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ABSTRACT

Hospital readmissions occur frequently, they are expensive, and a high number of them

decrease the institution’s perceived quality. In machine learning, the readmission task

aims to predict a patient’s risk of readmission. Several solutions have been proposed us-

ing Electronic Health Records (EHR). EHRs have all information related to an admission:

lab tests, free notes, demographic data, and International Classification of Diseases (ICD)

codes. ICD is an international standard that provides codes for diagnoses and procedures.

Initial solutions to the readmission problem used ICD codes as features via categorical

representations or representations learned from their local context. Recent solutions in-

gest all EHR data, adding unnecessary complexity. In this research, we explore new rep-

resentations for ICD codes. We leverage their text descriptions using Natural Language

Processing techniques and their ontological representation through graph embedding al-

gorithms. We provide benchmarks for the readmission task using a novel dataset from a

large Chilean hospital, with a clear evaluation framework, and achieve results compara-

ble with the state of the art. Generated ICD mappings and representations are publicly

available.

Keywords: ICD, EHR, readmission, representation learning, embeddings, NLP.
xiii



RESUMEN

Los reingresos hospitalarios ocurren con frecuencia, son costosos y son usados como

medida de calidad de las instituciones. En el aprendizaje de máquina, la tarea de read-

misión tiene como objetivo predecir el riesgo de readmisión de un paciente. Se han prop-

uesto diversas soluciones basadas en datos obtenidos desde sistemas de Historia Clı́nica

Electrónica (HCE). Los datos de HCE tienen toda la información relacionada con una ad-

misión: pruebas de laboratorio, notas de texto libre, datos demográficos y códigos de la

Clasificación Internacional de Enfermedades (CIE). CIE es un estándar internacional que

define códigos para diagnósticos y procedimientos. Las soluciones iniciales al problema

de readmisión utilizaron códigos CIE a través de representaciones categóricas o repre-

sentaciones aprendidas de su contexto local. Las soluciones recientes ingieren todos los

datos de HCE, lo que agrega una complejidad innecesaria. En esta investigación, explo-

ramos nuevas representaciones de códigos CIE. Aprovechamos sus textos descriptivos uti-

lizando técnicas de Procesamiento del Lenguaje Natural y también su representación on-

tológica a través de algoritmos de grafo. Reportamos resultados de referencia para la tarea

de readmisión utilizando un nuevo conjunto de datos de admisión de un hospital chileno,

con un marco de evaluación claro, y logramos resultados comparables con el estado del

arte. Las representaciones y mapeos CIE generados están disponibles públicamente.

Palabras Claves: CIE, HCE, readmisión, aprendizaje de representación, PLN.
xiv
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1. INTRODUCTION

During a hospitalization, clinicians must continuously assess the patients’ conditions

to find the best moment when the patient should be discharged versus continuing to receive

care in the hospital. Although professionals continuously assess the right time to discharge

a patient, the process is far from perfect. A study conducted in 2007 in the Medicare

system (USA) reported that 17% of hospital admissions resulted in readmissions within

30 days of discharge, with 76% of these having the potential to be avoided. Readmissions

have a monetary cost; they accounted for $15 billion in Medicare spending (MPAC, 2007),

and their number is also used as a measure of quality. These are some of the reasons that

motivate hospitals to find methods that can predict readmission risk (Fierro, Pérez, &

Mora, 2020).

Since the implementation of EHRs, several studies have leveraged this new electronic

health data to improve readmission risk prediction. In the beginning, they used mainly de-

mographic data of patients and the admission’s ICD codes. These codes represent medical

diagnoses and procedures; they are standardized and internationally recognized (Futoma,

Morris, & Lucas, 2015). With the emergence of Deep Learning (Goodfellow, Bengio,

& Courville, 2016), a field that provided better techniques to consume massive amounts

of data, new proposed solutions started consuming all EHR data, including clinical notes

(Rajkomar et al., 2018). Increasing the quantity of data consumed is challenging since

EHRs are not designed with research as a priority. Even within the same institutions,

EHRs might be used differently. Standards for EHRs constantly evolve, and comparing

EHRs gathered from different places, and designed with different assumptions, is very

challenging (Ching et al., 2018). We hypothesize that it is possible to achieve comparable

results only using ICD codes, which are simpler and standard across Chile and other coun-

tries. Our central insight is that Deep Learning techniques were used to solve the problem

by consuming more data instead of using them to improve the ICD codes’ representations

inputted to the model. Furthermore, we show that the readmission problem is not clearly

solved in the existing literature since reported metrics do not show the methods’ actual
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performance or facilitate comparison. Thus, in this research, we explore old and new ICD

codes representations and provide new benchmarks for the readmission task using ICD

codes as the main source of information.

Most research on clinical data applies to English text; therefore, it uses data from

countries with English speaking institutions (i.e., Australia, USA, UK). Limited research

has been done in Spanish, despite the large volume of clinical content generated in this

language worldwide (A Miranda-Escalada, 2020). We use a novel dataset with all the

admissions of a large Chilean hospital over five years. This is the first work in the country

that uses ICD codes to solve the readmission problem in a national institution to the best

of our knowledge. We hope it will constitute a basis for future national research in the

area. To facilitate this, we identify and address critical challenges in the dataset and make

publicly available the generated ICD mappings and representations.

We claim the following contributions:

• Identification and addressing of challenges when working with a DRG dataset

• Creation of a public repository with the English-Spanish translation of the ICD

codes used in Chile1

• Creation of a public repository with the learned ICD codes representations and

the ontologies2

• Implementation and generation of two new ICD codes representations (from

their text descriptions leveraging pretrained models and from their graph struc-

ture leveraging new developments in graph embedding)

• Benchmarking of several ICD codes representations on the readmission task

with a clear and relevant evaluation framework

1https://github.com/tamycova/icd-cie-codes-chile
2https://github.com/tamycova/ICD-embeddings
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2. BACKGROUND THEORY

In this chapter, we introduce the essential Machine Learning and Medical concepts

needed to understand this work.

2.1. Machine Learning background

2.1.1. Classification

Classification is the task of predicting the class to which an example belongs. The

example belongs to only one of several known classes. Each example is represented by

a set of values known as features. It is important to find features that encode as much

class-discriminatory information (Theodoridis, 2020). Having a feature vector x that cor-

responds to an example, the goal is to design a function f(x), known as a classifier, capable

of predicting the class to which the example belongs.

A binary classification problem consists of a set up with only two classes: an example

could belong to one class or the other, as shown in Figure 2.1. A binary classification set

up is Email Spam Detection, where a given email can be Spam or not.

Figure 2.1. Traditional set up for a binary classification problem. To clas-
sify an object, it must first be represented as a feature vector x, which is
then inputted to the classifier to predict the initial object’s class.
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2.1.2. Embeddings

Given an example, there can be multiple ways of building a feature vector to repre-

sent it. The vector could have categorical features and numerical features, and they could

be discrete or continuous. As mentioned before, the feature vector must encode as much

class-discriminatory information as possible, so choosing the right representation is cru-

cial.

One technique used to represent an example is the use of embeddings, which are map-

pings from discrete objects to vectors of real numbers. Usually, the patterns of location

and distance between vectors are used to model the relationships between objects. Since

words are discrete objects, this technique has become very popular in Natural Language

Processing (NLP).

For example, suppose we have the Spanish vocabulary and want a feature vector to

represent a word. In that case, we could assign a random vector to each word, and we know

that a given vector is the representation of a given word. A problem with this is that in the

vector space, the words’ vectors do not represent anything relevant about their meaning or

relations with other words. Alternatively, it would be useful to have a better mapping, one

where the vectors of words that are synonyms are closer in a lower-dimensional space,

for example. The development of these word embeddings is an active area of research,

and they have been widely adopted with satisfactory results in several domains (Gutiérrez

& Keith Norambuena, 2019). Figure 2.2 shows an example of a classifier that receives

the embedding of a word as a feature vector and determines if the object is made or not

of paper. With random embeddings for the words is hard to decide on the class (the

embedding for ”biking” has no relevant differences with ”newspaper” and ”magazine”).

With a better embedding, ”magazine” and ”newspaper” are closer together in the vectorial

space; this makes it easier for the classifier to learn the differences between what is made

of paper and what is not.
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It is important to note that although word embeddings are highly popular, any set of

objects can be embedded into a representative vector space, not only words. In the health-

care space, and with the recent developments in Deep Learning methods, several research

lines have been exploring the use of embeddings to improve performance in different tasks

(Ching et al., 2018). For example, (Miotto, Li, & Kidd, 2016) used a novel architecture to

represent patients, and it was able to improve patient-level predictions by up to 15%.

Figure 2.2. The use of word embeddings to represent words in a binary
classification problem.

2.2. Medical background

2.2.1. ICD Codes

The International Statistical Classification of Diseases and Related Health Problems

(ICD) is the World Health Organization’s (WHO) effort to globally identify health trends

and statistics. It aims to define the universe of health conditions in an understandable and

structured way.

Every code represents a single diagnosis or a single procedure. For example, the diag-

nosis code ’J15.2’ represents ’Pneumonia due to staphylococcus’, whereas ’J15.5’ is the

code used for pneumonia caused by a different bacteria according to the ICD-10 standard
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of 2008. In procedures, ’11.1’ stands for ’Incision of cornea’. The ICD standard is hierar-

chical; codes are divided into several chapters, divided into sub-chapters, etc. The deeper

into the hierarchy, the higher the level of specificity. Further information about these codes

and their structure is discussed in Sections 3, 5 and 6. Figure 2.3 shows examples of ICD

codes for diagnosis and procedure.

In hospitals, clinical coders abstract information from a patient’s medical record and

assign codes to describe the patient in terms of diagnosis and procedures according to

the ICD standard. The set of diagnosis codes and procedure codes of a patient is the

input for the DRG grouper, which generates a DRG code for the patient (Karimi, Dai,

Hassanzadeh, & Nguyen, 2017). ICD-codes serve a statistical purpose but are also used

in billing (Zapata, 2018).

Standards change within different countries, and the standards get updated over time

to reflect the advances in medical science.

Figure 2.3. This Figure shows, through indentation, the hierarchical struc-
ture of the codes. In bold are the ICD codes used in hospitals to assign
diagnoses and procedures to a patient. The top of the Figure corresponds
to diagnosis codes, and we can see that ”I11.0” is part of the ”Diseases of
the circulatory system” chapter. The bottom of the Figure corresponds to
procedure codes, all associated with the replacement of spinal disc.
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2.2.2. DRG System

The Diagnostic-Related Group system was created in the United States in 1983, and

it has been gradually introduced in many countries. This system’s objective is to in-

crease efficiency in the use of resources and provide transparency of the hospital activities

(Mihailovic, Kocic, & Jakovljevic, 2016). This system’s idea is that each patient can be

classified into a DRG code group, and patients from the same group are expected to use

similar amounts of hospital resources. DRG is also the basis for the payment system in

several healthcare institutions.

In Chile, DRG was introduced to manage patient variability in 2009 with a starting

project that analyzed 16 institutions. The biggest challenge was standardizing the infor-

mation since, at the moment, all clinical data was on paper. The existing system in Chile’s

health system corresponds to the IR-DRG (International Refined DRG) and is used both

in public and private institutions. When a patient is discharged, the clinical coder assigns

ICD-10 codes for diagnoses and ICD-9-CM codes for procedures. The grouper captures

all this information and, via an algorithm, classifies the patient into a DRG group (Zapata,

2018) with a DRG weight, as shown in Figure 2.4. The DRG weight represents the aver-

age resources required for that particular DRG, relative to the average resources used for

all DRGs (per case).

Figure 2.4. The process for DRG code and weight assignment. First, dur-
ing, and after the clinical episode, nurses codify the episode using ICD
codes. This information is inputted to the DRG grouper algorithm, which
determines the episode’s DRG code and weight.
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2.2.3. EHR

An Electronic Health Record (EHR) is the digital version of a patient’s paper chart.

An EHR entry typically contains the patient’s history in the health institution, diagnoses

and procedures, lab test results, and clinical notes. EHRs have been widely adopted. Since

they provide rich digital information about hospital activity, there has been an increase in

research activity that builds predictive models in the medical area (Pham, Tran, Phung, &

Venkatesh, 2016).

2.2.4. Readmission problem

A hospital readmission is defined as an admission to a hospital a short time after an

original admission (Futoma et al., 2015), they can be planned or unplanned. Accurately

predicting the probability of unplanned readmission is clinically significant since it im-

proves efficiency and reduces the burden for the doctors and patients. Also, some countries

have set penalties for early readmissions. It is then expected that hospitals will be inter-

ested in methods that can flag that a patient has a high risk of being readmitted (Fierro et

al., 2020).

In this work, the Readmission problem will be framed as a binary classification task.

Define yi ∈ {0, 1} to indicate whether the ith episode resulted in readmission within 30

days (where a 1 denotes readmission) and xi the vector representation of the episode. The

goal is to train a classifier that assigns to xi a class label ŷi (ŷi = f(x)). We use proba-

bilistic classifiers so instead of functions f(x) they are conditional distributions Pr(Y|X),

and for a given xi they assign probabilities to both classes. In order to obtain ŷi we de-

fine probability thresholds to make the decision, for example, with threshold 0.5, which

predicts the class with the highest probability (since they sum to one):

ŷi =

1, if P (yi = 1|xi) ≥ 0.5

0, otherwise
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It is important to mention that the Readmission problem could be approached in other

ways, such as a regression task or defining readmission using 60 days instead of 30 days

(Nguyen, Luo, Venkatesh, & Phung, 2018).
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3. RELATED WORK

3.1. Readmission problem

Over the years, several research teams have tried to solve the readmission problem or

used the readmission classification task to test their architectures. The most relevant to

this thesis are listed in Table 3.1.

