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Abstract
We present a model of the gravitational field based on two symmetric tensors.
Gravity is affected by the new field, but if Tμν = 0, the predictions of the model
coincide exactly with general relativity, so all classical tests are satisfied. We
find that massive particles do not follow a geodesic, while massless particles
trajectories are null geodesics of an effective metric. We study the cosmological
case, where we obtain an accelerated expansion of the Universe without dark
energy.

PACS numbers: 98.80.−k, 95.36.+x, 95.35.+d

Introduction

We know that general relativity (GR) has been tested on scales larger than a millimeter to the
solar-system scale [1, 2]. Nevertheless, its quantization has proved to be difficult, though. The
theory is non-renormalizable, which prevents its unification with the other forces of nature.
Trying to make sense of quantum GR is the main physical motivation of string theories [3, 4].
Moreover, recent discoveries in cosmology have revealed that most part of matter is in the form
of unknown matter, dark matter (DM) [5–13], and that the dynamics of the expansion of the
Universe is governed by a mysterious component that accelerates the expansion, dark energy
(DE) [14–18]. Although GR is able to accommodate both DM and DE, the interpretation of
the dark sector in terms of fundamental theories of elementary particles is problematic [19].
Although some candidates exist that could play the role of DM, none have been detected
yet . Also, an alternative explanation based on the modification of the dynamics for small
accelerations cannot be ruled out [20, 21].

In GR, DE can be explained if a small cosmological constant (�) is present. In early
times, this constant is irrelevant, but at the later stages of the evolution of the Universe � will
dominate the expansion, explaining the acceleration. Such small � is very difficult to generate
in quantum field theory models, because � is the vacuum energy, which is usually very
large [22].

One of the most important mysteries in cosmology and cosmic structure formation is to
understand the nature of DE in the context of a fundamental physical theory [23, 24]. In recent
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years, there have been various proposals to explain the observed acceleration of the Universe.
They involve some additional fields in approaches such as quintessence, chameleon, vector
DE or massive gravity, the addition of higher order terms in the Einstein–Hilbert action, like
f (R) theories and Gauss–Bonnet terms, and finally the introduction of extra dimensions for a
modification of gravity on large scales (see [25]).

Less widely explored but interesting possibilities are the search for non-trivial ultraviolet
fixed points in gravity (asymptotic safety [26]) and the notion of induced gravity [27–30]. The
first possibility uses exact renormalization-group techniques [31–34] together with lattice and
numerical techniques such as Lorentzian triangulation analysis [35]. Induced gravity proposes
that gravitation is a residual force produced by other interactions.

Recently, in [36, 37] a field theory model explores the emergence of geometry by the
spontaneous symmetry breaking of a larger symmetry where the metric is absent. Previous
work in this direction can be found in [38–44].

In this paper, we present a model of gravitation that is very similar to classical GR, but
could make sense at the quantum level. In the construction, we consider two different points.
The first is that GR is finite on shell at one loop [45], so renormalization is not necessary at
this level. The second is a type of gauge theory, δ̃ gauge theories (DGT), presented in [46, 47],
whose main properties are as follows: (a) New kinds of fields are created, φ̃I , from the originals
φI . (b) The classical equations of motion of φI are satisfied in the full quantum theory. (c) The
model lives at one loop. (d) The action is obtained through the extension of the original gauge
symmetry of the model, introducing an extra symmetry that we call δ̃ symmetry, since it is
formally obtained as the variation of the original symmetry. When we apply this prescription
to GR we obtain δ̃ gravity. The quantization of δ̃ gravity is discussed in [48].

Here, we study the classical effects of δ̃ gravity at the cosmological level. For this,
we assume that the Universe only has two kinds of components, non-relativistic matter (DM,
baryonic matter) and radiation (photons, massless particles), which satisfy a fluid-like equation
p = ωρ. We will not include the matter dynamics, except by demanding that the energy–
momentum tensor of the matter fluid is covariantly conserved. This is required in order to
respect the symmetries of the model. In contrast to [49], where an approximation is discussed,
in this work we find the exact solution of the equations corresponding to the above suppositions.
This solution is used to fit the supernova data and we obtain a physical reason for the accelerated
expansion of the Universe within the model: the existence of massless particles. If massless
particles were absent, then the expansion of the Universe would be the same as in GR without
a cosmological constant. In the conclusions, we speculate on a possible physical mechanism
that could stop the accelerated expansion and prevent the appearance of a Big Rip.

Therefore, in the cosmological regime, we can say that the main properties of this model at
the classical level are as follows. (a) It agrees with GR, far from the sources and with adequate
boundary conditions. In particular, the causal structure of δ̃ gravity in vacuum is the same
as in GR. (b) When we study the evolution of the Universe, it predicts acceleration without
a cosmological constant or additional scalar fields. The Universe ends in a Big Rip, similar
to the scenario considered in [51]. (c) The scale factor agrees with the standard cosmology
at early times and shows acceleration only at later times. Therefore, we expect that density
perturbations should not have large corrections.

