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Introduction

The main goal of this dissertation is to propose a new method for linking measurements

obtained by different instruments. The proposal is developed in agreement with the idea

of comparable scores defined in the context of educational measurement, specifically on

equating methods (Angoff, 1971; Kolen and Brennan, 2014; von Davier et al., 2004;

González and Wiberg, 2017). The proposal extends the methods already applied in psy-

chometrics and tackles some of its drawbacks by considering measurements as ordinal

random variables. The latent representation of these variables, together with the Bayesian

nonparametric approach we adopt, allows flexibility to define customised relations be-

tween specific subgroups of the population of interest. As it will be shown in the appli-

cation’s sections through the dissertation, an important feature of the proposal is that it

could be applied in contexts broader than educational measurement such as psychology

and health-related areas.

The remainder of this introduction section is organised as follows. First, the concept of

linking measurements is defined. General ideas of comparable scores defined for equat-

ing methods are explained to introduce the statistical framework in which the proposal is

founded. An overview of each chapter is given and some remarks concerning the structure

of this dissertation are mentioned at the end of this section.
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x Introduction

Linking measurements

A conceptual definition

An example that could summarise the main ideas and concepts related to linking mea-

surements, as understood in this thesis, is to convert temperature measurements defined

on Celsius (C◦) scale to its exact equivalent measurement in Fahrenheit (F◦) scale or vice-

versa. Converting measurements of temperature between these scales is a straightforward

process using the formulas:

ϕC(F ) =
5

9
(F − 32) , (1)

ϕF (C) =
9

5
C + 32 = ϕ−1

C (F ) .

Why and how were these formulas developed? They came from the need of making the

Celsius and Fahrenheit scales comparable. Since the freezing point is 0◦ on the Celsius

scale and 32◦ on the Fahrenheit scale, we subtract 32 when converting from Fahrenheit to

Celsius, and add 32 when converting from Celsius to Fahrenheit. Additionally, the boiling

points for the Celsius and Fahrenheit scales are 100◦ and 212◦, respectively. Thus, there

are 100 degrees between the freezing (0◦) and boiling points (100◦) of water on the Celsius

scale, and 180 degrees between 32◦ and 212◦ on the Fahrenheit scale. Writing these two

scales as a ratio, we obtain F ◦/C◦ = 9/5. Flipping the ratio, we have C◦/F ◦ = 5/9.

Then, by using the function (1), a temperature of 57 Fahrenheit degrees means the same

as a temperature of ϕC(57) = 15 Celsius degrees.

Note that, in this example, the measurement of interest is the temperature which is

quantified by two measurement instruments, Celsius and Fahrenheit thermometers. Even

though as devices they could be very similar, each one is defined on specific scales; Cel-

sius and Fahrenheit degrees scales in the example. The two temperature measurements

that are obtained by different instruments are related through the function ϕ(·). The same

process will be generalised throughout this dissertation. Linking measurements will be

understood as “procedures, based on statistical models, in which relations among mea-

surements obtained by different instruments, are defined”. In particular, our focus is to

x
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define and estimate a function that is capable to map measurements obtained from differ-

ent instruments such that measurements represent the same relative position on the scales

they are defined.

Motivation

The motivation for the development of procedures for linking measurements comes from

the educational measurement context. Any testing program continually produces different

editions of a test, in what follows forms of a test, which are defined on score scales that

should be maintained over time to assure comparability. Although they intend to measure

the same construct and are built to have the same test specifications, differences in the dif-

ficulty of the forms are unavoidable. Without adjustments, examinees would expect lower

scores in the hardest form. An important objective for testing programs is to eliminate

the effects of differences in difficulty on the reported scores. Test equating methods have

been developed to report test-scores as fair as possible so that test-scores mean the same,

regardless of the test form administered.

Equating methods are a specific group of linking methods developed in the educational

measurement setting. The word “linking” refers to a general class of transformations be-

tween scores from different tests. The transformations can be obtained by a range of ways

depending, in part, on some features of testing situations being the most important one the

construct for which the test, as instrument, was built for. There are three main categories

of linking methods: predicting, scaling (scale alignment), and equating (Dorans and Hol-

land, 2000). Although similar statistical procedures are used on each group, equating is a

statistical process that is used to adjust differences on difficulty among forms that are built

to be similar in difficulty and content, allowing to obtain comparable scores, i.e., allowing

scores to be used interchangeably for any purpose.

xi



xii Introduction

Statistical framework

In order to generally describe the statistical problem associated with the development of

linking measurements, we first introduce some notation specifications. We consider a vari-

able of interest that can be measured by using at least two different measurement instru-

ments. Capital letters represent different instruments, e.g., A, B, C, etc. Each instrument

generates measurements defined on equal or different scales, denoted by A , B, C , etc.

Italic letters A, B, C, etc denote the random variables that represent the measurements of

each instrument.

We consider that different instruments define subgroups on the population of interest.

Just for exposure purposes, let us suppose there are only two measurement instruments A

and B. We consider that there is a function relating the sample spaces A and B,

ϕB(·) : A −→ B ,

satisfying that for all a ∈ A , there is a value b = ϕ(a) having on B, the same relative

position that a has in A . Thus, the statistical problem is to estimate this function based on

a random sample of size nA and nB from A and B, respectively.

The function ϕB defines a relation between the scales of the instruments A and B. This

formulation has also been considered in equating methods (González and Wiberg, 2017).

In the educational measurement context, it is necessary to find equivalent test-scores from

different forms of a test such that they could be used interchangeably, i.e., they mean the

same on each test form. In the context of this dissertation, A and B would be two different

forms of a test defined on scales A and B, respectively. Observed test scores a and b, from

test form A and B, respectively, are considered “comparable scores” if b ∈ B satisfies the

following equation:

FA(a) = p = FB(b) p ∈ (0, 1) , (2)

where FA and FB are the cumulative distribution functions (CDF) of the random variables

A and B, respectively. From a statistical point of view, this means that a and b have the

xii
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same percentile in the probability distribution of A and B, respectively. Consequently,

they have the same relative position on the scale where they are defined.

Different approaches have been considered in the literature to estimate the CDFs in (2)

leading to parametric, semiparametric and nonparametric estimators of ϕ(·). An overview

of these methods is described throughout this dissertation, discussing pros and cons of

using them. In order to improve on most of the disavantages traditional equating methods

exhibit, we propose a new flexible model based on a latent model for ordinal random

variables.

Outline of the dissertation

The organisation of the dissertation is as follows:

• Chapter 1: An overview of linking methods is provided. A complete reference of

theoretical statistical aspects of the linking process is given, in particular for equat-

ing methods. In addition, characteristics of the statistical models that support our

approach are also covered.

• Chapter 2: Based on ideas discussed in Chapter 1, the statistical model assumed

for the measurements of interest as well as each step of the proposed linking method

are described. To evaluate the performance of the proposal, a simulation study is

carried out. Additionally, our approach is applied to a real data set widely studied in

the equating literature.

• Chapter 3: We extend the model proposed in Chapter 2 by incorporating infor-

mation from covariates into the model. Results of a complete simulation study are

shown. The proposal is applied to a real data set to obtain comparable measurements

of different depression scales applied on the Chilean population.

• Chapter 4: Both overall conclusions and open questions about the topic of this dis-

sertation are discussed. Theoretical aspects as well as generalisations of the proposal

xiii
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are described as a future work.

Final considerations

The dissertation is based on manuscripts that are either submitted/accepted for publication

or are still work in progress for future submission. As a consequence, there is some over-

lap between the chapters. Each chapter can be read as a self-contained chapter.

Two chapters correspond to the following original publications:

Chapter 2: Varas, I. M., González, J., Quintana, F.A.. A Bayesian nonparametric

latent approach for score distributions in test equating. (Journal of Educational and

Behavioural Statistics. Under review, invited resubmission).

In addition, this chapter is partially based on the original publication:

Varas, I., González, J., Quintana, F. A. (2019). A new equating method through

latent variables. In M. Wiberg, S. A. Culpepper, R. Janssen, J. González & D.

Molenaar (Eds.), Quantitative psychology. pp 343-353. Cham: Springer.

Chapter 3: Varas, I. M., González, J., Quintana, F. A.. Linking measurements: a

Bayesian nonparametric approach. (Work in progess)
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Chapter 1

Background Material

“The comparability of measurements made in differing circumstances by different

methods and investigators is a fundamental pre-condition for all of science”

Dorans and Holland (2000).

There are several areas where it is of interest to establish either comparable measures or

a relation between measurements obtained from different measurement instruments. For

instance, in health-related fields, measurements can be obtained by a medical device or by

a technician. In cognitive health areas, e.g., cognitive psychology and neuropsychology, it

is common to use more than one cognitive screening instrument to indicate the likelihood

of genuine cognitive impairment (Cullen et al., 2007; Casaletto and Heaton, 2017). In

particular, “no single instrument for cognitive screening is suitable for global use” (Cullen

et al., 2007). As a consequence, the development of new screening instruments for assess-

ing cognitive function has increased over the last years (van Steenoven et al., 2014). In the

setting of educational testing, different forms of a test are used to evaluate the knowledge

of a student. Because of several reasons, the different forms of a test are in continuous

change through the years. Advances in technology and increased knowledge of diseases’

processes, have allowed improvements in measurement methods. Thus, there are several

instruments measuring either the same or similar quantities.

1
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In general, all these measures are fundamental to make important decisions at different

levels, e.g., to define diagnostic and prognostic evaluation of patients, to select students

for a scholarship, etc. However, measurements can be obtained from different instruments

(medical device-technician/ several cognitive instruments/ different forms of a test), de-

fined on equal or different scales. Because different instruments could lead to different

results, in order to make the decisions as accurate and fair as possible, it is relevant to de-

fine equivalent measurements among the instruments, i.e., measurements having the same

meaning on the scale they are defined.

From a statistical perspective, suppose there are K instruments to measure a character-

istic of interest on a specified population. Let Mk be the random variable denoting the

characteristic of interest measured using the instrument k. Each random variable has cu-

mulative distribution function (CDF) FMk
, for k = 1, 2, . . . , K and are defined on sample

spaces Mk for k = 1, 2, . . . , K which, by definition, correspond to the set of all possible

values taken by Mk. In this case, each sample space correspond to the scale defined by the

instrument. The nature of the sample spaces Mk could be either subsets ofZ -for example,

the total number of correct answers from different versions of a test- or subsets of R -the

proportion of red cells in 5ml of blood taken from two different instruments. The challenge

is to define and estimate how the measurements from different instruments are related to

each other. Whatever the relation between measurements is, it should consider qualities

and features of the probability distribution function (or equivalently, its cumulative distri-

bution function) assumed for the random variables M ’s. For instance, a possible relation

could be defined in terms of equal quantities of interest such as means or variances. A more

general approach could be to determine how different are their distributions. Thus, before

defining the relations we are interested in, some common approaches already developed

in the literature are described.
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1.1 Method comparison studies

Method comparison studies (MCS, Choudhary and Nagaraja, 2017), mostly applied in

medical and biomedical research areas, are designed to compare two or more competing

instruments of measurement of the same quantity, having a common unit of measurement.

Under these methods, none of the instruments in the study produce the true values, i.e.,

it is assumed that the true values remain unknown and the methods measure them with

error. Mixed-effect models are a flexible framework for modelling observations in these

analyses because the measurements are taken by each method on every subject on the study

and there may or may not be replications. Considering only two measurement instruments,

a common model relating the observed Y to the true value b is the classical linear model:

Yi,j = β0,j + β1,jbi + εi,j i = 1, . . . , nj j = 1, 2 (1.1)

where β0 and β1 are fixed constants specific to the measurement method and εj is the

random error vector of the method j. It is assumed that the true value b has a probability

distribution over the population of subjects with mean µb and variance σ2
b . The error ε

has a distribution with mean zero and variance σ2
ε . Also, independent distributions are

assumed for the errors and the true values.

The precision of a method is defined as the reciprocal of the error variance 1/σ2
ε,j and

the sensitivity, the ability of a method to distinguish small changes in the true value, is

defined as β1,j/σε,j . Because of identifiability reasons, it is common to consider a reference

method such that β0,1 = 0 and β1,1 = 1.

The main goal of of MCS is to determine whether the instruments are similar and have

sufficient agreement. Similarities are evaluated in terms of the marginal distributions of

the methods. For instance, it is desirable that the methods have similar precision and

sensitivities. To evaluate differences in these quantities, both the precision ratio (λ) and

the squared sensitivity ratio (γ2), are commonly used, which are defined as

λ =
σ2
ε,1

σ2
ε,2

γ2 =
β2

1/σ
2
ε,2

1/σ2
ε,1

= β1λ
2 ,
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If these two quantities are close to 1, then the methods are considered to be similar. Com-

plementary, measurements of agreement consider examinations of features of the joint

distributions of the measurements such as the concordance correlation coefficient (CCC,

Lin, 1989) which measures how tightly concentrated the bivariate distribution (Y1, Y2) is

around a straight line. Also, the coverage probability (CP, Lin et al., 2002) which com-

putes the proportion of the population of the random variable D = Y1 − Y2 contained

within the margins ±δ, for a small positive margin δ, i.e., CP (δ) = P (|D| ≤ δ). High

agreement is considered when large values between (0, 1) are obtained for δ. Finally, if the

measurements agree well enough, the preferred one is the instrument that is cheaper, faster,

less invasive or the easiest to use. If measurements do not agree enough, it is analysed why

and how they differ.

The MCS define relations among measurements from different instruments in terms of

how different they are with respect to some moments of the distributions of the measure-

ments (marginal and joint distributions). Characteristics of these methods are restrictive

to be applied in the setting of linking measurement as it has been defined. In contexts

where it is a need to link measurements, as those described at the beginning of this chap-

ter, the sample units (usually people) are not necessarily measured by all the available

instruments. In addition, it is possible that the instruments are not defined on the same

scale, for instance, two versions of a test. In addition, we believe that not only moments of

the distributions should be taken into account to develop relations among measurements

but also the whole distribution of the random variables defined by the instruments must be

considered. Finally, the objective of both MCS studies and linking methods is the main

issue that differenciate them. The former chooses between methods while the latter is

devoted to find equivalent measurements among the methods.

1.2 Equating methods

In test theory, it is assumed that instruments (test forms) measure a specific unobserved

construct. “Theoretical constructs are often related to the behavioural domain through ob-



Chapter 1 5

servable variables by considering the latter as measures or indicants of the former” (Lord

and Novick, 1968). Through a number of items, tests are built to measure a construct of

interest. After applying the test to randomly sampled examinees from a population, data

could be the pattern of answers on each item, or aggregated data (for instance, adding the

number of correct answers). In the former case, all the analyses consider item response

theory (IRT) based methods (Lord, 1980) by modelling the probability that a person an-

swer an item correctly in terms of person’s ability and difficulty of the items. The approach

we consider in this dissertation is based on cases where items’ information is aggregated

across the test takers, namely observed scores. Then, the test-score distributions of the

different forms are the parameters of interest.

Observed score data are considered realisations of a random variable that represents the

score of an examinee belonging to a certain group in a population of interest. Score link-

ing methods are used to describe the transformation (the link) from a score on one test to

a score on other test. Holland and Dorans (2006) classifies the different types of links into

three categories: predicting, scale aligning and equating. Predicting is the oldest form of

score linking. The goal is to minimise errors of prediction of a score on a test in terms of

other variables which could possibly include information from other tests. Discussions of

these linking methods can be found in Kelley (1927). In addition, Holland and Hoskens

(2003) proposed to model the score in a test (the dependent variable) based on information

of other predictor variables such as other tests. The goal of scale aligning is to transform

the scores from two different tests onto a common scale. Some subcategories of these

methods are calibration (Holland and Dorans, 2006) and concordance (Pommerich and

Dorans, 2004). A goal that distinguishes Equating methods from other forms of linking is

the purpose to develop a link between test-scores such that the scores from each test form

can be used as if they had come from the same test. As a consequence, both tests involved

in equating methods and the method used for linking the scores must satisfy strong re-

quirements. These requirements were discussed in Angoff (1971); Lord (1980); Petersen

et al. (1989) and later, some discussions about them can be found in Dorans and Holland

(2000); Kolen and Brennan (2014); von Davier et al. (2004). A brief summary of the re-
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quirements is described now: (i) equal construct: tests should measure the same construct;

(ii) equal reliability: tests should have the same level of reliability; (iii) symmetry require-

ment: if ϕ(·) is a link function relating test-scores from scale X to test-scores defined in

Y , then ϕ(·)−1 should link test-scores from Y to test-scores defined on X ; (iv) equity: it

should be a matter of indifference to an examinee which test form he/she takes; (v) group

invariance: the link function should be the same regardless of the choice of population or

subpopulations from which it is derived. Discussion about these conditions can be found

in van der Linden (2013).