(Caruana et al., 2015) tackles the trade-off between accuracy and intelligibility, propos-

ing high-performance generalized additive models with pairwise interactions. They report

Table 3.1. Comparison of models, representations and evaluation frame-
works used in literature to solve the Readmission Problem.

Research Representation Model Evaluation

Caruana, 2015 - Generalized Addi-
tive Models

AUC (0.78) 30-day
readmission

Futoma, 2015 Sparse binary matrix
for ICD codes

Logistic Regression
(local), Random
Forest (local), SVM
(local)

AUC (0.82) 30-day
readmission

Nguyen, 2017 Learns embedding
for ICD codes
truncated at level 3

CNN Accuracy (0.75) 60-
day readmission

Pham, 2017 Learns embedding
for ICD codes
truncated at level 2

LSTM F-score (79) for di-
abetes cohort 1-year
readmission

Rajkomar, 2018 Sequence of time-
ordered tokens

LSTM AUC (0.75) 30-day
readmission

Huang, 2019 Learns aggregated
embedding for a set
of notes

BERT AUC (0.71) and
RP80 (0.24 ± 0.1)
30-day readmission

Fierro, 2020 Sequence of time-
ordered tokens

LSTM AUC (0.76 without
oversampling, 0.74
with oversampling),
Precision (0.52) with
Recall (0.13) 30-day
readmission
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that their method scales and provides accuracy comparable to the best unintelligible ma-

chine learning methods, reporting an AUC of 0.78 for their model. They do an in-depth

analysis of the most important terms for the prediction of three patients. They argue that

this makes the model already more intelligible than other traditional models like Random

Forest.

(Futoma et al., 2015) describes and compares several predictive models on their per-

formance in the readmission task. They also do a more fine-grained analysis, focusing on

the five conditions that were being used to penalize hospitals, so they use local models

as well as global models (trained in all the data). Their dataset is of considerable size,

with 3.3 million rows of hospital admissions in New Zealand, a country that has a na-

tional healthcare system, so few patients are outside the system. They have the set of ICD

codes, represented as a sparse matrix, and also demographic and background information

for every admission. The best-reported result for the global method is 0.828 AUC using

Stochastic Gradient Descent as the classifier.

(Pham et al., 2016) with DeepCare and (Nguyen, Tran, Wickramasinghe, & Venkatesh,

2017) with DeepR both use Deep Learning techniques to solve the problem.

DeepR focuses on detecting predictive clinical motifs from irregular episodic records

using a convolutional neural network; they use a time window of 60 days, so it is not

comparable to most studies that use a 30-day window. They input the model a sequence of

hospital admissions represented with ICD codes, considered tokens, and use bag of words

representation with logistic regression as the baseline. They report an accuracy slightly

better than the baseline (increase in 0.2%), 0.75.

DeepCare introduces a novel architecture that aims to model the illness trajectory and

healthcare processes of a patient encapsulated in a time-stamped sequence of admissions,

using an LSTM model. The input to the LSTM is the information extracted from admis-

sion (diagnosis and interventions). The output is an illness state at the time of admission,

which is then used for several subtasks; one of them is predicting 12-month readmission
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for a diabetes cohort and 3-month for a mental health cohort. They report an F-Score of

79.0 for the diabetes cohort and 74.7 for the mental cohort, a slight improvement compared

to their results with SVM, Random Forest, and Plain RNN.

(Rajkomar et al., 2018) proposed a new sequential representation method for all EHR

data (including clinical notes) that uses Deep Learning’s ability to handle high volumes of

messy data, and then proved that they could accurately predict multiple medical events.

One of the events is 30-day readmission, with a reported AUC of 0.75.

Using a pure NLP approach, the advances in the area and only clinical notes (both

discharge summaries and the first days of notes in ICU) (Huang, Altosaar, & Ranganath,

2019) outperforms baselines on 30-day readmission prediction. They pre-train the BERT

model (Devlin, Chang, Lee, & Toutanova, 2019) on clinical notes and then finetune with

the readmission prediction task. On pre-training, they achieve better results than Word2Vec

when comparing correlation metrics on medical terms, and on prediction, they report an

AUC of 0.714. They are the first ones to report recall, 0.242 (± 0.111) recall at a precision

of 80%.

Finally, (Fierro et al., 2020) tries a similar approach than (Rajkomar et al., 2018) but

using data from a hospital in Chile (Clinica Las Condes), in Spanish, reporting for the first

time results on this task on an unstructured dataset that contains most of the information

in this language. They report AUC 0.76, similar to (Rajkomar et al., 2018), and precision

0.52 with recall 0.13 for the positive class.

Overall, as showcased in Table 3.2, most related work lacks explainability in the mod-

els or used a specific local method to analyze the predictions.
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Table 3.2. Comparison of explainability techniques used in literature to
solve the Readmission Problem.

Research Explainability

Caruana, 2015 Local analysis of three patients with term

contribution

Futoma, 2015 -

Nguyen, 2017 t-SNE projection of embeddings

Pham, 2017 -

Rajkomar, 2018 -

Huang, 2019 Visualize BERT attentions (attention ma-

trix)

Fierro, 2020 -

3.2. ICD codes representation

One challenge of dealing with ICD-10 codes directly is their discrete nature. ICD-10

has more than 68,000 codes (Nguyen et al., 2018).

In the previously mentioned works, authors used different representations for ICD

codes. In the beginning they used one-hot encodings: a code c is represented by a one-

hot vector vc ∈ R|V |, where vc = (v1c , ..., v
|V |
c ) and |V | is the number of codes, vc =

(0, 0, ..., 0, 1, 0, ..., 0) because vic = 1 if c = i, which implies c is the ith code, and vic = 0

otherwise. For example, if we have a set of five codes then the embedding size is five

and every code is represented having a 1 value in the corresponding position, just like the

random embedding in Figure 2.2.

When more advanced encodings started to be used, this approach remained as the

baseline (Caruana et al., 2015) (Futoma et al., 2015). This is the most basic approach,

and it is not ideal since it fails to capture the ordering and semantic of the embedded
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objects. It also creates a high-dimensional vector, which leads to overfitting and expensive

computations and memory usage.

In NLP, word embeddings that capture semantic representations have replaced one-hot

models as the traditional text representation method. (Pham et al., 2016) and (Nguyen et

al., 2017) noticed an interesting analogy between natural languages and EHR data (specif-

ically, the ICD codes), where an episode is similar to a sentence, and diagnoses and proce-

dures play the role of nouns and modifiers. With this in mind, they proposed Deep Learn-

ing models that are inputted a sentence of codes (so codes are considered the tokens) as

Figure 3.1 shows, and they add an embedding layer with learnable weights. Hence, the

model ends up learning embedding representations for the tokens (the ICD Codes). This

approach was used with random initialization of the weights and also with a Word2Vec

representation (Mikolov, Corrado, Chen, & Dean, 2013) trained in an unsupervised fash-

ion. This approach is very interesting, and the authors argue that it can learn semantically

sound representations. As the embedding is learned from data, the model does not rely

on manual feature engineering. A clear drawback is that representation is learned from

the dataset, which is relatively limited. It fails at including previously known information

from the codes (for example, that they are clustered in chapters). Furthermore, (Nguyen

et al., 2017) truncates to level 3 codes and (Pham et al., 2016) to level 2 codes, losing

granular information that might be useful.

Figure 3.1. A patient admission seen through the lens of NLP. ICD codes
are tokens, and the episode is the sentence (Nguyen et al., 2017).

(Nguyen et al., 2018) formalizes the tasks of identifying patients with similar condi-

tions (patient matching task) via their ICD code sequences. They leverage the literature at

the time on representation learning of individual ICD codes and also use the fact that they
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are sequential in an admission sequence. They do an exhaustive analysis of the drawbacks

of different representations and poolings, for example, mentioning that using the codes as

discrete input is not enough (’I200 is different than R570 however they are both related

to heart issues’) and that summing vectors loses the sequentiality of the data. They also

obtain embeddings with Word2Vec (size 100) (Mikolov et al., 2013), considering every

patient a document and every code a word.

(Karimi et al., 2017) focuses on the automatic diagnosis coding task, which tries to

assign ICD codes to radiology reports. In doing so, and even though they don’t use learn-

able embeddings for the ICD codes, they generate an interesting discussion comparing in-

domain embeddings with out-of-domain embeddings and static embeddings vs. dynamic

embeddings. They conclude that pre-trained word vectors work better than randomly ini-

tialized ones, that dynamic word vectors are better than static ones, that in-domain word

vectors are better than generic ones, and that larger embedding size does not always lead to

better performance—word vectors trained in Medline outperformed word vectors trained

using Wikipedia.

So far, we’ve seen simple representations that treat the codes as individual pieces of

information and representations learned from the context they are used in. None of these

exploit the fact that the ICD standard is a structured and hierarchical knowledge base

and the codes itself represent that structure. (Hema & Justus, 2015) explores the tree

representation for the ICD standard.

(Choi, Bahadori, Song, Stewart, & Sun, 2017) proposes a method that supplements

EHR with hierarchical information from parent-child medical ontologies; it represents a

medical concept as a combination of the ancestors in the ontology. They consider the

frequency of the concept and its ancestors, so when a concept is less observed in the data,

more weight is given to the ancestors. They concluded that they could get great results

using less training data and obtain representations that align with the medical ontologies.

One of the ontologies they test is the ICD-9 code hierarchy.
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4. PROBLEM FORMULATION

When conducting the literature review, we identified a gap in the Readmission prob-

lem’s proposed solutions. At first, models used one-hot encoding to represent the ICD

codes. Then, (Pham et al., 2016), (Nguyen et al., 2017) and (Nguyen et al., 2018) assume

that the meaning of a medical concept can be learned by its context since they treat codes

as words and episodes as documents. In their models, ICD codes that co-occur closely

(within an episode) are mapped to vectors closer together. Later on, ICD code representa-

tions were replaced by Deep Learning models that could ingest all the EHR data, but there

were no more attempts to keep on improving the ICD code representations.

It is known that a significant challenge in using more of the data available for a patient

is the lack of standards and semantic interoperability of health data from multiple sites

(Rajkomar et al., 2018). A dataset that uses ICD codes as the primary source of informa-

tion is more standard, especially in Chile. Because of the DRG system, the government

dictates the ICD standard used for diagnoses and procedures. Thus, in this research, we

focus on improving the ICD code representation for the readmission problem.

Moreover, all works that were reviewed on the readmission problem do not have a con-

sistent evaluation system. They use different metrics, and most of them use AUROC as the

single reported metric to demonstrate performance. This is not the best metric since, in the

health system, precision is crucial. Most of them don’t report recall or even mention that

recall is relatively low. Only (Huang et al., 2019) reports recall with a specific precision

threshold. This study will report benchmarks for different ICD code representations; they

will all be compared with the same metrics and contrasted with the literature.

This study is the first of its type in Chile since (Fierro et al., 2020) did not use inter-

vention codes. Most of the other studies were done with the USA or Australian standards,

so this exploration of ICD code representation using the Chilean standards can be very

useful for future national work in the area.
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The main objectives of this research are:

• Explore and learn new representations for ICD codes

• Test the new representations in the readmission task and generate benchmarks

for the task using different classifiers with an appropriate evaluation framework

• Make the output of this work publicly available (English-Spanish translation of

the ICD codes used in Chile, learned embeddings for the codes and the graph

structure of the ICD codes in a simple format)

We hypothesize that it is possible to achieve results close to state of the art using a

simpler dataset, just the ICD codes, if they are adequately represented. There is room

for improvement in the ICD representation for readmission prediction since ICD codes

have a description associated with them that has not been previously used, and NLP tech-

niques have greatly improved in recent years. Also, no readmission prediction works have

exploited the hierarchical nature of ICD codes or their sequential nature in the EHR. Pre-

vious representations that were learned from the data used local contexts, whereas ICD

codes have a global context that should be considered.
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5. DATA

In the data science community, it is widely held that 80% of the effort in any modeling

process comes from the preprocessing, merging, and cleaning of datasets (Rajkomar et

al., 2018). This thesis was not an exception. In this section, we go over the most labor-

intensive part of this work, cleaning the original dataset and producing an end version that

could be used to meet our needs:

• Have correct demographic data, procedure sets, and diagnosis set for all episodes

• Calculate a readmission flag per episode

• All the diagnosis and procedure codes need to have an English description and

be part of a valid and clear hierarchical structure

5.1. Original dataset

After receiving approval from the ethics committee, the dataset was received from our

School of Medicine collaborators at PUC Chile. The dataset comes from the Diagnostic

Related Group (DRG) Database from the main hospital in Chile’s Salud UC CHRISTUS

Healthcare Network. The dataset contains all the discharges that occurred during the pe-

riod 2014-2018. The hospital where the database comes from is a 500-bed academic med-

ical center that includes all main clinical specialties and discharges about 30,000 patients

per year. As part of the post-discharge administrative process, a team of expert nurses

reviews every episode and generates the DRG entries.

The original dataset has 301400 rows and 268 columns. Each row consists of a DRG

entry. The two most important keys are ’episode’ and ’patient’ (one patient can have many

episodes). The dataset represents the hospital activity for five years, and it includes infor-

mation on demographics, diagnoses, procedures, and readmissions.
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Table 5.1 shows a comparison with the dataset used in (Rajkomar et al., 2018) in order

to solve the Readmission Problem:

Table 5.1. Comparison between (Rajkomar et al., 2018) and our dataset.

A - Rajkomar et al. A - Rajkomar et al. UC

Size training data 85522 108948 129791 (episodes)

Age median 56 57 44

% female 46.8 62 57

30 day readmission 9136 (10.7%) 15932 (14.6%) 13544 (10.4%)

Hospital stays at

least 7 days

20411 (21.9%) 26109 (24%) 21970 (16.9%)

N diagnosis median 12 10 4

The dataset was kept in an access-controlled sandbox.

