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DATA AUGMENTATION HELPS TO

PREVENT SHORTCUTS AND LEARN

REPRESENTATIONS FOR CONTINUAL

LEARNING IN NEURAL NETWORKS
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ABSTRACT

Inductive biases have had a fundamental role in the success of deep learning, but, in

the recent time, models with strong inductive biases have been outperformed by data-

centric approaches, that combine big and flexible architectures with a special focus on the

data. Nevertheless, these data-centric approaches do not get rid of some of the problems

deep learning has, the most relevant to this work being shortcut learning and catastrophic

forgetting. Shortcut learning occurs when the network learns decision rules that work well

under testing conditions similar to the training ones, but are not robust to shifts in the data

distribution, for example, recognizing camels on a pasture, after only seeing camels in the

desert. Catastrophic forgetting occurs when the network has to learn from a non-stationary

stream of data, without losing or forgetting the already acquired knowledge, but, instead,

it fails to do so, commonly forgets, and does not perform well on the data that came earlier

in the stream, for example, learning to recognize new animals without forgetting the ones

already known.

In this work, we show that data augmentation can be used to mitigate the mentioned

problems. First, we observed the shortcut learning problem through the visual question

answering task. We found that a flexible architecture learns shortcuts from the data, which

causes it to fail when evaluated on samples from a modified distribution, but incorporating

data augmentation prevents it from learning these biases and helps its performance on the

data of the modified distribution. For the catastrophic forgetting problem, recent work

showed that meta-learning can be used to learn a feature extractor less prone to forgetting.

In this work, we show that a neural network trained through traditional supervised learning

can also be used for this problem, and, we observed that data augmentation can have a big

impact on the performance of the model for this problem.

Keywords: data augmentation, visual question answering, shortcut learning, catastrophic

forgetting, continual learning
x
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RESUMEN

Los sesgos inductivos han sido fundamentales en el éxito del aprendizaje profundo,

pero, recientemente, los modelos con sesgos inductivos fuertes han sido superados por

propuestas centradas en los datos, que combinan arquitecturas grandes y flexibles, con

una especial atención en los datos. No obstante, estas propuestas centradas en los datos

mantienen algunos de los problemas que el aprendizaje profundo tiene, los más relevantes

para este trabajo son el aprendizaje de atajos y el olvido catastrófico. El aprendizaje de

atajos ocurre cuando la red aprende reglas de decisión que no son robustas a cambios en la

distribución de los datos, por ejemplo, reconocer camellos en un pastizal, después de haber

visto camellos únicamente en el desierto. El olvido catastrófico ocurre cuando la red tiene

que aprender de un flujo no estacionario de datos, sin perder o olvidar el conocimiento

ya adquirido, pero falla en lograr esto y tiene un mal desempeño en los datos que vió

anteriormente, por ejemplo, aprender a reconocer animales sin olvidar los ya conocidos.

En este trabajo mostramos que la aumentación de datos puede ser utilizada para miti-

gar los problemas mencionados. Primero, observamos el aprendizaje de atajos en la tarea

de respuesta a pregunta visual. Vimos que una arquitectura flexible aprende atajos por lo

que falla al modificar la distribución de los datos, pero la incorporación de aumentación

previene que el modelo aprenda estas reglas y ayuda a mejorar su desempeño en los datos

de la distribución modificada. Para el problema del olvido catastrófico, trabajos recientes

mostraron que el meta-aprendizaje puede ser utilizado para aprender un extractor de car-

acterı́sticas menos susceptible a olvidar. En este trabajo, mostramos que una red neuronal

entrenada mediante aprendizaje supervisado tradicional también puede ser utilizada para

este problema, y observamos que la aumentación de datos puede tener un gran impacto en

el desempeño del modelo.

Palabras Claves: aumentación de datos, respuesta a preguntas visuales, aprendizaje de

atajos, olvido catastrófico, aprendizaje continuo
xi
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1. INTRODUCTION

Since the breakthrough of deep neural networks in image classification (Krizhevsky,

Sutskever, & Hinton, 2012) these systems have become arguably the most powerful tool

available to achieve feats previously unthought of, such as predicting protein folding

(Senior et al., 2020), flying stratospheric air balloons (Bellemare et al., 2020) or find-

ing known and unknown cosmological principles (Cranmer et al., 2020). Two of the most

important factors which allowed deep learning to achieve these accomplishments are the

availability of large datasets and the incorporation of inductive biases in neural networks.

However, in the recent years, a trend of using general purpose architectures with less in-

ductive biases, such as the transformer (Vaswani et al., 2017), combined with massive

amounts of data and computation, has become the best performing solution across a num-

ber of problems (Radford, Narasimhan, Salimans, & Sutskever, 2018; Devlin, Chang, Lee,

& Toutanova, 2019; Dosovitskiy et al., 2021; Baevski, Schneider, & Auli, 2019; L. H. Li,

Yatskar, Yin, Hsieh, & Chang, 2019). Several works that investigated the mechanisms

learned by the transformer and its fundamental component, the attention operation, have

provided evidence that it is learning the underlying structures of the data directly from it,

which is possible thanks to the lower degree of inductive biases of the model (Cordonnier,

Loukas, & Jaggi, 2019; Manning, Clark, Hewitt, Khandelwal, & Levy, 2020; Wu et al.,

2021). This can be argued to be one of the factors related to the better performance com-

pared to models with hand-designed inductive biases, but also the reason why they are

harder to train without large datasets.

As mentioned, thanks to inductive biases, and, more recently, their absence, deep

learning has achieved remarkable performance across a large number of fields and tasks,

nevertheless, this technique still suffers from several shortcomings that seem to be present

for both approaches. One problem is their lack of out-of-domain generalization, in which

a model is trained and performs correctly on one or more source domains (the distribu-

tions from which the data is obtained), but fails when utilized in a different target domain

(Ben-David et al., 2010). An example could be to train a model that has to differentiate
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between camels and cows. Since camels are mostly found in deserts and cows in pastures,

we can expect that a dataset built for this task will retain this same trend, and, if we train

a deep learning model with this data, it will probably fail when we ask it about a camel on

a pasture. One of the reasons neural networks struggle with out-of-domain data is called

shortcut learning (Geirhos et al., 2020), in which the model learns decision rules that work

well under testing conditions similar to the training ones, but are not robust to shifts in the

data distribution. In the presented example, the shortcut would be to classify as camel if

the background of the image is the color of sand and classify as cow if it is green.

Another problem neural networks have is known as catastrophic forgetting (McCloskey

& Cohen, 1989), which is “the tendency of an artificial neural network to completely and

abruptly forget previously learned information upon learning new information”1. Con-

tinuing with the cows and camels example, if we take that already trained network, and

optimize it to differentiate cats and dogs, it will no longer classify cows and camels cor-

rectly, even on data with the same distribution as the training data.

In this work, we studied how data augmentation can help to mitigate the two problems

presented. We observed the shortcut learning problem in the visual question answering

task (Antol et al., 2015). In this task, the inputs are an image and a question about that

image, and the goal is to answer the question correctly, based on the image contents. More-

over, the questions commonly require to perform several sequential steps, thereby, besides

relating the image and language contents, the task requires some degree of reasoning. We

observed that a synthetic dataset for this task had consistencies in the data, specifically

some regions in the images were always empty, and created a modified version of the

dataset that did not present this pattern. We found that the model trained on the original

dataset had problems in the new setting, and we took the approach of preferring a flexible

architecture and letting the model incorporate the required biases from the data. We found

that simply incorporating data augmentation helped to mitigate some of the problems the

model had and resulted in a better performance in the modified dataset.

1https://en.wikipedia.org/wiki/Catastrophic interference
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For the catastrophic forgetting problem, Javed and White (2019) proposed a meta-

learning approach, specifically, to learn a feature extractor whose output representations

could be used for learning without interfering with previously acquired knowledge, that

showed promising results. However, for the few-shot image classification problem (a

task contained in the meta-learning field), Dhillon, Chaudhari, Ravichandran, and Soatto

(2019), and, Tian, Wang, Krishnan, Tenenbaum, and Isola (2020) showed that the repre-

sentations of a feature extractor trained through traditional supervised learning could be

used to surpass the performance of more complex meta-learning models or training meth-

ods, specifically designed for that task. Based on these results, we posed the following

question: can we use the representations of a model trained through traditional supervised

learning for continual learning? We answer this question positively, by simply initializing

the weights of the classification layer with zeroes, a network trained through traditional

supervised learning can achieve a performance comparable to the meta-trained models

under the same evaluation procedure. However, we found that without any data augmen-

tation the model trained with traditional supervised learning has a lower generalization

performance, but including data augmentation eliminated this difference.