A characteristic part of testing programs is that tests are used in one or more admin-

istrations. As a consequence, because of several reasons, there is no single version of a

test but alternate forms. However, these alternate forms of a test are built to be parallel

tests (Lord, 1964), i.e., the forms should have the same test specifications, such as similar

structure, item types and formats. Because the process of test construction is not perfect,

the difficulty of the form tests will not be the same. When test-scores are used to make

important decisions, it is necessary to compensate for the form-to-form variation in test

difficulty. Equating methods have been defined as statistical models and methods used to

make test-scores comparable among two or more forms of a test which intent to measure

the same attribute in order to eliminate differences in difficulty of the tests. (Holland and

Rubin, 1982; von Davier et al., 2004; Dorans et al., 2007; von Davier, 2011; Kolen and

Brennan, 2014). Comparable test-scores means that they can be used interchangeably, i.e.,

equated scores from different forms could be treated as if they came from the same test

(Kolen and Brennan, 2014; González and Wiberg, 2017).

Test-score differences are not exclusively due to differences in the difficulty of the tests

forms. An additional challenge is to avoid the confounding of differences in form difficulty

with the differences in the abilities of the group of examinees. These differences are

disentangled considering specific data collection designs (Kolen and Brennan, 2014). In

fact, considering only two forms of a test, A and B, there are several ways to collect score

data: (a) single group design (SG): a unique sample group of examinees from the same

population is used and all examinees take both test forms in the same order; (b) equivalent
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group design (EG): two independent samples from the same population of interest are

considered and each group take only one test form; (c) counterbalanced design (CB): two

independent samples from the sampling population are used and both samples take both

tests but in different order. Note that all the sample designs described so far consider

samples from the same population. However, there are situations where it is possible to

take samples from different populations. In the sampling design (d) non equivalent group

with anchor test design (NEAT): two samples are taken from two different populations.

Each group take only one test form and a common anchor test form is administered to

both samples. The anchor test is a shorten version of the test and is used to measure

and control for differences in ability of the examinees. When there are two samples from

different populations but there is no available anchor test, the (e) non equivalent group

with covariates design (NEC) uses relevant covariates to account for differences in the

groups of examinees (Wiberg and Bränberg, 2015).

From a statistical perspective, the goal of equating methods could be restated as the aim

to obtain the equivalent test-scores of x ∈M1, from one test form M1, into M2, the scale

defined for the test form M2. The equating transformation (González and Wiberg, 2017) is

defined as a function between the sample spaces M1 and M2. Assuming distribution func-

tions F1 and F2 for the random variables M1 and M2, the development of an expression

for the equating function is related to the comparison of any two samples or distribution

functions (e.g., Wilk and Gnanadesikan, 1968).

1.2.1 Equipercentile function

Considering two different test forms, M1 and M2, Braun and Holland (1982) stated that

ϕ(·) equates M1 and M2 if, for x ∈M1 and y ∈M2

FM2(y) = Fϕ(x)(y) ,

i.e., the equated score ϕ(x) and y are comparable scores as in (2). Using this definition, an

explicit form of the function ϕ(·) could be obtained. In fact, if FM2 and FM1 are continuous
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cumulative distribution functions, then:

y = ϕ(x) = F−1
M2

(FM1(x)) . (1.2)

This function is known as the equipercentile function (Angoff, 1971). The main idea of

this function is to obtain equivalent measures based on the percentiles of the distributions

of the test forms. A graphical representation of the equipercentile function is shown in

Figure 1.1. Note from the figure that both x and y represent the same percentile p of

the distributions FM1 and FM2 , even when they could be defined on different scales. A

relevant conclusion obtained from this quotation is that cumulative distribution functions

are informative with respect to the relative position of the values the random variables

take.

1.2.2 Estimation methods

The development of (1.2) was based on the assumption that the test-scores CDFs, FM1 and

FM2 , are continuous functions. However, although various types of scoring techniques

could be used, test scores are mostly discrete, generally the sum scores (e.g., the total

number of correct answers), so that M1 and M2 are subsets of the integer numbers. Con-

sequently, any possible distribution function assumed for the test-scores will lead to a step

function. In general, when random variables are defined on a countable set, i.e, a discrete

support, there would be a theoretical problem with the definition (1.2). This is because the

CDF of these random variables is a non-decreasing step function with steps at each possi-

ble value of the support. Even though the inverse CDF of the discrete random variable M2

is well defined as the quantile function QM2(p),

QM2(p) = F−1
M2

(p) = inf{y ∈M2 : FM2(y) ≥ p} ,

it is almost impossible to find a value y = F−1
M2

(p) in M2 such that exactly p = FM1(x) for

any x ∈M1.

The discreteness problem of the CDF previously described is not only theoretical but

also practical. A natural estimator of the equipercentile function is based on the empirical
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Figure (1.1) Graphical representation of the equipercentile equating function.
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cumulative distribution function (ECDF) of M1 and M2. By definition, the ECDF of a

random variable M1 based on a sample M1,1, . . . ,M1,n is defined as:

F̂n(x) =
1

n

n∑
l=1

1(M1,l ≤ x) ,

where 1(A) represents the indicator function on the set A. However, this function is also

a non-decreasing step function with steps at the sample observations. This feature of the

ECDF is common for all random variables, i.e., it holds when the the variable is either

continuous or discrete.

In educational and psychological measurement, it is a tradition to view discrete scores

as being continuous by using percentiles and percentile ranks (Holland and Thayer, 1989).

The elementary definition of percentile ranks is to consider that examinees with a discrete

score x are uniformly distributed in the interval (x− 0.5;x+ 0.5) such that the percentile

rank of x, PR(x), is given by:

PR(x) = 100 ∗
[
F (x− 1) +

f(x)

2

]
where F (x − 1) represents the proportion of test takers scoring at most x − 1 and f(x)

the proportion of examinees scoring x (Kolen and Brennan, 2014). This definition of per-

centile rank can be formulated as a kernel smoothing process. A convolution between the

discrete distribution function of the test-scores and a continuous uniform random variable

U ∼ U(−0.5, 0.5) lead to a continuous random variable. The cumulative distribution

function of this new variable is the percentile rank function. Generally, common practice

estimates of ϕ(·) are based on continuous approximations of the measures’ distributions

FM1 and FM2 . In the context of equating methods, this procedure is called the continuiza-

tion step. Linear interpolation (Angoff, 1971; Braun and Holland, 1982), kernel smoothing

techniques (Holland and Thayer, 1989; von Davier et al., 2004) and continuized log-linear

methods are typically used as continuization methods.

As a result of applying a method to continuize discrete distributions, either parametric,

semiparametric and nonparametric estimations of ϕ(·) can be obtained (González and von
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Davier, 2013). A parametric estimator of this function is obtained under certain assump-

tions (Braun and Holland, 1982; von Davier et al., 2004). By considering a location-scale

family of distributions for M1 and M2, indexed by location-scale parameters (µ1, σ1) and

(µ2, σ2), respectively, if H is a distribution function such that

FM1(x) = H

(
x− µ1

σ1

)
and FM2(y) = H

(
y − µ2

σ2

)
,

then, the equipercentile function takes the following form:

ϕM2(x; θ) = µ2 +
σ2

σ1

(x− µ1) .

After estimating the vector of parameters θ = (µ1, µ2, σ1, σ2), the estimation of the para-

metric version of ϕ(·) is obtained. Note that the previous result is valid only if the distribu-

tion function of both measures are from the same location-scale family of distributions. A

semiparametric estimator of the equipercentile function was proposed by von Davier et al.

(2004), the Kernel equating function. In this approach, the probabilities px = P (M1 = x)

and py = P (M2 = y) are considered to be the parameters of a multinomial distribu-

tion and the distribution functions FM1 and FM2 are estimated using nonparametric kernel

smoothing techniques. This procedure result on the following equating transformation:

ϕM2(x; θ) = F−1
M2,h2

(FM1,h1(x,p
x);py) ,

where px = (px)x∈M1
and py = (py)y∈M2

are the vector of probabilities and h1, h2 are

the bandwidth parameters controlling the degree of smoothness for the kernel estimates.

Extensions of kernel equating can be found in van der Linden (2011); Wiberg et al. (2014)

and the references therein.

1.3 Bayesian nonparametric models

Bayesian nonparametric (BNP) models are probability models defined on infinite dimen-

sional probability spaces, including priors on random probability functions, random mean
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functions and more (Mitra and Müller, 2015). In the same way a prior distribution is the

key element in Bayesian parametric models, the key element in BNP is the random prob-

ability measure (RPM) which is a prior distribution over a collection of distributions. The

Dirichlet process (DP) prior (Ferguson, 1973) is the most commonly used RPM.

A random distribution function G is said to be a DP with parameters M and G0, denoted

by DP (M,G0(η)), if it can be written as

G(·) =
∞∑
`=1

p`δθ`(·) , (1.3)

where δθ` denotes a point mass function at the atom θ`, θ`
iid∼ G0(η), η is a vector of

hyperparameters that defines the base measure G0, and the weights p` are obtained by the

following recursive expression:

p1 = v1 , p` = v`
∏
j<`

(1− vj) ` > 1 , (1.4)

where v`
iid∼ Beta(1,M). This last decomposition is called the stick-breaking representa-

tion of a DP prior (Sethuraman, 1994). The DP prior is characterised by the base measure

G0 that generates the locations of the atoms θ` and the total mass parameter M that deter-

mines the distribution of the fractions vh. The resulting random probability function (1.3)

is almost surely discrete (Blackwell and MacQueen, 1973). Properties of the DP prior and

alternative constructions can be found in Ghosal (2010), Lijoi and Prünster (2010) and

Barrientos et al. (2017).

In many applications where continuous random variables are involved, the discrete na-

ture of the DP random measure makes them inadequate to be considered in the modelling

process. In order to avoid this problem, the DP mixture (DPM) model (Ferguson, 1983;

Lo, 1984) considers a convolution with a continuous kernel. Let Z ∼ F (·), then a DPM

model is defined as

F (z) =

∫
h(z | θ)G(dθ) G ∼ DP (M,G0(η)) ,

where for every θ ∈ Θ, h(z | θ) is a continuous density function, G is a DP defined on

Θ ⊂ Rp and η is a vector of hyperparameters that defines the base measure G0. A random
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distribution from this model is denoted by F ∼ DPM(M,G0, h). Breaking the mixture,

this model can be written in a hierarchical representation as follows,

zi | θi ∼ h(zi | θi)

θi ∼ G

where G ∼ DP (M,G0(η)). The DPM model is one of the most common BNP prior used

for random distributions. Inácio de Carvalho et al. (2015) use it as a prior for the distri-

bution of test outcomes to develop inference on ROC curves, Daniels and Linero (2015)

consider it for longitudinal outcomes under different missing patterns, among others ap-

plications.

All these models can also be considered when the interest is to model covariate depen-

dent random probability measures G = {Gx : x ∈ X }, where X denotes the space

of the covariates. Such is the case, for instance, in a regression problem. Considering

information of a response variable y and a set of covariates x from n unit samples, the

regression problem could be defined as

yi | xi = xi,G ∼ Gx i = 1, . . . , n .

If G is not restricted to be indexed by a finite dimensional parameter vector, from a

Bayesian perspective, a prior model needs to be defined for G . The most popular models

in the literature for this purpose is the dependent Dirichlet Process (DDP) (MacEachern,

1999, 2000). The point masses in the representation (1.3) are still independent across `

however both the weights p`(x) and the atoms θ`(x) are modified such that :

Gx(·) =
∞∑
`=1

p`(x)δθ(x)`(·) , (1.5)

where p`(x) = v`(x)
∏

j<` (1− vj(x)) and θ(x) and v`(x) are stochastic processes. Sim-

plified versions of (1.5) are obtained by considering either covariate-dependent atoms or

weights, i.e.,

Gx(·) =
∞∑
`=1

p`δθ(x)`(·) or Gx(·) =
∞∑
`=1

p`(x)δθ`(·) ,
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respectively. For simplicity, in this work we consider dependency only in the atoms of the

DP model.

In the same way that the DP model is combined with a continuous kernel to obtain a

continuous density functions, the DDP is also considered to that extent leading to covariate

dependent density distributions of the form:

Fx(y) =

∫
h(y | θ)Gx(dθ) ,

with a DDP prior on {Gx, x ∈ X }. This idea has been used by De Iorio et al. (2004)

to define an ANOVA-DDP type model. Similar approaches have been used in spatial

modelling (Gelfand et al., 2005), survival analysis (De Iorio et al., 2009), functional data

(Dunson and Herring, 2006) and classification (De la Cruz et al., 2007). Dunson et al.

(2007). Dependence in the weights of the DP representation have been considered in Duan

et al. (2007); Rodrı́guez and Dunson (2011). Müller et al. (2004) incorporate dependency

by means of weighted mixtures of independent random measures. Hjort et al. (2010) and

Barrientos et al. (2012) summarise more details about Bayesian nonparametric statistics,

DDP models and its variations as well as their applications.

In order to estimate these models, its hierarchical representation allows straightforward

posterior inference with Markov Chain Monte Carlo (MCMC) simulation. There are two

strategies considered for computations of standard DP models. One approach is to employ

a truncation of the stick-breaking representation (Ishwaran and James, 2001). Another

approach is to use a marginal Gibbs sampling where the mixing distributions are integrated

out from the model (MacEachern and Müller, 1998; Neal, 2000).

1.4 Our proposal

The aim of this dissertation is to propose a new method for linking measurements obtained

from different instruments M1, . . . ,MK such that measurements obtained from the linking

procedure represent the same relative position in the scales they are defined. Through-

out this chapter, a general description of statistical procedures related to the concept of
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linking measurements have been described. In what follows, an overview of the proposal

developed in this dissertation is explained. Even though it is defined in agreement with

the philosophical ideas of equating methods, we explain how our approach extends those

methods to a general context for linking measurements.

Considering there are K measurement instruments to measure a characteristic of inter-

est, we assume there is a function that maps measurements obtained from the different

instruments. In other words, we suppose there is a function ϕMj
(·) mapping measure-

ments from one scale into another such that, for y ∈ Mj and x ∈ Mi, y = ϕMj
(x) has

the same relative position in the scale Mj that x has in the scale Mi, for some i 6= j

and i, j = 1, . . . , K. Without loss of generality, hereafter we consider i = 1 and j = 2

to simplify notation. Mathematically, the function ϕM2(·) defines a relation between the

sample spaces of the random variables M1 and M2, i.e.,

ϕM2(·) : M1 −→ M2

x −→ ϕM2(x) . (1.6)

Note that, because it is not common to have available information about the relation be-

tween measurements from different instruments, i.e., information about the structural form

of ϕM2(·), the statistical problem is nonparametric by default.

In order to characterise the function ϕM2(·), it is important to establish, mathematically,

the idea of having measurements “meaning the same” on its scales. Because measure-

ments could not necessarily be defined on the same scale, our proposal is based on the

idea of finding which measurements represent the same relative position in the scale the

measurement instruments are defined. Under this perspective, note that the main feature

of the equipercentile function in (1.2) is that test-scores x and y = ϕ(x) “represent the

same percentile on the scales they are defined”, i.e., by using the equipercentile function,

measurements represent the same characteristic on the scale they are defined. As a conse-

quence, a natural way to define the function (1.6) is as the equipercentile function (1.2).

Given that a formal definition for the function ϕM2(·) has been established, the next

step in the process is to estimate it. Different methods applied in psychometrics have
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been already described. A critical aspect when developing procedures to estimate the

equipercentile function is that all the traditional methods rely on a continuized version of

the CDFs considered for the test-score distributions (see Section 1.2.2). From our point of

view, the continuization step is not completely suitable for linking measurements specially

when they are defined on discrete scales. i.e., when the sample spaces M1 and M2 are

subsets of the integer numbers. In fact, if a continuization method is applied, then the scale

of the equated measurements is no longer discrete. This result in equated measurements

not properly defined on its scales and possible out of the limits of the range defined by its

scale. A common approach for practitioners, for example when applying these methods in

health-related areas, is to use a rounded version of the equated measurements. However,

because instruments are used to classify subjects on range of measurements defined on

discrete values, the rounded approach can lead to a erroneous classification process.