5.2. Challenges

Several problems and challenges were identified when working with this dataset. They

will be described in this section and solved along the preprocessing pipeline. The identifi-

cation and addressing of these challenges are considered a key contribution of this thesis:

(i) The dataset is in Spanish, which complicates data encoding and NLP work since

most models are pretrained with English corpora.

(ii) The dataset is extracted manually by someone inside the hospital. Not knowing

how each column was parsed requires a degree of inference and understanding of

the problem. For example, procedure codes were parsed as floats when extracted

instead of strings, losing an additional zero in the codification that cannot be

recovered.
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(iii) The dataset includes several years of data, and the systems within hospitals are

continuously updated without necessarily guaranteeing backward compatibility.

(iv) Data inconsistencies (i.e., same patient with different demographic values, a di-

agnosis code with multiple descriptions).

(v) Multiple rows per episode, which leads to subjective analysis to define the cor-

rect way of aggregating a feature’s values.

(vi) Codes in the dataset correspond to the CIE standard (Spanish translation of the

ICD standard), and it is not clear which version of the CIE codes is used and to

which ICD version it maps, or even if there is a unique mapping in the dataset.

(vii) Abbreviated descriptions of the codes are used, so using machine translation to

get the English representation is impossible.

(viii) The hospital externalizes the coding process. Until 2016 they used a tool called

DRGFinder, which was designed to codify both procedures and diagnoses codes

in ICD-9-CM. When Chilean institutions started using ICD-10 to code diag-

noses, the external company provided a manual mapping between both stan-

dards. This is not a perfect process, there are errors, and not all codes have a

mapping. These errors are reflected in the dataset (i.e., some diagnoses codes

look like procedure codes because there was no proper mapping in the internal

tool).

5.3. Preprocessing pipeline

The preprocessing pipeline is represented in Figure 5.1.

There is an initial stage of preparation, transforming the original files into a more

friendly format. This is followed by the data extraction phase that extracts the relevant

data from the original dataset. After this, a throughout code analysis, for both procedure

and diagnosis codes, is performed to solve several of the challenges related to the codes.

Finally, the pipeline finalizes with the integration stage to get the final dataset used for

training.
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Figure 5.1. Preprocessing pipeline

For conciseness, the details of every step of the preprocessing pipeline are described

in Appendix B, and here we only give an overview of every step:

(i) Preparation: Merges original files, fixed encoding issues, and outputs a single

CSV file.

(ii) Data extraction: In four parallel sub-stages it extracts the relevant data from

the CSV file (demographic data, readmission tag, codes and descriptions). This

stage’s outputs are three key-value structures with episodes as keys and the ex-

tracted information as values and one key-value structure with codes as keys,

and a set of descriptions as values.

(iii) Code analysis: Code-description pairs are thoroughly analyzed. Several sources

are used to create a ground truth of valid codes with Spanish and English descrip-

tions to solve discrepancies. This stage’s outputs are the set of valid codes with

their Spanish and English descriptions, a set of codes from the original dataset

considered invalid, and the graph structure for the valid procedure and diagnosis

codes.
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(iv) Integration: Final stage that merges the data extracted in the Data Extraction

stage, filtering out episodes with missing data and with a high number of invalid

codes as defined by the Code analysis stage. The output of this stage is the final

dataset used in this work.

The final mappings generated in the Code Analysis stage were published in a Github

repository1. This repository is a key contribution of this thesis. It provides mappings for

both procedures and diagnoses with the current standards used in the Chilean healthcare

systems in Spanish and English. This considerably facilitates further researchers that want

to work with this data.

5.4. Final dataset

The final dataset has 92933 episodes and 68516 patients, with a 10% readmission rate.

58% of the patients are women. The average age is 44 years, and the average length of

stay is five days. The distribution of the number of diagnoses and procedures is plotted in

Figures 5.2 and 5.3. The distribution of the other features can be found in Appendix C.

Every episode’s features are sex, age, length of stay (LOS), DRG weight, number of

procedures, number of diagnoses, set of diagnoses, set of procedures, and readmission

flag. For simplicity, from now on, all features that are not the ICD codes and the readmis-

sion flag will be referred as demographic features (even though they include features like

DRG weight and number of procedures, which are not technically demographic).

1https://github.com/tamycova/icd-cie-codes-chile

https://github.com/tamycova/icd-cie-codes-chile
https://github.com/tamycova/icd-cie-codes-chile
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Figure 5.2. Distribution for Number of Diagnoses.

Figure 5.3. Distribution for Number of Procedures.
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6. REPRESENTATIONS

6.1. Categorical

Similarly to (Futoma et al., 2015) the first representation will be one-hot encoding,

which will also be considered the baseline. The dataset has 7355 different diagnosis codes

and 2697 distinct procedure codes, which means that a diagnosis code can be represented

with a 7355-sized vector with a ”1” in the position corresponding to the diagnosis. A

procedure code can be represented with a 2697-sized vector with a ”1” in the position

corresponding to the procedure code. Correspondence is fixed and randomly determined.

With this representation, a single episode can be represented concatenating both rep-

resentations into a 10052 sized vector, where the first 7355 positions will have a ”1” if the

respective diagnosis code is present in the episode and the other 2697 positions will have

a ”1” if the respective procedure is present in the episode, as shown on Figure 6.1.

Although this research does not focus on DRG codes, we also built a one-hot encoding

for this feature for some experiments; there are 859 DRG codes.
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Figure 6.1. Categorial representation for an episode with two diagnoses
and three procedures. The vector that represents the episode is the concate-
nation of its diagnosis vector with its procedure vector.

6.2. Text description

As we saw in Section 5, ICD codes have a text description associated with them that

has never been used to represent them.

BERT (Devlin et al., 2019) is a deep neural network that uses the transformer encoder

architecture (Vaswani et al., 2017) to learn embeddings for text. We omit a detailed de-

scription of the architecture since it is not the focus of this research, and it can be found

in the cited literature. This model is used in (Huang et al., 2019) to learn better represen-

tations for the episodes from the discharge summaries, which are later used to classify for

readmission (Figure 6.2).
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Figure 6.2. Figure from (Huang et al., 2019), with permission of the author.
ClinicalBERT models clinical notes and is finetuned on 30-day readmission
prediction. The model receives as input a patient’s clinical notes, and then
the probability of readmission is obtained using a linear layer applied to the
classification representation for the CLS token learned by ClinicalBERT.

The quality of learned representations of text depends on what text the model was

trained on. Original BERT is trained on Wikipedia and BookCorpus. Fortunately, work

has been done to train BERT in the biological domain. This is important because word

distribution between general domain corpora and biomedical corpora is shifted. (Lee et

al., 2019) continued training BERT on large-scale biomedical corpora. Starting with the

pretrained BERT, they trained using PubMed abstracts and PMC full-text articles. From

those weights, (Alsentzer et al., 2019) continued training into the clinical domain using all

notes from MIMIC-III, a database containing EHR from ICU patients, and made the pre-

trained weights publicly available in HuggingFace (Wolf et al., 2019), a large open-source

community.

This training chain took significant computational resources. BERT’s base model is

pretrained for four days on four to sixteen Cloud TPUs. BioBERT pretrained on biomed-

ical corpora for 23 days on eight NVIDIA V100 GPUs. (Alsentzer et al., 2019) took 18

days using a single GeForce GTX TITAN X 12 GB GPU. We can directly benefit from

this work.

Since every ICD code has an English description associated with it, every description

can be given as input to the BERT model using (Alsentzer et al., 2019) weights and then

use the CLS token as a representation of the code, size 768.
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An episode can be represented as the concatenation of the descriptions for all the

diagnoses and procedures codes and then give this as an input, which in turn provides us

with a vector (the one associated with the CLS token) that represents the episode, or we

can directly classify with a layer on top of the model (Figure 6.3).

An advantage of this representation is that codes don’t need to be truncated to higher

levels like they do in (Nguyen et al., 2018), since their descriptions already include (gen-

erally) the ancestor information.

Figure 6.3. Text representation for an episode obtained concatenating the
text descriptions of its ICD codes. This text is later fed to a pretrained
BERT model, similarly to (Huang et al., 2019). This Figure shows one
text representation, concatenating diagnosis text with procedure text. Other
representations are also possible; they are explored in Section 7.



28

6.3. Ontology

Table 6.1. Ontology characteristics.

Edges Nodes Structure Depth Leaves

ICD-10 Di-

agnoses

14302 14324 tree 4 11607

ICD-9-CM

Procedures

4647 4664 tree 7 3878

Hospital 1403450 180434 graph - -

ICD codes for both diagnosis and procedure can be represented with a tree structure.

The procedures tree has 18 initial nodes (for example, operations on the nervous system,

operations on the eye, operations on the ear, are some of those initial nodes) and depth

4. The diagnoses tree has 22 initial nodes (for example, mental and behavioral disorders,

diseases of the respiratory system are some of those initial nodes) and depth 7. In Figure

6.4 and Figure 6.5 there is a visual representation of a subpart of the ontologies, Figure

6.6 provides another view of how the diagnoses ontology looks. We can see that nodes

”D50” and ”D51” have the same parent, ”Nutritional anemias”, but one of them refers to

Iron deficiency and the other one to Vitamin B12 deficiency. Further information about

these graphs can be found in Table 6.1.

Also, the whole dataset can be represented as a graph, including the ICD ontologies.

Patients have episodes, episodes have diagnoses and procedures codes, and the codes are

related to each other through the ontologies.

Having the graph representations for each ontology (a list of edges), it is possible to

use graph embedding algorithms to generate embeddings for every node in the graph. The

idea is that the representation reflects the ontology structure, so nodes related in the tree

should be closer than unrelated nodes or farther related. With this in mind, it is possible
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Figure 6.4. Subtree in the diagnoses graph with ”C81-C96 Malignant neo-
plasms, stated or presumed to be primary, of lymphoid, haematopoietic and
related tissue” as root

Figure 6.5. Subtree in the procedure graph with ”06-07 Operations on the
Endocrine System” as root

to generate embeddings for all ICD diagnoses and procedures from their respective on-

tology in any determined size. Single episodes can also be represented using their node

embedding in the Hospital graph.



30

Figure 6.6. Another view of the ICD-10 Diagnoses structure

In this work, we will explore two different algorithms to generate these embeddings.

6.3.1. Node2Vec

Node2Vec (Grover & Leskovec, 2016) performs representational learning on graphs.

That is, given any graph, it learns continuous feature representations for the nodes. They

do so by performing biased random walks and maximizing the likelihood of preserving

network neighborhoods of nodes with the learned representation. They report their results

using the algorithm in networks that range in the number of nodes between 3K and 10K

and in the number of edges between 70K and 300K, so it is a good option for small

ontologies.

6.3.2. PyTorch-BigGraph

Pytorch-BigGraph (PBG) (Lerer et al., 2019) is a recent contribution of Facebook to

the graph embedding open-source frameworks ecosystem. PBG is a distributed system

that learns graph embeddings for large graphs (for example, web interaction graphs with

billions of nodes and trillions of edges). It is worth noting that PBG is not optimized for

small graphs (fewer than 100000 nodes) and the authors highlight that it may not produce

high-quality embeddings in those graphs. This is because during training, the algorithm

constructs random false edges as negative training examples; it relies on the assumption
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that any random edge is negative with very high probability (which is valid for large sparse

graphs).
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7. EXPERIMENTAL DESIGN

7.1. Hardware

Experiments that ran on CPU used an 8 core (Intel i7-7700K CPU @ 4.20GHz) ma-

chine with 62.9G of RAM. Experiments that ran on GPU (mostly the text representation

experiments) used two GeForce GTX 1080 Ti X 12 GB GPU.

7.2. Data

For every episode, we have the set of diagnoses codes, the set of procedure codes,

readmission tag, and extra demographic data (including the DRG weight).

A split consists of splitting the data into a training set (0.8 of the data), a test set (0.1

of the data), and a validation set (0.1 of the data) in a stratified fashion. Hence, the read-

mission percentage is roughly the same across all datasets. The balanced version of the

split has the same testing and validation sets, but the training set increases its size via ran-

dom over-sampling of the minority class by picking samples at random with replacement

until the dataset is balanced. Five splits are generated at random, and all of them have a

balanced version. Experiments ran on the five splits, and the reported results correspond

to the mean of the metrics obtained over all the splits.

On average, the unbalanced training set has 74346 episodes with 10% readmissions,

the balanced training set has 133012 episodes with 50% readmissions, and the testing and

validation sets have 9293 episodes with 10% readmissions.

7.2.1. Poolings

Given representation ~u =< u1, u2 >, ~v =< v1, v2 > and ~k =< k1, k2 > for three ICD

diagnoses code in an episode, they all have the same length because the embedding was

generated on the same experiment run (in this case, and for simplicity, the size is two).
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When we need to represent the episode that contains these three codes we perform three

types of pooling:

(i) Sum pooling: The sum of all the vectors ~sum =< u1+v1+z1, u2+v2+z2, u3+

v3 + z3 >.

(ii) Mean pooling: The mean of all vectors ~sum
‖~u‖

(iii) Weighted sum pooling: Vectors are summed but with a linearly decaying weight,

in this case the weights would be 0.5 for ~u, 0.33 for ~v and 0.16 for ~z.

7.3. Models

Even though we are focused on the representations (which have their own baseline),

we also compare performance on two classifiers that were previously used in literature.

Similarly to (Futoma et al., 2015) and (Nguyen et al., 2017), we use Logistic Regression

as the baseline classifier. Additionally, we use XGB, which corresponds to a decision

tree ensemble (Chen & Guestrin, 2016). Both models are implemented using Scikit-Learn

(Pedregosa et al., 2011). The models will not be finetuned, and they will be used with

the same (default) parameters for all experiments. We chose these models based on the

results in (Futoma et al., 2015) and because we want to have a degree of explainability in

the discussion, so using robust models that also give us feature importance is relevant for

our analysis.