The remainder of this document is organized as follows, chapter 2 presents a brief

overview of the relevance data augmentation has had in some computer vision tasks and

the recent trend of using flexible neural network architectures combined with a data-centric

approach.

Because we studied separate tasks, for ease of readability, we divided them into two

chapters, in chapter 3 we refer to the visual question answering task and chapter 4 to the

catastrophic forgetting problem. For each task and contained in their respective chapters,

we present their specific related work, the theoretical framework under which our experi-

ments are conducted, the datasets, experiments performed, and the results with an analysis

of them.

Finally, we present our conclusions on chapter 5 and possible extensions to this work

on chapter 6.
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2. RELATED WORK

2.1. Data augmentation in computer vision

Deep neural networks are highly data-inefficient, they require enormous amounts of

samples to work properly, and even in this case may overfit, thus the use of data augmen-

tation has become fundamental for these models to learn the proper invariances (Simard,

Steinkraus, & Platt, 2003), for example, the Alexnet suffered from overfitting when train-

ing on the 1.2 million images of the ImageNet dataset (Deng et al., 2009) without data

augmentation, as mentioned by the authors (Krizhevsky et al., 2012). Data augmentation

also has a fundamental importance for self-supervised learning, when labels are generated

automatically instead of relying on human annotators (T. Chen, Kornblith, Norouzi, &

Hinton, 2020; He, Fan, Wu, Xie, & Girshick, 2020; X. Chen, Fan, Girshick, & He, 2020).

Finally, reinforcement learning is a setting notoriously plagued with poor data efficiency,

but Laskin, Srinivas, and Abbeel (2020), and, Laskin, Lee, et al. (2020) showed that data

augmentation allows to train an agent from pixels with better sample efficiency and test-

time generalization than other methods that try to improve data efficiency, such as using

world models.

2.2. Learning inductive biases from the data

Although inductive biases have been fundamental for successfully training artificial

neural networks, for example, the convolution (LeCun, Haffner, Bottou, & Bengio, 1999)

or recurrence and memory (Hochreiter & Schmidhuber, 1997), in some cases they may

not be trivial to embed in a network design, or even unknown. On the other hand, general

purpose architectures, such as the transformer network (Vaswani et al., 2017), combined

with large-scale pretraining, have become an established solution across diverse machine

learning research fields, such as natural language processing (Radford et al., 2018; Devlin

et al., 2019), computer vision (Dosovitskiy et al., 2021; Bertasius, Wang, & Torresani,
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2021), speech recognition (Baevski et al., 2019), and, vision and language multimodality

(L. H. Li et al., 2019).

Wu et al. (2021) claimed that one of the reasons the transformer has had such a suc-

cess, is because it is flexible enough to learn inductive biases from the pretraining tasks,

and backed this up by pretraining a transformer with a synthetic task designed to facili-

tate mathematical reasoning, which outperformed a manually designed hierarchical trans-

former without pretraining. Manning et al. (2020) also arrived at similar findings, they

showed that structures of natural language, such as the tree structure of a sentence, could

be reconstructed from the representations learned by a transformer. More evidence of this

is seen in computer vision, when replacing the convolutional operator with an attention

mechanism, patterns very similar to the convolution emerge (Ramachandran et al., 2019;

Cordonnier et al., 2019). Also related is a recent theoretical work that suggested that the

linearized version of the transformer architecture resembles a network that generates the

weights of another network on-the-fly based on the input (Schmidhuber, 1992; Schlag,

Irie, & Schmidhuber, 2021).

We consider important to mention that, despite the fact that most of the works pre-

sented above regarding learning inductive biases from the data use the transformer net-

work and we do not use this architecture in our experiments, we consider the present work

relevant to this area because we focused on the overlying principle of using a data-centric

approach, in our case with the use of data augmentation, rather than the architecture.
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3. VISUAL QUESTION ANSWERING

In this chapter, we begin by presenting a brief overview of the visual question answer-

ing task, the shortcut learning problem and the fact that convolutional neural networks

learn to encode spatial information. We then describe the model, dataset and experiments.

Finally, we report our results with an analysis of them.

3.1. Related work

3.1.1. Visual Question Answering

Figure 3.1. An example of a visual question answer image-question pair.

Visual question answering (VQA) (Antol et al., 2015) is the task of answering open-

ended questions in natural language about an image, as is shown in figure 3.1. This task

requires to integrate components from several fields, such as computer vision, natural lan-

guage processing and understanding, commonsense reasoning, and others. In the image-

question pair of figure 3.1 we notice that to successfully answer the question we need to,

locate the umbrella, know how umbrellas look upright and extract the umbrella’s orienta-

tion in the pictures.

Two of the components the models for the VQA task have are a visual stream and

language stream. For processing the image, the first systems used grid features of a con-

volutional neural network, but Anderson et al. (2018) argued that a more natural approach
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would be to work at the level of objects, and used an object detector (Ren, He, Girshick,

& Sun, 2015) for the visual stream, as shown on the left side of figure 3.2. This approach

dominated the VQA leader boards on real-world images for some time (Y. Jiang et al.,

2018; Z. Yu, Yu, Cui, Tao, & Tian, 2019), but H. Jiang, Misra, Rohrbach, Learned-Miller,

and Chen (2020) revisited the use of grid features and showed that a model that used

grid-level features, with a visual stream like the one shown in the right side of figure 3.2,

outperformed the same model but using object-level features. Two benefits of using grid

features are not being restricted to only the classes known by the object detector, and be-

ing able to train the visual stream end-to-end on the VQA task, which cannot be done

easily with an object detector, since region extraction is an operation not trivial to make

differentiable.

Figure 3.2. On the left it is shown the pipeline of an object-level visual
stream and on the right the grid-level alternative. Figure from H. Jiang et
al. (2020).

Regarding the question, we again see two high-level approaches. On the one hand,

the methods that use a whole-question or per-word (or both) representation of the ques-

tion (Santoro et al., 2017; Anderson et al., 2018; Perez, Strub, De Vries, Dumoulin, &

Courville, 2018; Hudson & Manning, 2018), commonly generated with a recurrent neural
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network. On the other hand, the methods that from the question dynamically build an exe-

cutable program or define a sequence of modules, that are applied to the image (Andreas,

Rohrbach, Darrell, & Klein, 2016; Johnson, Hariharan, Van Der Maaten, et al., 2017; Hu,

Andreas, Rohrbach, Darrell, & Saenko, 2017; Yi et al., 2018; Mascharka, Tran, Soklaski,

& Majumdar, 2018; Mao, Gan, Kohli, Tenenbaum, & Wu, 2018), which we will refer to as

program-based methods. The program-based methods require to define the available op-

erations or modules, that can be hand-designed or an automatized alternative could be to

obtain them from a syntactic dependency parser, and, in some cases, these methods need

additional information about the structure of the images. This helps the program-based

methods have a better data efficiency on synthetic VQA datasets, with images and ques-

tions generated algorithmically, such as Johnson, Hariharan, van der Maaten, et al. (2017),

compared to non-program-based methods, but with small benefit when using more data,

and perform worse with human-made questions or real looking images, because their pre-

defined action set restricts them.

The most recent works on VQA follow the trend established in natural language pro-

cessing of pretraining large-scale transformer models (Radford et al., 2018; Devlin et al.,

2019), but with modifications for vision-language objectives. We again see that the first

methods processed the visual input with an object detector (Lu, Batra, Parikh, & Lee,

2019; L. H. Li et al., 2019; Tan & Bansal, 2019; G. Li, Duan, Fang, Gong, & Jiang, 2020),

but were subsequently outperformed by a method that used convolutional grid features

(Huang, Zeng, Liu, Fu, & Fu, 2020), although posterior works with an object detector

surpassed the grid-based approach, but with larger datasets and models (X. Li et al., 2020;

Gan et al., 2020; F. Yu et al., 2020; Zhang et al., 2021). We see that the trend of preferring

more flexible architectures is also seen for the VQA task, which is why in our experiments

we worked with a less structured model and took a data-centric approach.
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Figure 3.3. Shortcut learning examples. “Deep neural networks often
solve problems by taking shortcuts instead of learning the intended solu-
tion, leading to a lack of generalization and unintuitive failures” (Geirhos
et al., 2020).