Our proposal define a general framework for linking measurements by tackling some

drawbacks of equating methods. We consider that measurements defined on discrete scales

are ordinal random variables. This assumption is founded in the fact that, with discrete

measurements, sample spaces define an order relation between measurements. Thus, tak-

ing advantages of the latent representation of ordinal variables, an estimation of the linking

function (1.6) in the latent setting is obtained after estimating the latent CDF’s of each set

of measurements. This estimation is used to obtain a set of continuous linked measure-

ments for each discrete measurement. A procedure to obtain a discrete estimated linked

measurement from this set is proposed. Based on ideas of Kottas et al. (2005), we assume

a Bayesian nonparametric model for the latent variables based on mixtures induced by a

Dirichlet process. Additionally, we extend the proposal to a covariate-dependent model

for the latent variables based on mixture models induced by a dependent Dirichlet process

which allows smoothly changes of the latent distributions of the measurements as well

as the linking functions. An interesting point of the proposal is that it could be applied

not only for linking measurements defined on discrete scales but also for measurements

defined on continuous scales.

The proposal developed in this dissertation is unique in at least two perspectives. First,
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the discreteness problem of the CDF’s and ECDF’s for discrete random variables is avoided

because the linking function is estimated in the continuous latent setting. Second, mea-

surements obtained from the linking procedure we propose are properly defined on its

scales. The Bayesian nonparametric model assumed for the latent variables allows flex-

ibility to estimate different relations between measurements. Additionally, considering

covariates into the model result in customised relations between specific measurements of

interest. All these advantages are discussed on each chapter and also practically illustrated

in the applications’ sections.





Chapter 2

A latent approach for test equating

“All models are wrong, but some are useful”

Box (1976).

2.1 Introduction

The comparability of test scores is an important issue in the field of educational measure-

ment. Test scores are used to make relevant decisions in various settings, so it is crucial to

report scores in a fair and precise way. Mainly due to security reasons, it is common for

measurement programs to produce different forms of a test that are intended to measure

the same attribute. Equating methods have been developed to achieve the goal of having

comparable scores from different test forms. The main idea behind equating is to allow

for the ability of treating equated scores as if they came from the same test.

Let X1, . . . , XnX
and Y1, . . . , YnY

be the scores obtained on test forms X and Y by nX
and nY randomly sampled examinees, respectively. The scores random variables X and

Y are defined on sample spaces X and Y , respectively, which can be seen as the score

scales in this context. The statistical problem in test equating is to establish the relationship

between scores from two different scales. This goal is achieved using what is called an

19
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equating transformation, ϕ, which is a mapping between these two sample spaces i.e.,

ϕ : X → Y (González and Wiberg, 2017). Thus, an equated score on the scale Y is

the result of applying an equating transformation to a score x ∈ X . The most popular

equating transformation was defined by Braun and Holland (1982) as

ϕY (x) = F−1
Y (FX(x)) , (2.1)

where FY and FX are the cumulative distribution functions (cdf) of Y and X respectively.

Although various types of scoring techniques could be used, test scores are mostly consid-

ered to be sum scores (i.e., the obtained total number of correct answers), so that X and

Y are subsets of the integer numbers. This fact causes a problem in (2.1) because it is al-

most impossible to find a value y = F−1
Y (p) in the scale of test Y such that p = FX(x) for

any x score in the scale of test X. Different methods have been proposed in the equating

literature to tackle this problem, all of them based on the continuization of the originally

discrete score distributions FY and FX . Continuization methods include the use of linear

interpolation (Angoff, 1971; Braun and Holland, 1982) and kernel smoothing techniques

(von Davier et al., 2004). A common feature of all equating methods based on the con-

tinuization of FX and FY is that equated scores are not integer numbers anymore and thus

are not defined on the original score scale.

Our proposal solves the equating problem while preserving the discrete nature of the

score data. To this effect, building on the Bayesian nonparametric model for multivariate

ordinal data developed by Kottas et al. (2005), we propose a continuous latent variable

formulation of score distributions. A key feature of the proposed method is that scores are

equated at a latent and continuous scale, thus avoiding the need to resort to approxima-

tions. Specifically, we consider an equipercentile-like equating method that has as final

outcome, a discrete equated score for each possible value on the scale score. To the best of

our knowledge, such an approach has not been used in previously studied equating meth-

ods. We discuss properties of the model and compare its performance with some of the

traditional approaches.

The rest of this chapter is organized as follows. In section 2.2 we give a background of

both the latent representation for ordinal variables and Bayesian nonparametric models.
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In the same section we introduce the proposed Latent equating method (LE). In section

2.3 we illustrate the performance of the proposed method by a simulation study and an

application to a real data set. Final conclusions and a discussion of some ideas for further

work are presented in section 2.4.

2.2 Latent modeling approach

The equating method proposed in this chapter is based on the latent representation of

ordinal random variables. The latent modeling approach for ordinal random variables as

well as some relevant aspects of Bayesian nonparametric models are discussed in this

section. The proposed model for score distributions and the latent equating method are

shown at the end of this section.

2.2.1 Ordinal random variables

Ordinal categorical variables arise frequently in different contexts, e.g., studies on the

quality of a service (with categories fair, good, very good), extent of agreement (strongly

disagree, disagree, neutral, agree, strongly agree) and the level of education (high school,

undergraduate, graduate), ordered item response data,among others. A common approach

for the analysis of ordinal data is to assume that measurements are the observable indica-

tor of some underlying continuous latent variable (see McCullagh, 1980; McCullagh and

Nelder, 1989; Albert and Chib, 1993). The ordinal and the latent variables are related

through a set of thresholds values that partition the support of the latent variable into dis-

joint intervals, each one corresponding to one of the observed levels of the ordinal variable.

Let Yi, i = 1, . . . , n be independent and identically distributed ordinal random variables,

where Yi takes one of the C + 1 ordered category values ω0, . . . , ωC . Let Zi, i = 1, . . . , n

be a random sample from a continuous latent variable Z with cdf FZ . The latent modeling

approach establishes the following relation between these variables:

Yi = ωk ⇔ Zi ∈ (γk, γk+1] , (2.2)
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where γ0, . . . , γC+1 are the thresholds such that −∞ = γ0 < γ1 < . . . < γC < γC+1 =

+∞. The probability distribution of Yi is thus specified given the probability distribution

of Zi. In fact,

P(Yi = ωk) = P(γk < Zi ≤ γk+1) = FZ(γk+1)− FZ(γk) k = 0, . . . , C.

Parametric models are a common choice for FZ . One example is the normal distribution,

which results in the probit model, and another one is the logistic distribution, leading to

the logit model (see McCullagh, 1980; Haber, 1985; Winship and Mare, 1984). In these

models, the thresholds are unknown parameters. From a frequentist viewpoint, there is

no closed form for the maximum likelihood estimators for both probit and logit models.

Fisher scoring and modified versions of weighted least squares algorithms are typically

used to estimate these models. As the number of categories increases, the estimation of

these models becomes difficult (McCullagh and Nelder, 1989) and so these models are

useful for random variables with few categories. In addition, the assumption of normality

on FZ can be very restrictive in cases where there is a large proportion of observations

falling in the extreme levels of the ordinal scale and few observations falling in the mid-

dle of the scale. More flexible models have been proposed in the literature. For instance,

a parametric Bayesian approach was proposed in Zeger and Karim (1991) where, using

a Gibbs sampler algorithm, the relation between Bayesian regression and random-effect

models was studied. Albert and Chib (1993) used a data augmentation approach to develop

a MCMC method based on mixtures models for the distribution of Z. Even though these

alternative models are more flexible, nonstandard inferential techniques (Johnson and Al-

bert, 1999) and reparametrizations (Chen and Dey, 2000) are needed in the estimation

process.

2.2.2 Bayesian nonparametric models

Bayesian nonparametric (BNP) models are probability models defined on infinite dimen-

sional probability spaces (Dey et al., 1998; Hjort et al., 2010; Mitra and Müller, 2015). In

the same way a prior distribution is the key element in Bayesian parametric models, the
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key element in BNP is the random probability measure (RPM) which is a prior distribution

over a collection of distributions. The Dirichlet process (DP) prior (Ferguson, 1973) is the

most commonly used RPM because of its computational simplicity. It is said that G is a

DP with parameters M and G0, denoted by G ∼ DP (M,G0), if for every partition of the

sample space A1, . . . , Ak, the vector of random probabilities (G(A1), . . . , G(Ak)) follows

a Dirichlet distribution Dir(MG0(A1), . . . ,MG0(Ak)). From this fact, it follows that for

any measurable subset A of the sample space

G(A) ∼ Beta(MG0(A),M(1−G0(A))) ,

where E[G(A)] = G0(A) and V ar(G(A)) = G0(A)(1−G0(A))
M+1

. The parameter M is known

as the total mass parameter which controls the uncertainty of G(A), i.e., if it is small, the

variance of G(A) increases. The density G0 is known as the base measure which specifies

the mean of G(A).

A random distribution function G from a DP (M,G0) can be alternatively written as

G(·) =
∞∑
`=1

p`δθ`(·) , (2.3)

where δθ` denotes a point mass function at θ`, θ`
iid∼ G0 and the weights p` are obtained by

the following recursive expression:

p1 = v1 , p` = v`
∏
j<`

(1− vj) ` > 1 ,

where v`
iid∼ Beta(1,M). This last decomposition is called the stick-breaking represen-

tation of a DP prior (Sethuraman, 1994). The resulting random probability function is

almost surely discrete (Blackwell and MacQueen, 1973). Properties of the DP prior and

alternative constructions can be found in Ghosal (2010) and Lijoi and Prünster (2010),

respectively. Other alternative random probability measures have been defined in the lit-

erature. For instance, Ishwaran and James (2001) proposed generalizations based on the

stick-breaking definition. One of them is the finite DP which is obtained by truncating

(2.3) after a level of truncation of N terms with vN = 1 and pN = 1−
∑

i<N pi, such that:
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GN(·) =
N∑
`=1

p`δθ`(·) . (2.4)

Posterior computations under this prior model are not difficult by using a block Gibbs

sampler algorithm (Ishwaran and James, 2001).

Both density and distribution estimation problems are examples where Bayesian non-

parametric models have been applied. However, because DP prior models produce discrete

distributions with probability one, they are not suitable for modeling continuous outcomes.

The DP mixture model (DPM) (Ferguson, 1983; Lo, 1984) has thus been proposed as a

simple extension of DP models that solves this problem. The DPM is a mixture of a

continuous density with a DP prior. Let Z ∼ F (·), then a DPM model is defined as

F (z) =

∫
p(z | θ)G(dθ) G ∼ DP (M,G0(η)) ,

where for every θ ∈ Θ, p(z | θ) is a continuous density function, G is a DP defined on

Θ ⊂ Rp and η is a vector of hyperparameters that defines the base measure G0.

The latent formulation for ordinal random variables described in section 2.2.1 has been

useful in density estimation (see Shah and Madden, 2004; Ghosh et al., 2018). Denote

by Y1, . . . , Yn a random sample from the ordinal random variable Y . Let Z1, . . . , Zn be

the latent variable associated to Yi, i = 1, . . . , n from the relation (2.2). In the context

of modeling multivariate ordinal data without covariates, Kottas et al. (2005) assumed a

DPM for the latent variable Z. In the univariate context, this model is stated as:

fG(z) =

∫
Θ

N(z | µ, σ2)G(dθ) , (2.5)

where θ = (µ, σ2) and Θ = R × R+. Breaking the mixture, this model can be written as

follows:
Z1, . . . , Zn | θ1, . . . θn

ind∼ N(µi, σ
2
i )

θ1, . . . , θn | G
iid∼ G

G ∼ DP (M,G0(η)) ,

where G follows a Dirichlet process with a base measure G0(η) specified as a distribution

function over R×R+.
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Assuming a DPM model for the latent variable representation of ordinal random vari-

ables has several advantages over models mentioned in section 2.2.1. A DPM model can

be used to approximate any distribution for continuous outcomes, which given the latent

continuous representation introduced earlier, implies the ability to approximate any prob-

ability distribution of ordinal variables. Moreover, as argued by Kottas et al. (2005), the

accuracy of the approximation is not based on random thresholds and so without loss of

generality one may assume fixed thresholds. From a practical point of view, this fact

facilitates the estimation process because problems to estimate/update the thresholds are

avoided.

Bayesian nonparametric models have also been proposed for psychometric modelling

(Karabatsos and Walker, 2009b), in particular in the context of test equating. As was

pointed out by Karabatsos and Walker (2011), traditional equating methods are all based

on parametric assumptions to build a continuous version of the cdfs of X and Y . Instead,

Karabatsos and Walker (2009a) proposed a Bayesian nonparametric model using Bern-

stein polynomials process priors for (FX , FY ) that account for dependence between the

score distributions. As an extension, González et al. (2015a,b) developed a Bayesian non-

parametric model for test equating which allows the use of covariates based on Bernstein

polynomials models. Despite the fact that these proposals use more flexible models for the

score distributions functions, none of these two approaches produce equated scores that

are properly defined on the original discrete scale score. To deal with this problem, we

develop an alternative equating method that allows us to obtain equated scores directly on

the ordinal scale. The proposed method is based on a Bayesian nonparametric model for

the latent variable associated to the ordinal score random variables. In what follows we

discuss the proposed estimation method for the score distributions using density estimation

procedures under the latent formulation strategy of ordinal outcomes.

2.2.3 Bayesian nonparametric latent approach for test equating

Let X and Y be two test forms. Following the notation described in González and Wiberg

(2017), X and Y are the random variables representing the score under test X and Y,
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respectively. The score scales for these variables are X = {δ0, . . . , δCX
} and Y =

{ω0, . . . , ωCY
}, respectively. Because both X and Y define an order relation between

scores, we consider X and Y as ordinal random variables. We develop the latent equating

method under the assumption thatX1, . . . , XnX
and Y1, . . . , YnY

are random samples from

X and Y , taken under an equivalent group equating design. For more details about equat-

ing designs see von Davier et al. (2004, Chapter 2), Kolen and Brennan (2014, Section 1.2)

and González and Wiberg (2017, Chapter 1).

Assuming that both X and Y are ordinal random variables, we define a model based on

the latent representation described in section 2.2.1. Let

ZX,i
iid∼ FZX

i = 1, . . . , nX (2.6)

ZY,j
iid∼ FZY

j = 1, . . . , nY , (2.7)

be the continuous latent variable associated to each sample score Xi and Yj such that

Xi = δh ⇔ ZXi
∈ (γX,h, γX,h+1] (2.8)

Yj = ωk ⇔ ZYj ∈ (γY,k, γY,k+1] , (2.9)

resulting on the probability mass functions for the discrete ordinal scores as follows

P(Xi = δh) = FZX
(γX,h+1)− FZX

(γX,h) i = 1, . . . , nX (2.10)

P(Yj = ωk) = FZY
(γY,k+1)− FZY

(γY,k) j = 1, . . . , nY , (2.11)

where (γX,0, . . . , γX,CX+1) and (γY,0, . . . , γY,CY +1) are the thresholds of ZX and ZY in the

latent representation (2.2).

Before defining the equating method, we describe the proposed model for the scores

distributions. To model the probability density functions fZX
and fZY

in a flexible way,

following Kottas et al. (2005), we propose a DPM model of the form (2.5) for the latent

variables. The DP prior used here is a finite DP prior (see section 2.2.2) for both FZX

and FZY
. In both cases the truncation level of the finite DP is the number of possible

scores on each test, i.e., CX + 1 and CY + 1, respectively. Our choice follows by thinking

of the extreme case where each potential cluster is associated to each of these discrete
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values, discarding the counterintuitive situation where two identical discrete responses

are assigned to separate clusters. We define the model only for X scores but a similar

formulation can be made for Y .