As mentioned in Section 6, we use BERT (Devlin et al., 2019) loaded with different

pretrained weights (Alsentzer et al., 2019) as a classifier for the text representation; the

implementation uses the transformers library (Wolf et al., 2019), which also provides the

appropriate tokenizer for each model. Every finetuning experiment uses learning rate 3−05,

is trained over four epochs, and the rest of the parameters default to the library’s Trainer.

If the training set is unbalanced, we modify the loss function (cross-entropy) to consider a

weight for the classes; the weight will be a training parameter in the experiments. Because
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of memory constraints, the batch size depends on the number of trained layers, so the pair

number of layers/batch size is also a training parameter in the experiments.

7.4. Evaluation

These will be the metrics used to analyze the results of the experiments:

• AUC: Area Under the Receiver Operating Characteristic Curve (ROC AUC) us-

ing the predicted probabilities.

• RP60: Recall at precision 60%.

• RP80: Recall at precision 80%.

• Accuracy: Accuracy using 0.5 as the predictive threshold.

AUC and Accuracy were chosen to compare our work to previous studies. RP60 and

RP80 were chosen to establish benchmarks for the readmission problem that are more

representative of the usefulness of the prediction compared to what has been previously

reported. Because of alarm fatigue, useful classification rules for medicine should have

high precision (Huang et al., 2019), but this comes at a cost of recall. With different

predictive thresholds, different values for precision and recall are obtained. These can be

plotted in a precision-recall curve. This curve can also be smoothed by interpolation, as

Figure 7.1 shows, by fixing the recall at 11 points (0, 0.1, 0.2, 0.3, ..., 1.0) (Manning,

Raghavan, & Schütze, 2008). The precision-recall curve will be used in our analysis,

and for every experiment, we will also report recall at a fixed precision of 60% and 80%,

relevant metrics for the medical setting.

Additionally, and when possible, we use visualizations to interpret the trained model.



35

Figure 7.1. Example of a Precision-Recall Curve and its 11-point
Precision-Recall curve.

7.5. Experiments

The same experiments were performed on every data split.

7.5.1. Categorical

Since every episode has a vector representing their ICD codes (diagnosis vector con-

catenated with procedure vector), a set of demographic variables, and a vector representing

the DRG code, we performed a series of experiments to evaluate which combination of

data was the most useful for readmission prediction.

A combination of these boolean variables defines the dataset used in every experiment:

• Balanced (True if the training data used is balanced)

• Demographic (True if demographic data is part of the dataset)

• DRG (True if DRG vector is in the dataset)

• ICD (True if ICD vector is in the dataset)

Therefore, for every classifier and split, we performed 14 runs.
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7.5.2. Text description

7.5.2.1. Static

To confirm that we can benefit from the pre-training on clinical data, we use every

episode’s representation as the concatenation of their diagnosis and procedure’s descrip-

tions and input it to BERT-Base (pretrained on Wikipedia), Bio+Clinical BERT (initialized

from BioBERT and trained on all MIMIC notes) and Bio+Discharge Summary BERT

(initialized from BioBERT and trained only on discharge summaries) and extract static

representations (from the CLS token), which are then used to train the classifiers.

A combination of these variables defines the dataset used in every experiment:

• Balanced (True if the training data used is balanced)

• Demographic (True if demographic data is part of the dataset)

• Input type (Three different ways to input the code’s descriptions: diagnoses de-

scriptions concatenated with procedures descriptions to produce a 768-sized rep-

resentation, diagnoses descriptions interweaved with procedures descriptions to

produce a 768-sized representation, diagnoses descriptions separated from pro-

cedures descriptions and then both vectors are concatenated to produce a 1536-

sized representation)

Therefore, for every classifier, split, and BERT model, we performed 12 runs.

7.5.2.2. Dynamic with classification layer

For this experiment, we use the BERT model with a classification layer on top (a

pooler that extracts the CLS token and then two neurons for both classes) initialized with

Bio+Clinical BERT’s weights.

A combination of these variables defines every experiment:
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• Balanced (True if the training data used is balanced)

• Frozen Layers/Batch size (0/10, 5/20, 10/64, 11/74)

• Weights (this is only if Balanced is False, 0.1, 0.15, 0.3, 0.5)

Therefore, for every split, we performed 20 runs (four for the balanced dataset and

sixteen for the unbalanced dataset).

7.5.2.3. Dynamic with traditional classification

We finetune a single model (zero frozen layers, batch size 10, unbalanced dataset,

weight 0.3, first split) and remove the classification layer. Similarly to the static exper-

iments, we extract the training set representations and then train the classifiers with and

without the demographic data. This is done with the same training set used to finetune the

initial model (we don’t test the classifier’s performance on an example that was already

seen when the representation was finetuned). In this experiment, two runs are performed

per classifier.

7.5.3. Ontology

7.5.3.1. Node2Vec

Using Node2Vec, we obtain representations for every ICD code from their respective

ontology. We obtain representations in two different sizes, size 100 and size 768 (so

it is comparable to the embeddings obtained from BERT). We then perform the three

poolings discussed in Section 6 and obtain a diagnosis and a procedure vector for every

episode. In summary, every episode has six possible representations for its diagnoses

vector (the combination of two sizes and three different poolings), and the same holds for

its procedures vector.

In every experiment, we instantiate a dataset with a different representation and then

train the classifiers. A combination of these variables defines an experiment:
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• Balanced (True if the training data used is balanced)

• Demographic (True if demographic data is part of the dataset)

• Size (30 or 768)

• Pooling (Mean, Sum or Weighted Sum)

• Concatenate (True if to represent an episode we concatenate the diagnosis vector

with the procedure vector, if False we average both vectors)

Therefore, for every classifier and split, we performed 48 runs.

7.5.3.2. PBG codes

The set up for this experiment is the same as with the Node2Vec case, except the

representation for every ICD code is learned from the ontologies using Pytorch-BigGraph

(Lerer et al., 2019).

7.5.3.3. PBG hospital - code level

This experiment’s setup is the same as with the Node2Vec case, except the represen-

tation is learned from the dataset represented as a graph as discussed in Section 6 using

Pytorch-BigGraph (Lerer et al., 2019).

7.5.3.4. PBG hospital - episode level

Representing the dataset as a graph allows us to get representations for the ICD codes

and the episodes. We obtain these representations (in size 30 and size 768) using Pytorch-

BigGraph (Lerer et al., 2019) and then train the classifiers.

In every experiment, we instantiate a dataset with a different representation and then

train the classifiers. A combination of these variables defines an experiment:

• Balanced (True if the training data used is balanced)

• Demographic (True if demographic data is part of the dataset)
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• Size (30 or 768)

Therefore, for every classifier and split, we performed eight runs.
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8. RESULTS

This section discusses our results and trade-offs of every representation; for detailed

numerical results, see Appendix D.

8.1. One-hot encoding

These experiments had a high memory consumption (8 GB of RAM to store in memory

one full dataset) due to the sparse representation. Even though bag-of-words does not add

any semantic or local context to the vectors, it provides a clear overview of the episode

since there is no pooling of codes.

This representation is our baseline, but it already achieves state of the art results. This

is not a surprise considering the literature analysis, with reported results not supported by

a solid evaluation framework.

Overall, XGBoost had a better performance than Logistic Regression. Figure 8.1

shows the results for both classifiers trained with all possible data points (ICD codes,

DRG code, Demographic data). AUC is similar, but XGBoost has a considerably better

recall. From now on, the rest of the analysis will focus on the XGBoost results. Figure 8.1

shows the interpolated precision-recall curves of the XGBoost model for all splits (on the

same dataset), there are some differences, but overall the tendency is the same.

Table 8.1. Results for both classifiers on the full dataset (ICD + Demo-
graphic + DRG).

Model Dataset AUC rp60 rp80 acc

LR Balanced 0.8 0.18 0.02 0.9

LR Unbalanced 0.79 0.2 0.04 0.9

XGB Balanced 0.81 0.29 0.13 0.78

XGB Unbalanced 0.81 0.29 0.12 0.91
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Figure 8.1. Every curve represents the interpolated precision-recall curve
of the XGBoost classifier trained with ICD codes, DRG code, and Demo-
graphic data on a single split.

The best-performing model achieved a mean AUC of 0.81, comparable to the results

obtained in (Futoma et al., 2015) (Rajkomar et al., 2018) (Huang et al., 2019) (Fierro et

al., 2020) and mean accuracy of 0.91, similar with (Nguyen et al., 2017). This does not

mean that the model is great at solving the problem, obtaining a recall at precision 80% of

0.13 which is slightly low compared to (Huang et al., 2019) but higher than (Fierro et al.,

2020). Regardless, the metric is too low to motivate implementation in the clinical sites.

Even though the best model was trained with the unbalanced dataset, demographic

data, and codes (no DRG code), the results are very similar to other combinations. As we

can see in Table 8.2, ICD codes are the piece of data that provides more information on

its own, adding the DRG code does not improve the results. This can be expected since

the ICD information is an input to the model that assigns the DRG code to the episode.

This means that there is no need to increase the representation’s size and sparsity by also

adding the DRG code one-hot vector. Demographic data does provide an improvement.
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This makes sense considering it includes the DRG weight, which indicates how abnormal

this episode is in resource use, surely an important indicator for readmission.

There is no significant difference between the balanced and unbalanced datasets. Fur-

thermore, the unbalanced dataset has better recall than the balanced dataset, which aligns

with the results of (Fierro et al., 2020).

Table 8.2. Dataset combinations with one-hot encoding (XGB).

Data AUC bal AUC unbal rp80 bal rp80 unbal

Demographic 0.76 0.77 0.07 0.07

DRG code 0.77 0.77 0.06 0.03

ICD codes 0.8 0.8 0.09 0.11

ICD + DRG 0.8 0.81 0.11 0.09

ICD + Demo-

graphic

0.81 0.81 0.09 0.13

An advantage of this representation is the inherent meaning of the embeddings. Their

meaning does not come from their position in a continuous space but the exact codes

composing an episode. This facilitates explainability. In Figure 8.2 we see the explanation

for a correct prediction of a positive example using SHAP (Lundberg & Lee, 2017), a

method that assigns each feature an importance value for a particular prediction. The plot

was generated using Microsoft’s InterpretML library (Nori, Jenkins, Koch, & Caruana,

2019). The model gives high importance to the length of stay, the sex of the patient, and

the number of diagnoses. This is a clear example that not because a model achieves state

of the art in the task at hand implies that its predictions make sense in a clinical setting.

Demographic data should not be enough to assess a clinical discharge.

It is also possible to use the model’s transparency to get a global explanation. Table

8.3 shows the top features of the model and the importance ranking (in terms of Gain) for
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Figure 8.2. SHAP explainability for one-hot encoding using only demo-
graphic data.

some of the demographic features. We can see that the two most important features are

procedures related to cancer, and the third one is related to birth. Demographic features

are no longer the main predictors, and because of the nature of the encoding, it is expected

that the model overfits certain codes’ presence. This is an interesting insight; it motivates

future research lines with analysis performed at the cohort level, similar to (Futoma et al.,

2015).
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Table 8.3. Feature importances in XGBoost trained with ICD codes.

Ranking Feature Weight Meaning

1 99.25 0.051 Injection or in-

fusion of cancer

chemotherapeutic

substance

2 51.23 0.009 Laparoscopic chole-

cystectomy

3 75.34 0.009 Other fetal monitor-

ing

4 D70 0.008 Agranulocytosis

54 LOS 0.002 Length of Stay

159 ND 0.002 Number of Diagno-

sis

241 Weight 0.001 DRG Weight

Figure 8.3 shows how the SHAP explanation of the prediction changed now that codes

are considered. We can see that the model now focuses more on the procedures rather than

on the demographic data, which is the desired behavior.
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Figure 8.3. New SHAP explainability for one-hot encoding using ICD codes.

8.2. Static BERT

After concatenating text descriptions of all the codes in an episode, static represen-

tations were obtained for each episode using Bio+Clinical BERT, Bio+Discharge BERT,

and Base BERT. Then classification was performed using these representations.

It was expected that Base BERT would underperform compared to the other two in-

stances pretrained on medical specific data. This held, except the performance was not

considerably different, as shown in Table 8.4. Again, the unbalanced dataset achieved

better results, and XGBoost performs better than Logistic Regression (AUC is similar, but

rp80 is higher).
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Table 8.4. Best static BERT performances.

Model Weights AUC bal AUC unbal rp80 bal rp80 unbal

LR Bio+Clin 0.79 0.79 0.03 0.03

LR Bio+Disch 0.79 0.79 0.03 0.05

LR Base 0.78 0.79 0.03 0.06

XGB Bio+Clin 0.77 0.78 0.05 0.07

XGB Bio+Disch 0.78 0.78 0.06 0.07

XGB Base 0.77 0.77 0.04 0.06

Adding demographic data also improved the results in these experiments. The best

method of preparing the input was getting separate representations for the diagnoses and

the procedures and then concatenating them as a final representation.

Regarding explainability, the BERT architecture has 12 multi-head attention mecha-

nisms for each of the 12 transformer encoders. After training, each one of these mecha-

nisms specializes in different patterns that are indicative of the task at hand (an NLP task

in the case of the static experiments and Readmission in the case of dynamic experiments)

(Huang et al., 2019). There are 144 attention values for every token and it is complicated

to visualize and interpret this information. It is possible to stack these attentions by pool-

ing (with mean or sum). It is not as interpretable as SHAP with one-hot encoding but

at least it provides a visualization for what the model is paying attention to. (Parra et al.,

2019) used design principles from information visualization to propose initial ideas for the

visualization of these attentions. Figure 8.4 and 8.5 are examples of these visualizations,

with the same patient whose prediction was analyzed using SHAP, we see that it seems

that BERT Base distributes the attention along the whole text while Clinical BERT focuses

on specific tokens.
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Figure 8.4. Mean attention of cancer patient using BioClinical BERT.

