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1Departamento de Fı́sica, P. Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
2Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom

3Perimeter Institute, Waterloo, Ontario N2L 2Y5, Canada
(Received 25 November 2008; published 13 March 2009)

It has been argued that a Universe governed by Eddington-Born-Infeld gravity can be compatible with

current cosmological constraints. The extra fields introduced in this theory can behave as both dark matter

and dark energy, unifying the dark sector in one coherent framework. We show the various roles the extra

fields can play in the expansion of the Universe and study the evolution of linear perturbations in the

various regimes. We find that, as a unified theory of the dark sector, Eddington-Born-Infeld gravity will

lead to excessive fluctuations in the cosmic microwave background on large scales. In the presence of a

cosmological constant, however, the extra fields can behave as a form of nonparticulate dark matter and

can lead to a cosmology which is entirely compatible with current observations of large scale structure.

We discuss the interpretation of this form of dark matter and how it can differ from standard, particulate

dark matter.
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I. INTRODUCTION

There is compelling evidence that baryonic matter in the
presence of Einstein gravity does not suffice to describe the
Universe we live in. The most natural and popular sugges-
tion is that we are surrounded by a sea of massive, non-
relativistic particles. Dubbed cold dark matter (CDM), it
can account for the dynamics of galaxies and clusters and
the large scale structure of the Universe. Furthermore it can
arise in a plethora of extensions to the standard model of
particle physics and would currently exist as a thermal relic
from a hot era at early times [1].

Alternatives to the CDM scenario have been proposed.
At the more extreme level, it has been suggested that
Einstein gravity is modified, either through higher order
corrections to the Einstein-Hilbert action, or through the
addition of new gravitational degrees of freedom that affect
the relationship between the geometric and physical nature
of the space-time metric [2–5]. The less radical proposals
typically involve replacing the cold dark matter by some
nonparticulate degree of freedom such as a scalar field or a
fluid which has an effectively pressureless equation of
state. Within this class of models, there have been attempts
at resolving both the dark matter problem and the dark
energy problem. A notable example is that of Chaplygin
gas [6,7].

A proposal has been put forward in [8] from a different
approach. A theory for degenerate metrics is lacking and it
was suggested that the solution would be the introduction
of additional dynamical degrees of freedom for the space-
time connection [8,9]. A candidate action, the Eddington-
Born-Infeld action (EBI) for these degrees of freedom was
proposed in [10] and it was shown that they had unex-

pected effects: they could mimic the presence of dark
energy and dark matter in the expansion of the Universe
and could modify the Newton-Poisson equation, leading to
flat rotation curves for galaxies. Hence it was proposed that
the EBI action was a candidate for nonparticulate dark
matter and dark energy. The Eddington action [11] has
also been considered in the context of dark energy [12].
In this paper we wish to study the effect of EBI degrees

of freedom on the expansion of the Universe and on the
growth of structure of the Universe. In doing so, we will
identify the different regimes in the expansion rate and how
they depend on the parameters in the action and we will
calculate the effect on the density perturbations and the
cosmic microwave background (CMB). We will focus on
two possible uses for the EBI theory: one in which the extra
degrees of freedom unify the dark sector, as proposed in
[8], and another in which they coexist with a cosmological
constant, playing the role of dark matter. As a result we can
identify a viable theory of dark matter which is competitive
with the standard CDM paradigm.
The paper is structured as follows. In Sec. II we display

the EBI action and equations of motion and rewrite them as
a specific case of bigravity or, alternatively, as a particular
bimetric theory, as recently shown in [13]; in Sec. III Awe
study the dynamics of homogeneous and isotropic solu-
tions to the equations of motion (see [14] for homogeneous
but anisotropic solutions); in Sec. IV we study the growth
of linear perturbations and in Sec. V we calculate the
power spectrum of density perturbations and anisotropies
of the cosmic microwave background, allowing us to make
a cursory comparison with current data; finally in Sec. VI
we discuss our findings.
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II. THE THEORY: EDDINGTON-BORN-INFELD
ACTION AS BIGRAVITY OR AS A BIMETRIC

THEORY

The EBI action is

I ¼ 1

16�G

Z
d4x

� ffiffiffiffiffiffiffi�g
p ðR� 2�Þ þ 2

�‘2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg� ‘2Kj

q �

þ Sm½g�; (1)

where � is a dimensionless constant, ‘ is a scale, G is
Newton’s constant, R is the scalar curvature of g��, and Sm
is the matter action. The tensor K�� is the Ricci curvature

of a connection C�
�� defined in the usual way as

K�� ¼ @�C
�
�� � @�C

�
�� þ C�

��C
�
�� � C�

��C
�
��:

The connection C�
�� should not be confused with the

Christoffel connection ��
�� of the metric g��. Note that

in the limit in which g ! 0, the action for q�� reduces to

the Eddington action [11]. The action (1) is a functional of
g�� and C�

�� and is varied with respect to these fields.

It turns out that there is simpler formulation for this
theory [13]. Define a 2nd cosmological constant

� � �

‘2
(2)

and consider the action for two metrics g�� and q��

S ¼ 1

16�G

Z
d4x

� ffiffiffiffiffiffiffi�g
p ðR� 2�Þ þ ffiffiffiffiffiffiffi�q

p ðK � 2�Þ

� ffiffiffiffiffiffiffi�q
p 1

‘2
ðq�1Þ��g��

�
: (3)

As shown in [13] the action (1) is fully equivalent to (3).
The connection C�

�� is related to the metric q�� by the

usual metricity relation

C�
�� ¼ 1

2ðq�1Þ��ð@�q�� þ @�q�� � @�q��Þ;
where ðq�1Þ�� is the inverse of q�� such that

ðq�1Þ��q�� ¼ ��
�

and K � ðq�1Þ��K��.