3.1.2. Shortcut learning

Overfitting is a common problem in neural networks, because of their extreme mem-

orization capacity, they can achieve almost perfect performance on the training set, but

poor or considerably lower generalization performance. Geirhos et al. (2020) describe an-

other problem these systems have also related to memorization, which they call shortcut

learning and define as “[...] decision rules that perform well on standard benchmarks

but fail to transfer to more challenging testing conditions, such as real-world scenarios”,

rephrasing, neural networks learn rules, shortcuts, that allow them to perform well on test

sets taken from the same distribution as the training examples, but fail to generalize to

out-of-distribution test sets, on which these rules do not hold, some examples shown in

figure 3.3. There are some proposals that aim to improve out-of-distribution generaliza-

tion (Arjovsky, Bottou, Gulrajani, & Lopez-Paz, 2019), but they have failed to outperform

the empirical risk minimization baseline (Gulrajani & Lopez-Paz, 2021), which is fitting

a model to the available training data. We consider that more flexible neural networks are

more susceptible to this problem, compared to architectures with strong inductive biases,

because they are more prone to learn the non-predictive biases of the data, and observed

in our experiments that the model learned shortcuts in the VQA task, which caused it to
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fail when modifying the data distribution. We show how a data-centric approach, in this

case simply using data augmentation, helped to mitigate this problem.

3.1.3. Convolutional neural networks are not translation equivariant

Even though the convolution is a translation equivariant function and we consider this

inductive bias fundamental in some of deep learning’s achievements, the powerfulness of

neural networks is such that they learn to encode the absolute position of the image, the

current evidence points out that this occurs due to implicit data leakage from the zero-

padding (Islam, Jia, & Bruce, 2019; Kayhan & Gemert, 2020), widely used to retain

spatial dimensions and prevent information loss. One may consider the absolute position

as useful information, but it may be exploited as shortcuts learned by the network, as

reported by (Alsallakh, Kokhlikyan, Miglani, Yuan, & Reblitz-Richardson, 2021).
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3.2. Theoretical Framework

3.2.1. Compositional Attention Networks

In this work, we used the Compositional Attention Network framework (Hudson &

Manning, 2018), or MAC (short for Memory, Attention and Composition), designed to

facilitate reasoning by decomposing the problem into a series of steps, which are directly

inferred from the data in an end-to-end approach, and executed by a recurrent neural net-

work. This can be considered as an inbetween of the program-based and non-program-

based methods mentioned in section 3.1.1, where the set of possible operations is inferred

from the data instead of being predefined. We chose this method because is one of the best

performing non-program-based alternatives on the synthetic CLEVR dataset (Johnson,

Hariharan, van der Maaten, et al., 2017), is a more simple and general purpose architec-

ture, and it is computationally cheap and fast to train.

Algorithm 1: MAC framework algorithm
Variables in bold are vectors and the rest are scalars
Require: I: image
Require: q1 . . . qs: tokenized question
Output : y: prediction

1 k1,1 . . .kH,W ← ImageEncoder(I)
2 q, cw1 . . . cws ← QuestionEncoder(q1 . . . qs)
3 c0 ← InitializeControl()
4 m0 ← InitializeMemory()
5 for i = 1, 2, . . . , k do
6 cvi,1 . . . cvi,s ← QuestionAttentionScoresi(ci−1, q, cw1 . . . cws)

7 ci ←
s∑
j=1

cvi,j · cwj

8 rvi,1,1 . . . rvi,H,W ← ImageAttentionScores(k1,1 . . .kH,W , mi−1, ci)

9 ri ←
H,W∑

h,w=1,1

rvi,h,w · kh,w

10 mi ←WriteMemory(ri, m0 . . .mi−1, c0 . . . ci)

11 y ← Answer(q, mk)
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A high-level overview of the MAC framework is presented in algorithm 1. The im-

age is encoded using the pretrained convolutional neural network ResNet101 (He, Zhang,

Ren, & Sun, 2016), with its weights frozen, and two additional trainable convolutional

layers, which generates a feature map kh,w ∈ RH×W×D, where H,W are the spatial di-

mensions andD the features’ dimensionality. The question is encoded with a bidirectional

long-short term memory network (Graves & Schmidhuber, 2005), that generates a ques-

tion embedding q and a per-word context word cwj , which are the hidden states of the

words. The network uses a control ci and memory mi vectors, both initialized with ze-

roes. Then it performs k fixed reasoning steps, on each step it generates scalar attention

scores cvi,j over the context words, which are used for a weighted sum over them to gen-

erate the control vector for the i-th step ci, that intuitively represents the operation the

network performs. Likewise, scalar attention scores are obtained for the image regions

rvi,h,w, where the positions with a higher affinity with the control have a higher value,

and are used for a weighted sum to generate the read vector ri. At the end of every iter-

ation, a vector mi is stored as memory. Finally, the model outputs a classification over

the set of possible answers. All the functions used in the algorithm, ImageEncoder, Ques-

tionEncoder, QuestionAttentionScoresi, ImageAttentionScores, and Answer, are neural

operations learned end-to-end on the VQA task.

The attention scores for the context words cvi,j and the image feature map rvi,h,w are

probability distributions, non-negative and sum 1, and can be used as a proxy to interpret

the operation the model is performing on each step, we show an example of this in figure

3.4.
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Figure 3.4. Example of the MAC framework with k = 12 steps. The table
on the left shows the attention scores over each context word for each step.
On the center is the attention the network applies on the image for each
step, with clearer spots meaning that the score is higher. The step number
is indicated on magenta at the top left corner of each image, and the last
image of the grid shows the answer given by the model and the correct
answer in brackets. On the right is the image in a larger size for ease of
visualization. We can see that at steps 4 through 6 the attention score on
the words green and rubber is high, which translates to the model fixating
on an object with these attributes on the images at those steps.
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3.3. Dataset

Figure 3.5. Examples of an image and questions of the CLEVR dataset
(Johnson, Hariharan, van der Maaten, et al., 2017).

We used the CLEVR dataset (Johnson, Hariharan, van der Maaten, et al., 2017), that

consists of synthetically generated images and questions designed to measure visual rea-

soning, an example shown in figure 3.5. Because it is synthetic, we have control over its

settings, which allowed us to modify it. The CLEVR images are simple scenes that con-

tain between 3 and 10 objects. Each object has a shape, cube, sphere or cylinder, a color,

gray, red, blue, green, brown, purple, cyan or yellow, a size, big or small, and a material,

rubber of metal. Questions are generated algorithmically based on the image contents by

selecting and composing from a set of 26 pre-defined operations, such as count, compare

color, find intersection, relate spatially, and others. The number of operations used to gen-

erate each question varies between 2 and 16, and is a measure of the number of reasoning

steps or complexity of the question. The possible answers are yes, no, an attribute of the

object, or a number between 3 and 10. The dataset contains 70.000 training images and

699.989 questions, with close to 10 questions per image, and a validation set of 15.000

images with 149.991 questions.
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Figure 3.6. Depiction of the preliminary experiment. We used the image
encoder to extract the convolutional features of each image, and, with them,
trained a multinomial regression that had to predict to which position each
vector corresponded to, like reordering the pieces of a puzzle, but each
piece is only seen individually.

3.4. Preliminary Experiments

This work was motivated by a preliminary analysis of the MAC network. We saw that

the attention it applied to the image tended to focus on the borders and corners of it, as

can be seen in figure 3.4. What stood out most about this was that to reliably find these

regions, the absolute spatial position of each region must be encoded in the representa-

tions generated by the convolutional network, a translation equivariant operation. To test

this hypothesis we extracted the convolutional features of each image, since the spatial

resolution of the grid features is of 14x14, from each image we obtained 196 vectors. We

then trained a multinomial regression that received as input an individual vector and had

to predict the position it corresponded to, a 196-way classification. This can be seen as

reordering the pieces of a puzzle, but each piece is seen only individually, as depicted in

figure 3.6. We used the first 1000 images of the CLEVR train dataset to fit our model

and evaluated on the following 200. The trained regressor had an accuracy of 99.34%,

which validated that convolutional networks learn to encode the spatial position. In retro-

spect, this is an expected behavior, because it can help on the task the model was trained

for, such as image classification. During the time this work was done, several concurrent

works were published which reported this phenomenon and inquired deeper into it (Islam

et al., 2019; Kayhan & Gemert, 2020; Alsallakh et al., 2021).
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3.5. Modified CLEVR

We investigated if the tendency the model had to focus on the borders could have a

detrimental effect. We conjectured that it arised because on the CLEVR dataset the objects

always appear at the center of the image. For this reason we took advantage of the fact that

it is a synthetic dataset and built a modified version of it, for which we tried to distribute

the objects uniformly across the whole image. We present the pixel occupancy of both

datasets in figure 3.7, we see that, although there is still a small frame of low occupancy

on the edges of the modified dataset, the objects are much more distributed. The modified

dataset has the same number of images and questions as the original CLEVR, both for

training a validation.

(a) Distribution of objects in the original
CLEVR dataset.

(b) Distribution of objects in the modified
CLEVR dataset.

Figure 3.7. Color intensity shows how frequently each pixel was occupied
by an object, darker color means less frequent. Objects in the original
CLEVR are placed in a diamond shape at the center of the scene, leaving
the corners unused, while the placement is much more distributed on the
modified dataset.