To express the hierarchical model for the scores after replacing G with its truncated

version, we introduce configuration variables K = (K1, . . . , KnX
) such that Ki = ` if

and only if θKi
= (µ`, σ

2
` ), for ` = 1, . . . , CX + 1 and i = 1, . . . , nX , where θj = (µj, σ

2
j )

are the mixing parameters in the DP definition (2.3). Then, considering the relation (2.8),

the model for the scoresX = (X1, . . . , XnX
) becomes:

ZX,i | θ1, . . . , θN ,Ki
ind∼ N(zi | µKi , 1/σ

2
Ki
) (2.12)

Ki | p
iid∼

CX+1∑
`=1

p`δ`(Ki) (2.13)

θ` | λ, τ, β ∼ N(µ` | λ, τ/σ2
` )G(σ

2
` | α0, β) (2.14)

λ ∼ N(q0, Q0) (2.15)

τ ∼ IG(w0,W0) (2.16)

β ∼ Gamma(c0, C0) (2.17)

and the prior density for p is a special case of the generalized Dirichlet distribution as

described in Pitman and Yor (1997) and in the definition of the blocked Gibbs sampler

algorithm (Ishwaran and James, 2001). Additionally, we considered a prior distribution

for the parameterM of the truncated DP process, i.e.,M ∼ Gamma(a0, b0), which allows

more flexible allocations in the mixture model structure induced by the model. A similar

and independent model is considered for modeling the scores Y .

The model (2.12)-(2.17) is completed by specifying the hyperparameters of λ, τ , β and

M . These values were fixed in a similar way as was done by Kottas et al. (2005). Hyper-

parameters were fixed to have finite first and second prior moments for all the parameters

involved in the model. In addition, to have flexible distribution over the mixing parameters

of the DP, we considered the following configuration of hyperparameters: α0 = 3, q0 = 0,

Q0 = 49, w0 = 3, W0 = 49, c0 = 20, C0 = 2, a0 = 4 and b0 = 2.
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2.2.4 Latent equating method: a discrete equating method

At this point, we have only defined the model for the scores distributions of X and Y . In

this section we define all the steps related to the novel equating method we propose, which

we refer to as Latent equating method.

To explore the posterior distribution of the proposed model, a blocked Gibbs sampler

algorithm (Ishwaran and James, 2001) was implemented. A description of the algorithm

can be found in Appendix G. Posterior samples of all the parameters in the model were

obtained after T iterations of the algorithm. In particular, we obtained samples from the

cumulative posterior predictive distribution of ZX given a new discrete score δh, i.e.,

F
(t)
ZX

(z) =

∫ z

−∞

CX+1∑
k=1

p
(t)
k N(s | µ(t)

k , 1/σ
2(t)
k )ds , (2.18)

where {(µ(t)
k , σ

2(t)
k ), t = 1, . . . , T} are the sampled parameters from the posterior distribu-

tion. This is also made for scores Y .

Using both {F (t)
ZX
, t = 1, . . . , T} and {F (t)

ZY
, t = 1, . . . , T}, posterior samples of the

equipercentile equating function {ϕ(t)
ZY

(·), t = 1, . . . , T} were obtained according to the

definition in (2.1), i.e.,
ϕ

(t)
ZY

(·) = F
−1(t)
ZY

(F
(t)
ZX

(·)) . (2.19)

Note at this point that the samples of the equipercentile function are random continuous

functions. Our proposal takes advantages of this fact in the following way. Let δ?h denote

the score δh rescaled into the support of the latent variable ZX . It is obtained using the

transformation δ?h = ∆(δh− δ0)+γX,0 where ∆ =
γX,C−γX,0

δC−δ0
. The value δ?h is evaluated on

each posterior sample of the equipercentile function (2.19). As a consequence, each score

δh in the original scale X has associated a set of T random continuous equated values,

i.e.,

Z?
Y,h = {ϕ(t)

ZY
(δ?h), t = 1, . . . , T} . (2.20)

The equated discrete score for δh will be ωk, for some k ∈ {0, . . . , CY }, if the interval

(γY,k; γY,k+1] (by means of equation (2.2)) has the highest probability on the distribution
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of values (2.20). Mathematically, if ϕY (δh) is the discrete equated score of δh in the scale

Y , then:
ϕY (δh) = ωk ⇔ k = argmax

k ∈{0,...,CY }
P
(
Z?
Y,h ∈ (γY,k; γY,k+1]

)
. (2.21)

Once the equating function ϕY (δ) has been estimated and equated values obtained for all
δ ∈X , it is needed to quantify the error associated to each of these values. In the equating

setting, the uncertainty on equated values is measured by what is called the standard error

of equating (SEE). Different ways to compute the SEE have been discussed in the equat-

ing literature (see Lord, 1982; von Davier et al., 2004). The estimation of the Bayesian

nonparametric model behind the proposed method is based on MCMC (see Appendix G).

In addition, note that the discrete estimated equated scores are obtained using the set de-

fined in (2.20) for each possible score scale. We can use the fact that the elements of this

set are random variables to describe features of the estimated discrete equated score. In

particular, we propose the standard error of equating of ϕ̂Y (δh) as the standard deviation

of the elements of this set, i.e.,

SEE(ϕ̂Y (δh)) =
√
V ar(Z?

Y,h) h = 0, . . . , CX .

To conclude this section, we remark that the proposed model guarantees the symme-
try property of equating functions because the equipercentile transformation is computed

based on continuous distribution functions.

2.3 Illustrations

In this section the performance of our proposal is illustrated in a simulation study and using

a real data set. In the simulation study, discrete equated scores obtained from the latent

equating method were compared with two traditional equating methods (equipercentile

equating and Gaussian kernel equating). Because equated scores obtained under these

methods are actually continuous scores, we use a discrete version of them in order to

make a fair comparison with our proposal. The application is made using scores from two

forms of a mathematics test presented in von Davier et al. (2004).
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The proposed method was developed using both Fortran and the R software (R Core

Team, 2018) without considering presmoothing methods. Traditional equating methods

were implemented using the SNSequate R library (González, 2014). In the simulation

study, several data sets were generated considering different simulation scenarios. In this

section we describe how discrete test scores were simulated and how true discrete equated

scores were obtained.

The latent equating method proposed in this work considers scores sampled from an

equivalent group design. In both, the simulation study and in the application to a real

data set, we considered that both tests X and Y have the same number of items i.e.,

CX = CY = C. Under this condition, the vector of thresholds which define the la-

tent representations (2.10) and (2.11) are given by γX = (γX,0, γX,1, . . . , γX,C , γX,C+1)

and γY = (γY,0, γY,1, . . . , γY,C , γY,C+1). Because the DPM model assumed for the la-

tent variables ZX and ZY (see section 2.2.2) has the advantage of using fixed values

for the vector of thresholds and both tests have the same number of items, there is no

loss of generality considering the same vector of thresholds for both latent variables, i.e.,

γX = γY = (γ0, γ1, . . . , γC , γC+1).

In all cases we estimated equating functions to transform scores from X to Y scale.

On each simulated scenario we considered continuous latent variables with support on

R. Using the relation (2.2) discrete scores were simulated considering thresholds values

fixed to equidistant values between γ0 = −10 and γC+1 = 10. A true version of the

equipercentile function ϕZY
(·) = F−1

ZY
(FZX

(·)) was possible to compute because both ZX
and ZY were continuous random variables. True discrete equated scores were obtained

as the discrete score associated to the interval where the result of ϕZY
(γ?h) lied using the

relation (2.2). Here γ?h is the midpoint of the interval (γh; γh+1] for h = 0, . . . , C, although

any other value on the interval could be evaluated as all of them will result on the same

discrete value Y = ωh.



Chapter 2 31

2.3.1 Simulation study

We investigate the performance of the latent equating method using simulated data un-

der the previous considerations. Several criterion were considered for generating differ-

ent scenarios. The latent distributions of ZX and ZY were assumed symmetric (S), left-

asymmetric (LA) and right-asymmetric (RA). Symmetric and asymmetric distributions

were simulated from normal and skew-normal distributions, respectively. Two general

scenarios were considered. The Scenario I considers that both latent variables have similar

shape, location and scale parameters. The Scenario II considers that both latent variables

have different shapes, locations and scales parameters. On each scenario several schemes

were considered which differ in the shape assumed for both FZX
and FZY

.

Table 2.1 summarizes all the schemes considered on both scenarios for the shape of the

latent variables ZX and ZY . Even Scenario II considers different shape, location and scale

parameters, in the scheme 4 of Scenario II both pdfs were symmetric distributions (S) but

with different mean and scale parameters.

Table (2.1) Description of the shape considered for the latent distributions FZX
and FZY

:

S (symmetric distribution), RA (right-asymmetric) and LA (left-asymmetric).

Scenario I Scenario II

Name FZX
FZY

Name FZX
FZY

Scheme 1 S S Scheme 4 S S

Scheme 2 RA RA Scheme 5 LA RA

Scheme 3 LA LA Scheme 6 RA LA

For each scheme, three combinations of sample sizes were considered for the pair n =

(nX , nY ): n1 = (80, 100), n2 = (500, 500) and n3 = (1500, 1450). For each sample size,

100 replicates were simulated. Illustrations for each of these schemes showing true con-

tinuous latent distribution for fZX
and fZY

, true continuous equating function and the true

discrete scores obtained for each possible score of the scale for each scheme, are shown in

the Appendix A and B. Depending on the scheme, different equipercentile functions are
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obtained at the same time that different relations between scale scores in X and their true

discrete equated score are developed.

Results of the latent equating method were obtained using three Markov chains generated

starting from different initial values. After completing a total number of 60000 iterations

and a burn-in period of 30000 iterations, each chain was subsampled every 25 iterations.

Combining these chains, the result was a chain of length 3600. The convergence of the

chains was analyzed by using the statistic R̂ (Brooks and Gelman, 1998; Gelman and

Rubin, 1992) and the effective sample size (Kass et al., 1998). Results, not shown here,

suggested convergence of the chains.

We divide the analysis of the proposal’s performance in two parts. We assess first the

fitting of the equipercentile function based on the Bayesian nonparametric model for the

score distributions. Secondly, we evaluate the latent equating method proposed in this

chapter in terms of the discrete estimated equated scores. The latter analysis is made in

both the whole range of the scale and on each possible value of the scale score.

The fitting of the proposed Bayesian nonparametric model for the score distributions

allows us to estimate the equipercentile function in the latent setting. To evaluate this

estimation, the criterion used is the expected value of the L2 norm between the estimation

and the real equipercentile function, with respect to the sampling distribution. For more

details of the definition of the statistic and how Monte Carlo method was applied, see

Appendix H. Note that both real and estimated equipercentile functions are evaluated in

the real line. For this reason we did not compute the L2 norm of the difference between

these two functions using traditional equating methods.

Table 2.2 shows the results for the six simulated schemes. The L2 norm of the difference

between real and estimated equipercentile function decreases as sample size increases. In

the Scenario II, where the latent distributions are different in shape, almost all of these

values are greater than in the Scenario I.

To illustrate the results of the estimation of the equipercentile function in the latent set-

ting, a random sample of the replicates of each scheme was selected. The estimation of the

equipercentile function with the 95% point-wise HPD interval on each sample is shown
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Table (2.2) Simulated data: Estimated L2 norm of the difference between true contin-

uous equipercentile function and its estimation from the proposed method under differ-

ent simulation schemes and sample sizes (nX , nY ): n1 = (80, 100), n2 = (500, 500),

n3 = (1500, 1450).

Scenario I Scenario II

Scheme n1 n2 n3 Scheme n1 n2 n3

Scheme 1 6.902 3.744 2.825 Scheme 4 6.347 3.348 2.636

Scheme 2 6.611 5.314 4.176 Scheme 5 13.709 9.280 7.978

Scheme 3 7.927 3.957 2.720 Scheme 6 13.341 9.353 7.431

in Figures 2.1 and 2.2. The true equipercentile function is well estimated in almost all the

simulated schemes. All credible intervals contain the true equating function. For small

sample sizes (n1) there is more variability in the estimation (thicker HPD intervals) than

for higher sample sizes (n2 and n3). In the two scenarios, there is higher variability at the

beginning and at the end of the continuous scale, for all the schemes. A possible explana-

tion is that under the simulated truth, scores are concentrated in the middle portion of the

scale leaving little mass in the extremes. Thus there is more uncertainty in the estimation

in the extremes of the scale. Latent models that allow more mass in the extremes of the

scale are evaluated later.
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Figure (2.1) Scenario I: True (dashed line) equipercentile function and its estimation (red

line) for all samples sizes (nX , nY ): n1 = (80, 100), n2 = (500, 500),n3 = (1500, 1450)

on each scheme. The point-wise 95% HPD interval is displayed as the colored area.

After the estimation of the equipercentile function, the proposed approach defines a

method to obtain discrete equated scores from this function (see section 2.2.3). To summa-

rize the information about the method performance in the whole scale score, we examined

the statistic Ψ2 defined as the L2 distance between true discrete equated scores and its esti-
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Figure (2.2) Scenario II: True (dashed line) equipercentile function and its estima-

tion (red line) for all samples sizes (nX , nY ): n1 = (80, 100), n2 = (500, 500),n3 =

(1500, 1450) on each scheme. The point-wise 95% HPD interval is displayed as the col-

ored area.

mators. For a formal definition of this statistic and how it was computed, see Appendix I.

The statistic Ψ2 was also computed under estimations obtained from two traditional equat-

ing methods: equipercentile equating (EQ) and Gaussian kernel equating (KE). As was
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previously mentioned, these methods result on continuous equated values (i.e., not defined

in the original discrete scale). In order to properly compare these methods with discrete

scores obtained under the latent equating method, we used the largest integer number not

greater than the corresponding continuous equated score obtained from traditional equat-

ing methods in the evaluation of Ψ2.

A summary of the computation of the statistic Ψ2 for all the schemes is displayed in Table

2.3. Lowest values of this statistic are found for the latent equating method in contrast to

values obtained for traditional equating methods. On each simulated scheme, the proposed

method performs better than evaluated competitors. In addition, as sample size increases,

our method works better in all the schemes considered.

It can be seen in Figures 2 and 3 (see Appendix A and B), that each scheme represents

different relations between scores and true discrete equated scores. The consequence of the

lowest values of Ψ2 for the latent equating method is that, at least in the whole scale score,

the method (in mean) is closer to the true discrete equated scores than discrete version

estimations from traditional equating methods.

To further analyze the performance of the latent equating method, we also studied the

behavior among each possible value of the scale score. To achieve this objective, if δk is a

score on the scale X , for k = 0, . . . , C, we computed the expected value of the difference

between the true discrete equated score associated to the score δk an its estimated discrete

equated score under the proposed method. This expectation was approximated by using the

100 replicates for each scheme. To compare the proposed method with traditional equating

methods, we also evaluate this quantity using both equipercentile equating and Gaussian

kernel equating. Discrete equated scores estimated on each value of the scale from these

methods were obtained as the largest integer number not greater than the corresponding

continuous equated score for each method. Figures 5 and 6 (see Appendix D and E) show

the results of this expected value for the three equating methods on all the schemes and for

all sample sizes. In the three schemes considered in Scenario I, the expected value under

the latent equating method are quite similar to the values under equipercentile equating

for low scores of the scale. In contrast, for higher scores of the scale, the latent equating
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Table (2.3) Simulated data: Estimated values of Ψ2, the L2 norm of the difference be-

tween the vector of true discrete scores in the whole scale and its estimation from the

latent equating method (LE) and discrete version of the equipercentile equating (EQ) and

the Gaussian kernel equating (KE). All simulated schemes are evaluated for the sample

sizes (nX , nY ): n1 = (80, 100), n2 = (500, 500), n3 = (1500, 1450).

Scenario I

Scheme 1 Scheme 2 Scheme 3

Method n1 n2 n3 n1 n2 n3 n1 n2 n3

LE 4.401 2.322 1.758 4.569 3.665 2.747 4.980 2.563 1.718

EQ 5.451 3.804 3.543 5.324 5.533 5.012 6.308 4.011 3.773

KE 5.664 6.260 6.815 5.935 6.706 6.190 6.000 5.157 6.140

Scenario II

Scheme 4 Scheme 5 Scheme 6

Method n1 n2 n3 n1 n2 n3 n1 n2 n3

LE 3.897 2.031 1.513 5.939 4.070 3.384 7.352 4.258 3.205

EQ 5.324 3.477 2.780 6.220 4.554 4.600 9.817 7.387 6.334

KE 8.260 7.980 8.836 8.773 9.321 9.944 12.586 13.166 12.968

method values are lower than those from both traditional equating methods. Moreover,

in most of the scale, the Gaussian kernel equating method shows the highest values. In

schemes of Scenario II, the results of the equipercentile equating are lower than the pro-

posed method for lower scores of the scale in schemes 5 and 6 for the smaller sample size.