Theories of bigravity have been proposed in a number of
contexts: as spin-2 theory of the strong interaction [15,16],
as a full nonlinear extension of the Fierz-Pauli theory of
massive gravity, and more recently as an effective theory of
interacting braneworlds [17]. A number of examples of
bigravity theories have been studied in detail [18–21], in
particular, in terms of their consistency, asymptotic behav-
ior and the global dynamics of isotropic and homogeneous
space-times. It should be remarked that in the context of
bigravity theories, EBI turns out to be the simplest theory
with a minimal interaction between both sectors. In this
paper we study in detail the cosmological dynamics both of
the background and at the perturbative level and hence
extract useful hints of what one might expect from more

general classes of bigravity theories. A class of bimeasure
theories have been considered in [22] and references
therein.
There is yet another point of view one can take of this

theory. If one looks at the action as it is presented in
Eq. (3), i.e. a theory of two metrics, one of them, g��,

quite clearly couples to the matter fields and has physical
significance—it is this metric that defines how clocks and
rulers respond—and hence we can call it a ‘‘physical’’
metric. The other metric q�� satisfies the Einstein-

Hilbert action and couples to the rest of the world through
its interaction with the physical metric. If we interpret q��

to be the metric of space-time—we can dub it the ‘‘geo-
metric’’ metric—we then have a bona fide bimetric theory
of gravity. This is entirely akin to the approach in the
tensor-scalar-vector theory of gravity [4] and can give us
an intriguing interpretation of roles of the different fields.
The field equations which are found from either the

original EBI or the bigravity (or bimetric) action are the
Einstein equations for g��

G�
� ¼ 8�GT�

� ����
� � 1

‘2

ffiffiffi
q

g

s
ðq�1Þ��g�� (4)

and the Einstein equations for q��

Q�
� ¼ ����

� þ 1

‘2

�
ðq�1Þ��g�� � 1

2
ðq�1Þ��g����

�

�
;

(5)

whereQ�
� ¼ K�

� � 1
2K�

�
� is the Einstein tensor of q��.

These are the complete set of equations with which we can
study the dynamics of the EBI action. [Note that tracing (5)
a simplified equation is obtained K�� ¼ �q�� þ 1

‘2
g��.]

III. COSMOLOGICAL DYNAMICS

A. Friedmann-Lemaitre-Robertson-Walker equations

We now focus on the dynamics of homogeneous and
isotropic metrics in EBI gravity and will restrict ourselves
to spatially flat metrics so that the line element is given by

ds2 ¼ �dt2 þ a2�ijdx
idxj;

where t is physical time, x are spatial coordinates and �ij is

the metric of a flat hypersurface. Note that from the bi-
metric point of view, this makes sense—all observables
will depend on the physical metric g��. The vanishing of

the Lie derivative for all Killing vectors of the space-time
gives q�� such that

q00 ¼ �X2; qij ¼ Y2�ij: (6)

The functions X and Y parameterize the metrics compat-
ible with the background symmetries.
The Friedmann equation for this cosmology is

3H2 ¼ 8�Gð �	E þ �	fÞ; (7)
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where H ¼ _a
a , the EBI density is given by

�	 E ¼ Y3

8�G‘2Xa3
(8)

which is always positive, and �	f is the energy density in all

the remaining fluids (including the cosmological constant
�). The Raychaudhuri equation becomes

� 2
€a

a
�H2 ¼ 8�Gð �PE þ �PfÞ;

where �PE � �XY=8�G‘2a and �Pf is the pressure in all

the remaining fluids (including the cosmological constant
�). The remaining field equations are then

6‘2
_Y2

Y2
¼ 2�X2 þ 3a2X2

Y2
� 1;

3‘2
� €Y

Y
� _Y

Y

_X

X

�
¼ 1þ �X2: (9)

The EBI degrees of freedom behave as a fluid. We can
trade the variables X and Y in terms of the fluid density �	E

and equation of state parameter wE given by

wE ¼ � a2X2

Y2
: (10)

Eliminating the coordinate time t using the Friedmann
equation (7), we find that the new variables evolve as a
function of lnðaÞ as

�	 0
E ¼ �3ð1þ wEÞ �	E (11)

and

w0
E ¼ 2wE

�
1þ 3wE

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�wEÞ3=2�E�� 2

ð1þ 3wEÞ	‘

	c

s �
; (12)

where the relative density of a species ‘‘i’’ (including EBI)

is as usual �i ¼ �	i

	c
for the critical density 	c ¼ �	E þ �	f,

and where we have defined 	‘ � ½8�G‘2��1. Clearly the
above equation is inconsistent for wE > 0; in fact wE is
bounded from above by the condition

16�G‘2ð�wEÞ3=2	E�� 3wE � 1: (13)

B. Analytical approximations

The system (7), (11), and (12) can be solved numerically
but we can extract some analytical results by examining its
approximate behavior.

The first clear case that one can see is that when wE � 0
the equation of state wE will evolve slowly and the EBI
field will behave as cold dark matter. This is independent of
whether the EBI field is dominating the background dy-
namics or not, and is therefore valid throughout the entire
history of the Universe (e.g. during radiation, matter and

possible cosmological constant eras) provided jwEj is
small. In this case wE � w0a

2, where w0 < 0 is an initial
condition. Since wE is proportional to a2, the cold dark
matter behavior is unstable, and is bound to end whenwE is
sufficiently driven away from zero and becomes Oð1Þ. At
this point, the subsequent behavior of the EBI field depends
on various factors which we analyze below on a case by
case basis.

1. Case: 	E � 	f

Let us first consider the case where 	E � 	f i.e. the EBI

field is driving the background dynamics. Apart from the
dark matter behavior (wE � 0) which as we have discussed
above can always be realized, we uncover two more
phases. The first is a constant-w phase such that wE ¼
wc which solves the equation

ð1þ 3wcÞ4 þ 16�2w3
c ¼ 0: (14)

This constant w depends only on the parameter �. For � ¼
0 we have that wc ¼ � 1

3 while for � ¼ 1 we have that

wc ¼ �1. This means that �1<wc <� 1
3 for 0<�< 1

and wc <�1 for �> 1. Indeed in this case phantom
behavior is possible by allowing �> 1.
When �< 1 (i.e. �1<wc <� 1

3 ), the above

constant-w phase is unstable, simply because 	E eventu-
ally drops and approaches 	‘. If this happens before the
fluid 	f becomes dominant (which could happen if 	f is a

cosmological constant), then the constant-w phase ends
and the EBI fluid now behaves like a cosmological con-
stant, i.e. wE ¼ �1. Equation (12) then gives that this
cosmological constant is given by

	E ¼ 	‘

1� �
: (15)

It turns out that this de Sitter phase is stable under
homogeneous time-dependent perturbations (although not
under inhomogeneous perturbations; see the relevant sec-
tion below). We postpone the stability analysis until case 3.