3.6. Experiments

Our goal was to determine if the bias of focusing on the edges could have a nega-

tive impact on the model’s generalization capacity. For this reason, we trained the MAC

DocuSign Envelope ID: 5851109C-FD86-48E0-9FCF-C5CBDE96CE3A



17

network on the original CLEVR dataset and evaluated it on the modified dataset. We

compared its performance with a model trained directly on the modified CLEVR. Since

we saw that the model trained on the original dataset had problems to generalize to the

modified dataset, and motivated by the benefits data augmentation has shown, mentioned

in section 2.1, we took the approach of incorporating this technique, instead of modifying

the architecture of the model, as an additional comparison.

3.6.1. Evaluation

We used the question accuracy, the percentage of questions for which the model pre-

dicted the correct answer, as performance metric.

3.6.2. Setup

3.6.2.1. Neural network architecture

We used the MAC network with k = 12 reasoning steps, that performed the best on

its original work. As visual backbone we used a pretrained ResNet101 (He et al., 2016),

without modifying its weights while training.

3.6.2.2. Data processing

The original images have size 480×320, and are resized to 224×224 pixels before

feeding them into the ResNet. When data augmentation was used, it consisted in a ran-

dom perspective transformation applied before resizing. Examples of the effect of this

transformation are shown in figure 3.8, as it can be seen, in some cases the objects are

cut off from the original image, which can result in an unanswerable question. We ob-

served that this caused noise during training but the model still had a good evaluation

performance.
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Figure 3.8. Examples of the perspective transformation. The first is the
original image.

3.6.2.3. Optimization setup

We used the same optimizer and hyperparameters as in the original MAC work, i.e.,

Adam optimizer (Kingma & Ba, 2014) with learning rate 1e−4. We trained the models

without augmentation for 25 epochs and for 50 epochs when augmentation was included,

because, as mentioned, it caused a slight instability while training. Each experiment was

trained with 3 random seeds.

3.6.2.4. Implementation

We used a Pytorch (Paszke et al., 2019) implementation of the MAC network1.

1https://github.com/tohinz/pytorch-mac-network
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3.7. Results

On table 3.1 we present the accuracy on the original and modified datasets for our

experiments, each ran with three random seeds. We see that the model trained on the

original CLEVR had an accuracy of 98.40% on that dataset, but decreased to 84.89%

on the modified dataset. The inclusion of data augmentation caused a small decrease

of performance on the original dataset, but a big improvement on the modified dataset,

with an absolute increase of 5.58% in accuracy. Despite the fact that the accuracy of the

model trained with data augmentation is low compared to training directly on the modified

dataset, it still is a big reduction of the gap.

Table 3.1. Accuracy on the original and modified datasets. Intervals show
the 95% confidence interval.

Training dataset Accuracy on original CLEVR Accuracy on modified CLEVR

Original CLEVR 98.40±0.27 84.89±1.69

Modified
CLEVR

96.89±0.32 97.10±0.41

Original CLEVR
with

augmentation
98.05±0.17 90.47±0.64

3.8. Analysis

We inspected the behavior and problems the model trained without data augmentation

had and compared them with the model trained with data augmentation to find the situa-

tions in which data augmentation helped. In total, there were 5790 questions which the

three seeds of the model without data augmentation got wrong and all seeds of the model

with data augmentation got right, but also 1280 questions in the opposite way, that the

three seeds of the model trained with data augmentation got wrong, but all seeds of the
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model without data augmentation got right. One problem we managed to identify was

that without data augmentation, the model learned a simple rule for the size of the objects

based on the number of pixels it occupied on the image, but did not learn the correct notion

of perspective, so it thinks that big objects on the back of the scene are small, and also,

big objects at the front located at the edges of the image were often considered as small,

because they were partially visible, as can be seen in figure 3.9.

(a) Model trained without data augmentation
considers large objects located at the back as

small.

(b) Model trained with data augmentation
correctly predicts the size of a large object

located at the back.

(c) Model trained without data augmentation
considers large objects located at the edges as

small.

(d) Model trained with data augmentation
correctly predicts the size of a large object

located at the edge.

Figure 3.9. Size problems of the model trained without data augmenta-
tion. The left side contains the predictions of the model trained without
data augmentation and the right side of the model with data augmentation.
Each image has the question as title and the answer given by the model in
magenta. These images were generated manually apart from the dataset.
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We identified two additional problems related to the objects being located farther away,

specifically, the model without data augmentation frequently got wrong the material or the

shape of the objects, as we show in figure 3.10. We remark that we did not perform an

exhaustive search for all possible problems.

(a) Model trained without data augmentation
confuses the material of an object located at

the back.

(b) Model trained with data augmentation
correctly predicts the material of an object

located at the back.

(c) Model trained without data augmentation
confuses the shape of an object located at the

back.

(d) Model trained with data augmentation
correctly predicts the shape of an object located

at the back.

Figure 3.10. Material and shape problems of the model trained without
data augmentation. The left side contains the predictions of the model
trained without data augmentation and the right side of the model with data
augmentation. Each image has the question as title and the answer given
by the model in magenta. The errors occur when objects are farther away
and may be hard to distinguish even to the human eye. These images were
generated manually apart from the dataset.
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To have a better quantification of the impact of the objects’ positions and data augmen-

tation have, we divided the images of the modified CLEVR in regions of 20×20 pixels,

and, for each region we computed the accuracy the model had on the questions that to

be answered required to reason about an object located in that region, we explain below

how we made this division. We present this analysis in figure 3.11. We see that the model

trained on the original dataset shows a clear deficiency when it has to reason about ob-

jects located in the back, and also on the lateral and front edges to a lower degree. The

model trained with data augmentation has a much better performance over all regions and

the impact of having to reason about objects in the back of the scene appears to be much

lower.

(a) Model trained on the
original CLEVR

(b) Model trained on the
original CLEVR with data

augmentation

(c) Model trained on the modified
CLEVR

Figure 3.11. Image divided in regions of 20×20 pixels and accuracy of
the model on the questions that to be answered require to reason about an
object located in that region. The model trained on the original dataset
shows clear problems when it needs to reason about objects away from the
center.

Regarding our initial goal of investigating if the tendency the model had of focusing on

the edges had an unwanted effect, our hypothesis was that when evaluated in the modified

CLEVR, a model trained on the original CLEVR would focus on the borders where objects

are now present, and read incorrect information. Based on the observed behavior, we

divided the situations in which the model focused on the edges into two. First, when it

was searching for the presence of an object with a certain description, but there was not

any object that satisfied it on the scene. Secondly, the cases in which no clear instructed
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could be interpreted from the context words attention, we think that this may effectively be

a skip or do nothing instruction, because the model performs a fixed amount of reasoning

steps (12 in our case), but some questions are much simpler and do not require so many

steps. As a side note, methods that aim to directly avoid performing skip steps (Graves,

2016; Eyzaguirre & Soto, 2020) are important to this specific problem, but, as mentioned,

in this work we focused on the effect of data augmentation.

We quantitatively analyzed if the tendency of focusing on the borders had an impact by

separating the question-image pairs of the modified CLEVR into three splits, (i) the ones

where the image does not contain any object in the bordering 60 pixels, (ii) the ones where

the image contains objects in the bordering 60 pixels, but the question does not require to

reason about them, and (iii) the ones where the question requires to reason about an object

located in the bordering 60 pixels. To determine if a question required to reason about

an object located in the borders, we used the available information for each scene and the

operations to generate each question, specifically, each operation returns a set of objects,

for example, the operation filter color receives as input a set of objects and a color, and

returns as output all objects of the input set that are of the requested color. We considered

that a question required to reason about an object if it was present in any of the outputs of

the operations used to create the question. We present the results of this analysis on table

3.2.

First, we noted that for case (i) the accuracy of the model without data augmentation is

of 98.69%, and of 98.62% when including data augmentation, showing that, as expected,

the problems occur when objects are located at the borders. For case (ii), the accuracy

without data augmentation is of 96.93% and of 97.78% with data augmentation, we would

have expected a bigger difference if our hypothesized problem had occurred constantly,

for this reason, we delved into this and comment about our findings in the following para-

graph. Finally, for case (iii) the model trained without data augmentation had an accuracy

of 84.17% and using data augmentation increased it to 90.03%, which provides evidence

of the benefits of data augmentation.
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Table 3.2. Accuracy on the modified CLEVR question-pairs split based
on the presence of objects in the bordering 60 pixels and if the questions
requires to reason about them. In parenthesis the number of questions and
the intervals show the 95% confidence interval.