Nonetheless, in the rest of the scale, the latent equating method has lower values. Similar

to Scenario I, the Gaussian kernel method shows the worst performance in almost all the

scale score.

To illustrate the results obtained from the latent equating method proposed in this chap-

ter, Figures 2.3 and 2.4 show the estimated discrete equated scores obtained for the random

samples selected in the Figures 2.1 and 2.2 respectively. In both scenarios the method can

recover real equated scores for almost all scores on the scale. As sample sizes increase
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the precision of the estimation is better. However, there is less precision in the estimation

when small sample sizes are considered.
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Figure (2.3) Scenario I: True discrete equipercentile scores (blue dot) and its estimation

using the latent equating method (red triangle) for all samples sizes on each scheme.
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Figure (2.4) Scenario II: True discrete equipercentile scores (blue dot) and its estimation

using the latent equating method (red triangle) for all samples sizes on each scheme.

In fact, the standard error of equating for each of the cases considered before (see Figures

2.5 and 2.6) show that there is more variability in the estimation for lower and higher scores

of the scale when sample sizes n1 and n2 are considered in both scenarios. Nevertheless

for the latter sample size, the SEE’s are lower. Lower standard errors are found for almost

all scores when high samples sizes are involved in both scenarios, with the highest SEE’s
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for higher scores.
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Figure (2.5) Scenario I: Standard error of equating for samples sizes (nX , nY ): n1 =

(80, 100), n2 = (500, 500), n3 = (1500, 1450) on each scheme.

To better examine the extra variability shown in the estimation of the equipercentile

function at the extremes of the scale, we carried out an additional simulation study, now

considering score distributions with more mass at the extremes. In this new simulation

scenario we considered bimodal latent distributions for both FZX
and FZY

(a mixture of
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Figure (2.6) Scenario II: Standard error of equating for samples sizes (nX , nY ): n1 =

(80, 100), n2 = (500, 500), n3 = (1500, 1450) on each scheme.

normal distributions). Using these distributions, frequencies for low and high scores can be

observed. The latent pdfs considered, the real equipercentile function and the true discrete

equated scores of a random replicate for each sample size, are shown in Appendix C.

The analyses of the results under this new scenario follow those made for scenarios I

and II. The estimated latent equipercentile function was evaluated using the L2 distance
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between the real and the estimated equipercentile function (see Appendix H). The results

for (n1;n2;n3) are L2=(8.425; 6.580; 1.867). These values are similar to those found in

Scenario I and Scenario II (see Table 2.2). The performance of the estimation is shown

in Figure 2.7. The estimation of the equipercentile function has lower variability in the

extremes of the scale in comparison to the results found for Scenario I and Scenario II.

In fact, for almost all the cases, the width of the HPD intervals remain constant along

the scale. The estimation of the equated scores is more accurate than in Scenario I and

Scenario II with lower SEE for almost all the schemes considered in both Scenarios (see

Figure 2.7). The differences between real discrete equated scores and a discrete version

of equated scores obtained from traditional equating methods is shown in Appendix F. For

small sample sizes all methods show a higher variability with respect to results from the

two previous scenarios. In contrast, as sample sizes increase, the latent equating method

has the lowest values for almost all the scores as was found in both scenarios I and II (see

Appendix D and E).

We also computed the statistic Ψ2 to evaluate the accuracy of estimated equated scores

of the latent equating method under bimodal latent distributions. Results are compared

to those coming from a discrete version of traditional equating methods. Table 2.4 sum-

marizes the results. In contrast to discretized versions of equated values obtained from

equipercentile equating and Gaussian kernel equating, the proposal has the lowest values

for all sample sizes. Some differences are found when small samples sizes are considered.

Considering this new simulation scenario we can conclude that the model performs re-

markably well in several situations including symmetric, asymmetric, and bimodal score

distributions.
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Figure (2.7) Bimodal latent distributions: Considering sample sizes (nX , nY ): n1 =

(80, 100), n2 = (500, 500), n3 = (1500, 1450), in the first row the true (dashed line)

equipercentile function and its estimation (red line) are shown. The point-wise 95% HPD

interval is displayed as the colored area. In the second row are exhibited the estimated

discrete equated scores. In the last row the estimated SEE for each scale score are exposed.
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Table (2.4) Estimated values of Ψ2 for the latent equating method (LE) and discrete

version of the equipercentile equating (EQ) and the Gaussian kernel equating (KE) for

sample sizes (nX , nY ): n1 = (80, 100), n2 = (500, 500), n3 = (1500, 1450) considering

bimodal latent distributions.

Method n1 n2 n3

LE 6.652 3.704 1.875

EQ 6.589 4.565 3.800

KE 6.721 6.191 5.623

2.3.2 Application

We consider a data set described and analyzed by Holland and Thayer (1989) and von

Davier et al. (2004). The data set contains raw sample frequencies of number-right scores

for two parallel 20-items mathematics tests, named X and Y, given to two samples from a

national population of examinees. The number of test takers for each test is nX = 1453 and

nY = 1455. The empirical proportion of the observed scores for both tests are summarized

in Figure 2.8. Test Y has higher frequencies for high scores scale than test X.

To equate scores X to scores Y , we apply the latent equating method proposed and also

we compare the results obtained from traditional equating methods. We assumed the same

model described in section 2.2.3, considering thresholds values described at the beginning

of this section. The hyperparameters for the priors distributions involved in the model are:

α0 = 3, q0 = 0, Q0 = 49, w0 = 3, W0 = 49, c0 = 20, C0 = 10, a0 = 4 and b0 = 2.

Results of applying the latent equating method in the latent setting are summarized in

Figure 2.9. The equipercentile function is estimated with high precision because of the

thinning confidence bands, with high variability at the beginning of the real scale.
Without applying a presmoothing method, discrete scores estimated by the method and

traditional equating methods (equipercentile equating and kernel equating) are displayed

in Figure 2.10. Estimated discrete equated scores obtained from the three methods are

quite similar for lower score of the scale. In the middle of the range of the scale, the
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Figure (2.8) Application: Empirical proportion of two parallel mathematics test X and

Y (von Davier et al., 2004)
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Figure (2.9) Estimated latent equipercentile function (continuous red line). The point-

wise 95% HPD interval is displayed as the colored area

estimations from our method are more similar to discrete version of the equipercentile

method than the Gaussian kernel method. For high scores, all the methods make different

estimations. Only in the case of the highest score 20 all methods estimate the same equated

score. With respect to the SEE, low variability in the estimation can be found for scores in
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the range from 5 to 17. Higher variability is found at the beginning and at the end of the

scale.
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Figure (2.10) Application: (a) Discrete equated scores estimated under the latent equat-

ing method (red circle), equipercentile equating (green asterisk) and Gaussian kernel

equating (blue +). (b) Estimated SEE from the latent equating method.

2.4 Conclusions and discussion

Different parametric, semiparametric and nonparametric models have been proposed to

estimate the equating transformation (González and von Davier, 2013). In all these meth-

ods, the equating transformation gives as a result continuous equated scores disregarding

the fact that scores are actually defined on a discrete scale. In this chapter we introduced

an equating method that produces equated scores that are properly defined on the original

discrete scale. The continuization step commonly used in traditional equating methods

is avoided under the proposed Latent equating method by considering scores as ordinal

random variables.We apply ideas of Kottas et al. (2005), assuming a Bayesian nonpara-

metric model for the latent representation of ordinal variables, which we use as a basis for

developing the proposed method.
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Results based on a simulation study have shown that the proposed method estimates ac-

curately the equipercentile function in the latent setting, but with some variability in the

extremes of the real scale. In comparison with discrete versions of equated values ob-

tained by traditional equating methods, our approach has better performance considering

the whole range of the scale. In almost all the simulated scenarios considered, the proposed

method accurately estimated the true discrete scores on each possible test score. Consider-

ing the latent equating method applied to the data set which illustrates the equivalent group

equating design (von Davier et al., 2004), our results show that the method estimates the

latent equipercentile function accurately. The discrete equated scores estimated from our

method and those from discretized versions of traditional equating methods differ in sev-

eral parts of the scores scale. Using the latent score approach has an impact on estimated

discrete equated scores in contrast to discrete version of traditional equating methods. The

method also has low estimated standard error of equating for nearly all the range of scores.

Although other approaches based on a Bayesian nonparametric models have been pro-

posed (Karabatsos and Walker, 2009a; González et al., 2015b), we take advantage of the

ideas in Kottas et al. (2005) to obtain equated scores that are defined in the original scale of

the tests: the latent equating method equates scores defined on a discrete scale into scores

defined in a discrete scale. This idea, to the best of our knowledge, has not been devel-

oped before in the field of equating methods. In fact, the same approach can be applied

in situations where it is of paramount importance to obtain equated scores in a discrete

scale. This is true in the case of some health related areas, such as psychology and neu-

ropsychology. Concretely, levels of cognitive impairment are usually defined by ordinal

scores collected from different self-administrated test (Cullen et al., 2007; Santor et al.,

2009; Fried, 2016). Obtaining discrete equated scores among the different tests is relevant

in this context because rounding methods could lead to wrong classification of cognitive

impairment.

Karabatsos and Walker (2009a) discussed some drawbacks of traditional equating meth-

ods which motivated the proposed method. Their first comment is that traditional equating

methods make some assumptions about the cdf’s of X and Y which do not guarantee that
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the equated scores belong in the scale they are defined. Also, they mention that those

assumptions are not made on well-founded reasons. We not only strongly agree with the

authors that equated scores must belong in the original scale but also, with the proposed

method, we want to add that equated scores must be discrete when they are defined on

discrete scales. As a consequence, if score scales were subsets of the integer numbers,

equating methods should be developed such that estimated equated scores are discrete too.

The proposed approach can be extended in different ways. The DPM model can be

replaced by alternative models leading to estimation of continuous probability distribu-

tions, such as Polya trees processes (Mauldin et al., 1992; Lavine, 1992) and mixture of

Pólya tree processes (Hanson and Johnson, 2002). Other extensions of the proposed model

could consider mixtures of more general discrete random measures that form part of the

general class of species sampling processes (Pitman, 1996), e.g., the Poisson-Dirichlet (or

Pitman-Yor) process (Pitman and Yor, 1997). Another natural extension is to consider

covariate-dependent Bayesian nonparametric models for the latent variables (MacEach-

ern, 1999, 2000; De Iorio et al., 2004) such that the shape of the latent scores distribution

may change as a function of the covariates and, as a consequence, the form of the equating

transformation can change according to covariate values.

The proposed equating method was developed for samples from an equivalent group

equating design. Extending the approach to other equating designs is a topic for future

research.
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A covariate-dependent Bayesian
nonparametric approach for linking
measurements

“Far better an approximate answer to the right question, which is often vague,

than the exact answer to the wrong question, which can always be made precise.”

Tukey (1962).

3.1 Introduction

In all scientific research areas decisions are taken based on several measurements col-

lected either by an experiment or in the setting of observational studies. Measurements are

obtained by means of “measurement methods” which could be an instrument, an essay,

a medical device, a clinical observer or even a (self-reported) test (Choudhary and Na-

garaja, 2017). These last instruments are common in areas where cognitive variables are

involved. In general, “no single instrument for cognitive screening is suitable for global

use” (Cullen et al., 2007), so the development of new screening instruments for assess-

49
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ing cognitive function has increased during the last years (van Steenoven et al., 2014). In

clinical psychology as well as in cognitive psychology and neuropsychology, depression

is considered a disabling and often a chronic mental disorder. Accurate measurement of

depression is essential for diagnosis and treatment planning. To this purpose, it is popular

the use of self-administered scales that measure and categorize symptoms of depression

(Titov et al., 2011). In contemporary clinical practice and research, many different instru-

ments are used to measure depression severity (Fried, 2016). In fact, no fewer than 280

depression scales have been developed in the last century, many of which are still in use

(Santor et al., 2009).

The amount of measurement instruments used to measure a variable of interest might

not be considered as a problem. Instead, the turning point of this phenomena is how to

relate measurements obtained from different instruments. Because different instruments

could lead to different results and so the conclusions obtained from them, if the outcome

scores of different health assessment instruments are not properly linked, inferences based

on them could have serious consequences such as wrong classification of cognitive im-

pairment, misperceptions about the efficacy of a treatment, among others (Dorans, 2007).

Consequently, the development of statistical procedures to establish how measurements

coming from different instruments are related is relevant not only for using all the avail-

able information in the making decision process, but also to facilitate interpretations and

communication among researchers in order to define comparable measurements. This last

term means that measurements obtained from different instruments, which measure the

same construct, can be used interchangeably. The objective of interchangeably measure-

ments is one of the goals of method comparison studies (MCS, Choudhary and Nagaraja,

2017) where two competing methods/instruments of measurement, e.g., two procedures

for measuring glucose concentration in a blood sample, are compared by the evaluation of

the extend of agreement and the evaluation of similarities among them. However, in the

context of cognitive scales and in particular for depression scales, these methods are not

completely suitable for several reasons. Most MCS consider methods/instruments having

a common (and generally continuous) unit of measurement whereas cognitive measure-
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ments, including depression scales, are mostly defined on different scales which usually

are either subsets of integer numbers or ordinal scales. In addition, MCS are more com-

monly used when measurements are obtained from the same samples, i.e., related samples,

which is not the common case in the comparability of cognitive scales where samples are

not commonly dependent.

The goal to obtain interchangeable measurements has also been developed in the context

of educational measurement by equating and linking methods. Scores obtained in different

forms of a test administered to the same or different groups of examinees are used to make

important decisions, such as determining academic admissions or to whom scholarships

should be granted. Although test forms are built to measure the same construct, the diffi-

culty is implicitly not the same among all the forms. As a consequence, it is important for

the decision making process to report scores as fair and accurate as possible to finally treat

scores as if they come from the same test (Holland and Rubin, 1982; von Davier et al.,

2004; Dorans et al., 2007; Kolen and Brennan, 2014; González and Wiberg, 2017). Such

purpose is achieved by estimating the equating transformation, a function which maps

the scores on the scale of one test form, X, into their equivalents on the scale of another,

Y (González and Wiberg, 2017). The equipercentile equating transformation (Braun and

Holland, 1982) is the most popular equating function defined as:

ϕY (x) = F−1
Y (FX(x)) , (3.1)

where FY and FX are the cumulative distribution functions (cdf) of test score Y and test

score X , respectively. Test scores are mostly considered to be sum scores (i.e., the total

number of correct answers), such that the scale where they are defined are subsets of the

integer numbers. The discreteness of the test scales generates a problem in (3.1) because it

is almost impossible to find a value y = F−1
Y (p) in the scale of test Y such that p = FX(x)

for any x score in the scale of test X. As it was mentioned before, cognitive instruments, for

example depression scales, are mostly characterised by discrete or ordinal scales. This fact

makes current equating methods not suitable at all for comparing cognitive instruments.

Different methods have been proposed in the equating literature to tackle the problem of

discrete scores, all of them based on the continuization of the originally discrete score dis-
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tributions FY and FX . Continuization methods include the use of linear interpolation (An-

goff, 1971; Braun and Holland, 1982) and kernel smoothing techniques (von Davier et al.,

2004). However, a common feature of all equating methods based on the continuization of

FX and FY is that equated scores are not integer numbers anymore and thus are not defined

on the original scale score. Moreover, as mentioned in Karabatsos and Walker (2011), the

estimations of the equipercentile function from traditional equating methods can equate

scores that fall outside the original range of the scores. These are not big problems in ed-

ucational setting as raw scores are usually rescaled using certain (arbitrary) scale (Kolen

and Brennan, 2014). However, an important consequence of this issue when comparing

cognitive scales is that equated measurements do not meet the need of a discrete measure

if reported as unrounded, not integer values. Notwithstanding, as cognitive measurements

are used to define levels of cognitive impairment, rounding equated measurements could

result, for instance on misclassification of cognitive impairment. An additional issue of

traditional equating methods is that all of them assume that scores distributions of tests

measuring the same construct are independent. We strongly agree with the discussion

in Karabatsos and Walker (2011) stating that the equal construct requirement of tests in-

volved in a equating procedure (see Section 1.2) implies that scores distributions should

be related.

