renaming was applied to non-terminal shapes, renamed variables may be present in this

set. But, thanks to the proper renaming based on consistency and the schema being in

normal form, each possible formula adjust to a restricted form that can be satisfied by

assigning 1 to every propositional variable present in this set. Let’s see by cases, all

possible formulas that start initially in F :

● rule formulas for not renamed shapes present all positive literals at both sides of the

implication, either as s1(v1)∧ . . .∧ sn(vn)→ s(v) or s′(v)→ s(v). This holds because

negation is only possible as single shape definition, and S is in normal form. For all

other cases, not renamed shapes have in their constraint definition other not renamed

shapes, since S is also consistent. Both types of formulas can be satisfied by assigning

its head s(v) to 1.● complement formulas from rules for not renamed shapes are either s(v)→ C1∨. . . C`

or

s(v)→ s

′(v), where C
i

= s
i,1(vi,1)∧. . .∧si,n(vi,n). As the previous case, these formulas

present all positive literals at both sides of the implication, for the same argument and

67

by construction of complement formulas. But in this case, by assigning 1 to all clauses

in the body (right side) of the implications the whole formula is satisfied.● rule formulas for renamed shapes present all negative literals at both sides of the impli-

cation, either as: ¬s′(v) → ¬s(v); or l1 ∧ . . . ∧ ln → ¬s(v), where at least one literal l
i

is of the form ¬s′(v′). The latter follows from the fact that if s had its atoms renamed,

then ⌧(s) = 0 and therefore depends of other non-terminal shapes such that ⌧(s′) = 0.

If any literal l
j

is positive, then that is because ⌧(s′) = 1�2 and S is in normal form and

is consistent. This case can be satisfied by assigning 1 to the variables in the body of

these formulas, which values to 0 the left side of the implication, thus values to 1 the

whole formula.● complement formulas from rules for renamed shapes are either ¬s(v) → C1 ∨ . . . ∨ C`

or ¬s(v) → ¬s′(v), where C

i

are conjunctions clauses of literals where at least one for

each is of the form ¬s′(v′). These form follows from same argument as the previous

cases. Now, by assigning 1 to the variable in the head of the formula (left side) the

implications as a whole is satisfied, since the left side values to 0.

Thus, this shows that the proper renaming of variables and the consistency of the

schema produces a formula set that can be trivially satisfied by assigning 1 to all present

variables in the set.

Now, this might change during execution of RESOLUTION when taking into account

the set of literals �. To show that the trivial satisfaction is not lost during execution, we

will prove the following property over the iterations of the main loop on RESOLUTION:

At any given iteration of its main loop, neither of the following happen:

● heads of rule formulas, that come from not renamed shapes, are simplified into �● heads of complement formulas, that come from renamed shapes, are simplified into �
This will be proven by induction over the number of iterations the main loop of

RESOLUTION goes through. First, we will consider the base case, i.e. the first iteration,

and then we’ll show the inductive case.

68

Base case. The initial set F ′ is taken from C, whose formulas were in the form that was

already described, and �′ is taken from C and literals for terminal shapes. Now, all facts

in �′ come from either:

● target formulas, which only results in positive atoms s(v), since S is consistent;● non-retrieval formulas for not renamed shapes, resulting in negative atoms ¬s(v);● non-retrieval formulas for renamed shapes, resulting in positive atoms s(v); and● literals of terminal shapes, that may be positive or negative.

In iteration 1 of RESOLUTION, the current formula sets F

′′
,�

′′ start as previously

mentioned. Once the REDUCE subroutine filters out any satisfied formulas forming F

′,
the INFER subroutine may simplify any of the remaining non-atomic formulas in F

′. Let’s

say the stated property does not hold and the head of a formula f (of the mentioned cases)

was indeed simplified:

● For the first case, if f is a rule formula for a not renamed shape s and s(v) is its head

that was simplified into �. If that is the case, the formula may be of either forms:

s1(v1) ∧ . . . ∧ sn(vn)→ s(v) or s′(v)→ s(v). Either way, in line 17 of INFER the head

got simplified, because � ∩ {¬l � l ∈ {s(v)}} ≠ � (line 9 of INFER). This directly means

the negated atom ¬s(v) was in � initially. As stated before, the only negative atoms

for not renamed (and non-terminal) shapes are non-retrieval formulas, meaning ¬s(v)
was a non-retrieval formula for s. Since the evaluation of rule patterns can not produce

both a non-retrieval formula and a rule formula f for the same node v, a contradiction

is reached.● Now, let’s consider f is an complement formula for renamed shape s and s(v) is its

head that was simplified into �. If that is the case, the formula may be of either forms:¬s(v) → C1 ∨ . . . C`

or ¬s(v) → ¬s′(v), Either way, in line 6 of INFER the head got

simplified, because �{l ∈ {¬s(v)} � l ∉ �}� = 0 (line 4 of INFER). This directly means

the atom ¬s(v) was in � initially. This cannot be, since as shown before, there are no

69

negative atoms in � for renamed shapes at the start. Again, we arrive to a contradiction

for the existence of f .

Therefore the existence of simplified f cannot be, and therefore the property holds in

the base case. Another important aspect to consider, is that after this iteration there are no

atoms for terminal shapes left in implication formulas thanks to the REDUCE and INFER

procedures.

Induction step. Let’s assume that the proposition holds for all iterations up to number

i − 1. No heads of the mentioned types of formulas have been simplified yet.

Let’s assume that in iteration i that the head of a formula f (of the mentioned types)

is indeed simplified into a formula f

′. Let’s consider which type of formula is f by cases:

● Let f be a rule formula for not renamed shape s and s(v) is its head that was simplified

into �. As shown before, this occurs because of the presence of ¬s(v) in �, but ¬s(v)
can not in the initial fact set �. Therefore it appeared in later iteration k before iteration

i. The only way for a new formula or fact to appear in this set is through the INFER sub-

routine, by simplifying another a formula f ′′. There are four possible types of formulas

for f ′′ that could be a source for ¬s(v) as a derived result:

– Suppose f

′′ was a complement formula of the form s(v) → C1 ∨ . . . C

`

, where

C

i

= s

i,1(vi,1) ∧ . . . ∧ si,n(vi,n). If ¬s(v) was obtained in line 26 of INFER, then

all clauses C

i

where were simplified in line 9 and 10. This means that for each C

i

:

� ∩ {¬s
i,1(vi,1), . . . ,¬si,n(vi,n)} ≠ � holds, meaning at least one negative literal of

each clause was already in �. Because of the construction of complement formulas

Jp←S KG , each clause C

i

comes from a rule formula that has that clause as part of its

body, where one of those formulas must be f . Since every single one of those formu-

las has a negative literal in � already, then every single one must have been filtered

out in lines 3 and 4 of REDUCE before even reaching the INFER subroutine.

70

– If f ′′ was a complement formula of the form s(v)→ s

′(v), the same argument as the

previous case can be applied, such that f should had been filtered out before reaching

the simplification point.

– Suppose f

′′ is an rule formula of a not renamed shape with s(v) as part of the body.

To obtain ¬s(v) as result of the simplification in line 26 of INFER, then f

′′’s head had

to be simplified in this iteration, that is previous to iteration i. But, by our induction

hypothesis, all previous iterations had no simplification of heads for rule formulas of

a not renamed shapes. So, this cannot be.

– Suppose f

′′ was an complement formula of a renamed shape s

′ such that def(s′) ∶=¬s, which produces a formula of the form ¬s′(v) → ¬s(v). Again, this would mean

that the head of a complement formula of a renamed shape is simplified in a previous

iteration to i, contradicting the hypothesis.

● Let f be an complement formula for a renamed shape s and s(v) is its head that was

simplified into �. As shown in the base case, this occurs because of the presence of¬s(v) in �, but ¬s(v) can not in the initial fact set �. Therefore it appeared in later

iteration k before iteration i. There are four possible types of formulas for f ′′ so that¬s(v) is obtained from it:

– Suppose f

′′ is an rule formula for the renamed shape s and ¬s(v) being its head:¬s1(v1) ∧ . . . ∧ ¬sn(vn) → ¬s(v). ¬s(v) must have been obtained in line 24 of

INFER, meaning all its negative literals in the body of the formula got filtered out

in line 4. Therefore, all ¬s1(v1), . . . ,¬sn(vn) were in � already. If that is the case,

these literals conform one of the clauses C
i

in f , because of the construction of Jp←S KG .