Figure 8.5. Mean attention of cancer patient using BERT Base.

This experiment was the first attempt to use the codes’ global context to solve the read-

mission problem. Since here episodes are represented as a concatenation of all codes, it

did not perform as well as the baseline where different codes are easier to be individualized

to predict based on their presence.

8.3. Finetuned BERT

Finetuning was performed feeding BioClinical BERT the concatenation of the ICD

codes’ text descriptions (per episode). These experiments took the longest to run (approx-

imately 2 weeks). Using a balanced dataset (without special weights in the loss calcula-

tions), the best performing model obtained 0.08 rp80. This model had no frozen layers and

batch size 10, so training is slower (three hours compared to a model with eleven frozen

layers that takes to train less than an hour), so if training time is relevant, freezing some

layers is worth considering since it did not considerably affect the results.
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Similar to previous experiments, the unbalanced dataset worked better than the bal-

anced dataset. The best result used a weight of 0.5 for both classes, with an AUC of 0.82

and rp80 0.11. This is the highest AUC in all experiments and is higher than all of the

reviewed past works that performed classification on the global dataset (not by DRG).

This shows that the text representation of an episode through ICD codes can achieve the

state of the art results. The best results were achieved with an unbalanced dataset, this is

surprising given the dataset’s imbalance. It suggests that there is room for improvement,

perhaps exploring other loss functions.

As expected, compared to the static experiments, results are better (almost double

rp80). This highlights the importance of finetuning the models for the task at hand. Figure

8.6 shows the mean attention for the same patient as Figures 8.4 and 8.5. Like BioClinical

BERT, it focuses on specific terms, but these terms are different after finetuning.

Figure 8.6. Mean attention of cancer patient using finetuned BioClinical BERT.

Figure 8.7 shows the average precision-curves for the three classification models (XGB

and LR were trained with the one-hot representation); as previously discussed, Logistic

regression has the worst performance, and it seems that Finetuned BERT and XGB have

similar behavior. This indicates that the linear assumption taken by Logistic Regression is

not enough to model the data.
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Figure 8.7. Average Precision-Recall curves for different classifiers. XGB
and LR were trained using the one-hot encoding representation (with all
the data), and BERT was finetuned for the readmission task.

8.4. Ontology encodings - Code level

Three different ontology-based encodings were evaluated at the code level: Node2Vec

(with ICD ontology), PBG (with ICD ontology), and PBG (with the whole dataset repre-

sented as a graph).

In regards to the interpretability of the encodings, Node2Vec is a sure winner. This is

probably because of how the algorithm works, performing random walks that can capture

the ontology’s structure better, versus PBG that works by learning a representation based

on negative examples. This can be visually evaluated using the t-distributed stochastic

neighbor embedding (t-SNE) algorithm, a non-linear dimensionality reduction technique

used to embed high-dimensional vectors in a two-dimensional space (for plotting). Figure

8.8 shows the 2D projections of the Node2Vec embeddings for the diagnosis leaf codes

in two specificity levels, while Figure 8.9 does the same for procedures. It is easy to spot

several clusters; although separation is not perfect in the higher level (root chapters), it is



50

very representative one level below (subchapter). This contrasts with Figure 8.10 which

has the same plot for the diagnoses codes using PBG. At the higher level, all categories

are mixed, and at a deeper level, the separation is not as good as with the Node2Vec

representation. This also holds for the representation learned from the dataset represented

as a graph and for the procedures embeddings.

Figure 8.8. Node2Vec. Left Figure shows the t-SNE projections for leaf
nodes categorized according to their root chapter. Right Figure shows leaf
codes from chapter IV (Endocrine, nutritional and metabolic diseases) cat-
egorized according to their subchapters.
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Figure 8.9. Node2Vec. Left Figure shows the t-SNE projections for leaf
nodes categorized according to their root chapter. Right Figure shows leaf
codes from chapter 4 (Operations on the Ear) categorized according to their
subchapters.

Figure 8.10. PBG. Left Figure shows the t-SNE projections for leaf nodes
categorized according to their root chapter. Right Figure shows leaf codes
from chapter 4 (Operations on the Ear) categorized according to their sub-
chapters.
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Regarding classification results, Table 8.5 has the maximum performances for each

experiment, for both embedding sizes. There is no clear pattern for embedding size, so

this is probably a parameter that would need to be finetuned depending on the task at

hand. This is encouraging, and it aligns with the results of (Karimi et al., 2017), having

low dimensional representations reduces computational and memory consumption.

Results are slightly worst than the baseline, but considering that a lot of specific in-

formation about the codes is lost when pooling, this was expected. Weighted mean pool-

ing achieved the best results across the three experiments. This shows that including the

sequentiality of the codes in the representation is an interesting step forward. Further

research should be done to find better poolings since the ones we benchmarked are the

simplest available. Also, as expected, concatenation of the diagnosis and procedure vec-

tor (instead of averaging them) performed better in general; when we average, we lose

information.

Table 8.5. Best results for ontology encoding experiments. These algo-
rithms were applied to generate encodings for every ICD code, and then
these were pooled and classification was performed. Metrics are reported
for two embedding sizes, size 30 and size 768.

Algorithm Graph Classifier AUC (30) AUC

(768)

rp80 (30) rp80(768)

Node2Vec ICD LR 0.74 0.77 0.02 0.06

PBG ICD LR 0.72 0.79 0.05 0.05

PBG Hospital LR 0.77 0.8 0.04 0.08

Node2Vec ICD XGB 0.79 0.79 0.07 0.09

PBG ICD XGB 0.77 0.78 0.08 0.1

PBG Hospital XGB 0.8 0.79 0.1 0.08

PBG trained on the ICD ontology underperformed in all data combinations (ignoring

a few outliers) versus Node2Vec in the same ontology. As discussed in Section 6, PBG
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was not designed with small graphs in mind, and this shows in the results. On the other

hand, PBG trained on the hospital dataset (with over 1M edges) performed better than both

experiments trained exclusively on the ICD ontology. Mixing both the global information

(ICD ontology) and the local context (hospital dataset) in the graph proved to be an inter-

esting idea. This is a new representation that has not been discussed in the literature to the

best of our knowledge.

8.5. Ontology encodings - Episode level

Using PBG, episode encodings were generated from their graph representation (in-

cluding the ICD ontology). The graph did not have any readmission information. Specific

data about the codes is lost in this representation since the input to the classifier is the

encoding of the episode. This is also a novel representation.

Figure 8.11 shows the t-SNE projections of all episodes. There are some small clus-

ters, but in general, there is not a clear separation. This is not surprising since, without

additional supervision, the model can’t know by which criteria to separate the vectors.

In this experiment, the highest recall at precision 80% was 0.03 (unbalanced, size 30,

with demographic information). This is the worst result across all experiments.
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Figure 8.11. t-SNE projections for PBG embeddings of all episodes in the
dataset.
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9. CONCLUSIONS

We explored several ICD code representations and their variants: (1) One-hot encod-

ing, which treats the codes as categorical variables and does not encode other known

information about their medical context, (2) an original representation based on the text

description of the codes, which leverages NLP pre-training efforts on medical corpora and

(3) an ontology-based representation, and evaluated them in a 30-day hospital readmission

prediction task.

We achieved state of the art results (AUC 0.82), but we also show that this is not

enough to solve the problem. High AUC does not necessarily mean that the model is

looking at the correct medical variables or that it will perform well for the specific task,

which is detecting as many readmission cases as possible before they occur. The recall was

low, which shows that it is essential to include other evaluation metrics such as precision-

recall curves and recall at fixed precision and, also, that there is much improvement to

be made to solve the readmission problem. We succeed at proving that it is possible to

achieve good results with a simpler dataset, based on ICD codes.

Despite the accomplishment of our objectives, it is important to mention the limitations

of this work. First of all, the dataset was highly preprocessed due to several problems. We

have no information on the reliability of the ICD codes (some of them were likely the

result of recording errors or misdiagnoses). Also, several factors are involved in hospital

readmissions, and many are unpredictable. The dataset used in this work is not publicly

available due to privacy concerns, limiting the reproducibility of our work.

It is clear that some classes of admissions are harder to classify; therefore, a cohort-

specific approach should be taken. As future work, we propose doing a similar analysis

separated by cohort, similar to (Futoma et al., 2015). Also, there is room to explore other

solutions to solve the imbalance of the dataset (such as focal loss) since our experiments

showed that the unbalanced dataset performed better. Finally, it would be interesting to

explore a hybrid approach between these representations, similar to (Choi et al., 2017).
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The results of our work are publicly available. We hope that researchers of other tasks

that use ICD codes as input can benefit from them, as well as Chilean researchers who

wish to work with this type of dataset.
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A. DATASET COMPARISON (READMISSION PROBLEM)

Table A.1. Comparison of datasets used in literature to solve the Readmis-
sion Problem.

Research Dataset size Health data

Caruana, 2015 196K patients (train set )

over 2 years, 4K features for

each patient

Lab test results, summaries

of doctor notes, details of

previous hospitalizations

Futoma, 2015 3.3M hospital admissions

over 6 years

Demographic and back-

ground data, ICD-10-AM

codes (procedures and

diagnoses), DRG code

Nguyen, 2017 300K patients and 600K ad-

missions over 5 years

ICD codes (procedures and

diagnoses)

Pham, 2017 53K admissions (diabetes

cohort) over 12 years

ICD codes (procedures, di-

agnoses, and medications)

Rajkomar, 2018 100K patients and 200K ad-

missions

Demographic data, provider

orders, diagnoses, proce-

dures, medications, Lab test

results, vital signs, flowsheet

data, free-text medical notes

Huang, 2019 60K admissions (MIMIC

III)

Clinical notes

Fierro, 2020 186K admissions over 9

years

Demographic data, reason

of visit, procedures, diag-

noses, medications, clinical

notes
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B. PREPROCESSING PIPELINE DETAIL

B.1. Preparation

The original dataset came in two files, a .txt file for years 2014-2016 and a .xlsx file for

years 2017-2018. In this step, both files are merged into a single file, and then the whole

dataset is read, and all Spanish specific characters are replaced (i.e., é goes to e, Ú goes to

u, ñ goes to n) to minimize further encoding issues.

The result of this stage is a single CSV file containing all the information provided by

the hospital.

B.2. Data extraction

The Data extraction stage consisted of four other sub-stages: demographic data extrac-

tion, readmission tagging, codes extraction, and descriptions extraction.

B.2.1. Demographic data extraction

This stage’s objective is to extract the columns that are not related to readmission,

diagnosis, or procedure but might still be useful for predicting readmission. The first step

is ensuring that every column is parsed to the correct data type, see B.1.
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Table B.1. Demographic features extracted from the dataset.

Feature dtype

Subject Id str

Episode str

Admission Date datetime

Discharge Date datetime

Sex str

Age int

Length of stay int

DRG Weight float

Afterward, all rows are processed and indexed by episode, with a total of 129816

episodes. Every episode is then reviewed, and episodes with conflicting information (more

than one value for sex, age, or subject id) are deleted; 63 episodes are deleted in this stage

resulting in 129753 episodes.

When there are multiple values in the other features per episodes, values are picked as

follows:

• Admission date: Minimum Admission date

• Discharge date: Maximum Discharge date

• DRG Weight: Mean weight

Finally, the length of stay is calculated as the difference between the discharge date

and admission date.
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The maximum admission date in the dataset is 31st of December of 2018; this value is

stored to set the date limit of data that will be considered. Since we are interested in 30-

day readmission, data points with admissions after the 1st of December of 2018 (inclusive)

will not be considered.

B.2.2. Readmission tagging

The original dataset comes with a readmission flag added according to the hospital’s

definition. Since in the previous step we fixed inconsistencies in the dataset (multiple

entries for one episode), minimizing and maximizing the admission and discharge dates,

respectively, the readmission tag needs to be slightly adjusted.

The algorithm used to tag readmission is:

(i) Sort rows by subject id as first criteria and admit date as second criteria

(ii) Iterate from the second row onwards

(iii) For every row, if the previous row has the same subject as the current row, there

is possible readmission. The difference between the previous row discharge date

and the current row admission date is calculated. If this difference is less than 30

days and considered readmission in the original dataset, then the previous row

is tagged as a readmission source.

(iv) If the admission date is after or equal to 1st of December of 2018, the row is

ignored

B.2.3. Codes extraction

The original dataset has a hard limit of 30 diagnoses and 30 procedures per row; coded

columns are immediately followed by text description in a weaved format (i.e., Diagnosis

code 1, Description Diagnosis 1, Diagnosis code 2, Description Diagnosis 2, ..., Procedure

code 1, Procedure Description 1, Procedure code 2, Procedure Description 2). When a

row has less than 30 procedures or diagnoses, then unused columns are filled with NaN.
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Additionally, this type of dataset is sequential (i.e., the first diagnosis is more relevant than

the second diagnosis); therefore, it is essential to maintain this sequence when extracting

the codes. The data also includes the number of diagnoses and procedures per row, but

as we know from the other stages, there might be more than one row per episode, so

this number needs to be recalculated. It is important to note that not all values are filled,

sometimes a pair has code and not description, and the other way around. Also, there is

no guarantee that a code will have the same description across the dataset.

The output of this stage is a key-value data structure, indexed by episode. We iterate

over all rows storing for every episode an array of arrays of codes (for both procedures and

diagnosis) where each array represents the codes in a row. In this stage, we are focused

exclusively on the codes and not the descriptions.

Our objective is to have a single array of codes for both diagnoses and procedures per

episode instead of an array of arrays. The challenge is that we need to maintain the se-

quentiality of codes when there are multiple rows (there are up to ten rows per episode).