2. Case: �	E ¼ � �	f and �	f � 	� (tracking phase)

An interesting case emerges if �	E is neither negligible
nor dominant but rather is assumed to track the fluid. This
is possible provided �	E ¼ � �	f, where � is a proportion-

ality constant related to the EBI relative density as �E ¼
�=ð1þ �Þ. Equation (12) then tells us that this is possible
iff w<� 1

3 , in which case we get

� ¼ ð1þ 3wÞ2
4ð�wÞ3=2�� ð1þ 3wÞ2 ;

which gives �E ¼ ð1þ3wÞ2
4ð�wÞ3=2� .

Since there are no interesting fluids with equation of
state w<�1=3 (apart from a cosmological constant,
treated below), this case is not of much relevance.
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3. Case: �	E ¼ �	� (cosmological constant tracking
phase)

In the limit where w ¼ �1 we find � ¼ 1=ð�� 1Þ and
therefore 	E ¼ 	�=ð�� 1Þ, which is valid only for �> 1.

We can explore this limit further; if 	E is constant and
	‘ non-negligible, then we have that the EBI density is
given by

	E ¼ 	‘ � 	�

1� �
(16)

while the effective cosmological constant such that 3H2 ¼
8�G	ðeffÞ

� is

	ðeffÞ
� ¼ 	E þ 	� ¼ 	‘ � �	�

1� �
: (17)

In the limit in which ‘ ! 1 we recover the previous case.
One should further impose the conditions 	E � 0 and

	ðeffÞ
� > 0. For 0<�< 1, a necessary and sufficient con-

dition for this to hold is that 	‘ > 	� (regardless of the
sign of 	�), while for �> 1 we need 0 � 	‘ < 	�. This
second subcase cannot be realized (see case 5 below). For
�< 1, taking the limit 	� ! 0 takes us back to case 1.

The negative sign appearing in the expressions above is
quite misleading, and one could think that it might be
possible to cancel the effective cosmological constant to
sufficiently small values. This is clearly impossible for
	� > 0 simply because by virtue of (8) we also have 	E >
0. It is also impossible for 	� < 0 since again because of

(8) we need �< 1 which implies that 	ðeffÞ
� > 	E > j	�j.

Thus we cannot have cancellation of the cosmological
constant.

We now perform stability analysis (as mentioned in

case 1) of this de Sitter phase (for which �< 1). Let �	E ¼
	‘�	�

1�� ð1þ 
1Þ and wE ¼ �1þ 
2, with 
1 > 0 and 
2 >

0. Perturbing (11) and (12) to linear order we find


1
0 ¼ �3
2

and


02 ¼ 2ð1� �Þ 	‘ � 	�

	‘ � �	�


1 � 3
2;

which combine to give


1
00 þ 3
1

0 þ 6ð1� �Þ 	‘ � 	�

	‘ � �	�


1 ¼ 0:

The normal modes are en lna, where

n ¼ 3

2

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3
ð1� �Þ 	‘ � 	�

	‘ � �	�

s �
:

Therefore the approach to de Sitter is critically damped for

� ¼ �c ¼ 5	‘�8	�

8	‘�11	�
while it is underdamped for �< �c

and overdamped for �> �c. Furthermore, we have that
� 5

3 < 1� 8
3 ð1� �Þ 	‘�	�

	‘��	�
< 1 and so the underdamped

solutions are always decaying. Finally it is possible to have
only the overdamped solutions by choosing 	� <	‘ <
8
5	�.

4. Case: 	E 	 	f � 	�

We now pass to the regime where 	E 	 	f, i.e. the EBI

field is subdominant, and the cosmological dynamics are
driven by some fluid 	f which is not a cosmological

constant. Consistency requires that 	‘ 	 	f (otherwise

this case cannot be realized), and we therefore get that

w0
E � 2wEð1þ 3wEÞ: (18)

Hence we find that if the EBI field is subdominant, the
above equations lead to two possible behaviors: the EBI
fluid behaves either as cold dark matter if 0<wE 	 �1,
i.e. very close to zero, or as curvature if wE 
� 1

3 .

5. Case: 	E 	 	f ¼ 	�

The final case we consider is when 	E is negligible but
now 	f ¼ 	�, i.e. the background fluid which drives the

dynamics is the bare cosmological constant �. Here we
find a new regime such that

wE ¼ w‘ � � 1

3
� 2

3

	‘

	�

(19)

in addition to the cold dark matter regimewhich can still be
realized. Note that we recover the curvaturelike behavior if
	‘ 	 	� while wE ¼ �1 if 	� ¼ 	‘ ¼ ð8�G‘2Þ�1.
One may wonder whether phantom behavior such that

wE <�1 can be realized in this case, by choosing ‘ such
that 8�G‘2	� < 1. This turns out to be impossible: when
	� becomes smaller than the threshold value 8�G‘2	� ¼
1, this takes us back to case 3. Decreasing ‘ further (or
decreasing 	�) eventually leads to case 1.

C. Realistic model building for the background
dynamics

Having analyzed the different possible behaviors of the
EBI field in various cases above, we now turn to realistic
model building.
We will use units in Mpc which is the standard in

popular Boltzmann solvers such as CMBFAST [23], CAMB

[24] and CMBEASY [25]. In these units we have that the
Hubble constant today is H0 ¼ 3:34� 10�4h Mpc�1,
with h
 0:6–0:8. For numerics we can absorb 8�G into
the definition of densities. The total fluid density is thus

8�G �	f ¼ 3:34� 10�7

�
!r

a4
þ!b

a3
þ!�

�
Mpc�2; (20)

where !r ¼ 4:16� 10�5 (for CMB temperature of
2.726 K and three species of massless neutrinos), !b 

0:018–0:023 given by nucleosynthesis, and !� 
 0–0:5.
Turning to the EBI field, we need to set its initial density

�	E;in and initial equation of state parameter wE;in at the
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initial scale factor ai. To do this we require that the initial
condition for �	E is such that it would give rise to an
equivalent CDM density in the past. In other words requir-
ing that the equivalent CDM density today would be
8�G �	c ¼ 3:34� 10�7!c Mpc�2, with!c 
 0:11, we ex-
trapolate this to the initial scale factor ai and set the initial
condition for the EBI density as 8�G �	E;in ¼ 3:34�
10�7 � a�3

i !E Mpc�2, with !E 
 0:08–0:13.
For setting the initial condition for wE, we require that

the EBI field behaves as CDM all the way up to at least
a
 0:1wherewE starts to becomeOð1Þ. Since in the CDM
phase wE 
�w0a

2, we set the initial condition for wE as
wE;in ¼ �w0a

2
i , by specifying a positive parameter w0.