Since the whole clause is already in � for iteration k, the formula f should had been

filtered out by the REDUCE (lines 7 and 8) routine by iteration i.

– If f

′′ was a rule formula of the form ¬s′(v) → ¬s(v), the same argument as the

previous case can be applied, such that f should had been filtered out before reaching

the simplification point.

71

– Suppose f

′′ is another complement formula with ¬s(v) as part of its body. Similarly

as before, to obtain ¬s(v) as result of the simplification, the head of f ′′ had to be

simplified in a previous iteration. This reaches a contradiction thanks to our induction

hypothesis.

– Suppose f

′′ was a rule formula of a not renamed shape s

′ such that def(s) ∶= ¬s′,
which produces a formula of the form s(v)→ s

′(v). Again, this would mean that the

head of a rule formula of a not renamed shape is simplified in a previous iteration to

i, contradicting the hypothesis.

Therefore, all possibilities arrive to a contradiction, then the assumption of the ex-

istence of f cannot be. Thus, finally proving that the induction hypothesis holds and

therefore proving the desired property.

By proving this, the only possibilities of formulas not being satisfied by the trivial

assignment are gone. As it can be shown by every case of formulas that are kept in RES-

OLUTION, they always can be satisfied by that assignment, or are simplified into atoms:

● For rule formulas for not renamed shapes: s1(v1)∧ . . .∧sn(vn)→ s(v) or s′(v)→ s(v).
Since their head never gets simplified into �, they still can get satisfied by assigning its

head s(v) to 1.● For complement formulas from rules for not renamed shapes: s(v) → C1 ∨ . . . C`

or

s(v) → s

′(v), where C

i

= s
i,1(vi,1) ∧ . . . ∧ si,n(vi,n). If the whole body gets simplified,

the head gets added to � and does not continue as an implication formula. While if the

head gets simplified, the formula still can be satisfied by assigning 1 to all clauses in the

body.● For rule formulas for renamed shapes: ¬s1(v1) ∧ . . . ∧ ¬sn(vn) → ¬s(v) or ¬s′(v) →¬s(v). If the head gets simplified, the formula still can be satisfied by assigning 1 to the

variables in the body of these formulas. While if the body gets simplified, the head gets

added to � and does not continue as an implication formula.

72

● complement formulas from rules for renamed shapes: ¬s(v) → C1 ∨ . . . C`

or ¬s(v) →¬s′(v), where C

i

= ¬s
i,1(vi,1) ∧ . . . ∧ ¬si,n(vi,n). Since their head never gets simplified

into �, these still can get satisfied by assigning s(v) to 1.

Summing it all up, the set of implication formulas left for non-terminal shapes can be

trivially satisfied by assigning all left propositional variables in these formulas to 1. When

passed through the execution of RESOLUTION with the set of literals, these implication

formulas get either filtered out or simplified. But, during its execution no formulas are

ever simplified into another that cannot be later satisfied trivially. Thus, the resulting set

can also be trivially satisfied by assigning the remaining variables to 1.

⇤

Thanks to the proved propositions, a general validation algorithm can be defined for

consistent SHACL and is represented in Algorithm 7. The key idea behind it is to take

the consistent validation formula set, resolve the shape assignments that can be validated,

and if a contradiction is not reached when resolution is terminated, then the graph is valid

and all unresolved formulas are trivially satisfied by assigning 1 to pending variables (and

therefore shape assignments).