To solve these challenges, a multiple queue merging algorithm was implemented and ex-

ecuted in every episode:

(i) Convert the array of arrays to a double-ended queue of double-ended queues (or

to normal queues, depending on the implementation)

(ii) Initialize an empty set seen and an empty array codes

(iii) While the main queue is not empty: pop the leftmost element in the main queue,

pop the leftmost code inside that secondary queue. If the code is not in seen, add

to codes. If the secondary queue still has elements, add it to the end of the main

queue.
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B.2.4. Description extractions

We do another pass through the dataset to extract all code/description pairs within

the dataset (for both diagnoses and procedures), including NaN values, to further analyze

codes down the pipeline.

B.3. Code analysis

It is crucial for further steps to have a 1:1 mapping between codes and descriptions for

both procedures and diagnoses. Also, to represent the codes using NLP, it would be ideal

to have full descriptions in English for each code (the leaves in the ICD graph) and each

intermediate node (chapter names). To get this mapping, intense manual engineering was

required. After analyzing the code-descriptions pairs in the database, serious discrepancies

were found. Here we aim to describe these discrepancies and the possible reasons for

them, also the manual solutions used to extract as much information as possible from the

dataset. We will explain the process that generates the final ground truth of the code-

description mapping in English and Spanish and the final processing step that ends with a

set of clean, truthful codes that are correctly mapped.

The final mappings were published in a Github repository1. This repository is a key

contribution of this thesis. It provides mappings for both procedures and diagnoses with

the current standards used in the Chilean healthcare systems in Spanish and English. This

considerably facilitates further researchers that want to work with this data.

B.3.1. Procedure codes

The Chilean standard for procedure codes is the CIE-9-CM. Codes in this standard are

floats with a root value of two numbers; specificity is given after the decimal point with

up to two new numbers.

1https://github.com/tamycova/icd-cie-codes-chile

https://github.com/tamycova/icd-cie-codes-chile
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When analyzing the code-description pairs, we found 22 malformed codes (started

with a letter instead of a number, similar to ICD-10 diagnosis codes). All of them appeared

only in episodes during 2014-2016, so probably they were codes that could not be mapped

appropriately to ICD-9-CM by the older electronic system.

From the universe of the other 2804 existing codes, two don’t have an associated de-

scription, 1998 have a unique description, and 804 have more than one description. These

804 codes were manually checked, 598 were just slight modifications in the description,

and 206 had a mix of unrelated descriptions.

In this step, a severe problem with the dataset was noticed. The original files had

parsed the codes as floats, therefore, losing the leading and trailing zeros in codes. This

is a problem because it generates code/descriptions collisions, and also, the codes in the

dataset would not perfectly match a standardized mapping.

Further analysis was needed to decide what to do with the conflicting codes, and for

this, it is necessary to have a ground truth of descriptions to compare with.

For Spanish, the mapping is available online2, but it is not available in its raw version.

Initially, the data was obtained from the official publication of the standard’s translation3.

The PDF file was parsed to HTML using an online tool and then scraped to find all the

code-description lines.

After contacting the Spanish Ministry of Health, we were able to obtain an official

file with the raw codes, and this one was used in the end as ground truth to guarantee

correctness.

The file has all names for chapters and leaf nodes, and it corresponds to the CIE-9-MC

version 2014.

2https://eciemaps.mscbs.gob.es/ecieMaps/browser/index 9 mc.html
3https://www.mscbs.gob.es/estadEstudios/estadisticas/docs/CIE9MC 2014 def accesible.pdf

https://eciemaps.mscbs.gob.es/ecieMaps/browser/index_9_mc.html#search=&flags=111100&flagsLT=11111111&searchId=1590525126203&indiceAlfabetico=&listaTabular=08.2&expand=0&clasification=cie9mc&version=2014
https://www.mscbs.gob.es/estadEstudios/estadisticas/docs/CIE9MC_2014_def_accesible.pdf
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For English, the CMS (Centers for Medicare & Medicaid Services) has different ver-

sions of the ICD-9-CM Diagnosis and Procedure Codes (in abbreviated and full form)

available for downloading online4. Unfortunately, the available codes are only the leaf

nodes in the ICD graph (only four-digit codes), so we are still missing information about

intermediate nodes’ description.

The CDC (Centers for Disease Control and Prevention) has a rich text format (RTF)

version of the 2011 edition (which corresponds to the CIE-9-MC of 2014 according to the

Spanish Ministry of health) available online5. The file was converted to PDF format to

work with this data, then to HTML format and parsed using the Beautiful Soup Python

Library to finally have a TSV file with all the codes, both leaf and intermediate nodes.

This is the version used from now on.

Both files (Spanish and English) were crossed into a single JSON file, where each

code is the index and the value is a mapping of the English and Spanish version of the

description of the code. Four codes lacked English translation, and these were manually

added.

Finally, we determine the codes that are invalid. These codes do not have the ICD-9-

CM structure (affects 140 rows) or a description (affects two rows).

Then, since the database came wrongly parsed, we need to modify every code at best

convenience to match the original codes. The modification applied to each code depends

on their configuration (i.e., configuration 2,2 means that the code has two elements before

the decimal point and two elements after the decimal point, configuration 1,0 means that

the code has one element before the decimal point and no element after the decimal point),

being careful to only add specificity with a trailing zero when needed, as we can see in

Figure B.2.

4https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes
5https://www.cdc.gov/nchs/icd/icd9cm.htm

https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes
https://www.cdc.gov/nchs/icd/icd9cm.htm
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Table B.2. Modification rules for Procedure codes.

Configuration Modification

1,0 Add a leading 0, if the new code does not

exist, then we add a trailing zero

1,1 Add a leading zero

1,2 Add a leading zero

2,0 Add trailing zero

2,1 If the code exists, leave as it is, if not, add a

trailing zero

2,2 Leave as it is

Even though this method is not perfect, it is the best possible fix for the dataset, since

if any trailing zero is lost, we only lose specificity but we still have the node’s parent

information.

Translations for all codes were manually inspected to guarantee the quality of the

modifications to the original code and the Spanish/English mappings.

B.3.2. Diagnosis codes analysis

The standard used for diagnosis codes in Chile is ICD-10, published by the World

Health Organization (WHO).

Like the procedure codes, some codes do not have the proper format of an ICD-10

diagnosis code (start with an alphabetical character). There were 4252 malformed codes,

all of them used between 2014 and 2016, so this is probably due to the new coder’s un-

mappable codes. From the 8196 valid codes, 196 do not have a description, 7806 have a

unique description in the database, and 194 have a mix of descriptions. Of those, 194, 85

have similar descriptions, and 109 have a combination of unrelated descriptions.
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Further analysis was needed because of the mixed descriptions, and also because

within the codes that started with alphanumerical characters, there were codes like ”D49”

(and ICD-10 only goes to D48), or ”E849.0” (when ICD-10 has only three characters be-

fore the decimal point). For this, a ground truth is needed (a set of codes that will be

declared valid, with an associated description in Spanish and English).

For Spanish, the standard corresponds to the CIE 2009 8th edition, a translation made

by PAHO (Panamerican Health Organization) and was extracted from the CIE documen-

tation6. Some preprocessing was needed, removing the special Spanish characters and

finally outputting a TSV file. A drawback of the data used is that particular specifications

are described at the most specific level (for example, E10.0 is ”Insulin-dependent diabetes

mellitus with coma” and in the Spanish dataset appears as ”con coma”), so special care is

needed to use the Spanish descriptions in some instances (concatenating with the ancestor

information).

For English, the first attempt was to scrape the HTML file of every chapter in WHO’s

website7, and then extract the codes and descriptions. When comparing this result to the

Spanish codes, it was noted that it misses some codes that are only present in the index

and not in the main HTMLs, and other codes with special specifications (the same ones

that do not have a full description in Spanish). In a second attempt, the WHO’s JSON API

was queried using the BFS algorithm. This was convenient since it also allowed to store

the graph structure of ICD-10. This set of codes has more codes than the first attempt, but

the codes with the specificity problem were still not present. There were 23399 missing

codes. Since this number is quite large, to solve this problem, the most direct approach

was to complete the set of codes using machine translation from the Spanish version, being

careful to concatenate with the node’s parent description to have the full description, but

only the codes that we would need, that is, the codes that are used in the original dataset.

6https://eciemaps.mscbs.gob.es/ecieMaps/browser/index 10 2008.html
7https://icd.who.int/browse10/2008/en/

https://eciemaps.mscbs.gob.es/ecieMaps/browser/index_10_2008.html
https://eciemaps.mscbs.gob.es/ecieMaps/browser/index_10_2008.html
https://icd.who.int/browse10/2008/en/
https://icd.who.int/browse10/2008/en/
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After checking the original dataset and inspecting the codes that were in the Spanish

set but not in the English set, it was noted that there was a limited amount of suffixes that

needed translation, both for wound location, physical location, activity, and status (i.e.,

forearm, house, while working, open). These were collected and translated using Google

Translate; then, the English set was completed as Figure B.3 indicates.

Table B.3. Modification rules for Diagnosis codes.

Configuration Modification

YXX.X Concatenate Spanish translation of YXX.X

with description of YXX, YXX is no longer

leaf and now YXX.X is added to the graph

as leaf.

YXX.XX when YXX.X in set Concatenate Spanish translation of

YXX.XX with description of YXX.X,

YXX.X is no longer leaf and now YXX.XX

is added to the graph as leaf.

YXX.XX when YXX.X not in set Create two new nodes, YXX.XX and

YXX.X, YXX is no longer leaf and

YXX.XX is leaf. Translation of YXX.X

is concatenated with description of YXX

and assigned to YXX.X, then, transla-

tion of YXX.XX is concatenated with the

new description of YXX.X and assigned to

YXX.XX

The result of this stage is a JSON file with the ICD codes and their descriptions in

Spanish and English. With the JSON file as the ground truth of valid codes, it is possible

to identify the codes that will be considered invalid in the dataset.
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The codes that do not have the ICD code format are invalid. The codes that did not

have descriptions were checked. If the codes exist in the valid set of codes, then they are

considered valid.

7494 of the codes considered in a suitable format and with a single description exist

in the ground truth file, but 397 do not and are considered invalid. At this point, we

manually compare the original descriptions of the dataset and the ground truths in Spanish

and English to make sure translations and the standard used are correct.

The 109 codes that had a mixed description are manually compared to the ground truth.

Only 92 are part of the ground truth file, and of those, only 14 have valid descriptions; the

other 78 are considered invalid since their use along the original dataset is not consistent.

In summary, invalid codes are the codes that do not have the ICD-10 format, the ones

that do not exist in the universe of codes that are considered ground truth, and the ones that

are not consistently used in the original database (since they have different descriptions

they might be typing errors). There are 4816 such codes.

B.4. Integration

The final dataset is created by integrating all the outputs of previous stages. For every

episode, we have the demographic data, the readmission tag calculated in and a sequential

list of codes for both diagnoses and procedures. We do an inner join on episode in the

three files and only keep episodes with the information from the three stages.

Finally, we iterate over all episodes and calculate the portion of procedure and diag-

noses codes that is valid (valid codes are those that are not in the invalid sets created in

the codes analysis stage), if both procedures and diagnoses have over 0.75 percent of valid

codes, then the episode is kept in the final dataset. 12134 episodes that had damaged rows

were preserved, while 34357 were lost.
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C. FEATURE ANALYSIS

Table C.1. Numeric Features Analysis.

Age (Y) Length of

Stay (LOS)

Number of

Diagnoses

(ND)

Number of

Diagnoses

(ND)

DRG Weight

mean 44.13 4.89 4.88 9.32 5.28

std 24.54 12.08 3.35 5.19 12.3

min 0 0 1 0 0

25% 27 1 2 6 0.53

50% 44 2 4 8 0.81

75% 64 5 6 12 2.78

max 106 1417 31 31 222.66

Figure C.1. Distribution of Age.



77

Figure C.2. Distribution of Age without age 0.

Figure C.3. Distribution of Length of Stay.
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Figure C.4. Distribution of Length of Stay without outliers.