The background model is thus completely determined
by six parameters: the initial conditions !b, !�, !E and
w0 as well as the two parameters ‘ and � (for the fixed
radiation density discussed above, massive neutrinos can
easily be accommodated in the usual way but we refrain to
discuss it here for reasons of simplicity). On top of specify-
ing these parameters one has to make sure that the inequal-
ity constraint (13) is obeyed. In the light of setting up initial
conditions as we have just described the inequality be-
comes

�

�
‘

Mpc

�
2
w3=2

0 !E � 1:5� 106: (21)

1. The �EBI model

The simplest possibility is when the EBI field is chosen
to act as CDM all the way, and is not responsible for the
accelerated expansion of the Universe which is due to the
bare cosmological constant �. In this case, in order for the
EBI field not to deviate from the CDM track, we must have
that w0 � 10�4. Moreover the parameters ‘ and � do not
have any role in the background. Thus we are down to three
parameters: !b, !� and !E, the same as in the standard
�CDM model. We call this model the �EBI model.

Choosing !b ¼ 0:023, !� ¼ 0:36 and !E ¼ 0:114 we
have a background evolution identical to the Wilkinson
Microwave Anisotropy Probe (WMAP) 5-year data best-fit
�CDM model. It is therefore not distinguishable from the
�CDMmodel using, for example, type-1a supernovae data
[26].

2. The general EBI model

By lowering the cosmological constant w� gradually to
zero, we should start compensating by having the EBI field
to play a role in the accelerated expansion of the Universe.

Lowering � changes the angular diameter distance to
the surface of last scatter and hence shifts the position of
the acoustic peaks in the CMB. Since the peaks are very
tightly constrained, we must change one further parameter
to make up for the change induced by varying �. As a 2nd
parameter (for illustration) we choose to vary w0. The
upper panel of Fig. 1 shows the locus curve for which

both the angular diameter distance and conformal time
today �0 remain constant, in the w0 and !� plane. The
point !� ¼ 0:36 and w0 ¼ 6� 10�8. We call this model
‘‘model A.’’ The parameters � and ‘ are chosen to be j1�
�j ¼ 10�6 and ‘ ¼ 109 Mpc for this model. Increasing ‘
or lowering w0 still gives acceptable �EBI models as the
dependence on lowering w0 or increasing ‘ is very weak
and for most cases does not produce any observable result.
As we lower !� towards zero, we keep increasing w0,
along the displayed curve to make sure that the angular
diameter distance to recombination stays constant. When
!� ¼ 0 exactly, w0 � 0:845 (this depends on our choice
of!b and!E). We call this ‘‘model C.’’ For clarity we also
consider a ‘‘model B’’ for which!� ¼ 0:2 andw0 � 0:43.
Figure 2 shows the evolution of the EBI energy density
(solid line), radiation density (long-dashed line), baryons
(dotted line) and cosmological constant (dashed line) for
four models along this curve. The upper left panel is
model A, the upper right panel is model B with !� ¼
0:2 and w0 � 0:43, the lower right panel is a model with
!� ¼ 0:1 and w0 � 0:65, and finally the lower right panel
is model C. Figure 3 exhibits the variables X (solid line), Y

(dashed line),
_X
X (dotted line) and

_Y
Y (long-dashed line) for

the same set of models. Observe that during the time for
which the EBI field is like CDM, both X and Y are
approximately constant (very slowly varying), while dur-
ing the wE � �1 phase, X is still an approximate constant
while Y is varying.
Once we reach the point!� ¼ 0 (model C) we can start

investigating the effect of changing �. Once again we keep

FIG. 1. Upper panel: The locus of fixed �0 and angular diame-
ter distance to recombination, by varying !L and w0 keeping all
other parameters fixed. The value !� ¼ 0:36 corresponds to the
WMAP5 best-fit model. The other EBI parameters are 1� � ¼
10�6 and ‘ ¼ 109 Mpc. Lower panel: A similar locus curve,
only now we vary � and w0 keeping all other parameters fixed
and in particular !� ¼ 0. The alphabetical labels are explained
and discussed in the main text.
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changing w0 in order to compensate and keep the angular
diameter distance the same. Along this line we consider
two further models: model D has � ¼ 0:3 andw0 � 1:166,
while model E has � ¼ 2 and w0 � 0:632. Remember that
� is connected with the constant wE phase. In particular
model D has wE � �0:493 during the acceleration era
while model E gives rise to phantom behavior with wE �
�1:795.
In principle we can further investigate varying ‘. We find

however that changing ‘ does not lead to any interesting
new behavior. If we compensate the variation of ‘ with w0,
then w0 must be increased, and this leads to a similar effect
as decreasing �.
Let us also note that the general EBI family of models

would give a background evolution that deviates from the
�CDM model. They can therefore be distinguished from
�CDM using, for example, type-1a supernovae data [26].
However, as we discuss further below, we do not find any
parameter space allowed (apart from the �EBI special
case) when we consider the cosmic microwave background
angular power spectrum observations. It is therefore of
little significance to try to constrain such models with the
supernovae data.

D. Summary of the background evolution

In this section we have mapped out various possibilities
for the background evolution. As claimed in [10], it is
possible to construct a theory in which the EBI field plays
the dual role of both dark matter and dark energy. We have
generalized the results in [10] by uncovering a third phase
of the EBI field where it has a constant-w equation of state
which interpolates between the CDM phase and the cos-
mological constant phase. Thus the EBI field is a unified
model very similar to Chaplygin gas. We stress however
that contrary to the Chaplygin gas, wE is an independent
dynamical degree of freedom, and thus the equation of
state of EBI is not rigid. This leads to even richer dynamics
in the perturbations as we show in the next section.
We have specified the requirements on the initial con-

ditions of the EBI field as well as the two parameters ‘ and
�, in order to have a background evolution that is compat-
ible with the standard paradigm. This gave us the simple
�EBI model, for which the EBI field replaces CDM but is
not responsible for the accelerated expansion which is still
due to the cosmological constant�. By gradually lowering
� to zero, and compensating with the EBI field, one can
have the initial condition w0 as well as the parameters ‘
and � to play a role, leading to the mixed EBI model,
where the effective cosmological constant receives a con-
tribution from� and the EBI field. When� ¼ 0we get the
plain EBI model.