Algorithm 7 VALIDATION ALGORITHM

Require: Consistent shape schema S , corresponding labeling function ⌧ and graph G.
1: �G,S ← JpSKG ∪ Jp←S KG ∪ JtSKG ∪ JaSKG
2: �G,S,⌧ ← RENAME(S, ⌧,�G,S ,1)
3: F ← {f ∈ �G,S,⌧ � f is non-atomic}
4: � ← {f ∈ �G,S,⌧ � f is atomic}
5: F

′
,�

′ ← RESOLUTION(F,�)
6: if � ∈ �′ then return FALSE
7: end if
8: if F ′ ≠ � then
9: �

′ = �′ ∪ SATURATE(F ′)
10: end if
11: �

′ ← RENAME(S, ⌧,�′,0)
12: return �

′

73

Algorithm 7 calls the procedure SATURATE (depicted by Algorithm 8) that takes all

pending literals left in formulas and adds them as positive literals. Which is then again

renamed back to the original propositional variables that represent the original shape as-

signment.

Algorithm 8 SATURATE ALGORITHM

Require: Set of implication formulas F
1: �

′′ = �
2: for all f = C → C1 ∨C2 ∨ . . . Cn

∈ F do
3: �+ ← {l � l ∈ C ∪C1 ∪ . . . ∪Cn

and is positive}
4: �− ← {¬l � l ∈ C ∪C1 ∪ . . . ∪Cn

and is negative}
5: �

′′ = �′′ ∪ �+ ∪ �−
6: end for
7: return �

′′

Theorem 6.1 sums up the correctness of the whole VALIDATION algorithm for con-

sistent schemas, and Theorem 6.2 establishes tractability for the problem.

Theorem 6.1. Consider a consistent shape schema S , its corresponding labeling

function ⌧ and graph G. G is valid against S if and only if VALIDATION(S, ⌧,G) returns

a faithful assignment for G and S .

PROOF. Proposition 6.3 showed that for consistent schemas the partial and total val-

idation problems coincide, and thanks to (Corman et al., 2019) (Proposition 6), we know

that G is valid against S with respect to total assignments if and only if �G,S is satisfiable

under boolean semantics. The consistent validation formula set �G,S,⌧ is clearly equivalent

to �G,S since it replaces some variables with their negation. Therefore, G is valid againstS if and only if �G,S,⌧ is satisfiable under boolean semantics.

First we focus on the right direction. If G is valid against the consistent schema S , then

�G,S,⌧ is satisfiable under boolean semantics. VALIDATION then separates this set into a

partition � ∪ F of atomic and non-atomic formulas that are used to call RESOLUTION in

line 5. Proposition 6.4 showed that every iteration of this call will produce an equivalent

set partition �′ ∪ F ′. Then, satisfiability also spreads to each partition �′ ∪ F ′ thanks to

equivalence.

74

To continue, we define a shape assignment construction from a propositional assign-

ment � as: ⌃(�) = {s(v) � �(s(v)) = 1} ∪ {¬s(v) � �(s(v)) = 0}.
Satisfability and equivalence also translates into the fact that on every iteration in

RESOLUTION, for every assignment � that satisfies �′∪F ′, the assignment ⌃(�) is faithful

for G and S . Not only that, but �′ ⊆ ⌃(�) also holds. The initial value for �′∪F ′ before the

first iteration is equivalent to the original set of formulas �G,S . The proof for Proposition

6 in (Corman et al., 2019) showed that for an arbitrary boolean assignment � that satisfies

�G,S , the constructed shape assignment ⌃(�) is faithful for G and S . After that, every

iteration of RESOLUTION only expands the set of atomic literals, and since equivalence

is maintained, this set also must be a valid shape assignment that agrees with a faithful

assignment for G and S , i.e. �′ ⊆ ⌃(�).
Now, let �′ ∪ F ′ be the resulting partition after the whole RESOLUTION call. Propo-

sition 6.5 indicates that no implication formulas for terminal shapes are left in F

′, while

Proposition 6.6 indicates that F ′ can be trivially satisfied. Specifically, the assignment �+
F

′
that assigns 1 to every propositional variable left in F

′ satisfies this set. Consider �+
�

′ as

the assignment that assigns 1 to every literal in �′. Since the graph is valid, then RES-

OLUTION stopped after an iteration did not alter any formulas left in F

′. Then, a whole

iteration went by where the final �′ did not change. Thanks to the call of the procedures

REDUCE and INFER, none of the left formulas in F

′ at the end of any iteration have any

mentions of literals or their negations that are in �′ at the beginning of the same iteration.

