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Hall eKect in narrow channels
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Calculations of band structure and Hall resistance are performed for samples of small width in
the independent-electron approximation. In the limit of strong fields, results show several Hall pla-
teaus distorted by finite-width effects. In the low-field limit and a parabolic confinement potential,
the classical Hall resistance is always obtained. The results in the weak-field limit follow from a
partial occupation of the relevant subbands and should also be true for arbitrary shape of laterally
confining potentials.

I. INTRODUCTION

The effect of finite width and interfaces on the integer
Hall effect' is being increasingly researched recently.
Two important effects have been discovered. First the
high-Geld plateaus become distorted and asymmetric in
narrow samples. Second, another recently found
effect features a deviation from the Rz ~8 classical re-
sult; the Hall resistance is smaller than this, and is more
like Rz a-8' with s =2 or higher. This is known as the
quenching of the Hall effect.

Using the independent-electron approximation it will
be argued in this work that the proportionality Rz ~ 8 is
always obtained in the weak-field limit, for strictly one-
dimensional samples. Therefore the Hall quenching must
be due to other effects, possibly as a result of mode mix-
ing, which suppresses edge states in the vicinity of exter-
nal lead contacts. The classical result for strictly one-
dimensional channels can be traced to having a partial
occupation of the energetically overlapping subbands, a
general characteristic for any one-dimensional model in
the weak-field limit.

Any theory of these effects requires the crucial step of
selecting the model of calculating transport properties
and choosing the form for the unknown confining poten-
tial. The approach presented here is to assume external
reservoirs which. keep a constant Fermi level. Only ex-
tended states are used and only states below the Fermi
level are relevant to the Hall conductance. ' ' The
main idea behind this is that for very wide samples the
Hall conductance decreases in jumps as more Landau lev-
els are pushed above the Fermi level when 8 increases.
As far as the longitudinal conductance is concerned it is
assumed that the material acts as a perfect conductor
when EF is in a gap. This is because then there would

not be states just above EF into which electrons could
thermally or inelastically scatter. Hence the longitudinal
resistance is zero in the region in which no states cross
the Fermi level; that is, in a region of a plateau in the
Hall conductance. In this model plateaus are broadened
out by the effect of lateral confinement, since finite-width
bands instead of narrow Landau levels move above the
Fermi level as 8 increases. Hence there is no need to
have disorder or localized states to explain this effect
here. That is because confinement reduces the region
over which the plateaus are efFectively Aat, as seen in ex-
periments. "

In Sec. II the harmonic oscillator potential is adopted
for the confinement in the x direction: —,'k„x, where

k„=mcott is the spring constant. Making certain as-
sumptions about the effective width and counting of
states it is shown that reasonable results are obtained
both in the strong-8 limit and the weak-8 limit. In Sec.
III the limitations of our model are discussed.

II. HARMONIC OSCILLATOR POTENTIAL MODEL

The Hamiltonian of an electron moving in the xy plane
in the presence of a magnetic field 8 =V X A and a har-
monic confinement potential is

H= (p —eA) +—,'k„x2 .1
(2.1)

Choosing A=(O, Bx,0) one gets
2 2

H = + catt IQ2+ —,'m Q2(x —xo)2,
2m 2m

where 0 =coz+cu, and cu, =eB/m is the cyclotron fre-
quency; co„=(k„lm )' and xo=eBP Im 0 represents
the guiding center for a state with momentum P~ =Rkz.
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The term in p is entirely due to the lateral confinement

effect, because of which Landau levels become bands.
For each value of the momentum p there is then a

nondegenerate Landau spectrum of index n. In a given

level n this momentum is assumed to have a maximum

value p,„so that the filling factor for each level is then
v„=p'"'/p, „. If this ratio is equal to 1 the band is com-

pletely full, but it is partially full if it is less than 1.
It is physically clear that very large values of p lead to

energies above the Fermi energy. For an energy given by
the Fermi level Ez the value ofp'"' is given from (2.2) as

(n)

Er; (n +——' }A'Q = cori /Q
2m

(2.3)

max

n, =DN+D g v„.
n=N

(2.4)

To identify the effective width 8'we first go to the weak-
field limit B~0 or cv, /co„~0. In this limit it is not hard
to argue that a large number of Landau bands are only
Partially full (for Ez»rrrrvrr ) with none cornPletely full
(N =0). Then

The next problem at hand is to try to identify p,„,
which so far is only defined in relation to v„=p'"'/p
However as a first step we first try to find the effective
width.

The number of states per unit area for each Landau
band of index n is

pmax 12

5p WL

where 5p =h /L is the smallest possible increment in p .
Here 8'is the effective width and L is the sample length
in the y direction.