Trained on

(i) Accuracy on
questions that do
not have objects
in the bordering
60 pixels (2.420)

(ii) Accuracy on
questions that
have objects in

the bordering 60
pixels, but do not
require to reason

about them
(5.740)

(iii) Accuracy on
questions that

require to reason
about an object in
the bordering 60
pixels (141.840)

Original CLEVR 98.69±0.42 96.93±1.01 84.17±2.28

Modified
CLEVR

99.34±0.79 99.28±0.03 96.97±0.54

Original CLEVR
with

augmentation
98.62±0.88 97.78±0.45 90.03±0.85

As mentioned, we delved into the questions of case (ii). From the 5740 questions

that had objects in the bordering 60 pixels but did not require to reason about them, we

extracted the questions that the three seeds of the model trained without data augmenta-

tion got wrong, and the three seeds of the model with data augmentation got right, which

amounted to 44 questions. We found that almost all errors were due to the fact that accord-

ing to the criteria we used to divide the dataset, the question did not require to reason about

an object in that location, but if the model got an attribute of an object wrong, it could have

used that object in its reasoning. We show an example of this for the model trained with-

out data augmentation in figure 3.12. Most importantly, from our inspection none of the
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errors were caused by the model reading incorrect information from the borders, which

disproves our inquired hypothesis.

Figure 3.12. Example of a question that according to the criteria we used
should not require to reason about an object in the bordering 60 pixels,
answered by model trained without data augmentation. Because the model
thought the cyan block was metallic it answered incorrectly.

Finally, from the questions of case (ii), there were 22 such that the three seeds of

the model trained with data augmentation got wrong and the model trained without data

augmentation got right. We observed that in some cases, the model trained with data

augmentation also confused the material of objects located at the back, which caused it to

answer incorrectly. There were some other issues related to perspective, for example, the

model did not consider an object left from another, but from the scene information it was,

possibly caused by the transformation we used.
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4. CATASTROPHIC FORGETTING

In this chapter, we begin by giving a brief overview of the solutions to tackle the

catastrophic forgetting problem and research on meta-learning that motivated the present

work. We then present the theoretical framework of the performed experiments. Finally,

we describe our experiments and present our results and analysis.

4.1. Related work

4.1.1. Continual Learning and the Catastrophic Forgetting Problem

On one side, neural networks are trained through mini-batch stochastic gradient de-

scent, in which we repeatedly sample a small subset (batch) of the training data and min-

imize its loss function, on the other side, humans learn sequentially, once we are taught

to differentiate between cats and dogs, no further retraining is required. We would want

a neural network to behave just as humans do and be able to learn continually, without

constantly revisiting information, but McCloskey and Cohen (1989) found that “training

on a new set of items may drastically disrupt performance on previously learned items”,

and coined this as the catastrophic forgetting problem.

The solutions proposed to tackle the catastrophic forgetting problem can be divided

into three categories. First, the replay-based methods that store samples of the data stream,

and, when new information arrives, they interleave the new data with the stored data, and

add some of the new samples to the stored data for later use (Aljundi, Lin, Goujaud,

& Bengio, 2019; Chaudhry, Marc’Aurelio, Rohrbach, & Elhoseiny, 2019; Lopez-Paz &

Ranzato, 2017; Rebuffi, Kolesnikov, Sperl, & Lampert, 2017; Riemer et al., 2018). Due

to possible constraints in storing information, some variants simultaneously train a gen-

erative network that is used to produce synthetic versions of the older information for in-

terleaving, effectively using the weights of the generator network as a data storage (Shin,

Lee, Kim, & Kim, 2017). It is also possible to store the intermediate representations of

the network instead of the raw data, which showed an improved efficiency (van de Ven,
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Siegelmann, & Tolias, 2020). The use of a data storage is also commonly used in rein-

forcement learning, where agents act sequentially in an environment, making it prone to

suffer from catastrophic forgetting, and using old stored data has a substantial importance

to the performance of some algorithms (Lin, 1993; Wawrzyński, 2009; Mnih et al., 2013).

A second class of proposals try to prevent the network from forgetting the relevant

information for older data by reducing the plasticity of the weights relevant for those tasks

(Zenke, Poole, & Ganguli, 2017; Kirkpatrick et al., 2017; Hurtado, Lobel, & Soto, 2021).

In some cases, this requires computing the weight’s importance for the task and adding

a regularization term while learning new data that penalizes the changes to the important

weights.

The third category of methods rely on learning representations that are not as vulnera-

ble to catastrophic forgetting, and are mainly focused on the evidence that sparse represen-

tations are better suited for continual learning (French, 1991; X. Liu et al., 2018; Masse,

Grant, & Freedman, 2018; V. Liu, Kumaraswamy, Le, & White, 2019). Another approach

tries to skip the manual specification of some desired properties for the representations,

and leverages meta-learning to directly optimize for the task of continual learning (Javed

& White, 2019). A follow up work incorporated a neuromodulatory network, a parallel

branch of the neural network, that acts as a gating mechanism to turn off neurons of the

main branch and easily generate sparsity (Beaulieu et al., 2020).

4.1.2. Meta-learning, few-shot learning, and Model-Agnostic Meta-learning

Meta-learning is a subfield of machine learning where the objective is to learn how to

learn (Schmidhuber, 1987), it includes the few-shot learning problem, in which a model

has to learn new tasks (or classes) with a small number of training (support) examples, this

problem can be thought of as a mitigation to the massive data requirements deep learning

commonly has. Among the meta-learning methods, the most relevant to this work is the

Model-Agnostic Meta-learning (MAML) (Finn, Abbeel, & Levine, 2017), that poses the

training procedure as a bi-level optimization, composed of an inner and outer loop. In
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the inner loop it is emulated that the model is learning one or more tasks (each with a

small number of examples) using gradient descent, and, in the outer loop, a loss function

measures how well the model learned the tasks. The gradients of this outer loss function

are backpropagated through the inner optimization to modify the parameters of the model

before beginning the inner loop. This can be interpreted as finding an initialization from

which new tasks can be learned rapidly.

In the original MAML setting, the weights of all layers are modified in the inner loop,

but Raghu, Raghu, Bengio, and Vinyals (2019) showed that modifying only the classifica-

tion layer can reach a similar performance. Furthermore, even when the weights of all the

layers are modified, the ones of the nonclassification layers remain very similar to their

values before the inner loop. These findings suggest that MAML is approximately learning

a fixed feature extractor. Related to this, Tian et al. (2020) showed that using the represen-

tations of a neural network trained through traditional supervised learning with a multino-

mial regression can perform similarly or surpass the performance of models trained with

meta-learning methods, specifically designed for the few-shot learning task, which further

gives hints on how powerful simple deep learning can be. Our work is strongly related to

Tian et al. (2020), since we investigated if the representations of a network trained through

traditional supervised learning can perform on par with the representations of a network

trained with a meta-learning method for catastrophic forgetting.
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4.2. Theoretical Framework

4.2.1. Traditional Supervised Learning

In the most common deep learning for supervised learning scenario, which we will

refer to as traditional supervised learning (TSL), we have a dataset of training examples

Dtrain = {(xt, yt)}Tt=1, and the goal is to learn a function fθ that for every input xt pro-

duces as output the corresponding label yt of the dataset. This function, and specifically

its parameters θ, is learned through mini-batch gradient descent, were θ are iteratively

modified in the direction that minimizes the loss function L of a sampled subset of Dtrain,

this subset is called batch and has size B. This is expressed in the equation 4.1.

θ = argmin
θ

E
{(x1,y1)...(xB ,yB)} iid∼ Dtrain

[
1

B

B∑
i=1

L(fθ(xi), yi)

]
(4.1)

4.2.2. The Continual Learning Problem Formulation

A continual learning problem (CLP) consists of an unending stream of samples, or

trajectory T , where,

T = (x1, y1), (x2, y2), . . . , (xt, yt), . . . (4.2)

and a model f that has to learn from this stream of data. The state of the model at time

t is denoted as st and a learning algorithm A is used to update it, st = A(st−1,xt, yt),

the model uses its state to generate a prediction ŷ = f(s,x). The goal of the continual

learning problem is to find a model such that after updating its state with the t-th datapoint,

it maintains a high performance on all previously seen datapoints {(xi, yi)}i≤t. If we

denote p(T ) as the trajectories’ distribution and L as the loss of a single datapoint, the

loss function for the continual learning problem is expressed in the following equation 4.3

(we omit possible normalization factors).
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LCLP = E
(x1,y1), ... ,(xj ,yj), ...= T ∼ p(T )

[∑
t≥1

t∑
i=1

L(f(st,xi), yi)

]
(4.3)

4.2.3. Online-aware Meta-learning

Hand-designed solutions have dominated the approaches to tackle the catastrophic for-

getting problem, because the loss presented in equation 4.3 can be infeasible to optimize

directly, due to the fact that the trajectories are expected to contain hundreds or thousands

of samples, which would need big computational requirements to store the computation

graph of all state updates for backpropagation, and, a phenomenon like vanishing or ex-

ploding gradients could be expected from all these passes through the network.