Therefore, this guarantees that �′ and F

′ do not share any propositional variables, and

therefore the mentioned assignments can easily be extended into �+ = �+
F

′ ∪ �+
�

′ , such that

�

+ � �′ ∪ F ′. Therefore, ⌃(�+) is a faithful shape assignment for G and S . Since �′ only

contains atomic formulas, its easy to see that ⌃(�+) = �′ ∪⌃(�+
F

′). ⌃(�+
F

′) is indeed what

the procedure call SATURATE generates in line 9.

Thus, RESOLUTION returns ⌃(�+), which is a faithful assignment for G and S .

The left direction of the proposition can be easily seen as its contrapositive. If G is

not valid against S , then �G,S,⌧ is unsatisfiable. If that the case, the � mark will appear in

75

the RESOLUTION iteration since it is equivalent to unit propagation resolution application.

Note, that even though unit propagation resolution is not a complete refutation procedure

in general, as shown in Proposition 6.6, since S is consistent and RESOLUTION stops

without �, then the resulting set of formulas F ′ can always be satisfied. Therefore, if the

whole set is unsatisfiable, the � mark has to appear eventually. Therefore, RESOLUTION

will stop and VALIDATION will return FALSE in line 6.

⇤

Theorem 6.2. Consider a consistent shape schema S , its corresponding labeling

function ⌧ and graph G. The execution of VALIDATION(S, ⌧,G) is tractable in data com-

plexity.

PROOF. Firstly, line 1 computes the original set of formulas �G,S for rule patterns. Its

size is in O���
s∈S(Jqdef(s)KG ∪ Jtarg(s)KG)��. This holds because of construction of rule

patterns and formulas, where �JtSKG � ∈ O(��
s∈SJtarg(s)KG �) and �JpSKG �+�Jp←S KG �+�JaSKG � ∈O(��

s∈SJqdef(s)KG �). Hence, the size of the rules we need for inference is not directly

dependent on the size of the graph, but rather on the amount of targets and tuples that

the SHACL schema selects to be validated. Furthermore, Jqdef(s)KG and Jtarg(s)KG can be

computed in polynomial time in data-complexity (as shown in (Pérez et al., 2009)), whenS is considered to be fixed, and thus the set of rules can be computed in polynomial time

in data complexity.

Then line 2 renames some of the non-terminal shapes defined by the labeling, which

takes linear time in the size of the original set when S is fixed. The resulting consistent

validation formula set �G,S,⌧ has the same size as �G,S . Then, the atomic and non-atomic

partition is created in lines 3 and 4, which again can be done in linear time in the size of

the amount of shapes.

Line 5 calls the RESOLUTION procedure, which simulates unit propagation resolution

over the set of formulas. Unit propagation resolution usually takes quadratic time over

the size of the whole formula sets, considering the amount of literals involved in each

formula. The amount of different literals that these formulas can contain is also in the

76

Lstrat Lnon-rec

L+∨ Ls
Lcons PTIME NP

PARTIAL ≡ TOTAL

¬
¬¬

FIGURE 6.4. SHACL fragment hierarchy considering running data-complexity.

order of O���
s∈S(Jqdef(s)KG ∪ Jtarg(s)KG)��. The shown implementation for REDUCE and

INFER may border the cubic time in that size, but it can easily be optimized with efficient

data structures that keep track of the inclusion of literals for each formula, taking it down

to almost linear in the size of the original set of formulas. Nonetheless, is still polynomial

in the size of the set of formulas.

Lines 6 through 11 also can be done in linear time over the size of the set of formulas,

for similar reasons as the previous points.

Thus, the whole VALIDATION procedure can be computed in polynomial time in data

complexity.

⇤

This finally shows that the proposed fragment Lcons is indeed in PTIME in data com-

plexity. Figure 6.4 summarizes the known SHACL hierarchy previously described, but

considering the complexity classes for the corresponding validation problems.