We propose a model-based procedure for linking measurements obtained from different

instruments that can be applied to measurements defined on either continuous or discrete

scales. It is shown explicitly how we tackle the problem of preserving the discreteness of

the measurements while comparing discrete measurements and also how measurements’

distributions are related to each other. The motivation comes from datasets of two self-

administered instruments used to measure symptoms of depression applied in two inde-

pendent samples of the Chilean population. The main objective is to develop equivalent

measurements between these two instruments such that they can be used interchangeably.

As a consequence, the use of different instruments for researchers as well as for practi-

tioners would not be an obstacle to characterise depression symptoms in the Chilean pop-

ulation. In addition, because the prevalence of depression is higher for Chilean females
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than for Chilean males (Chilean Health Ministry, 2016-2017), it is of interest to evaluate if

this fact can lead to different equivalent measurements for males and females. If it is so, a

relevant aspect is to know how they differ. By considering measurements from different in-

struments as ordinal random variables, a procedure to link them is developed based on the

ideas of equating methods. However, the proposal avoids the use of continuous versions of

the discrete distributions of measurements as well as rounded methods mentioned before.

The key element of the proposal is the continuous latent representation of ordinal random

variables. It allows to estimate a latent equipercentile function of the form (3.1) from the

estimation of the continuous latent distributions of the measurements. Then, because of the

one-to-one relation between the latent variable and the ordinal measurements, a procedure

is defined to recover measurements in the original discrete ordinal scale. Moreover, the

model proposed for the latent distributions includes additional information of the sample

units based on a covariate-dependent Bayesian nonparametric model. Thus, a customised

equipercentile function can be estimated for subgroups of interest (González et al., 2015b).

Even though covariate-dependent and Bayesian nonparametric models have been used to

define equating methods (see Karabatsos and Walker, 2009a; González et al., 2015b), a

different approach of the proposal developed in this chapter is that linked measurements

are properly defined on the scales defined by the instruments. The proposal extends the

model defined by Varas et al. (2019) which, to the best of our knowledge, is the first work

proposed in this direction.

The rest of the chapter is organised as follows. In Section 3.2 the two depression scales

are described. In Section 3.3 some common approaches to model ordinal variables and

important features of covariate-dependent Bayesian nonparametric are mentioned. Both

the model considered for the measurements’ distributions and the linking method proposed

are explained in detail in Section 3.4. The performance of the procedure is illustrated based

on a simulated study in Section 3.5. In Section 3.6 the proposal is applied to establish

comparable measurements between two depression instruments applied on the Chilean

population. The chapter concludes in Section 3.7 with a discussion and final remarks.
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3.2 Description of the data set

Depression indexes in Chile are among the highest in the world. The National Health

Survey (2016-2017) applied by the Chilean Health Ministry revealed that 15.8% of the

Chilean population older than 18 years have reported depression symptoms within a pe-

riod of one year. Nevertheless, only 6.2% of the population has been diagnosed with this

pathology. Several instruments in the form of self administrated tests have been developed

to evaluate symptoms of depression. Two of these instruments are the Beck Depression

Inventory (BDI, Beck et al., 1961) and the Outcome Questionnaire (OQ-45.2, Lambert

et al., 1996), which have been validated to be used in the Chilean population (see, Valdés

et al., 2017; Beck et al., 2002, respectively). The BDI is a 21-item self-report inventory

that assesses symptoms of depression underlying one factor. Each item is rated from 0 to 3

according to severity of difficulty experienced. Total scores range from 0 to 63 and are cat-

egorised into four levels of severity: minimal depression (total score, 0-13); mild depres-

sion (total score, 14-19); moderate depression (total score, 20-28); and severe depression

(total score ≥ 29; Beck et al., 1996). The OQ-45.2 measures progress in psychological

functioning during treatment on three dimensions: subjective discomfort, interpersonal

relationships, and social role performance (Lambert et al., 1983). These dimensions are

intended to monitor an overall performance of the patient, but are not intended as a di-

agnostic tool. It is of interest to combine information already available from these two

instruments in terms of finding equivalent scores between them. The National Health sur-

vey (2016-2017) revealed higher prevalence of depression in women (10.6%) than in men

(2.1%). This fact could reflect different features of depression in these two groups and,

as a consequence, the relation between the instruments could be different in these groups.

The development of equivalent scores will help both researchers and practitioners to use

scores interchangeably for describing symptoms and features of depression in the Chilean

population. Moreover, if differences in the linked measurements of males and females are

found, the monitoring process will be improved.
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3.3 Statistical background

A natural way for modelling ordinal variables is to conceive them as representing a dis-

cretised version of an underlying latent continuous random variable. In particular, the

commonly used ordinal probit model results when a normal distribution is assumed for

the latent variable, and if a logistic distribution is considered, the logit model follows (see

McCullagh, 1980; McCullagh and Nelder, 1989; Albert and Chib, 1993). In general, if

Y is an ordinal random variable defined on the sample space Y = {0, 1, . . . , CY } and

complementary information from covariates is available, x, the latent representation es-

tablishes that Y = y if and only if Z ∈ (γy, γy+1], for all y ∈ Y , where Z is a continuous

random variable and −∞ = γ0 < γ1 < . . . < γCY +1 = ∞ is a set of thresholds that

defines the levels of Y . Here, Z | β ∼ fZ(·), where fZ(·) is defined as a parametric kernel

with location xTβ and scale σ. Under this representation, the probability mass function

of Y yields to:

P(Y = y | x) =

∫ γy+1

γy

fZ(z | xTβ, σ)dz . (3.2)

The assumption of normality on the distribution for latent variable Z is restrictive, espe-

cially for data that containing a large proportion of observations at the extreme levels of

the scale, and relatively few observations at moderate levels. As a consequence of the nor-

mal distribution shape, there are certain limitations on the effect that each covariate can

have on the probability response curve (Boes and Winkelmann, 2006). General surveys

of the parametric as well as the semi- and nonparametric literature are given, for example,

in Barnhart and Sampson (1994), Clogg and Shihadeh (1994), Winship and Mare (1984),

Bellemare et al. (2002), and Stewart (2004).

Bayesian nonparametric models (BNP) have also been proposed to model ordinal data

due to the flexibility they provide compared to traditional parametric alternatives. To

model multivariate ordinal data, Kottas et al. (2005) formulated a DP mixture of multivari-

ate normal distributions for the latent distributions. In the absence of covariates, this model

is sufficiently flexible to uncover essentially any pattern in a contingency table while using

fixed cut-offs. This represents a significant advantage relative to the parametric models
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mentioned earlier, since the estimation of threshold requires nonstandard inferential tech-

niques, such as hybrid Markov chain Monte Carlo (MCMC) samplers (Johnson and Albert,

1999) and reparameterizations to achieve transformed thresholds that do not have an order

restriction (Chen and Dey, 2000).

The most popular Bayesian nonparametric probability model is the Dirichlet Process

(DP) (Ferguson, 1973). If G follows a DP prior with precision parameter M and base

measure G0(· | η), denoted by G ∼ DP (M,G0(η)), the stick-breaking representation of

G (Sethuraman, 1994) is given by:

G(·) =
∞∑
h=1

whδθh(·), θh
iid∼ G0(· | η) (3.3)

wh = Vh
∏
j<h

(1− Vj) Vh |M
iid∼ Beta(1,M) , (3.4)

where δθh denotes a point mass function at θh and η is a vector of hyperparameters that

defines the base measureG0. The dependent Dirichlet Process (DDP) (MacEachern, 1999,

2000) is an approach to define a prior model for the uncountable set of random measure-

ments indexed by covariates, G = {Gx, x ∈X }, where X is the space of the covariates.

It is said that G is a varying location DDP (Müller et al., 2015) if, for every x ∈X ,

Gx(·) =
∞∑
h=1

whδθh(x)(·) ,

where the atoms θh(x) in (3.3) are mutually independent realisations of a stochastic pro-

cess indexed by x, for h = 1, 2, . . .. This idea has been applied by De Iorio et al. (2004)

to define an ANOVA-DDP type model. Similar approaches have been used in spatial

modeling (Gelfand et al., 2005), survival analysis (De Iorio et al., 2009), functional data

(Dunson and Herring, 2006) and classification (De la Cruz et al., 2007). Dunson et al.

(2007) and Duan et al. (2007) have introduced covariate dependence in the weights of the

DP representation (named as the varying weight DDP, Müller et al., 2015). The vary-

ing weight and location DDP is obtained when both the weights and the atoms in the DP

representation vary across x (MacEachern, 2000; Griffin and Steel, 2006). Müller et al.
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(2004) incorporating dependency by means of weighted mixtures of independent random

measurements.

Note that the almost sure discreteness of the Dirichlet process (Blackwell and Mac-

Queen, 1973) makes it an inappropriate model for a continuous variable Z. An additional

convolution is introduced as a standard procedure for overcoming this difficulty resulting

on the DP mixtures models (Antoniak, 1974):

h(z) =

∫
k(z | θ)G(dθ) with G ∼ DP (M,G0(η)) ,

where for every θ, k(· | θ) is a probability density function and θ ∈ Θ ⊆ Rp. In this

context, the DDP can also be used as a mixing distribution in the mixture model such that

it is possible to define a covariate-dependent mixture model as

hx(z) =

∫
k(z | θ)Gx(dθ) , (3.5)

where the mixing distribution belongs to the set of dependent probability measurements

{Gx : x ∈ X}, for which it is assumed a DDP (M,G0(η)) prior model. Theoretical

properties of DDP models and its variations can be found in Lo (1984), Hjort et al. (2010),

Ghosal and Van der Vaart (2007), Barrientos et al. (2017) among others.

Motivated by the limitations of parametric and semi-parametric models for the latent

variable Z, we extend the DPM model proposed by Kottas et al. (2005) by proposing a

covariate-dependent Bayesian nonparametric model for the distribution of the latent vari-

ables Z. Because most of the available information in the context of cognitive test are

categorical variables, the ANOVA dependent approach of De Iorio et al. (2004) is a natu-

ral way to incorporate covariates into the model.

3.4 Proposed method for linking measurements

Let Si be an ordinal random variable denoting the measure obtained from individual i,

for i = 1, 2, . . . , n. Additional information of categorical variables is considered for each
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sample unit summarised in a (p − 1)-dimensional vector xTi which includes the categor-

ical variable vi indicating the instrument used for taking the measure of the individual i.

The ordinal assumption of Si allows to describe its probability distribution in terms of a

continuous latent variable Zi (see Section 3.2). In fact,

Si = s ⇔ Zi ∈ (γs, γs+1]

such that its probability mass function is given by

P(Si = s) = FZi
(γs)− FZi

(γs+1).

Then, the proposed model is defined as follows:

Zi | xi, Gx
ind∼ Hxi

(z | Gx) . (3.6)

Following ideas of De Iorio et al. (2004), a continuous covariate-dependent model for Zi
of the form (3.5) is proposed which describes dependence across random distributions in

an analysis of variance (ANOVA)-type fashion. In particular, it is considered an ANOVA

dependent Dirichlet process for the set {Gx : x ∈ X}, i.e., Zi has density function:

hx(z | Gx) =

∫
N(z | x̃iβ, σ2)Gx(dθ) (3.7)

where x̃i = (1,xTi ), β = (β0, β1, . . . , βp−1)T , θ = (β, σ2) ∈ Θ = Rp × R+ and {Gx :

x ∈ X} ∼ ANOV A−DDP (M,G0(η)). For identifiability restrictions, it is considered

that the effect associated to the first category of each categorical covariate is zero. Note

that (3.7) defines a probability model in such a way that marginally, each random measure

hx(· | Gx) follows a DPM and the dependent DP is used to define the dependence across

the related random measures. By introducing latent variables, the mixture can be written

as a hierarchical model. In fact,

zi | xi,θi
ind∼ N(zi | x̃iβi, σ2

i )

θi | F
ind∼ F

F |M,G0 ∼ DP (M,G0(η)) ,
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where θi = (βi, σ
2
i ). The base measure G0(· | η) is considered as

G0(θ | η) = Nq(β | µβ,Σβ)IG(σ2 | τ1/2, τ2/2) .

The Bayesian formulation of the model is completed by specifying priors for the vector of

hyperparameters η = (µβ,Σβ, τ2). By simplicity, we consider conjugated distributions:

µβ ∼ Nq (µ0,S0)

Σβ ∼ IWq(ν0,Ψ0)

τ2 ∼ G (τs1/2, τs2/2) ,

where IWq(a,A) is a q-dimensional inverse Wishart distribution with a degrees of free-

dom and a scale matrix A. Additionally, a prior over the precision parameter M of the

DP is considered as M ∼ G(a0, b0). The hyperparameters are fixed as µ0 = 0q, S0 = Iq,

ν0 = 5, Ψ0 = Iq, τ1 = 6, τs1 = 6 and τs2 = 2, where Ip represents the identity matrix of

order p.

3.4.1 Linking measurements

The product of the number of levels of the categorical covariates, including the number

of instruments (categories of the variable v), define all the K possible subgroups found in

the population of interest, denoted by xk, for k = 1, . . . , K. The objective is to obtain

comparable measurements between the subgroups defined by xk and xq, where vk 6= vq,

k, q ∈ {1, 2, . . . , K}, i.e., the instruments are different. It is important to highlight at this

point that this cannot be done if covariates are omitted. If Mk is the scale defined by xk,

for k = 1, 2, . . . , K, following ideas of equating methods (see Section 3.1), the proposal

defines a method to estimate the function:

ϕMq(·) : Mk −→Mq

s −→ ϕMq(s) ,

such that that for every s ∈Mk, ϕMq(s) ∈Mq. To this aim, the equipercentile function is

estimated in the latent setting after estimating the distribution functions of Zk and Zq, the
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latent variables associated to the measurements defined by xk and xq, respectively. Note at

this point that the ANOVA-DDP modelling of dependence between Gxk
and Gxq induces

a modelling of dependence between the latent cdf’s Hxk
and Hxq . Then, it introduces de-

pendence between the measurement’s distributions, an issue not considered by traditional

equating methods with the exception of Karabatsos and Walker (2009a) who proposed a

bivariate Bayesian nonparametric modelling approach for the score distributions.

The proposed method of linking measurements is defined on three steps. Although the

method can be applied to any kind of scales, details of the steps are first described for

discrete scales.

Step 1: Posterior inferences over latent cdf‘s
Posterior inferences are made over the collection of covariate-dependent distributions

{Gx : x ∈ X } after implementing a blocked Gibbs sampler algorithm (Ishwaran and

James, 2001). The computational implementation was based on a finite dimensional ap-

proximation of the corresponding covariate-dependent stick-braking process assumed for

{Gx : x ∈ X } in (3.7). As a consequence, samples from the cumulative posterior pre-

dictive of Zl given a new measure s′ ∈ Ml are obtained, i.e., {H(t)
Zl
, t = 1, . . . , T}, for

l = k, q, where T is the posterior sample size of the MCMC algorithm, such that

H
(t)
Zl

(z) =
N∑
h=1

w
(t)
h Φ

(
z | x̃iβ(t)

h , σ
2(t)
h

)
l = k, q .

Step 2: Posterior inferences over the latent equipercentile function
From every sample of the posterior distributions in Step 1, {(H(t)

Zk
, H

(t)
Zq

), t = 1, . . . , T},
samples of the the posterior distribution for the equipercentile function in the latent setting

are obtained as {ϕ(t)
Zq

(·), t = 1, . . . , T}, according to the definition in (3.1), i.e.,

ϕ
(t)
Zq

(·) = H
−1(t)
Zq

(
H

(t)
Zk

(·)
)
, (3.8)

where the inverse of the function H(t)
Z is computed numerically for all t = 1, . . . , T .

Step 3: Discrete measurements
Let s? denote the score s ∈ Mk re-scaled into the support of the latent variable Zq. The
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value s? is evaluated on each posterior sample of the latent equipercentile function (3.8).