Javed and White (2019) proposed to use an approximation of the CLP loss, and, instead

of hand-designing a new mechanism, they adapted the MAML framework to directly op-

timize for continual learning, which they called Online-aware Meta-learning (OML). The

method divides the trajectory in sub-trajectories referred to as tasks τj , for example, the

trajectory could contain images of digits between 0 and 9, with 10 images per digit, and

each task contains the 10 images of a single digit. It also assumes that the model has a set

of known tasks Tknown that it can perform properly, and train in the MAML inner-outer

loop fashion. In the inner loop, the model has to sequentially learn n ≥ 1 new tasks,

Tnew, with multiple samples per task, for simplicity we will assume that each task has k

samples. To learn these tasks, the model sequentially performs a gradient descent step on

each sample separately to update its parameters, which translates in n× k gradient steps.

After the inner loop, on the outer loop, it is measured that the model learned to perform the

tasks it just saw, Tnew, and also that it remembers how to perform the tasks it knew before,

Tknown, i.e, that it learned sequentially and did not forget. The gradients of the parameters

before the inner loop with respect to this loss function are computed by backpropagating

through the inner optimization and used to update them, which can be interpreted as find-

ing a network that retains the information it has, even after updating its parameters on new
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tasks. This formulation avoids the potential thousands of updates of the full trajectory, and

instead performs n× k updates, which can be a few tens.

Figure 4.1. An example of the architecture proposed by Javed and White
(2019). During the inner loop only the parameters of the prediction learn-
ing network (PLN) are updated by taking a gradient step with respect to
each individual sample of the subtrajectory. In the outer loop both the rep-
resentation learning network and PLN parameters are updated by taking a
gradient step with respect to the approximate CLP loss. Figure taken from
Javed and White (2019).

The bi-level optimization is repeated, sampling different inner and outer tasks each

time, until convergence, when the model should be able to continually learning. Some

additional considerations, to simulate that the model does not know how to perform the

tasks to be seen in the inner loop, the parameters of the classification layer corresponding

to those tasks are reinitialized (without this the model would simply memorize all new

tasks, since there is a limited amount of data available). Additionally, the model has two

sets of parameters, the meta parameters that belong to a representation learning network

(RLN), and the adaptation parameters of a prediction learning network (PLN). The RLN

acts as a fixed feature extractor during the inner loop and its parameters are only modified

in the outer loop. The adaptation parameters of the PLN are modified both during the inner

and outer loops. A schematic of this architecture is shown in figure 4.1.
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Using the CLP notation, the model f is a neural network, the state is composed of the

RLN parameters θ and the PLN parameters φ, and the learning algorithm isA is presented

in the following equation 4.4,

A((θ, φ),x, y) = (θ, φ− α∇φL(f(θ, φ, x), y)) (4.4)

where α is the inner learning rate hyperparameter. The complete OML training proce-

dure is summarized in algorithm 2.

Algorithm 2: Online-aware Meta-Learning training procedure
Require: p(Xknown): distribution of samples of known tasks
Require: p(Tnew): distribution over new tasks
Require: α, β: inner and outer step size hyperparameters
Output : RLN and PLN parameters (θ, φ)

1 Randomly initialize RLN θ and PLN φ parameters
2 while not done do
3 Sample new tasks τ1 . . . τn ∼ p(Tnew) without repetition
4 for i = 1, 2, . . . , n do
5 φ← Reinitialize classification weights for task τi on φ

// The i-th column of the weights

6 φ′ ← φ

7 (Xnew outer,Ynew outer)← {}, {}
8 for i = 1, 2, . . . , n do
9 (Xnew inner,Ynew inner)← Sample (x1, y1) . . . (xk, yk) from τi

10 for (xj, yj) ∈ (Xnew inner,Ynew inner) do
11 φ′ ← φ′ − α∇φ′L(f(θ, φ′,xj), yj) // Apply the learning

algorithm

12 Sample and add (x1, y1) . . . (xq, yq) from τi to Xnew outer and Ynew outer

13 (Xknown,Yknown)← Sample (x1, y1) . . . (xc, yc) from p(Xknown)

14 (θ, φ)← (θ, φ)− β∇θ,φ L(f(θ, φ′,Xnew ∪Xknown),Ynew ∪Yknown)
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4.2.4. A Neuromodulated Meta-learning

Beaulieu et al. (2020) built on the evidence that suggested that gating or inhibition

mechanisms helped to mitigate catastrophic forgetting, and complemented the OML method

with a two-branched neural network that they called A Neuromodulated Meta-learning Al-

gorithm (ANML). This architecture is composed of a neuromodulatory network (NM) and

a prediction network (PN), as seen in figure 4.2. A sigmoid activation function is applied

to the output of the NM to obtain values between 0 and 1, and this result is used in an ele-

mentwise multiplication with the output of the PN, to selectively turn off some activations

of the PN and generate sparsity.

Figure 4.2. The ANML network proposed in Beaulieu et al. (2020). The
neuromodulatory network (NM) is used to inhibit the activations of the
prediction network (PN). During training, only the parameters of the pre-
diction network are modified in the inner loop and the parameters of both
networks are modified in the outer loop. Figure taken from Beaulieu et al.
(2020).

Under the CLP notation, there are two neural network functions, h for the PN with

parameters θP and g for the NM with parameters θNM , the state is s = (θNM , θP ), and θP

is also subdivided in the parameters of the body of the PN and the classification parame-

ters θP = (θPbody,W ). The function that defines the ANML network is f(θNM , θP ,x) =
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W (σ(g(θNM ,x)) · h(θPbody,x)), where σ is the sigmoid activation function, · is an ele-

mentwise multiplication and W is multiplied as a matrix product (we omit the bias in the

classification layer for simplicity). This network is trained using the OML training pro-

cedure, and only the parameters of the PN are modified during the inner loop and both

during the outer loop, the learning algorithmA is expressed in the following equation 4.5.

A((θNM , θP ),x, y) = (θNM , θP − α∇θPL(f(θNM , θP , x), y)) (4.5)
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4.3. Experiments

Our goal was to determine if the representations of a model trained through TSL can be

used for continual learning, as Tian et al. (2020) showed for the image few-shot learning

case. For this reason we replicated their setting, pretrain a neural network (on the meta-

training set, which we will describe bellow) and freeze all but the classification layer

during evaluation. We compared against the OML method, because it is the most promi-

nent approach that focuses on learning representations before continual learning evalua-

tion, most of the other approaches learn the representations online, during evaluation. As

mentioned, on the OML framework, before each training inner loop, the weights of the

classification layer for the tasks to be learned are randomly reinitialized, we found that

reinitializing them with zeroes provided a small improvement, and included this variant in

the comparison and denoted it with zero-init. We also investigated if the architecture had

an impact, for this reason we performed experiments with both a standard single-branch

convolutional neural network (the network in the original OML work), as showed in figure

4.1, and a neuromodulated network (the ANML network) depicted in figure 4.2.

Motivated by the importance data augmentation has in computer vision, presented in

section 2.1, we also conducted experiments that incorporated data augmentation, to see if

it had an impact on the continual learning problem.

4.3.1. Dataset

We used the Omniglot dataset (Lake, Salakhutdinov, & Tenenbaum, 2015), composed

of images of characters from 50 different alphabets, each alphabet containing several

classes, totaling 964 classses for training and 659 for testing, and each class has 20 dat-

apoints. For hyperparameters search, we split the training set and used the first 664 for

training and the remaining 300 for validation. For testing, we used the models trained on

all 964 training classes with the setup determined during validation. To prevent confusion,

in the meta-learning field the training set is often referred to as meta-training set and the
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testing set as meta-testing set. Examples of some Omniglot characters are shown in figure

4.3.

Figure 4.3. Characters of the Omniglot dataset from 8 different alphabets.

4.3.2. Evaluation

We used the same evaluation protocol as in Javed and White (2019), and, Beaulieu et

al. (2020), a trajectory of t ∈ {10, 50, 75, 100, 200, 300, 400, 600} classes is sampled from

the test split, and for each class 15 datapoints are sampled. The classification layer of the

trained models is updated sequentially, one sample at a time, with gradient descent. On

the shortest trajectory, 150 gradient updates are performed, and 9000 on the longest. This

process is called meta-test training.

After meta-test training, the accuracy of the resulting model is evaluated on all the

datapoints of the sampled trajectory. This is called meta-test training accuracy, it measures

raw sequential memorization of the seen datapoints. Finally, for each task in the trajectory

we evaluate the accuracy of the model on the remaining 5 datapoints that were not in the

meta-test training trajectory. This aims to measure the capacity of the model to generalize

to unseen datapoints while learning sequentially. This is referred to as the meta-test testing

accuracy. For each trajectory length t we repeat this process 50 times, with different tasks

and meta-test training and meta-test testing datapoints each time.