IV. EVOLUTION OF INHOMOGENEITIES

As we have seen in previous sections, the EBI back-
ground field can behave as pressureless matter and as

FIG. 3. The same four models as Fig. 2. They are from the
locus curve of Fig. 1 ð!�; w0Þ ¼ ð0:36; 6� 10�8Þ (upper left),
ð0:2; 0:43Þ (upper right), ð0:1; 0:65Þ (lower left), and ð0; 0:84Þ
(lower right). The curves are X (solid line), Y (dashed line),
_X
X (dotted line) and

_Y
Y (long-dashed line).

FIG. 2. Four models from the locus curve of Fig. 1 ð!�; w0Þ ¼
ð0:36; 6� 10�8Þ (upper left), ð0:2; 0:43Þ (upper right), ð0:1; 0:65Þ
(lower left), and ð0; 0:84Þ (lower right). The curves are EBI (solid
line), � (dashed line), baryons (dotted line) and radiation (long-
dashed line). Note that in the last case (lower right), the final
state of the EBI field is an approximate cosmological constant.
The actual phase is the constant-w phase with w being extremely
close to �1 due to 1� � ¼ 10�6.
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cosmological constant, and there are transitions between
these two phases.

After displaying the equations of motion for linearized
fluctuations, in this section we show via analytical approx-
imations that the matter phase is consistent with current
observations. On the contrary, fluctuations on the accelera-
tion phase show an unacceptable growth. Finally, we show
an analytical series in 1=‘ providing a systematic way to
isolate the matter phase, as the zero order approximation,
leaving an evolution indistinguishable from �CDM.
Corrections in powers 1=‘ can then be computed to any
desired order. These will be reported elsewhere.

A. The equations of motion

For the purpose of studying large scale structure, i.e.
density perturbations, we will focus on scalar perturbations
in the conformal Newtonian gauge in conformal time �,
such that g00 ¼ �a2ð1þ 2�Þ, g0i ¼ 0, and gij ¼ a2ð1�
2�Þ�ij. We have that ~ri is the covariant derivative on the

hypersurface such that ~ri�jk ¼ 0, and define Dij ¼
~ri

~rj � 1
3�ij

~r2
.

The tensor field q�� is perturbed as q00 ¼ �a2X2ð1þ
2�Þ, q0i ¼ �Y2 ~ri�, and qij ¼ Y2½ð1� 2�Þ�ij þDij��.
Notice that the q metric has four scalar modes, namely, �,
�, � and �, as there is no gauge freedom left to set any of
them to zero. We also find it convenient to define Z ¼ d lnY

d� .

As in the homogeneous case, it turns out that the EBI
field can be cast as a generalized fluid, in the framework of
a generalized dark matter model [27]. The Einstein equa-
tions are

� 2k2�� 6
_a

a
_�� 6

_a2

a2
� ¼ 8�Ga2

X
i

�	i�i; (22)

2 _�þ 2
_a

a
� ¼ 8�Ga2

X
i

�	i�i; (23)

6 €�þ 6
_a

a
½2 _�þ _�� þ 2k2ð���Þ � 6

�
�2

€a

a
þ _a2

a2

�
�

¼ 24�Ga2
X
i

�	i	i; (24)

��� ¼ 8�Ga2
X
i

�	iSi; (25)

where the index ‘‘i’’ runs over all fluids, including the EBI
field. Here � is the fluid density fluctuation, � is the fluid
momentum divergence,	 is the pressure fluctuation and S
is the fluid shear. We can combine them to find a Newton-
Poisson-like equation of the form:

� 2k2� ¼ 8�Ga2
X
i

�
�	i�i þ 3

_a

a
�	i�i

�
: (26)

The EBI density contrast �E, velocity perturbation �E,
relative pressure perturbation 	E and shear perturbation
SE are defined as linear combinations of the EBI metric
variables �, �, � and �:

�E ¼ ���þ 3ð�� �Þ; (27)

�E ¼ ��; (28)

	E ¼ wEð���þ�� �Þ; (29)

S ¼ �wE�: (30)

The evolution equations for the above fluid variables are
found to be

_� E ¼ �k2�E þ 3ð1þ wEÞ _�þ 3
_a

a
ðwE�E �	EÞ; (31)

_� E ¼ _a

a
ð3wE � 1Þ�E þ ð1þ wEÞ�� 2

3
k2SE þ	E;

(32)

_SE ¼
�
4Zþ 2ð1þ 3wEÞ _a

a
� wEk

2

3Z

�
SE

� 2wE

�
1þ 3a2

2‘2k2

�
�� 2

w2
E

Z
�

þ wE

2Z

�
wE þ a2ð3wE � 1Þ

2‘2k2

�
�E

þ 1

2Z

�
wE þ 3a2ð1þ wEÞ

2‘2k2

�
	E; (33)

_	E ¼
�
7Zþ a2ð1þ wEÞ

2‘2Z
þ k2

3Z
wE þ ð2þ 9wEÞ _a

a

�
	E

þ wE

�
�Z� 3

_a

a
wE þ ð3wE � 1Þa2

6‘2Z
þ k2

3Z
wE

�
�E

� 1

3
k2wE

�
�þ 2k2

3Z
SE

�

þ wE

�
4Z�� 4k2

3Z
wE�þ ð1� 3wEÞ _�

�
: (34)

The remaining fluids can be described in the usual way
using conservation of energy and momentum.

B. EBI as CDM

In this section we show how the EBI field can behave as
CDM even at the perturbative level. First notice that after
setting 	E and SE to zero in all of the fluctuation equa-
tions, the remaining two variables, namely, �E and�E will
obey equations which are the same as for a CDM fluid,
provided the background equation of state parameter wE is
also very close to zero and the EBI field is in the back-
ground CDM phase.
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We now show that if wE � 0 and the pressure perturba-
tion 	E and shear SE are initially chosen to be zero, then
they will remain arbitrarily small, and the EBI field will
behave as CDM even at the fluctuation level.