As a consequence, each score s ∈Mk has associated a set of T continuous random linked

measurements, i.e.,

Z?
q (s) = {ϕ(t)

Zq
(s?), t = 1, . . . , T} . (3.9)

Note that, for all s ∈ Mk, the set (3.9) is random given the randomness feature of the

latent equiperentile functions ϕZq(·). Let −∞ < γ0,l < γ1,l < . . . < γCl,l < γCl+1,l = ∞
define the set of thresholds for the latent variable Zl in the representation (??) where Cl
corresponds to the number of items for the instrument l, for l = k, q. Then, the equivalent

measure for s will be sε, for some sε ∈Mq if the interval (γε,q; γε+1,q] (see Section 3.3) is

the one that has the highest probability on the distribution of values (3.9). Mathematically,

if ϕMq(s) is the equivalent score of s in the scale Mq, then:

ϕMq(s) = sε ⇔ ε = argmax
ε ∈{0,...,Cq}

P
(
Z?
q (s) ∈ (γε,q; γε+1,q]

)
. (3.10)

Then, for all score on the scale defined by Mk, the proposed method provides as a result an

equivalent measurement properly defined on the scale Mq. We emphasise that by properly

we mean that the linked measurement is not only discrete (or continuous) if Mk and Mq

are so, but also linked measurements belong to the range defined for the scales.

In order to quantify the variability of the estimation, taking advantages of the random

feature of the equipercentile function in the latent setting (see Step 2), we propose to

define the standard error of the estimation as the standard deviation of the set (3.9), such

that:

s.e.
(
ϕMq(s)

)
=

√
V (Z?

q (s)) , for all s ∈Mk .

Even though both the model and the steps of the method have been defined for discrete

scales, it is straightforward to define them when continuous measurements are involved in

the linking method. In fact, the discrete feature of the measurements is defined by (??) In

case of Mk and Mq define continuous scales, the ANOVA-DDP model (3.7) is considered

for the measurements’ distributions such that the continuous density of the measurements
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from each instrument are estimated in Step 1. Then, the latent equipercentile function is

estimated as described in Step 2. Finally, the estimated continuous linked measurement is

defined as the mode of the set (3.9), for all s ∈Mk. The standard error of each estimated

measurement is obtained as described in Step 3.

3.5 Simulation study

The main features of the proposed method are illustrated in a simulation study. Each of

the steps defined previously are illustrated based on simulations considering only discrete

scales for the measurements.

Scores were simulated from the model (3.6) by considering the latent variable Z be a

mixture of two normal distributions. An ANOVA structure was considered for relating

the probability of each score with the vector of covariates xi = (vi, gi) in the model.

The covariate vi represents the instrument used for measuring sample unit i and gi repre-

sents an observable categorical variable. In this simulation study, we consider the gender

(male/female) and for simplicity, only two instruments are considered. Then, the total

number of groups defined by the combination of levels of the covariates is 4 (2 instru-

ments times 2 gender levels).

Two scenarios are evaluated in the simulation study. In the first one, no differences by

instruments and gender are found for the measurement distributions. In the second one,

differences in the measurement distributions are due to both test and gender. For each sce-

nario, two samples sizes were considered, n1 = 600 and n2 = 2000 with equal number of

observations for each group. Similar proportion of observations for each gender category

were considered which were simulated from a discrete uniform distribution. Additionally,

the instruments are defined on scales Mk for k = 1, 2, 3, 4, respectively such that all scales

are equal to M = {0, 1, . . . , 9}. A number of 100 different datasets were simulated to ob-

tain the results shown in this section. These datasets are used to evaluate the estimation of

the latent equipercentile function as well as the discrete linked scores along all the scale

defined by the instruments. The performance of the proposed method is compared with
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results from discretised versions of equated scores obtained using two traditional equat-

ing methods, Gaussian kernel equating (KE, von Davier et al., 2004) and Equipercentile

equating (EQ).

In order to exhibit each step of the proposed method, Figure 3.1 shows results of the

Step 1 for a randomly selected sample of the 100 datasets generated under Scheme 1 and

a sample size n1 = 600. The estimation of the equipercentile function is close to the true

function covered by the 95% HPD intervals in all the groups.

To illustrate the second step of the method to link Instrument 1 and Gender 0 to In-

strument 2 and Gender 0, the estimation of the latent equipercentile function is shown

in Figure 3.2 for the same sample described before. Note that the latent equipercentile

function is covered by the credible intervals along all the range of the latent variable.
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Figure (3.1) Step 1: True (dashed line) latent cumulative distribution function and its

estimation (red line) for all groups under sample size n1 = 600 on Scheme 1. The point-

wise 95% HPD interval is displayed as the colored area.
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Figure (3.2) Step 2: True (dashed line) equipercentile function and its estimation (red

line) for sample size n1 = 600 on Scheme 1 for linking measurements from Instrument 1

and Gender 0 to Instrument 2 and Gender 0. The point-wise 95% HPD interval is displayed

as the coloured area.

In the simulation study, true discrete linked measurements were defined as the evaluation

of the true latent equipercentile function on the middle point of the interval (γj; γj+1] for

all j = 0, . . . , C, where C denotes the number of elements in the corresponding scale.

The step 3 is illustrated in Figure 3.3 where the discrete linked measurements obtained

from the proposal are shown along all the scale. True linked measurements, blue dots,

are overlapped with red triangles in most of the cases, showing a good performance of the

proposal. In addition, the standard errors are quite similar along all the scale.

The result described so far correspond to a random sample chosen from the 100 datasets

simulated under Scheme 1 and sample size n1 = 600. However, results are similar for

other schemes. An illustration for other scheme simulations are found in Appendix J. In

all cases, the true equipercentile function is covered by credible intervals. The estimated

linked measurements are equal to the true discrete measurements in almost all the cases.

Finally, along all the scale, the standard errors are similar in almost all the schemes.
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Figure (3.3) Step 3: Linked measurements from Instrument 1 and Gender 0 (I1-g = 0) to

Instrument 2 and Gender 0 (I2-g = 0). (a) True (blue dots) discrete linked measurements

and its estimation (red triangles) for sample size n1 = 600 on Scheme 1. (b) Standard

errors for the linked measurements.
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In order to evaluate the performance of the method, several approaches are considered.

To evaluate the accuracy of the estimation of the latent equipercentile function obtained in

Step 2, the L2-norm of the difference between the estimation and the true latent equiper-

centile functions is evaluated. Results for both sample sizes within both schemes are given

in Table 3.1. In all the cases evaluated, as sample size increases the values are lower.

Higher values are found in Scheme 2 where there are found differences on the measure-

ment distributions on both gender and the instruments.

The log-pseudo marginal likelihood (LPML, Geisser and Eddy, 1979) is one of the cri-

teria used in the Bayesian framework to compare two models based on their prediction

performance. LPML is easy to compute and has been also widely adopted for model se-

lection. Gelfand and Dey (1994) established asymptotic properties of the pseudo marginal

likelihood and showed that it can be computed as LPML =
∑n

i=1 log(CPOi) where the

CPOi is the predictive density calculated at the observed measurement si given all data

except the i-th measurement (s(−i)), denoted by p(si | s(−i)). This quantity can be com-

puted easily as the harmonic mean over MCMC scans of the likelihood factor evaluated at

imputed likelihood level parameters, i.e.,

CPOi =
1

T

T∑
t=1

1

f(si | θ(t))
,

Table (3.1) Simulated data: Estimated L2-norm of the difference between true continu-

ous equipercentile function and its estimation from the proposed method under two simu-

lation schemes and sample sizes n1 = 600 and n2 = 2000.

Sample sizes

Linking Scheme n1 n2

I1G0-I2G0
Scheme 1 3.03 2.43

Scheme 2 3.17 1.96

I1G1-I2G1
Scheme 1 3.11 2.55

Scheme 2 2.97 2.20
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where, in the proposed model, f(· | θ(t)) represents the probability mass function given by

(??)-(3.6) and {θ(t), t = 1, . . . , T} is the set of posterior samples of the vector of parame-

ters of the model obtained from the MCMC procedure. Given two competing models, the

preferred one is which maximises the LPML. Two model formulations are evaluated in

this simulation study. The covariate vector in the first case (Case 1) considers both the test

and the gender. In the Case 2, only the test is used in the covariate vector. Table 3.2 shows

a summary of the results for the two samples sizes within both schemes. In Scheme 1 both

Case 1 and Case 2 show similar values so the performance of the models with and without

the gender as a covariate is the same. In contrast, higher values are obtained for Case 2

in Scheme 2. This information allows to conclude that the model taking into account the

information of the test and the gender as covariates, is preferred.

Because traditional equating methods do not define a formal sampling model, the com-

putation of the LPML is not possible for traditional equating methods. However, in order

to contrast the performance of the proposed method with traditional equating methods, the

following procedure was carried out following ideas proposed in González et al. (2015b).

The nominal feature of the gender covariate allows to integrate it out, by using the sample

proportions of each gender category within each instrument, allowing to obtain a linking

procedure between the instruments without considering covariates. Then, inferences about

the linking procedure are based on the three steps defined in Section 3.4.1 where the pos-

Table (3.2) Simulated data: LPML for models of both cases within each scheme and

sample sizes (n1 = 600 and n2 = 2000).

Sample size

n1 n2

Linking Scheme Case 1 Case 2 Case 1 Case 2

I1G0-I2G0
Scheme 1 10110.08 10123.15 21272.54 22.037.54

Scheme 2 13231.45 11014.32 28884.54 25994.32

I1G1-I2G1
Scheme 1 11243.22 11455.15 23875.43 23127.94

Scheme 2 15768.38 10904.72 31034.28 26767.92
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terior samples of the equipercentile function in the latent setting are obtained based on the

expression:

Fvi =

∫
Fxi

(·)F̂n(dg) ,

where F̂n(·) denotes the empirical distribution of covariate v. In addition, a discrete ver-

sion of the equated scores from traditional equating methods is considered to fairly com-

pare all the methods. The equated scores are rounded to the largest integer not greater than

the corresponding estimated equated score. Results are summarised in Figure 3.4, where

the difference between true and estimated measurements are shown on each possible value

of the scale for both samples sizes n1 = 600 and n2 = 2000 within each scheme. In

Scheme 1, the estimations from the proposed method underestimate the true values in al-

most all the scale. Discrete versions of traditional equating methods overestimate the true

values. In Scheme 2 there are not specific patterns in the estimation of the linked measure-

ments, however our results are better in terms of absolute values along all the scale of the

measurements.

3.6 Application

The Beck Depression Inventory (BDI, Beck et al., 1961) and the Outcome Questionnaire

(OQ-45.2, Lambert et al., 1996) are two self-report instruments used to evaluate depres-

sion symptoms. The BDI is a 21-item self-report inventory that assesses symptoms of

depression underlying one factor. Each item is rated from 0 to 3 according to severity of

difficulty experienced. The sum of scores (total score) is considered which range from 0

to 63. Depending on the score, the depression is categorised into four levels of severity:

minimal depression (total score, 0-13); mild depression (total score, 14-19); moderate de-

pression (total score, 20-28); severe depression (total score ≥ 29; Beck et al., 1996). The

OQ-45.2 measures progress in psychological functioning during treatment on three di-

mensions: subjective discomfort, interpersonal relationships, and social role performance

(Lambert et al., 1983). These dimensions are intended to monitor an overall performance
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Figure (3.4) Simulated data: Mean differences between real discrete linked measure-

ments and its estimations considering the linking method (red squares) and discrete version

of Gaussian Kernel equating (blue dots) and Equipercentile equating (green triangles), for

sample sizes n1 = 600 and n2 = 2000 within Schemes 1 and 2.

of the patient, but are not intended as a diagnostic tool. It is of interest to relate information

from these two instruments in terms of finding equivalent scores between them.

On one hand, a total of 672 people involved on a suicidal analysis were evaluated with

the OQ-45.2 instrument. On the other hand, an independent sample of 701 people who
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were involved in a research of intercultural-relations within the Chilean population were

evaluated with the BDI instrument. The gender of each person evaluated with either of

these two instruments is recorded as additional information. A summary about the com-

position of the sample considered in the analysis is shown in Table 3.3. Similar proportion

of males and females were evaluated with the instrument BDI whereas a higher proportion

of males where evaluated with the instrument OQ-45.2.

The distribution of the scores using these two instruments is shown in Figure 3.5. It can

be seen that there are no much differences in the distribution of the BDI scores between

males and females. In contrast, the distribution of the scores is not so similar for people

evaluated with the OQ-45.2 instrument, even though the proportion of male and female

are not similar.

In order to obtain a link between the scores of these two instruments, the proposed

method for linking measurements was applied. We used the model (3.6) where the vector

of covariates was defined as x = (v, g) where v indicates the instrument used to measure

depression symptoms and g represents the gender. In all cases, the link function to be

estimated considers a relation from BDI scores to OQ-45.2 scores. The hyperparameters

of the model were fixed as in the simulation study (see Section 3.4.1).

Figure 3.6 shows the estimated latent equipercentile function obtained after applying the

proposed method to the depression datasets. In particular, Figure 3.6-(a) shows the result

for linking measurements from the group of males (M) evaluated under BDI to the group

of males evaluated under OQ-45.2. Figure 3.6-(b) shows the result of linking the group of

Table (3.3) Frequency of male and female within each group of patients evaluated with

the Beck Depression index (BDI) and the Outcome questionnaire (OQ-45.2).

Gender

Instrument Male Female

BDI 391 310

OQ-45.2 534 138
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females (F) evaluated under BDI to the group of females evaluated under OQ-45.2. For

both cases, the 95% credibility intervals for the latent equipercentile functions are very

thin in almost all the scale of the latent variable, with higher variability at the end of its

scale. From our point of view, this result is explained by the low frequency observed at

high measurements on both scales, as is illustrated in Figure 3.5.

The discrete linked measurements obtained for linking the groups of males evaluated

under BDI to the same group evaluated using the OQ-45.2 scale is displayed in Figure

3.7-(a). The results are equal after linking the group of females evaluated under the BDI to

the group of females evaluated under the OQ-45.2, shown in Figure 3.7-(b). The standard

errors obtained for each linking procedure are shown in Figure 3.8. The values are very

similar for the range 0−40 BDI scores. For BDI-scores higher than 40, the errors increase

in both cases but greater values are found when linking the two scales considering the

group of females. We believe that the higher variability in the estimation at the end of the

scale is because there is not enough information from the data to reduce the variability in

the estimation process.

The LPML was computed to compare the fitting of the model considering both the in-

strument and the gender in contrast to the model that only consider the test as a covariate.

The values were 28.187 and 29.031 showing no differences in the fitting of both models,

i.e., the gender does not produce a change on the fitted model. Thus, linked measurements

from BDI to OQ-45.2. are the same for both females and males (see Figure 3.7). The prior

information of higher prevalence of depression in females in the Chilean population does

not represent an effect on the linked measurements of depression symptoms, at least using

the BDI and OQ-45.2 scales.

3.7 Concluding remarks

The problem to obtain comparable measurements form different measurement instruments

has been described in this chapter. The equipercentile function developed in linking and

equating methods has been the basic element in the proposed method. By considering



72 Chapter3

measurements as ordinal random variables, its latent representation has been used to esti-

mate the equipercentile function in the latent setting. To that purpose, a flexible Bayesian

nonparametric model was considered which allow to model customised linking functions

between measurements defined by different instruments and additional information of co-

variates. The performance of the proposed method was evaluated by a simulation study

showing that it estimates accurately the linking functions between measurements of dif-

ferent subgroups when there are(are not) differences in the link functions due to the co-

variates. Moreover, it was illustrated, by comparison criterion models, that the covariate-

dependent Bayesian model was preferred over the version of the model when information

from additional covariates is omitted in the model. The proposed method for linking mea-

surements was applied to a real dataset of depression symptoms in the Chilean population.