We also observed that shuffling and interleaving classes of different alphabets during

testing had an impact. For example, if in a sampled trajectory there were two alphabets,
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each with two classes, without shuffling, the model would see the two characters of the

first alphabet and then the characters of the second alphabet, when shuffling, this order is

no longer necessarily maintained. We report the results for both shuffled and unshuffled

classes.

4.3.3. Setup

4.3.3.1. Neural network architectures

For the single-branch network, we used a network with 6 convolutional layers with

ReLU activation function, and a final linear classification layer. For the neuromodulated

network, both the neuromodulatory branch and the prediction branch had 3 convolutional

layers, each convolution followed by an instance normalization (Ulyanov, Vedaldi, &

Lempitsky, 2016) and a ReLU activation. The neuromodulatory branch has a linear layer

with sigmoid activation function at the end and the prediction network has a linear classi-

fication layer.

During training with the OML method, for the single-branch network only the param-

eters of the classification layer are modified during the inner loop. For the neuromodulated

network all the parameters of the prediction network are modified in the inner loop.

During evaluation, for the TSL trained networks, we initialize the classification layer

with zeroes for all weights and biases. For the OML trained models we report the results

of initializing the classification layer randomly or with zeroes. For both methods and both

models, during evaluation only the weights of the classification layer are modified and the

remaining parameters are kept fixed.

4.3.3.2. Data processing

As in the original works, the single-branch network received as input images of 84×84

pixels and for the neuromodulated network the images were downsized to 28×28 pixels.

When data augmentation was used, it consisted of a random crop with zero padding.
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4.3.3.3. Optimization setup

As in Tian et al. (2020), we use SGD optimizer with momentum of 0.9, weight decay

of 5e−4 and mini-batch size 64 to train with the TSL objective. The training schedule

was determined using the validation setup described in section 4.3.1, for the single-branch

architecture we use a learning rate of 0.05 for 600 epochs. We trained the neuromodulated

architecture for 700 epochs with initial learning rate of 0.05 and decay once after 600

epochs with factor 0.1.

We use the configuration of the original works to optimize with the OML method, i.e.,

Adam optimizer (Kingma & Ba, 2014) with learning rates 1e−3 for the neuromodulated

architecture and 1e−4 for the single-branch architecture.

4.3.3.4. Implementation

For comparison, we present the results of the original implementations for the single-

branch1 and neuromodulated2 models trained with the OML objective. We also reimple-

mented them in JAX (Bradbury et al., 2018), and used this framework as well for the TSL

experiments.

1https://github.com/khurramjaved96/mrcl
2https://github.com/uvm-neurobotics-lab/higherANML
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4.4. Results

Figure 4.4. Evaluation performance of the single-branch network training
with the OML or TSL loss. The x axis indicates the number of classes in the
trajectory and the y axis the accuracy on the seen tasks on meta-test train-
ing and meta-test testing. Comparing dotted and solid lines, we see that
shuffling the order of classes had a slight negative impact on performance.
The TSL-trained network without data augmentation had a remarkable ca-
pacity to memorize inputs sequentially, but lacked on generalization. The
inclusion of data augmentation boosted its generalization capacity to per-
form on par to the OML-trained model, sacrificing raw memorization, but
still on level with the meta-trained model. Error bars show the 95% con-
fidence interval for three random seeds, each tested on 50 trajectories for
each trajectory length.

On figure 4.4 we show the results for the single-branch architecture. We see that shuf-

fling the order of the classes had a slight negative impact on performance for all methods,

which suggests that interleaving unrelated classes has a negative effect while learning se-

quentially. Also, we see that initializing the classification weights of the OML-trained

method with zeroes provided an accuracy improvement in all cases.

The model trained with TSL but without data augmentation had a surprising raw mem-

orization capacity and could sequentially memorize 600 tasks (9000 images in total) with

an accuracy of 98%, but lacked generalization with an accuracy around 56%, attributable

to how prone neural networks are to overfitting. On the other hand, the zero-init OML-

trained method without data augmentation had a lower memorization, but still high with
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an accuracy of over 90% on 600 tasks, and had a better generalization performance com-

pared to the TSL-trained model, with over 62% accuracy, which shows that meta-learned

features provide better generalization in this case.

Finally, data augmentation caused a meta-test training accuracy decrease for both

methods, with the TSL-trained method suffering the most, but still performed on par with

the OML-trained method. On the meta-test testing side, we see that both methods bene-

fited from data augmentation, with a bigger boost for the TSL-trained method that reached

an accuracy of ∼74% on the 600 tasks, slightly higher than the ∼72% reached by the

zero-init OML-trained method.

The results for the neuromodulated network are shown in figure 4.5. The first thing to

note is that with this architecture shuffling the order of the classes had a smaller impact,

this may attributable to the use of instance normalization, but we do not further inquire on

this. Like for the single-branch network, zero initialization provided a small improvement.

Figure 4.5. Evaluation performance of the neuromodulated network train-
ing with the OML (ANML) or TSL loss. The x axis indicates the number of
tasks in the trajectory and the y axis the accuracy on the seen tasks on meta-
test training and meta-test testing. Comparing dotted and solid lines, shuf-
fling did not have a big impact on performance. The TSL-trained network
without data augmentation had lower meta-test training performance, but
surpassed the level of the ANML model in meta-test testing. The inclusion
of data augmentation had a noticeably negative impact on the TSL-trained
model, and, although it decreased the meta-test training performance of the
ANML model, it provided a slight improvement on meta-test testing. Error
bars show the 95% confidence interval for three random seeds, each tested
on 50 trajectories for each trajectory length.
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Without data augmentation, the TSL-trained method underperformed the ANML model

on meta-test training accuracy, possibly because the normalization acts as a strong regu-

larization, but still had a good performance with over 90% when learning 600 tasks, while

the zero-init ANML reached ∼95% accuracy. However, on the meta-test testing perfor-

mance, the TSL-trained model had an accuracy of ∼72%, higher than the ∼ 68% of the

meta-trained model.

Regarding data augmentation, we see that it had a big negative impact on the TSL-

trained model, both during meta-test training and testing, we think this may be because

this shallow network with the TSL loss was unable to tolerate the increased complexity of

characters moving around. On the other hand, for the ANML model, data augmentation

caused a small decrease in meta-test training and small increment in meta-test testing.

Finally, despite the fact that the TSL-trained model reached a performance on par with

the ANML model on long trajectories with over 300 classes, it was noticeably worse on

short trajectories, of 100 classes or less, on the analysis we observed what may cause this.
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4.5. Analysis

4.5.1. Learned representations

Our results showed that TSL can suffise to learn representations suitable for continual

learning. Regarding the characteristics of the learned representations, Javed and White

(2019) saw that, on one side, sparsity organically appeared in the representations of the

OML-trained models, meaning that a high percentage of neurons had an activation with

value zero per datapoint, but, on the other side, a small number of the activations were

always zero across the dataset, which can be interpreted as having a high efficiency or

usage of its resources. In this section we compared these representations with the ones of

the TSL-trained models.

4.5.1.1. Single-branch network

In figure 4.6 we show the activations for one random seed of the single-branch archi-

tecture trained either with OML or TSL, for 3 random meta-test instances on the first three

columns, and the mean activation across all test datapoints on the fourth column. The used

samples are included in appendix A.1 and the representations of the other random seeds

in appendix A.2. These representations are the output of the RLN, that has 2304 neurons,

and are reshaped to form an image with 32× 72 pixels, for ease of visualization. The per

sample activations are normalized by the maximum value of that sample. We observed

that the per-instance activation for both training methods appears to be highly sparse, with

no noticeable difference between the methods or the use of data augmentation. Likewise,

no clear difference can be seen across the OML variants on their mean activation, but

the TSL-trained model with data augmentation appears to have a smoother mean activa-

tion, which suggests that it learned to distribute the representations across the available

resources on a higher degree than the other methods.
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Figure 4.6. Representation learning network activations of the single-
branch network. The first three columns show the representations of 3
sampled test instances for different training methods, normalized by the
maximum value of that representation. The fourth column shows the mean
activation across all test datapoints. No noticeable difference is seen be-
tween the per-instance representations based on the training method, but
the TSL-trained model with data augmentation has a visually smoother
mean activation.