During this phase we get that Z � aH
ffiffiffiffiffiffiffiffiffiffiffi
��E

p ð�wEÞ3=4,
and hence we can set wE ! 0, Z ! 0 and wE=Z ! 0. The
	E equation then becomes

d	E

d lna
¼

�
1

2‘2H2
ffiffiffiffiffiffiffiffiffiffiffi
��E

p ð�wEÞ3=4
þ 2

�
	E: (35)

Since it is not sourced by any other variable in this limit, if
we set 	E ¼ 0 initially, it will stay zero. Thus imposing
	E ¼ 0 in the shear equation and taking the same limit
above we get

dSE
d lna

¼ 2SE; (36)

which has the solution SE ¼ S0a
2.

Thus for very small initial relative pressure perturbation
and shear, i.e.	0 ’ 0 and SE ’ 0, the EBI field will behave
exactly as cold dark matter at the perturbative level; i.e. the
equations for �E and �E would read

_� E ¼ �k2�E þ 3 _�; (37)

and

_� E ¼ � _a

a
�E þ�; (38)

respectively.
This means that if jwEj 	 1 throughout the entire his-

tory of the Universe until today (such as the �EBI
model A), we would expect any observable to be com-
pletely indistinguishable between an EBI dark matter
model and a standard dark matter model. Note also that
we have assumed that 	0 ’ 0 and SE ’ 0 to obtain exact
CDM-like behavior. But if we were to include a small
amount of pressure perturbation and shear in the initial
conditions on very small scales, this might lead to differ-
ences with the CDM which might be observable at the
cores of galaxies and clusters and in the small scale struc-
ture of gravitating bodies. Indeed, differences vis-à-vis
CDM are expected to occur once a system enters the non-
linear regime where 	0 ’ 0 and SE ’ 0 are inevitably
sourced.

C. EBI acceleration era

The evolution of perturbations during a regime of accel-
erated expansion is more intriguing. Assume that � ¼ 0
and neglect baryons and other components. As shown in
[10] the equations of motion for EBI gravity have an exact
de Sitter solution:

að�Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1��Þp

‘

�0��
; Xð�Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1��
p ; Yð�Þ¼

ffiffiffi
3

p
‘

�0��
:

This field solves Eqs. (7) and (9). �0 is an arbitrary inte-
gration constant fixed by the initial conditions. a ! 1 as
� ! �0.
To check whether this solution can represent or not the

accelerated era of the Universe we study fluctuations on
this background. This is an straightforward exercise and we
summarize here the main results. Using the equations of
motion all EBI functions�ð�Þ,�ð�Þ,�ð�Þ, and�ð�Þ can be
written as functions of the Newton potentials �ð�Þ and
�ð�Þ by algebraic expressions. We are left with two
coupled second order differential equations for �ð�Þ and
�ð�Þ. Interestingly, the combination �ð�Þ þ�ð�Þ decou-
ples and satisfies a Bessel-like equation with the exact
solution

�ð�Þ þ�ð�Þ ¼ a0J�ðkð�0 � �ÞÞ þ b0Y�ðkð�0 � �ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 � �

p ;

where

� ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24�� 39

p
: (39)

For any value of� this function diverges as � ! �0 making
de Sitter space unstable.
We would like to stress that this conclusion may change

when introducing extra ‘‘Fierz-Pauli’’ couplings to the EBI
action. See [13] for a recent discussion.

D. 1=‘ and the �EBI theory

In this paragraph we develop an analytical method to
isolate the matter phase for the EBI field. Numerical analy-
sis show that this occurs for ‘ and Y large. We then attempt
to use 1=‘, the coupling between both metrics, as a per-
turbative parameter.
Consider the following Frobenious-type series for the

background functions aðtÞ, XðtÞ, and YðtÞ:

að�Þ ¼ a0ð�Þ þ 1

‘
a1ð�Þ þ 1

‘2
a2ð�Þ þ � � � ;

Xð�Þ ¼ X0ð�Þ þ 1

‘
X1ð�Þ þ 1

‘2
X2ð�Þ þ � � � ;

Yð�Þ ¼ ‘2=3
�
Y0ð�Þ þ 1

‘
Y1ð�Þ þ 1

‘2
Y2ð�Þ þ � � �

�
:

(40)

We have included a positive power of ‘ in Y for two
reasons. First, recall the EBI background density has the

form 	E 
 1
‘2

Y3

Xa3
. Thus, if Y scales as Y 
 ‘2=3, then at

order zero in 1=‘ there will be a finite contribution to the
Friedmann equation from the EBI field, which turns out to
be dark matter. The interesting observation is that this
series also provides the right equations for all other varia-
bles including fluctuations.
There is another reason to include a growing ‘ term in

the background. If the metric functions do not depend on ‘,
then in the limit of large ‘ the metrics g�� and q�� become

decoupled. This is clearly seen from the bigravity action
(3). The decoupled system describes two massless grav-
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itons and is a theory with a different number of degrees of
freedom. Switching on the interaction term, proportional to
1=‘, is in this sense a discontinuous change to the theory.
On the contrary, for a series of the form (40) the two
metrics never decouple.

We first discuss the background equations and then the
fluctuations. Plugging (40) in the background equations we
find consistent equations for the coefficients aið�Þ, Xið�Þ,
and Yið�Þ order by order in l.

At order zero one finds that X0 and Y0 must be constants
while a0ð�Þ satisfies the Friedmann equation

_a20ð�Þ
a40ð�Þ

¼ Y3
0

3X0

1

a30ð�Þ
þ 1

3
�: (41)

Thus, by choosing Y3
0=X0 and � appropriately we find a

background evolution which is, at this order, indistinguish-
able from �CDM.

Corrections 1=‘ can be computed order by order. Since ‘
is so far arbitrary we can make it as large as necessary in
order to suppress 1=‘ corrections. For completeness we
display the first order equations

3
dY1

d�
X0 � dX1

d�
Y0 ¼ 0 (42)

and

6

�
dY1

d�

�
2 � 2�X2

0Y
2
0a0ð�Þ � Y2

0a0ð�Þ2 ¼ 0: (43)

The equation for a1ð�Þ is longer and not really worth
displaying. The important point is that once a0ð�Þ is
known, the first order equations can be solved.