Figure C.5. Distribution of DRG weight.
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Figure C.6. Distribution of DRG weight with values less than 10.
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D. DETAILED RESULTS

Table D.1. LR One-hot encoding results.

bal demo grd codes auc rp60 rp80 acc

0 1 1 1 0.79 0.2 0.04 0.9

0 1 1 0 0.76 0.15 0.03 0.9

0 1 0 1 0.78 0.2 0.02 0.9

0 1 0 0 0.6 0.02 0.0 0.89

0 0 1 1 0.8 0.19 0.07 0.9

0 0 1 0 0.78 0.2 0.02 0.9

0 0 0 1 0.8 0.13 0.05 0.9

1 1 1 1 0.8 0.18 0.02 0.76

1 1 1 0 0.77 0.15 0.03 0.69

1 1 0 1 0.79 0.18 0.02 0.77

1 1 0 0 0.62 0.08 0.0 0.6

1 0 1 1 0.78 0.14 0.04 0.78

1 0 1 0 0.77 0.19 0.02 0.69

1 0 0 1 0.78 0.15 0.03 0.78
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Table D.2. XGB One-hot encoding results.

bal demo drg codes auc rp60 rp80 acc

1 1 1 1 0.81 0.29 0.13 0.78

1 1 1 0 0.78 0.2 0.09 0.71

1 1 0 1 0.81 0.29 0.09 0.79

1 1 0 0 0.76 0.17 0.07 0.74

1 0 1 1 0.8 0.27 0.09 0.8

1 0 1 0 0.77 0.19 0.06 0.6

1 0 0 1 0.8 0.27 0.09 0.81

0 1 1 1 0.81 0.29 0.12 0.91

0 1 1 0 0.79 0.22 0.09 0.9

0 1 0 1 0.81 0.29 0.13 0.91

0 1 0 0 0.77 0.18 0.07 0.9

0 0 1 1 0.81 0.28 0.11 0.91

0 0 1 0 0.77 0.19 0.03 0.9

0 0 0 1 0.8 0.27 0.11 0.91
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Table D.3. LR Static BERT BioClinical results.

bal demo emb auc rp60 rp80 acc

1 1 both 0.76 0.08 0.02 0.7

1 1 both int 0.77 0.08 0.02 0.69

1 1 conc 0.78 0.17 0.02 0.72

1 0 both 0.78 0.11 0.02 0.71

1 0 both int 0.78 0.1 0.03 0.71

1 0 conc 0.79 0.15 0.03 0.73

0 1 both 0.76 0.12 0.02 0.9

0 1 both int 0.76 0.1 0.03 0.9

0 1 conc 0.78 0.13 0.02 0.9

0 0 both 0.78 0.12 0.02 0.9

0 0 both int 0.78 0.17 0.04 0.9

0 0 conc 0.79 0.19 0.03 0.9
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Table D.4. XGB Static BERT BioClinical results.

bal demo emb auc rp60 rp80 acc

1 1 both 0.76 0.11 0.04 0.84

1 1 both int 0.76 0.12 0.04 0.83

1 1 conc 0.77 0.2 0.05 0.84

1 0 both 0.75 0.11 0.03 0.83

1 0 both int 0.74 0.1 0.04 0.83

1 0 conc 0.76 0.17 0.03 0.84

0 1 both 0.77 0.16 0.05 0.9

0 1 both int 0.76 0.15 0.04 0.9

0 1 conc 0.78 0.19 0.07 0.9

0 0 both 0.75 0.14 0.03 0.9

0 0 both int 0.75 0.11 0.03 0.9

0 0 conc 0.77 0.17 0.03 0.9
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Table D.5. LR Static BERT Discharge results.

bal demo emb auc rp60 rp80 acc

1 1 both 0.77 0.11 0.02 0.71

1 1 both int 0.77 0.11 0.02 0.71

1 1 conc 0.79 0.14 0.02 0.72

1 0 both 0.78 0.16 0.02 0.72

1 0 both int 0.78 0.14 0.03 0.72

1 0 conc 0.79 0.17 0.03 0.73

0 1 both 0.77 0.17 0.04 0.9

0 1 both int 0.77 0.16 0.02 0.9

0 1 conc 0.79 0.14 0.04 0.9

0 0 both 0.78 0.15 0.03 0.9

0 0 both int 0.78 0.16 0.03 0.9

0 0 conc 0.79 0.2 0.05 0.9
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Table D.6. XGB Static BERT Discharge results.

bal demo emb auc rp60 rp80 acc

1 1 both 0.76 0.17 0.05 0.83

1 1 both int 0.76 0.13 0.04 0.83

1 1 conc 0.78 0.2 0.06 0.84

1 0 both 0.76 0.16 0.02 0.83

1 0 both int 0.75 0.14 0.03 0.83

1 0 conc 0.77 0.18 0.04 0.84

0 1 both 0.77 0.18 0.06 0.9

0 1 both int 0.77 0.18 0.04 0.9

0 1 conc 0.78 0.2 0.07 0.9

0 0 both 0.77 0.15 0.04 0.9

0 0 both int 0.76 0.16 0.02 0.9

0 0 conc 0.77 0.18 0.04 0.9
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Table D.7. LR Static BERT Base results.

bal demo emb auc rp60 rp80 acc

1 1 both 0.76 0.14 0.02 0.69

1 1 both int 0.76 0.1 0.01 0.69

1 1 conc 0.78 0.12 0.04 0.71

1 0 both 0.78 0.12 0.02 0.72

1 0 both int 0.78 0.13 0.01 0.71

1 0 conc 0.79 0.13 0.03 0.72

0 1 both 0.76 0.15 0.05 0.9

0 1 both int 0.76 0.15 0.03 0.9

0 1 conc 0.78 0.17 0.06 0.9

0 0 both 0.78 0.18 0.04 0.9

0 0 both int 0.78 0.14 0.02 0.9

0 0 conc 0.79 0.19 0.04 0.9
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Table D.8. XGB Static BERT Base results.

bal demo emb auc rp60 rp80 acc

1 1 both 0.75 0.16 0.04 0.83

1 1 both int 0.75 0.09 0.05 0.83

1 1 conc 0.77 0.17 0.04 0.83

1 0 both 0.74 0.15 0.04 0.83

1 0 both int 0.74 0.09 0.02 0.83

1 0 conc 0.76 0.16 0.04 0.83

0 1 both 0.76 0.16 0.05 0.9

0 1 both int 0.76 0.16 0.04 0.9

0 1 conc 0.77 0.17 0.06 0.9

0 0 both 0.75 0.13 0.03 0.9

0 0 both int 0.75 0.12 0.03 0.9

0 0 conc 0.77 0.13 0.03 0.9

Table D.9. Dynamic Clinical BERT with balanced dataset results.

frozen lay-

ers/batch size

auc rp60 rp80 acc

0/10 0.79 0.25 0.08 0.8

5/20 0.8 0.28 0.05 0.79

10/64 0.81 0.26 0.05 0.77

11/64 0.81 0.22 0.06 0.77
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Table D.10. Dynamic Clinical BERT with unbalanced dataset results.

frozen lay-

ers/batch

size

weight auc rp60 rp80 acc

0/10 0.1 0.82 0.28 0.06 0.81

0/10 0.15 0.82 0.29 0.07 0.85

0/10 0.3 0.82 0.3 0.1 0.9

0/10 0.5 0.82 0.29 0.11 0.91

5/20 0.1 0.82 0.28 0.05 0.79

5/20 0.15 0.82 0.28 0.07 0.84

5/20 0.3 0.82 0.28 0.07 0.89

5/20 0.5 0.82 0.29 0.09 0.91

10/64 0.1 0.81 0.26 0.02 0.75

10/64 0.15 0.81 0.16 0.04 0.82

10/64 0.3 0.82 0.26 0.02 0.89

10/64 0.5 0.81 0.27 0.06 0.9

11/64 0.1 0.81 0.21 0.02 0.74

11/64 0.15 0.81 0.21 0.02 0.82

11/64 0.3 0.81 0.24 0.03 0.89

11/64 0.5 0.81 0.24 0.03 0.9
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Table D.11. Finetuned Clinical BERT with traditional classifier on one split.

model demo auc rp60 rp80 acc

LR 1 0.81 0.27 0.1 0.9

LR 0 0.8 0.24 0.05 0.9

XGB 1 0.79 0.23 0.05 0.9

XGB 0 0.79 0.21 0.06 0.9
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Table D.12. LR Node2Vec results (balanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

1 30 mean 1 1 0.74 0.05 0.0 0.68

1 30 mean 1 0 0.73 0.03 0.0 0.67

1 30 mean 0 1 0.71 0.06 0.0 0.66

1 30 mean 0 0 0.69 0.04 0.0 0.64

1 30 sum 1 1 0.73 0.01 0.0 0.69

1 30 sum 1 0 0.72 0.01 0.0 0.69

1 30 sum 0 1 0.69 0.11 0.0 0.65

1 30 sum 0 0 0.68 0.0 0.0 0.64

1 30 w mean 1 1 0.75 0.05 0.0 0.69

1 30 w mean 1 0 0.74 0.02 0.0 0.68

1 30 w mean 0 1 0.72 0.08 0.0 0.67

1 30 w mean 0 0 0.7 0.04 0.0 0.66

1 768 mean 1 1 0.78 0.09 0.05 0.72

1 768 mean 1 0 0.8 0.1 0.01 0.72

1 768 mean 0 1 0.77 0.06 0.05 0.71

1 768 mean 0 0 0.79 0.12 0.02 0.72

1 768 sum 1 1 0.78 0.08 0.0 0.74

1 768 sum 1 0 0.79 0.03 0.02 0.75

1 768 sum 0 1 0.78 0.05 0.0 0.73

1 768 sum 0 0 0.79 0.08 0.02 0.74

1 768 w mean 1 1 0.79 0.1 0.02 0.73

1 768 w mean 1 0 0.8 0.17 0.01 0.73

1 768 w mean 0 1 0.78 0.05 0.03 0.71

1 768 w mean 0 0 0.8 0.1 0.03 0.73
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Table D.13. LR Node2Vec results (unbalanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

0 30 mean 1 1 0.73 0.02 0.0 0.89

0 30 mean 1 0 0.73 0.02 0.0 0.89

0 30 mean 0 1 0.69 0.03 0.0 0.89

0 30 mean 0 0 0.68 0.02 0.0 0.89

0 30 sum 1 1 0.72 0.01 0.0 0.89

0 30 sum 1 0 0.71 0.02 0.0 0.89

0 30 sum 0 1 0.69 0.0 0.0 0.89

0 30 sum 0 0 0.68 0.01 0.0 0.89

0 30 w mean 1 1 0.74 0.02 0.02 0.9

0 30 w mean 1 0 0.73 0.05 0.02 0.9

0 30 w mean 0 1 0.71 0.03 0.01 0.89

0 30 w mean 0 0 0.69 0.04 0.0 0.89

0 768 mean 1 1 0.77 0.12 0.05 0.9

0 768 mean 1 0 0.79 0.19 0.03 0.9

0 768 mean 0 1 0.76 0.05 0.03 0.9

0 768 mean 0 0 0.79 0.15 0.02 0.9

0 768 sum 1 1 0.78 0.13 0.04 0.9

0 768 sum 1 0 0.78 0.15 0.04 0.9

0 768 sum 0 1 0.77 0.11 0.04 0.9

0 768 sum 0 0 0.78 0.13 0.03 0.9

0 768 w mean 1 1 0.78 0.17 0.03 0.9

0 768 w mean 1 0 0.8 0.22 0.03 0.9

0 768 w mean 0 1 0.77 0.12 0.06 0.9

0 768 w mean 0 0 0.8 0.19 0.02 0.9
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Table D.14. XGB Node2Vec results (balanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

1 30 mean 1 1 0.78 0.21 0.05 0.81

1 30 mean 1 0 0.77 0.13 0.03 0.8

1 30 mean 0 1 0.77 0.19 0.06 0.79

1 30 mean 0 0 0.75 0.12 0.03 0.77

1 30 sum 1 1 0.77 0.18 0.04 0.81

1 30 sum 1 0 0.76 0.17 0.04 0.8

1 30 sum 0 1 0.76 0.12 0.04 0.79

1 30 sum 0 0 0.73 0.08 0.02 0.77

1 30 w mean 1 1 0.79 0.22 0.07 0.81

1 30 w mean 1 0 0.78 0.19 0.02 0.8

1 30 w mean 0 1 0.78 0.22 0.05 0.8

1 30 w mean 0 0 0.77 0.14 0.03 0.78

1 768 mean 1 1 0.78 0.22 0.08 0.85

1 768 mean 1 0 0.78 0.21 0.05 0.85

1 768 mean 0 1 0.78 0.21 0.07 0.84

1 768 mean 0 0 0.78 0.2 0.05 0.84

1 768 sum 1 1 0.78 0.23 0.08 0.84

1 768 sum 1 0 0.77 0.2 0.06 0.84

1 768 sum 0 1 0.77 0.2 0.05 0.83

1 768 sum 0 0 0.77 0.18 0.03 0.83

1 768 w mean 1 1 0.79 0.19 0.08 0.85

1 768 w mean 1 0 0.79 0.23 0.06 0.84

1 768 w mean 0 1 0.79 0.23 0.09 0.84

1 768 w mean 0 0 0.78 0.21 0.05 0.84
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Table D.15. XGB Node2Vec results (unbalanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

0 30 mean 1 1 0.79 0.21 0.05 0.9

0 30 mean 1 0 0.78 0.18 0.04 0.9

0 30 mean 0 1 0.77 0.2 0.06 0.9

0 30 mean 0 0 0.75 0.1 0.03 0.9

0 30 sum 1 1 0.78 0.19 0.07 0.9

0 30 sum 1 0 0.77 0.17 0.06 0.9

0 30 sum 0 1 0.77 0.16 0.05 0.9

0 30 sum 0 0 0.74 0.09 0.03 0.9

0 30 w mean 1 1 0.79 0.22 0.06 0.9

0 30 w mean 1 0 0.78 0.19 0.05 0.9

0 30 w mean 0 1 0.78 0.2 0.05 0.9

0 30 w mean 0 0 0.77 0.17 0.03 0.9

0 768 mean 1 1 0.79 0.23 0.03 0.9

0 768 mean 1 0 0.79 0.2 0.06 0.9

0 768 mean 0 1 0.78 0.21 0.04 0.9

0 768 mean 0 0 0.78 0.19 0.03 0.9

0 768 sum 1 1 0.79 0.23 0.09 0.9

0 768 sum 1 0 0.78 0.2 0.07 0.9

0 768 sum 0 1 0.78 0.22 0.06 0.9

0 768 sum 0 0 0.77 0.18 0.05 0.9

0 768 w mean 1 1 0.79 0.23 0.08 0.9

0 768 w mean 1 0 0.79 0.23 0.06 0.9

0 768 w mean 0 1 0.79 0.23 0.06 0.9

0 768 w mean 0 0 0.79 0.22 0.06 0.9
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Table D.16. LR PBG ontologies results (balanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