Taking N full Landau bands and the rest partially full,
the number of electrons per unit area is

However, this limit is also that of free electrons in a plane
for which

kF
n, =

4~ 4m

2mEF

fi
(2.8b)

Equating the two expressions gives
1/2

2EF

2 3 mcoR
(2.9)

is a reasonable turning point criteria when BPO.
In trying to see what happens for very strong magnetic

fields one notes that the term (p /2m)(cva/Q ) ap-
proaches zero as B~ ~ provided some limit is placed on

p . In the strong-field limit it is also valid to argue that
—W/2 & xo & W/2 so that a limit on p~ must be

~p~~ &(W/2)(m Q /eB). A justification for this is that
the correct degeneracy factor is recovered is the strong-
field limit, as follows. Indeed, using this p,„gives (in-

dependently of W)

D=m Q /eBh

which in the limit B~~ tends to

(2.1 1}

which is —, of the classical turning point value. The turn-

ing point or something close to it has been used in other
studies as well. ' '

Consider now just the classical motion of an electron in
a magnetic field and parabolic confinement potential.
Solution of the equation of motion shows that for the
same velocity of the electron starting off perpendicular to
the channel from the center, the turning point is smaller
when there is a nonzero magnetic field. The turning
point is (2E+/m Q )'~ instead of (2E+/maori )'~ . hence

' 1/2

(2.10)
mQ

n, =D

Hence

max (n)
p

n =0 pmax

max

hW „
which is independent ofp,„. This can be rewritten as

(2mE~ ) max1/2 N 1/2

n, = g 1 nx ———
8' Ace h 2

(2.5)

(2.6)

D =eB/h (2.12)

states per unit area, the usual expression. Such type of
limitation has been used in Ref. 15. The use of this max-
imum value of p in determining which bands are com-
pletely full is illustrated in Fig. 1. If

2

E~ & ( n +—,
' )fiQ+ (p,„) /2m (2.13)0

x
n=0

n, ~ (2mEF )
2 F

SYi he)R
(2.8a)

(2.7)

where x =AQ/EF and the number of terms in the sum is

X,„—1/x. The B~0 limit followed by the coR ~0 lim-

it gives x ~0. The limit in square brackets is of the form

[0X ~ ] which tends to

(1—x}' dx= —'1

0 3

Then

ihen level n is completely full. One notes that such com-
pletely full levels pnly arise in the strong-field limit. In
this limit the expression for p ax is justifiable and the first
term of (2.4) becomes important. In the weak-field limit
this selection no longer holds, but it is no longer needed
since the second term of (2.4) is independent of p,„and
the first term is zero.

The remaining problem of finding the Hall conduc-
tance is now simple. Consider Fig. 2 which shows a
block of material of height 8, width 8' and length L.
Taking into account the compensation between the Hall
field e and the Lorentz term vXB, the average drift ve-
locity is just v =e/B Current den. sity is then
J=nev =(n, /H)e(e/B) =I/2, where 2 =HW is the
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FIG. 1. This figure shows the bands corresponding to each
Landau level in the interval ( —p,„,p,„). Here n =0 is full

but n =1 and n =2 only partially occupied. Filling of partially
full bands are contemplated through a factor ofp (n)/p, „.

0.00
000 0.83 3.67h~c/E

FIG. 3. This figure shows the Hall resistance RH in units of
h/e plotted against %co, /EF for a wide channel (EF=5(Hico& ).
Well-formed Hall steps can be seen.

cross section. Hence GH=en, IB is the Hall conduc-
tance. For the very strong-field limit

n, =DN=(eBIh)N, where only the first term in (2.4) is
considered. Then the magnetic field cancels out to give

GH=(e Ih)N,

where N is the number of full levels beneath the Fermi
energy. It is this cancellation which accounts for pla-
teaus in the limit of strong fields. Results for the Hall
conductance are shown in Figs. 3 and 4 with a variable
effective width which depends on the ratio fico+ /EF. The
full expression (2.4) is used in the numerical calculations.

III. DISCUSSION

A noteworthy characteristic of these results is that RH
varies as expected from the quantum Hall step regime as
B~ac) to the classical linear dependence in the limit
B~0. For lower values of EF (narrow widths) the step
structure of the plateaus is more rounded and stretches
out over longer periods than the ideal values. The calcu-
lation is performed with just one spin per state over the

0.50—
EF =20 0 R

I
I

I

I

I

I

I

I

I

I

I!I

entire range. Hence with two spins per state in the
weak-B limit one needs to take —,

' the slope of the RB ~ B
result.

Although the procedure followed here is very different
from a Landauer multichannel approach, the results are
quite similar to those of Peeters' who also sees the steps
wash out for weak magnetic fields. The calculation uses
independent electrons and no attempt is made to include
electronic correlations or electronic polarization effects.
These would modify the effective potential. '

Semiclassical considerations play an important role in
selecting the width and limits for momentum. These
seem unavoidable when selecting limits within which
there is current. Models may differ on the precise way
this is done but we think the present method is reason-
able in this respect. For example, if no width limit at all
is taken for p, then the second term in (2.4) is the only

1.00 r

EF=& &~R

O.OO
O.OO

5(uq/ EF
1.67

FIG. 2. This figure shows a block of material with a small
height 0, width 8; and length L, through which a current den-
sity J is introduced.

FIG. 4. RH in units of h/e' plotted against Ace, /EF for
EF =2(Hier„and EF=5Aco„. This contrast shows a shift to-
wards smaller R& for the narrower channel. (See discussion in
text. )
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term. However it is equal1y clear that in that case the
strong-field limit would never be properly recovered.
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