We now explore the fluctuation equations in the same
limit assuming that the background satisfies XðtÞ ¼ X0 and

Yð�Þ ¼ Y0‘
2=3. In this paragraph we work in terms of the

original metric variables �, �, �, �, �, and �. We only
consider here the leading terms. One finds that the Newton
potential �ð�Þ satisfies the usual equation (recall that for
matter c2s ¼ 0)

€�þ 3H _�þ ð2 _H þH 2Þ� ¼ 0; (44)

where H ¼ _a=a. (We drop the subscript 0 in a0 because
we work only to this order and no confusion can arise.) For
matter a ¼ a0�

2 and we recover, as already shown in
Sec. IVB, the familiar �ð�Þ ¼ a0 þ b0=�

5, while for ac-
celeration with a
 1=ð�0 � �Þ we have � ¼ a1ð�0 �
�Þ þ b1ð�0 � �Þ3.

All other functions are expressed via the field equations
in terms of � as follows:

�ð�Þ ¼ �ð�Þ;
�ð�Þ ¼ � 2X0

Y3
0

d

d�
ð�ð�Það�ÞÞ;

�ð�Þ ¼ �k2�ð�Þ þ c1;

�ð�Þ ¼ �ð�Þ þ 2X0

Y3
0

k2�ð�Það�Þ � 1

2
k2�ð�Þ þ c2;

�ð�Þ ¼ 4X0

Y3
0

�ð�Það�Þ þ c3
Z

d�að�Þ;

(45)

where c1, c2, and c3 are integration constants. Recalling the
fluid variables (30) it is direct to prove from here that both
(38) and the Newton-Poisson equation (26) are satisfied.
The 1=‘ series provides a systematic way to isolate the

dark matter phase. At the same time, it provides a way to
compute order by order deviations from �CDM which
may reveal new features. We shall study these corrections
elsewhere.

V. THE COSMIC MICROWAVE BACKGROUND
AND LARGE SCALE STRUCTURE

The main goal in our analysis is to estimate the two main
cosmological observables: the CMB and the large scale
structure of the distribution of galaxies in the Universe.
The anisotropies in the CMB can be described in terms

of fluctuations in temperature: ð
T=TÞðnÞ ¼ ½TðnÞ �
T0�=T0, where T0 is the average temperature in the CMB
and TðnÞ is the temperature measured in the direction n. It
is convenient to look at the variance of these fluctuations
expanded in Legendre polynomials P‘ such that

�

T

T
ðnÞ
T

T
ðn0Þ

�
n�n0

¼ X
‘

2‘þ 1

4�
C‘P‘ðn � n0Þ;

where h. . .i is the ensemble average and C‘ is the angular

power spectrum of fluctuations. We can calculate 
T
T by

evolving the Boltzmann equation for the radiation distri-
bution function, coupled to the perturbed field equations
presented above.
As suggested above, the evolution of EBI field as dark

matter is exactly equivalent to that of ordinary dark matter.
Hence its effect on the CMB will be equivalent and we
therefore expect that such observables as the peak positions
and heights will be preserved. This is clearly so if we look
at the solid curve in Fig. 4—it is indistinguishable from
�CDM. Severe differences can arise depending on how the
EBI field evolves in the accelerating era. If EBI continues
to evolve as dark matter, then the evolution of the gravita-
tional potentials is such that, again, the angular power
spectrum is indistinguishable from that of �CDM. This
is clearly not so in the case where the EBI field drives
acceleration. The large scale behavior of the C‘’s is
strongly dependent on the integrated Sachs-Wolfe effect
which is roughly given by
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�

T

T

�
ðnÞ ’

Z �0

�

d�ð�0 þ�0Þ½ð�;nð�0 � �Þ�; (46)

where primes 0 are derivatives with respect to conformal
time, �0 is conformal time today and �
 is conformal time
at recombination. Note that the combination of potentials
is the same as presented in Eq. (39) and its evolution is
clearly different from the one experienced in the �EBI
case. Indeed in Fig. 5 we plot the evolution of�þ� for a
few cases labeled in Fig. 1. Quite clearly the unstable,
oscillatory behavior is triggered early on and hence we
expect it to affect relatively small scales. This is clear from
looking at Fig. 4, where the modifications to the C‘’s
through the integrated Sachs-Wolfe are present all the
way to ‘
 150, well into the first peak. Interestingly
enough, for the phantom case, the accelerating phase kicks
in later and hence there is a smaller integrated Sachs-Wolfe
effect for ‘ > 10; once acceleration kicks in, however, it is
much stronger than in the other cases and has a dramatic
effect on the largest scales of the C‘’s.

In the same way, we can directly relate the fluctuations
in the galaxy distribution directly to the density contrast. It
is convenient to look at the power spectrum of the density
fluctuations by taking the Fourier transform of �ðkÞ, where
k is the wave number and constructing the variance:

PðkÞ ¼ hj�ðkÞj2i:
Once again, we find that the�EBImodel looks identical to

a �CDM model. In Fig. 6 we plot such a model with a
choice of parameters that render it indistinguishable from
the best-fit WMAP5 �CDM model. It is clear that this is
not true of the EBI model where we find that there is a
strong shortage of power on small scales as well as a much
broader turnover associated to the radiation matter transi-
tion. The effect is sufficiently dramatic that we do not even
attempt to compare the EBI model to the angular power
spectrum as measured by WMAP5 [28] or the power
spectrum of galaxy fluctuations as measured by the Sloan
Digital Sky Survey (SDSS) [29] in Fig. 7—the EBI model
is not a viable candidate for a theory of structure forma-
tion—while the �EBI model is quite clearly a good
candidate.
The evolution of perturbations in the EBI model does

have an interesting feature that is worth noting. In theories
of pressureless dark matter, such as weakly interacting
massive particles, the evolution of perturbations is such
that the two gravitational potentials are effectively identi-
cal, i.e.� ¼ �. It has been pointed out that in many, if not
all, theories of modified gravity, these potentials will differ
from each other [30] and that this may be a smoking gun
for modified theories of gravity. A plethora of observatio-
nal techniques have been proposed, cross correlating gal-
axy surveys with weak lensing surveys and with

FIG. 5. The Newtonian potential combination �þ� which is
relevant to the integrated Sachs-Wolfe effect for the same set of
models A–E, plotted against �=�0, where �0 is the conformal
time today. In the upper panel we display model A (solid curve),
model B (long-dashed curve) and model C (short-dashed curve).
In the lower panel we show again model C (short-dashed curve)
to be compared with model D (dotted-dashed curve) and
model E (dotted curve). Notice that �þ� for models B–E
oscillates during the transition to de Sitter phase (which is
usually a constant-w phase), while models C–E also start to
diverse during the de Sitter phase. The presence of a bare
cosmological constant in model B seems to curb the divergence,
although the oscillation remains.