4.5.1.2. Neuromodulated network

The representations of a single random seed of the meta-trained neuromodulated archi-

tecture are shown in figure 4.7, the representations of the other random seeds are included

in appendix A.3.1. As reported by Beaulieu et al. (2020), the NM network acts as a mech-

anism to generate sparsity on the representations, which are highly dense before applying

the gating signal, but the modulation turns off most of the activations. In addition, the

mean activation after the gating signal is highly distributed across the available neurons,

reflecting a high resource efficiency.
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Figure 4.7. Activations for the meta-trained neuromodulated network. The
first horizontal block shows the activation for the network trained with ran-
dom reinitialization and without data augmentation, the second block is the
zero-init variant, and the last block shows the zero-init with data augmen-
tation. Each block contains three rows, the first shows the output of the
neuromodulatory branch, the second the output of the prediction network
before the neuromodulatory signal is applied and the third row the result
after applying the modulation. The first three columns show the activations
for random test samples, the last column shows the mean activation across
all test data. We can see that the neuromodulatory signal acts as a strong
mechanism to generate sparsity on the representations, which are highly
dense before it is applied. And, despite the fact that each individual repre-
sentation after modulation is sparse, the average activation is highly dense,
meaning that the network efficiently uses the available resources.
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Figure 4.8. Activations for the TSL-trained neuromodulated network. The
first horizontal block shows the activations for the network trained without
data augmentation, and the second block for the activations when incorpo-
rating data augmentation. Each block contains three rows, the first shows
the output of the neuromodulatory branch, the second the output of the pre-
diction network before the neuromodulatory signal is applied and the third
row the result after applying the modulation. The first three columns show
the activations for random test samples, the last column shows the mean
activation across all test data. We see that the model produced a constant
neuromodulation for all samples, and the output representations are highly
dense.

The representations of a single random seed of the TSL-trained neuromodulated net-

work are shown in figure 4.8, the representations of the other random seeds are included

in appendix A.3.2. Two interesting observations can be made, first, the output of the

NM network is constant and does not change across the input, meaning that the network

did not learn to use it, and probably was closer to a constraint during training. We also

think this may be related to the fact that data augmentation had a negative impact for

this training method and not for the meta-trained variant. Second, in this case the per in-

stance activations do not appear to be as sparse compared to the meta-trained model or the
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single-branch network. We attribute this to two factors, the shallowness of the network

that may not allow sufficient complexity to generate sparsity, unlike the single-branch net-

work case, and the use of instance normalization, because it normalized the activations to

have a mean value of 0 (before the ReLU). We also think that this denser representations

may be the reason this model had a lower performance on short trajectories, sparsity may

be needed to properly learn short trajectories, which is why the meta-trained model was

forced to use the neuromodulatory branch, but the fact that the TSL-trained method had a

better performance when learning 300 or more classes makes us think that sparsity has a

reduced relevance for longer trajectories.

4.5.2. Sparsity and dead neurons

In table 4.1 we show the quantitative measure of sparsity, the average percentage of

neurons with activation < 0.01, relative to the maximum value each neuron has across all

training datapoints, and the percentage of dead neurons, the neurons with activation 0 for

all datapoints. We include the data for the meta-training and meta-testing data splits.

For the single-branch architecture we observe that the OML-trained models have the

highest sparsity, with a mean over 93%. We also see that for the TSL-trained models, data

augmentation causes a ∼2-3% decrease in sparsity. Moreover, for most cases the number

of dead neurons hovers between 1-4%, but surprisingly for the meta-trained model with

data augmentation it is much higher, around 18%.

And, for the neuromodulated architecture, we see that the number of dead neurons is

close to 0% for all cases, we think that this, again, can be related to the use of instance

normalization. Regarding the sparsity, as expected we see a high level of sparsity for the

meta-trained models, with over 94%, but for the TSL-trained models it lies in the ∼32-

34%.
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Table 4.1. Average sparsity and dead neurons with 95% confidence inter-
val. The sparsity measures the percentage of neurons which activations was
< 0.01 relative to the maximum value each neuron had across all training
datapoints, averaged across all datapoints in the corresponding split. The
dead neurons indicates the percentage of neurons with activation 0 across
all datapoints of the corresponding split. Confidence interval is omitted for
values with mean zero.

Data split

Meta-train Meta-test

Architecture Training method Sparsity Dead
neurons Sparsity Dead

neurons

Single-branch

OML 93.18
±1.65

2.92
±1.79

93.28
±1.65

3.63
±1.94

OML zero-init 93.72
±1.31

1.97
±2.59

93.87
±1.29

2.69
±2.90

OML zero-init
with data

augmentation

94.97
±0.98

17.90
±3.83

94.95
±0.98

18.26
±4.05

TSL 92.18
±0.92

1.43
±3.92

91.87
±0.82

1.43
±3.92

TSL with data
augmentation

89.38
±0.22

1.53
±4.62

88.51
±0.19

1.61
±4.92

Neuromodulated

ANML 94.29
±0.19 0 94.45

±0.28 0

ANML zero-init 94.40
±0.45 0 94.55

±0.51 0

ANML zero-init
with data

augmentation

94.75
±0.27 0 94.78

±0.26 0

TSL 32.85
±0.20 0 32.40

±0.20 0

TSL with data
augmentation

35.32
±3.00

1.43
±2.24

35.10
±3.04

1.43
±2.24
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Finally, about our claim that sparsity loses relevance on long trajectories, we don’t ob-

serve correlations to support this. Specifically, the OML-trained single-branch architec-

ture with data augmentation performed better on longer trajectories, but also had a slightly

higher sparsity, compared to training with the same method but without data augmenta-

tion. On the contrary, when training with TSL data augmentation caused a reduction in

sparsity and better performance on long trajectories. For the neuromodulated architecture

we did not observe any clear signals related to this.
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5. CONCLUSIONS

As we introduced in chapter 1 and then expanded on in chapter 2, despite the fact

that inductive biases have been fundamental for deep learning, the current dominating

trend is a data-centric approach in which the biases are directly inferred from the data.

In this thesis, we specifically studied how data augmentation and pretraining could be

leveraged to mitigate some of the problems deep learning has, using standard architectures

and training techniques.

First, we showed that on a synthetic dataset for the visual question answering task, a

simple deep learning model had problems for out-of-domain generalization and learned

shortcuts which caused it to fail when modifying the data distribution, but data augmen-

tation had a big positive impact in reducing some of the problems, which translated in a

better generalization.

Secondly, we explored how important meta-learning is to learn representations for the

catastrophic interference problem. In our experiments we saw that the representations

of a model pretrained through traditional supervised learning can be as effective to learn

continuously, and data augmentation had a big impact on the generalization capacity for a

single-branch neural network. We think that our work opens the possibility of using large-

scale pretraining to have models that are better for continual learning without forgetting,

as was the case for the few-shot learning task.

Finally, we hope that this thesis increases the focus on the existing and upcoming

research that studies data-centric approaches, because we consider that they have a broader

applicability, a longer lasting validity and a more practical impact, than many of the new

architectural designs.
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6. FUTURE WORK

Our work related to shortcut learning was performed on a synthetic dataset, so a future

work would be to evaluate this problem and the impact of data augmentation on a real

world dataset. Additionally, the effect data augmentation has depends on the goal task,

so designing general purpose augmentations can be a very impactful line of work, or the

possibility to automatically select the augmentations that benefit a given task. We also

think that how to properly leverage generative models to increase the available data can be

an important future work.

Regarding the catastrophic forgetting problem, further work with more complex ar-

chitectures and datasets has to be made to validate if our findings hold. We also think

that the online learning algorithm we used for evaluation, which consisted of a single gra-

dient step per datapoint, is not suitable for any neural network architecure, optimizer, or

training method, for this reason we think that an online learning algorithm that can handle

this variation is a necessary next step. With our work, we expected to provide initial evi-

dence that pretraining can be very useful for continual learning, and meta-learning is not

strictly required, for this reason, we think that self-supervised learning can be a relevant

pretraining alternative.

Finally, it is also of importance to study how our findings can be extended in other

research areas such as reinforcement learning, where pretraining with methods like cu-

riosity, that autonomously seek novel states, have also been very important for fast policy

learning, so, naturally, the next step is to study their effect on continual learning.
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A. CONTINUAL LEARNING REPRESENTATIONS

A.1. Omniglot random samples used for visualization

Figure A.1. The three randomly selected samples of the Omniglot dataset
that were used for visualization.
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A.2. Single-branch network representations

Figure A.2. The representations of the trained single-branch network for
the second random seed.

Figure A.3. The representations of the trained single-branch network for
the third random seed.
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A.3. Neuromodulated network representations

A.3.1. Meta-trained models

Figure A.4. The representations of the ANML network for the second ran-
dom seed.
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Figure A.5. The representations of the ANML network for the third ran-
dom seed.
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A.3.2. TSL-trained models

Figure A.6. The representations of the TSL-trained neuromodulated net-
work for the second random seed.

Figure A.7. The representations of the TSL-trained neuromodulated net-
work for the third random seed.
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