Results of the linking procedure shown that there is no effect of the gender when linking

measurements from the BDI to the OQ-45.2 scales.
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(d) OQ-45.2 - Female

Figure (3.5) Depression instruments: Distribution of the scores for patients evaluated

with the BDI and the OQ-45.2 instrument.
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(b) BDI-F to OQ-45.2-F

Figure (3.6) Depression instruments: Estimated latent equipercentile function after link-

ing group males evaluated under BDI to the group of males evaluated under OQ-45.2

(BDI-M to OQ-45.2-M) and the group of female evaluated under BDI to the group of

females evaluated under OQ-45.2 (BDI-F to OQ-45.2-F).
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(b) BDI-F to OQ-45.2-F

Figure (3.7) Depression instruments: Discrete linked measurements. (a) Linking the

group of males evaluated under BDI to the group of males evaluated under OQ-45.2 (BDI-

M to OQ-45.2-M). (b) Linking the group of females evaluated under BDI to the group of

females evaluated under OQ-45.2 (BDI-F to OQ-45.2-F)
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Figure (3.8) Depression instruments: Standard errors. (a) Linking the group of males

evaluated under BDI to the group of males evaluated under OQ-45.2 (BDI-M to OQ-

45.2-M). (b) Linking the group of females evaluated under BDI to the group of females

evaluated under OQ-45.2 (BDI-F to OQ-45.2-F)
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Conclusions and discussion

“What we know is not much. What we don’t know is enormous.”

Laplace. Quoted in De Morgan (1866).

The increasing development of new instruments to recover similar or even equal infor-

mation is a common situation in almost all scientific areas. From an statistical perspective,

this fact represents a challenge in the sense that new methods allowing the comparability

of several measurements obtained from different instruments need to be developed. There

are different statistical approaches to deal with this situation such as those used in measur-

ing agreement analyses, briefly described in the first chapter of this dissertation. However,

as it was discussed, when the faced problem is to obtain equivalent measurements from

cognitive variables, the adequacy of these approaches is questionable.

In the context of educational measurement, linking and equating methods (Angoff, 1971;

Braun and Holland, 1982; Kolen and Brennan, 2014) have been developed to obtain com-

parable measurements from different forms of a test measuring the same construct. The

equipercentile function is defined as a function relating the scales where scores are defined.

Different assumptions related to the score distributions result to different parametric, semi-

parametric and nonparametric estimations of the equipercentile function (González and

von Davier, 2013). Since its definition, given by Braun and Holland (1982), the equiper-

77
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centile function was obtained under the assumption of continuous distribution functions

for the score distributions. However, because the most used scoring approaches are based

on discrete scores, such as the sum of the scores on each item, continuization does not guar-

antee that equated scores lie into the original scale (for measurements defined on discrete

scales), and also that they could be outside from the range defined for the scores. Addi-

tionally, even when educational tests forms are build satisfying the requirement of equal

construct, traditional equating methods consider scores distributions as independent.

In this dissertation we extended ideas of equating methods to a general approach to link

measurements obtained from different measurement instruments. Our interest was to find

measurements with equal meaning on the scales defined by the instruments. To that pur-

pose, ideas of equating and linking methods were considered to define “the same meaning”

of measurements from different instruments. Our method is based on the fact that measure-

ments define an order relation between them, so that those defined on discrete scales can be

considered as ordinal random variables. The latent representation of this kind of variables

allows to consider flexible models for the latent variables so that the equipercentile func-

tion can be estimated under continuous cdf’s. Discrete measurement estimations result by

using the one-to-one relation between the latent variable and the ordinal one. Following

results of Kottas et al. (2005), a Bayesian nonparametric model is considered for the latent

variables, which is flexible enough for modelling ordinal data. All these features of the

proposed method tackle some of the disadvantages discussed in the linking and equating

literature. In particular, the assumption of ordinal measurements represents an alternative

to the continuization step of equating methods to deal with equated scores that do not lie

into the scale they are defined. In fact, as it was shown in this dissertation, the latent repre-

sentation ensures that all linked measurements are properly defined on their corresponding

scales.

The ANOVA-type fashion dependent model for the latent variables of the discrete mea-

surements adds an advantage to the modelling process. The dependent relation among the

latent variables induces a dependent structure for the scores distributions. This approach

agrees with comments in Karabatsos and Walker (2011) that equated tests, measuring the
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same construct, should be related.

Even though the model-based approach for linking measurements considered in this dis-

sertation extended and tackled some drawbacks of traditional equating methods, there are

some open questions to be discussed. In the context of linking and equating methods,

Karabatsos and Walker (2009a) proposed to model the scores distributions considering a

bivariate-Bayesian nonparametric model. In addition, González et al. (2015b) proposed

a covariate-dependent Bayesian nonparametric model for the score distributions based on

Bernstein polynomials. These approaches solve the problem of the permitted range of

equated scores, however, both result to continuous equated scores a problem that is tack-

led by the linking measurement method proposed in this dissertation. Notwithstanding, it

could be interesting to evaluate the proposal’s performance with respect to these methods.

Several directions can be considered as future work for improving the modelling process.

The first attempt is to compare results with an ANOVA-Poisson Dirichlet process for the

mixing distribution assumed for the latent variables. Because Poisson-Dirichlet processes

allow to define a different structure for the clustering feature, the results obtained for both

the latent and the discrete scores could be improved.

To deal with the confounding effect of the difficulty of the tests and the ability of the test

takers, as mentioned in Section 1.2, there are several ways to collect the score data and thus

to consider the sampling process in the context of equating and linking methods. However,

those sampling strategies are not only considered in educational measurement contexts but

also in health related areas. For example, in Adroher et al. (2019) the interest is to link

measurements of sleep scales, where the instruments have some common questions. Then,

the next natural step is to apply the proposed method to different sampling designs such

as for instance, for the single group design and the NEAT design. To this aim, we propose

to use another prior model for the mixing distribution of the latent variables. Müller et al.

(2004) proposed to relate hierarchical models where each model is nonparametric. Let us

consider zj = {zij, i = 1, . . . , nj} denotes the vector of latent variables associated to the

instrument j, for j = 1, . . . , J and J is the total number of instruments, such that

zj ∼ Hj , Hj ∼ p(Hj | η) .
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Figure (4.1) Hierarchical model for relating distribution. This picture corresponds to

Fig. 2 of Müller et al. (2004)

The model considers a prior defined as a mixture between a common measure and a spe-

cific measure for each instrument. The idea of the model is summarised in Figure 4.1,

where the measure F0 is shared by all the instruments and the random probability mea-

sures Fj characterise the instrument j, i.e., Hj = εF0 + (1− ε)Fj , where Fj ∼ p(Fj | β),

for j = 1, . . . , J and ε ∈ [0, 1] represents the level of relation between the instruments. In

the case of the NEAT design, F0 could be understood as the information from the anchor

test and Fj contains information about the specific instrument j.
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A Simulated Schemes Scenario I
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Figure (2) Scenario I: Scheme 1 (Figures (a), (b) and (c)). Scheme 2 (Figures (d), (e)

and (f)). Scheme 3 (Figures (g), (h) and (i)). True pdf of ZX (continuous line) and ZY
(dashed line).
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B Simulated Schemes Scenario II
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Figure (3) Scenario II: Scheme 4 (Figures (a), (b) and (c)). Scheme 5 (Figures (d), (e)

and (f)). Scheme 6 (Figures (g), (h) and (i)). True pdf of ZX (continuous line) and ZY
(dashed line).
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C Simulated Bimodal Latent Distributions
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Figure (4) Bimodal latent distributions: True pdf ofZX (continuous line) andZY (dashed

line).
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D Comparison of discrete equated scores
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Figure (5) Scenario I: On each possible score scale, the expected value of the differ-

ence between true equated scores and estimated discrete equated score for three equat-

ing methods: Latent equating (red squares), Equipercentile equating (blue circles) and

Gaussian kernel equating (green triangles) for sample sizes (nX , nY ): n1 = (80, 100),

n2 = (500, 500), n3 = (1500, 1450).
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E Comparison of discrete equated scores
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Figure (6) Scenario II: On each possible score scale, the expected value of the differ-

ence between true equated scores and estimated discrete equated score for three equat-

ing methods: Latent equating (red squares), Equipercentile equating (blue circles) and

Gaussian kernel equating (green triangles) for sample sizes (nX , nY ): n1 = (80, 100),

n2 = (500, 500), n3 = (1500, 1450).
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F Bimodal latent distributions: comparison of discrete

equated scores
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Figure (7) Bimodal latent distributions: On each possible scale score, the expected value

of the difference between true equated scores and estimated discrete equated score for three

equating methods: Latent equating (red squares), Equipercentile equating (blue circles)

and Gaussian kernel equating (green triangles) for sample sizes (nX , nY ): n1 = (80, 100),

n2 = (500, 500), n3 = (1500, 1450).
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G Posterior computation

Posterior inference for the proposed model is based on the blocked Gibbs sampler algo-

rithm (Ishwaran and James, 2001), where all parameters of the model are updated using the

conditional posterior distributions. In what follows we describe the posterior distributions

for all the parameters of the model for tests scores from test X but a similar formulation is

made for the model of scores from test Y.

Let K? = {K?
1 , . . . , K

?
m} be the unique values of K = {1, . . . , CX + 1}, Nj = {i :

Ki = K?
j } the number of indexes equal to K?

j , for j = 1, . . . ,m. The algorithm for the

estimation, is given by the following steps:

• Updating Zi: For i = 1, . . . , nX ,

Zi | . . . ∼ NT (µKi
, 1/σ2

Ki
, γh, γh+1)

where NT (a, b, c, d) denotes a truncated normal distribution with location parameter

a, scale parameter b, left truncated value c and right truncated value d. In this case,

the values γh and γh+1 depend on the value of Xi.

• Updating Ki: i = 1, . . . , nX ,

Ki | . . .
ind∼

CX+1∑
l=1

pl,iδl(·)

where

(p1,i, . . . , pCX+1,i
) ∝ (p1f(zi | θ1), . . . , pCX+1f(zi | θCX+1

))

and (p1,i, . . . , pCX+1,i
) is updated as follows:

p1 = V ?
1 , pk =

k−1∏
l=1

(1− V ?
l )V ?

k

V ?
k ∼ Beta

(
1 +Nk,M +

CX+1∑
l=k+1

Nl

)
, V ?

CX+1 = 1, k = 1, . . . , CX
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• Updating θ: For k ∈K −K?,

θk | . . .
ind∼ N(θk | λ, τ/σ2

k)Gamma(σ2
k | α0, β)

and for j = 1, . . . ,m

θK?
j
| . . . ind∼ N(µK?

j
| η?K?

j
, ω?K?

j
)Gamma(σ2?

K?
j
| α?K?

j
, β?K?

j
)

where

η?K?
j

=

(
Nj +

1

τ

)−1(
λ

τ
+Nj z̄j

)
, ω?K?

j
= σ2?

K?
j

(
Nj +

1

τ

)−1

,

αK?
j

=
Nj + 1

2
+ α0, βK?

j
= β +

(Nj − 1)s2
j

2
+

Nj

Nj + 1

(z̄j − λ)2

2

and z̄j and s2
j are the mean and the sample variance of the set {zi : Ki = K?

j },
respectively.

• Updating τ :

τ | . . . ∼ IG

(
τ | w0 +

CX + 1

2
,W0 +

1

2

CX+1∑
j=1

σ2
j (µj − λ)2

)

• Updating φ = (λ, β,M):

λ | . . . ∼ N

λ | (CX+1∑
j=1

σ2
j

τ
+

1

Q0

)−1(
q0

Q0

+

CX+1∑
j=1

µjσ
2
j

τ

)
,

(
CX+1∑
j=1

σ2
j

τ
+

1

Q0

)−1


β | . . . ∼ Gamma

(
β | c0 + (CX + 1)α0, C0 +

Cx+1∑
j=1

σ2
j

)

M | . . . ∼ Gamma

(
M | CX + a0, b0 −

CX∑
j=1

log(1− pj)

)
We use the posterior predictive distribution to compute the probability of a new unob-

served value of ZX given the observed sample value δh. This distribution is calculated by

integrating the density of a new observation over the posterior distribution of the parame-

ters that define the model. As the model involves probabilities associated with the cdf of

ZX , the cumulative predictive distribution function is given by:

FZX
(z) =

∫ z

−∞

CX+1∑
l=1

plN(s | µl, 1/σ2
l )ds .
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H Evaluation of estimated latent equipercentile functions

An important step of the proposed latent equating method consists of estimating the equiper-

centile function in the latent setting. In section 2.2 was described how the estimation is

obtained.

The criterion used to evaluate the results in the simulation study is the expected value of

the L2 norm between the estimation and the real equipercentile function, with respect to

the sampling distribution.

The expected L2 distance is obtained as

E[‖ϕ0 − ϕ̂‖2] ≈ 1

100

100∑
i=1

‖ϕ0 − ϕ̂(i)‖2 ,

where E denotes the expected value with respect to the sampling distribution, ‖ · ‖2 is

the L2 norm, ϕ0 is the true equating function, ϕ̂ is the estimator obtained using the pro-

posed method and ϕ̂(i) is the estimation of ϕ using ϕ̂ at the i−th replicate. The estimator

associated with the nonparametric procedure correspond to

ϕ̂ = E[F−1
ZY

(FZX
(·)) | data] ,

where E[· | data] denotes the posterior mean and, FZY
and FZX

are the posterior pre-

dictive cdfs of the DPM proposed model for each latent variable. This expectation was

approximated by using the 100 replicates and the Monte Carlo method.

I Evaluation of estimated discrete equated scores

The final step of the proposal is to obtain equated scores that belong in the original scale

score of the test as the result of applying the strategy defined in see section 2.2.

The performance of the proposed equating method at this step in the simulation study

was developed by considering the statistic Ψ2 which we define as follows. Let us consider

W0 the vector with true discrete equated values and Ŵ the vector of estimated discrete

equated scores in the whole scale under the proposed model. Then,
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Ψ2 = E[‖W0 − Ŵ‖2] ,

where E denotes the expected value with respect to the sampling distribution, ‖ · ‖2 is the

L2 norm. This quantity was approximated throughout the MCMC method and the 100

replicates generated for each scheme, such that,

E[‖W0 − Ŵ‖2] ≈ 1

100

100∑
i=1

‖W0 − Ŵ(i)‖2 ,

where Ŵ(i) is the estimation of W0 at the i−th replicate.

J Illustration Linking discrete measurements

To illustrate results of the proposed method, a random sample from the 100 datasets simu-

lated for each scheme and sample sizes was chosen. The estimation of the latent equiper-

centile function as well as the discrete linked measurements estimated by the method are in

Figures 8 and 9 for the Scheme 1. For the Scheme 2, the corresponding results are shown

in Figures 10 and 11. In both schemes results are similar, where the latent equipercentile

function is covered by the 95% HDP intervals. The discrete estimated linked measure-

ments are well estimated from the method in almost all the range of the scales. Addition-

ally, the standard errors are similar along the scale for all the illustration with higher values

for the last measurements in the scale. Note that in Scheme 1, an increase in the sample

size, the standard errors are reduce almost a half than for small sample size.
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Figure (8) Linking Instrument 1 to Instrument 2: (a)-(b) True (dashed line) equiper-

centile function and its estimation (red line) for sample size n1 = 600 on Scheme 1. The

point-wise 95% HPD interval is displayed as the coloured area. (c)-(d) Estimated linked

measurements. True linked measures (blue dot) and estimated linked measurements (red

triangles). (e)-(f) Standard errors for estimated linked measurements along the scale of the

instrument.
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Figure (9) Linking Instrument 1 to Instrument 2: (a)-(b) True (dashed line) equiper-

centile function and its estimation (red line) for sample size n2 = 2000 on Scheme 1. The

point-wise 95% HPD interval is displayed as the coloured area. (c)-(d) Estimated linked

measurements. True linked measures (blue dot) and estimated linked measurements (red

triangles). (e)-(f) Standard errors for estimated linked measurements along the scale of the

instrument.
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Figure (10) Linking Instrument 1 to Instrument 2: (a)-(b) True (dashed line) equiper-

centile function and its estimation (red line) for sample size n1 = 600 on Scheme 2. The

point-wise 95% HPD interval is displayed as the coloured area. (c)-(d) Estimated linked

measurements. True linked measures (blue dot) and estimated linked measurements (red

triangles). (e)-(f) Standard errors for estimated linked measurements along the scale of the

instrument.
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Figure (11) Linking Instrument 1 to Instrument 2: (a)-(b) True (dashed line) equiper-

centile function and its estimation (red line) for sample size n2 = 2000 on Scheme 2. The

point-wise 95% HPD interval is displayed as the coloured area. (c)-(d) Estimated linked

measurements. True linked measures (blue dot) and estimated linked measurements (red

triangles). (e)-(f) Standard errors for estimated linked measurements along the scale of the

instrument.
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