77

7. CONCLUSIONS AND FUTURE WORK

First, we showed through different approximations that validation for non-recursive

schemas can be treated in multiple ways, either by direct in-memory revision or through

complete delegation of the task to SPARQL engines. These approaches brought different

trade-offs to consider, and gave a base intuition on how to handle harder schemas.

Then, a review was made of the up to now known tractable and intractable SHACL

fragments, and discussed the general challenges that each met. As well a revision of

a validation approach that use both SPARQL and in-memory processing for the general

recursive case was done. And using the latter points, we stated the main contribution of

this thesis. Which was the proposal and definition of a SHACL fragment and tractable

algoritm that could be applied for the revised non-recursive, all positive, strictly stratified

schemas and even more schemas. Very interestingly, also introduced the first tractable

fragment that included negation in cycles.

As for future work, there are some expressivity and application ideas not yet fully re-

vised. On the one hand, the existence of the gap between schema validation in PTIME andLcons is not clear yet. Meaning that it is not known if there exists schemas for which vali-

dation is tractable that are not consistent. We at least hope that the definition of consistent

SHACL contributes to figure out the fully tractable SHACL fragment.

On the other hand, a syntactical translation for SHACL constrains by taking consis-

tency into account is still missing. For example, when proving the hierarchy of SHACL

fragments we indirectly showed that the use of disjunction (∨) directly translates as a

consistent feature for SHACL. The same can be considered for other traversal operators,

similar to ≥
n

p.s. For example, a “for all neighbors” operator (∀p.s) could be added, that

matches all p successors of a node, instead of a certain amount. We believe this too can

be showed to produce consistent schemas. On the other hand, the use of the mentioned

“exactly n successors” operator (=
n

r.s) can be shown to produce inconsistent schemas in

78

some contexts, so its use may be limited, while adding both ∨ and ∀ as base logical fea-

tures makes sense. They are direct features that plain SHACL offers, but the implications

on the known hierarchy and introduced approaches has to be studied.

79

REFERENCES

Arenas, M., Gutiérrez, C., & Pérez, J. (2009). Foundations of RDF Databases. In

Reasoning Web. Semantic Technologies for Information Systems (pp. 158–204).

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific

American, 284(5), 34–43.

Corman, J., Florenzano, F., Reutter, J. L., & Savkovic, O. (2019). Validating

SHACL constraints over a SPARQL endpoint. ISWC.

Corman, J., Reutter, J. L., & Savkovic, O. (2018a). Semantics and validation of

recursive SHACL. ISWC.

Corman, J., Reutter, J. L., & Savkovic, O. (2018b). Semantics and validation of

recursive shacl (extended version). Technical Report KRDB18-1, Free Univ. Bozen-

Bolzano. (https://www.inf.unibz.it/krdb/tech-reports/)

Corman, J., Reutter, J. L., & Savkovic, O. (2018c). A tractable notion of stratifica-

tion for SHACL. In Iswc.

Ekaputra, F. J., & Lin, X. (2016). SHACL4p: SHACL constraints validation within

Protégé ontology editor. In ICoDSE.

Pérez, J., Arenas, M., & Gutiérrez, C. (2009). Semantics and complexity of sparql.

ACM Transactions and Database Systems, 34(3).

Shaclex. (n.d.). (github.com/labra/shaclex/)

Stardog ICV. (n.d.). (www.stardog.com/blog/data-quality-with

-icv/)

80

https://www.inf.unibz.it/krdb/tech-reports/
github.com/labra/shaclex/
www.stardog.com/blog/data-quality-with-icv/
www.stardog.com/blog/data-quality-with-icv/

TopBraid Composer. (n.d.). (www.topquadrant.com/products/

topbraid-composer/)

81

www.topquadrant.com/products/topbraid-composer/
www.topquadrant.com/products/topbraid-composer/

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	ABSTRACT
	RESUMEN
	1. Introduction
	2. Preliminaries
	3. Validation for non-recursive SHACL
	3.1. In-memory approaches
	3.2. Online approach

	4. Validation for recursive SHACL
	5. Rule patterns
	6. A tractable recursive fragment
	6.1. Definition and expressiveness
	6.2. Tractable algorithm

	7. Conclusions and future work
	REFERENCES