1 30 mean 1 1 0.71 0.06 0.01 0.66

1 30 mean 1 0 0.71 0.08 0.05 0.65

1 30 mean 0 1 0.69 0.06 0.0 0.64

1 30 mean 0 0 0.67 0.02 0.0 0.62

1 30 sum 1 1 0.72 0.07 0.0 0.68

1 30 sum 1 0 0.7 0.01 0.0 0.66

1 30 sum 0 1 0.69 0.05 0.0 0.66

1 30 sum 0 0 0.66 0.0 0.0 0.63

1 30 w mean 1 1 0.72 0.1 0.05 0.67

1 30 w mean 1 0 0.72 0.11 0.04 0.66

1 30 w mean 0 1 0.7 0.09 0.0 0.65

1 30 w mean 0 0 0.67 0.02 0.0 0.63

1 768 mean 1 1 0.78 0.16 0.04 0.7

1 768 mean 1 0 0.79 0.16 0.04 0.73

1 768 mean 0 1 0.77 0.15 0.02 0.69

1 768 mean 0 0 0.78 0.15 0.03 0.72

1 768 sum 1 1 0.79 0.14 0.04 0.74

1 768 sum 1 0 0.79 0.16 0.03 0.75

1 768 sum 0 1 0.78 0.1 0.03 0.73

1 768 sum 0 0 0.78 0.14 0.03 0.74

1 768 w mean 1 1 0.79 0.18 0.03 0.71

1 768 w mean 1 0 0.8 0.19 0.04 0.73

1 768 w mean 0 1 0.77 0.14 0.03 0.7

1 768 w mean 0 0 0.79 0.18 0.04 0.73
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Table D.17. LR PBG ontologies results (unbalanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

0 30 mean 1 1 0.71 0.1 0.02 0.9

0 30 mean 1 0 0.71 0.11 0.03 0.9

0 30 mean 0 1 0.68 0.02 0.0 0.89

0 30 mean 0 0 0.66 0.02 0.0 0.89

0 30 sum 1 1 0.71 0.07 0.01 0.89

0 30 sum 1 0 0.69 0.04 0.01 0.89

0 30 sum 0 1 0.68 0.0 0.0 0.89

0 30 sum 0 0 0.66 0.01 0.0 0.89

0 30 w mean 1 1 0.71 0.13 0.03 0.9

0 30 w mean 1 0 0.71 0.13 0.02 0.9

0 30 w mean 0 1 0.68 0.06 0.01 0.9

0 30 w mean 0 0 0.67 0.03 0.01 0.89

0 768 mean 1 1 0.77 0.18 0.03 0.9

0 768 mean 1 0 0.8 0.2 0.05 0.9

0 768 mean 0 1 0.76 0.14 0.04 0.9

0 768 mean 0 0 0.78 0.2 0.03 0.9

0 768 sum 1 1 0.78 0.2 0.05 0.9

0 768 sum 1 0 0.79 0.2 0.05 0.9

0 768 sum 0 1 0.77 0.18 0.04 0.9

0 768 sum 0 0 0.78 0.19 0.05 0.9

0 768 w mean 1 1 0.78 0.16 0.04 0.9

0 768 w mean 1 0 0.8 0.23 0.04 0.9

0 768 w mean 0 1 0.77 0.12 0.03 0.9

0 768 w mean 0 0 0.79 0.22 0.04 0.9
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Table D.18. XGB PBG ontologies results (balanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

1 30 mean 1 1 0.76 0.2 0.07 0.8

1 30 mean 1 0 0.75 0.18 0.03 0.8

1 30 mean 0 1 0.75 0.18 0.05 0.79

1 30 mean 0 0 0.71 0.12 0.04 0.76

1 30 sum 1 1 0.75 0.15 0.04 0.82

1 30 sum 1 0 0.73 0.17 0.03 0.81

1 30 sum 0 1 0.74 0.17 0.07 0.8

1 30 sum 0 0 0.7 0.11 0.03 0.79

1 30 w mean 1 1 0.77 0.18 0.07 0.8

1 30 w mean 1 0 0.76 0.2 0.03 0.8

1 30 w mean 0 1 0.76 0.19 0.04 0.79

1 30 w mean 0 0 0.73 0.16 0.04 0.77

1 768 mean 1 1 0.77 0.21 0.05 0.86

1 768 mean 1 0 0.76 0.2 0.05 0.85

1 768 mean 0 1 0.76 0.21 0.05 0.85

1 768 mean 0 0 0.76 0.18 0.06 0.85

1 768 sum 1 1 0.75 0.22 0.05 0.86

1 768 sum 1 0 0.75 0.21 0.03 0.86

1 768 sum 0 1 0.74 0.19 0.07 0.86

1 768 sum 0 0 0.74 0.18 0.06 0.86

1 768 w mean 1 1 0.78 0.24 0.1 0.86

1 768 w mean 1 0 0.77 0.21 0.07 0.86

1 768 w mean 0 1 0.77 0.22 0.09 0.85

1 768 w mean 0 0 0.77 0.21 0.07 0.85
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Table D.19. XGB PBG ontologies results (unbalanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

0 30 mean 1 1 0.77 0.16 0.04 0.9

0 30 mean 1 0 0.75 0.18 0.04 0.9

0 30 mean 0 1 0.76 0.18 0.06 0.9

0 30 mean 0 0 0.72 0.13 0.02 0.9

0 30 sum 1 1 0.77 0.21 0.05 0.9

0 30 sum 1 0 0.74 0.15 0.04 0.9

0 30 sum 0 1 0.76 0.14 0.06 0.9

0 30 sum 0 0 0.71 0.1 0.02 0.9

0 30 w mean 1 1 0.77 0.22 0.08 0.9

0 30 w mean 1 0 0.76 0.21 0.05 0.9

0 30 w mean 0 1 0.77 0.19 0.06 0.9

0 30 w mean 0 0 0.74 0.14 0.03 0.9

0 768 mean 1 1 0.78 0.22 0.06 0.9

0 768 mean 1 0 0.77 0.2 0.05 0.9

0 768 mean 0 1 0.77 0.21 0.05 0.9

0 768 mean 0 0 0.76 0.18 0.04 0.9

0 768 sum 1 1 0.77 0.2 0.06 0.9

0 768 sum 1 0 0.76 0.19 0.04 0.9

0 768 sum 0 1 0.76 0.2 0.07 0.9

0 768 sum 0 0 0.75 0.18 0.07 0.9

0 768 w mean 1 1 0.79 0.23 0.05 0.9

0 768 w mean 1 0 0.78 0.22 0.05 0.9

0 768 w mean 0 1 0.78 0.22 0.05 0.9

0 768 w mean 0 0 0.77 0.16 0.06 0.9
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Table D.20. LR PBG hospital graph results (balanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

1 30 mean 1 1 0.78 0.1 0.02 0.72

1 30 mean 1 0 0.78 0.11 0.01 0.71

1 30 mean 0 1 0.77 0.1 0.02 0.71

1 30 mean 0 0 0.77 0.09 0.02 0.71

1 30 sum 1 1 0.77 0.02 0.0 0.73

1 30 sum 1 0 0.77 0.02 0.0 0.74

1 30 sum 0 1 0.76 0.01 0.0 0.73

1 30 sum 0 0 0.76 0.01 0.01 0.74

1 30 w mean 1 1 0.78 0.13 0.03 0.72

1 30 w mean 1 0 0.78 0.13 0.02 0.72

1 30 w mean 0 1 0.78 0.1 0.02 0.72

1 30 w mean 0 0 0.77 0.11 0.03 0.71

1 768 mean 1 1 0.8 0.19 0.06 0.73

1 768 mean 1 0 0.8 0.2 0.04 0.74

1 768 mean 0 1 0.79 0.15 0.03 0.73

1 768 mean 0 0 0.8 0.18 0.03 0.73

1 768 sum 1 1 0.79 0.14 0.03 0.75

1 768 sum 1 0 0.79 0.15 0.03 0.75

1 768 sum 0 1 0.79 0.07 0.02 0.75

1 768 sum 0 0 0.79 0.14 0.03 0.75

1 768 w mean 1 1 0.8 0.2 0.04 0.73

1 768 w mean 1 0 0.8 0.22 0.06 0.74

1 768 w mean 0 1 0.8 0.16 0.05 0.73

1 768 w mean 0 0 0.8 0.21 0.05 0.73
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Table D.21. LR PBG hospital graph results (unbalanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

0 30 mean 1 1 0.77 0.12 0.03 0.9

0 30 mean 1 0 0.78 0.14 0.02 0.9

0 30 mean 0 1 0.77 0.12 0.02 0.9

0 30 mean 0 0 0.77 0.11 0.01 0.9

0 30 sum 1 1 0.76 0.07 0.02 0.9

0 30 sum 1 0 0.76 0.03 0.02 0.9

0 30 sum 0 1 0.75 0.03 0.0 0.89

0 30 sum 0 0 0.75 0.03 0.01 0.89

0 30 w mean 1 1 0.77 0.16 0.04 0.9

0 30 w mean 1 0 0.78 0.16 0.03 0.9

0 30 w mean 0 1 0.77 0.16 0.03 0.9

0 30 w mean 0 0 0.77 0.08 0.03 0.9

0 768 mean 1 1 0.8 0.2 0.07 0.9

0 768 mean 1 0 0.8 0.23 0.07 0.9

0 768 mean 0 1 0.79 0.16 0.04 0.9

0 768 mean 0 0 0.8 0.22 0.05 0.9

0 768 sum 1 1 0.79 0.22 0.06 0.9

0 768 sum 1 0 0.79 0.21 0.06 0.9

0 768 sum 0 1 0.78 0.16 0.05 0.9

0 768 sum 0 0 0.79 0.2 0.04 0.9

0 768 w mean 1 1 0.8 0.19 0.06 0.9

0 768 w mean 1 0 0.8 0.24 0.05 0.91

0 768 w mean 0 1 0.79 0.17 0.05 0.9

0 768 w mean 0 0 0.8 0.23 0.08 0.9
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Table D.22. XGB PBG hospital graph results (balanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

1 30 mean 1 1 0.79 0.24 0.09 0.82

1 30 mean 1 0 0.78 0.23 0.06 0.81

1 30 mean 0 1 0.79 0.23 0.02 0.8

1 30 mean 0 0 0.78 0.2 0.06 0.79

1 30 sum 1 1 0.78 0.17 0.05 0.82

1 30 sum 1 0 0.78 0.22 0.04 0.82

1 30 sum 0 1 0.78 0.24 0.08 0.81

1 30 sum 0 0 0.77 0.22 0.03 0.81

1 30 w mean 1 1 0.8 0.25 0.06 0.81

1 30 w mean 1 0 0.79 0.23 0.05 0.81

1 30 w mean 0 1 0.79 0.24 0.06 0.8

1 30 w mean 0 0 0.79 0.18 0.05 0.79

1 768 mean 1 1 0.78 0.24 0.05 0.86

1 768 mean 1 0 0.78 0.21 0.04 0.86

1 768 mean 0 1 0.78 0.21 0.06 0.86

1 768 mean 0 0 0.77 0.22 0.06 0.86

1 768 sum 1 1 0.76 0.25 0.08 0.86

1 768 sum 1 0 0.77 0.22 0.07 0.86

1 768 sum 0 1 0.77 0.22 0.05 0.86

1 768 sum 0 0 0.76 0.2 0.05 0.86

1 768 w mean 1 1 0.79 0.25 0.07 0.86

1 768 w mean 1 0 0.78 0.24 0.07 0.86

1 768 w mean 0 1 0.78 0.25 0.07 0.85

1 768 w mean 0 0 0.78 0.23 0.06 0.85
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Table D.23. XGB PBG hospital graph results (unbalanced dataset).

balanced size pool conc demo auc rp60 rp80 acc

0 30 mean 1 1 0.8 0.25 0.09 0.9

0 30 mean 1 0 0.79 0.23 0.06 0.9

0 30 mean 0 1 0.8 0.23 0.1 0.9

0 30 mean 0 0 0.79 0.23 0.04 0.9

0 30 sum 1 1 0.8 0.23 0.07 0.9

0 30 sum 1 0 0.79 0.22 0.06 0.9

0 30 sum 0 1 0.79 0.24 0.1 0.9

0 30 sum 0 0 0.78 0.23 0.06 0.9

0 30 w mean 1 1 0.8 0.25 0.1 0.9

0 30 w mean 1 0 0.8 0.24 0.07 0.9

0 30 w mean 0 1 0.8 0.24 0.07 0.9

0 30 w mean 0 0 0.79 0.22 0.04 0.9

0 768 mean 1 1 0.79 0.24 0.04 0.9

0 768 mean 1 0 0.78 0.22 0.06 0.9

0 768 mean 0 1 0.78 0.23 0.07 0.9

0 768 mean 0 0 0.78 0.17 0.03 0.9

0 768 sum 1 1 0.78 0.23 0.08 0.9

0 768 sum 1 0 0.78 0.23 0.05 0.9

0 768 sum 0 1 0.78 0.18 0.08 0.9

0 768 sum 0 0 0.78 0.22 0.04 0.9

0 768 w mean 1 1 0.79 0.24 0.07 0.9

0 768 w mean 1 0 0.79 0.25 0.05 0.9

0 768 w mean 0 1 0.79 0.24 0.06 0.9

0 768 w mean 0 0 0.79 0.23 0.05 0.9
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Table D.24. LR PBG hospital graph results (episodes).

balanced size demo auc rp60 rp80 acc

1 30 1 0.75 0.02 0.0 0.68

1 30 0 0.74 0.02 0.0 0.67

1 768 1 0.75 0.06 0.01 0.69

1 768 0 0.74 0.04 0.01 0.69

0 30 1 0.74 0.03 0.01 0.89

0 30 0 0.74 0.06 0.01 0.89

0 768 1 0.74 0.13 0.03 0.9

0 768 0 0.74 0.08 0.01 0.9

Table D.25. XGB PBG hospital graph results (episodes).

balanced size demo auc rp60 rp80 acc

1 30 1 0.77 0.15 0.02 0.79

1 30 0 0.75 0.05 0.01 0.78

1 768 1 0.72 0.1 0.03 0.84

1 768 0 0.7 0.05 0.01 0.83

0 30 1 0.77 0.15 0.03 0.9

0 30 0 0.75 0.08 0.01 0.9

0 768 1 0.74 0.1 0.03 0.9

0 768 0 0.72 0.04 0.02 0.9
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