FIG. 4. The cosmic microwave background angular power
spectrum C‘ for the models described in the realistic background
evolution. The solid curve is model A (the �EBI model) which
is indistinguishable from the best-fit WMAP5 �CDM model.
The long-dashed curve is model B, the short-dashed curve is
model C, the dotted-dashed curve is model D and the dotted
curve is model E. All models have the same initial amplitude, tilt
(0.962) and nonzero optical depth to reionization (0.088) as the
best-fit WMAP5 model.
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measurements of the CMB [31] and is one of the main
science targets of up-and-coming experiments such as the
Euclid project. As pointed out in [32] such a signature is
not exclusive to modified gravity and it suffices that the
dark sector have a component that takes the form of
anisotropic stress. This is indeed what we find in this theory and specifically in the case of EBI, where S and

	 can have a substantial effect on the evolution of pertur-
bations. In Fig. 8 we illustrate this fact by plotting the
evolution of��� for a selection of models. Granted, we
have been unable to find an EBI model that fits the data and
the question still remains whether it is still possible to
constrain a fundamental theory of dark matter with���.

VI. DISCUSSION

In this paper we have explored the cosmology of the
Universe permeated by a field that obeys the Eddington-
Born-Infeld equation. As shown in [10], such a field can
play the dual role of dark matter and dark energy and
therefore supplies us with a counterpart to the Chaplygin
gas as a possible unification of the dark sector. In our
analysis we have shown that there are other regimes in
which the EBI field can play a different role, either as an
alternative to simply dark matter or as a source of energy
that can renormalize the cosmological constant.
We have then looked at the effect the EBI field has on the

growth of structure. We show that it can be described in
terms of a set of fluid variables, akin to the construction of
[27], and then identify the different key regimes. During
the dark matter dominated regime, i.e. the regime in which
wE ’ 0 and the EBI field dominates, the evolution of

FIG. 7. The cosmic microwave background angular power
spectrum C‘ (upper panel) with WMAP5 data and baryon power
spectrum PðkÞ (lower panel) for the�EBImodel with SDSS data
(model A). Both spectra are indistinguishable from the best-fit
WMAP5 �CDM model.

FIG. 8. The Newtonian potential combination ��� for the
same set of models A–E, plotted against �=�0, where �0 is the
conformal time today. In the upper panel we display model A
(solid curve), model B (long-dashed curve) and model C (short-
dashed curve). In the lower panel we show again model C (short-
dashed curve) to be compared with model D (dotted-dashed
curve) and model E (dotted curve). Notice that ��� for
models B–E oscillates during the transition to de Sitter phase
(which is usually a constant-w phase), while models C–E also
start to diverse during the de Sitter phase. The presence of a bare
cosmological constant in model B seems to curb the divergence,
although the oscillation remains.

FIG. 6. The baryon power spectrum PðkÞ for the same set of
models A–E. Once again we show model A (solid curve) which
is indistinguishable from the best-fit WMAP5 �CDM model.
The long-dashed curve is model B, the short-dashed curve is
model C, the dotted-dashed curve is model D and the dotted
curve is model E. All models have the same tilt (0.962) as the
best-fit WMAP5 model.
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perturbation is exactly as in the standard scenario in which
the dark matter field is described by massive, nonrelativ-
istic particles. The gravitational potentials are constant and
indistinguishable during this era, under the assumption that
the initial shear and entropy are negligible. Distinctive
signatures emerge in a period of accelerated expansion.
If the EBI field dominates and is responsible for cosmic
acceleration, there is a clear instability in the gravitational
potentials; they not only grow but�þ� diverges leading
very rapidly to an overwhelming integrated Sachs-Wolfe
effect on large scales. It is difficult to reconcile the angular
power spectrum of fluctuations and the power spectrum of
the galaxy distribution predicted by an EBI theory which
unifies the dark sector, with current data. If we restrict
ourselves to a regime in which the EBI field simply be-
haves as dark matter, then, as expected, we find our best-fit
model to be entirely indistinguishable from the standard,
�CDM scenario.

The EBI field can clearly play an important role in
cosmology and, in particular, as a nonparticulate form of
dark matter. Its interpretation becomes interesting if we
view the theory as bimetric and q�� as the true, geometric,

metric of space-time; it is then this metric which is inter-
preted as dark matter. This is the point of view implicit in
[8]. What we mean by the ‘‘true’’ metric of space-time is of
course open to debate. Clocks and rulers will feel g�� and

hence real geometry will be built out of it and in this case
q�� plays a purely auxiliary role as an extra field.

We would like to reemphasize that the generalized EBI
model, in which the EBI field drives cosmic acceleration,
gives us an interesting example of a theory with an exotic
signature: the mismatch between � and �. A number of
methods have been proposed to do ease out this mismatch
from current and future data sets [31]. We have found that
the EBI field can source this mismatch without modifying
gravity. This is not surprising: the EBI field is a two tensor
with four scalar degrees of freedom. One linear combina-

tion of these degrees of freedom can be seen as anisotropic
stress which can freely source the ���. It turns out that
its effect is severe enough that the integrated Sachs-Wolfe
effect generated is too extreme to be reconcilable with
current observations. But it does suggest that it may be
possible to build models which do not modify gravity,
generate accelerated expansion and could be confused
with bona fide modified theories of gravity [32].
Consistent parameterized frameworks such as [33] may
be able to provide alternative ways to distinguish such
theories and it would be interesting to find the EBI’s
predictions for these frameworks.
Finally, we would like to point out that the EBI model is

a viable alternative to the �CDM but which may have
particular features which make it stand out. As we saw in
Sec. IVB, even though the evolution of perturbations may
be equivalent to that of the CDM if one assume no pressure
perturbations and shear in the initial conditions, the non-
linear evolution will be different. Pressure perturbations
and shear will be generated at the nonlinear level and may
play a significant role in the small scale structure of gal-
axies and clusters. Indeed, one of the major problems that
�CDM has had to face is the excess of small scale power
compared to observations [34]. �EBI may have a natural
dynamical solution to this problem. This is one of the many
aspects of this theory we wish to explore further.
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