It was noted in [47] that the Hamiltonian of delta models is not bounded from below.
Phantom cosmological models [51, 52] also have this property, although it is unclear whether
or not this problem will subsist in a diffeomorphism-invariant model as δ̃ gravity. Phantom
fields are used to explain the expansion of the Universe. So, even if it could be said that our
model works on similar grounds, the accelerated expansion of the Universe is really produced
by a reduced quantity of a radiation component in the Universe, not by a phantom field.
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It should be remarked that δ̃ gravity is not a metric model of gravity because massive
particles do not move on geodesics. Only massless particles move on null geodesics of a linear
combination of both tensor fields.

1. δ̃ gravity action and equation of motion

Our modified model is based on a given action S0[φ], where φI are generic fields, to which
we add a new term equal to a δ̃ variation with respect to the original fields. So, we have new
fields given by δ̃φI = φ̃I and the new action is invariant under new transformations of these
new fields. This action is

S[φ, φ̃] = S0[φ] + κ2

∫
d4x

δS0

δφI(x)
[φ]φ̃I(x), (1)

where κ2 is a small arbitrary constant and the index I refers to any kind of indices. This new
action shows the standard structure which is used to define any modified element or function
for δ̃ -type models. To understand this, let us consider the Einstein–Hilbert action. This action
involves

S0[g] =
∫

d4x
√−g

(
− 1

2κ
R + LM

)
(2)

S[g] =
∫

d4x
√−g

(
− 1

2κ
R + LM + κ ′

2(G
μν − κT μν )g̃μν + κ2

2
(λμ;ν + λν;μ)T μν

)
, (3)

with κ = 8πG
c2 , κ ′

2 = κ2
2κ

, LM some matter Lagrangian and where

T μν = −2
δLM

δgμν

− gμνLM (4)

is the energy–momentum tensor. The last term in (3), depending upon the auxiliary fields λμ,
is needed to impose the condition T μν

;ν = 0 as an equation of motion in order to implement the
δ̃ symmetry (5) off shell. This term is null in vacuum. So, we have a gravitation model with
two fields, the first is just the usual gravitational field gμν and the second one g̃μν . These fields
have the following transformations:

δgμν = ξ0μ;ν + ξ0ν;μ
δg̃μν = ξ1μ;ν + ξ1ν;μ + g̃μρξ

ρ

0,ν
+ g̃νρξ

ρ

0,μ
+ g̃μν,ρξ

ρ

0

δλμ = ξ1μ + λρξ
ρ

0,μ
+ λμ,ρξ

ρ

0 , (5)

where ξ
μ

0 and ξ
μ

1 are infinitesimal contravariant vectors with ξ
μ

1 ≡ δ̃ξ
μ

0 . The modified action
given by (3) was constructed such that it is invariant under these transformations. We have
used that

δ̃δgμν = δδ̃gμν

= δg̃μν,

where g̃μν = δ̃gμν .
So, δ̃ applied to the original field(s) produces the tilde field(s) and applied to the original

infinitesimal transformations produces new transformations that involve the original fields as
well as the tilde fields. We assume that δ̃ commutes with the usual variation δ. Moreover, the
action (1) is automatically invariant under both symmetries. For more details, see [50].

Now, if we vary the fields λμ, g̃μν and gμν in (3), then we obtain respectively the equations
of motion:

T μν

;ν = 0 (6)
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Gμν = κT μν (7)

F (μν)(αβ)ρλDρDλg̃αβ = κ
δTαβ

δgμν

(g̃αβ − λα;β − λβ;α ) − 1

2

(
Rμν g̃σ

σ − Rg̃μν
)

+ κ
(
T μν ;αλα + T μνλα

;α + T μαλα
;ν + T ναλα

;μ − gμνT αβλα;β
)

(8)

with

F (μν)(αβ)ρλ = P((ρμ)(αβ))gνλ + P((ρν)(αβ))gμλ − P((μν)(αβ))gρλ − P((ρλ)(αβ))gμν

P((αβ)(μν)) = 1
4

(
gαμgβν + gανgβμ − gαβgμν

)
, (9)

where (μν) denotes that μ and ν are in a totally symmetric combination. We can see that the
Einstein equation does not change. In the application to cosmology, we assume the presence
of a perfect fluid, so Tαβ = pgαβ + (p + ρ)UαUβ , with p and ρ the pressure and density
respectively and they are given by (6). Uα is the 4-velocity of the fluid and fulfils the identity
UαUα = −1. Using this energy–momentum tensor, we obtain

δTαβ

δgμν

Sαβ = 1

2
gαβ

(
T μαSνβ + T ναSμβ

)
, (10)

with Sαβ = g̃αβ − λα;β − λβ;α . Using (7) and (10), (8) is reduced to

F (μν)(αβ)ρλDρDλg̃αβ = Gμν ;αλα + Rμνλα
;α − gμνRαβλα;β − 1

2

(
Rμν g̃σ

σ − Rμσ g̃ν
σ − Rσν g̃μ

σ

)
+ 1

2

(
Rμαλ;ν

α + Rναλ;μ
α − Rμαλν

;α − Rναλ
μ

;α
)
. (11)

Since λμ is an auxiliary field to implement that T μν is conserved, we can fix it. So, from
now we will use the gauge λμ = 0. This gauge preserves general coordinate transformations,
but fixes completely the extra symmetry such that ξ1μ = 0. Finally, the g̃μν equation is

F (μν)(αβ)ρλDρDλg̃αβ + 1
2

(
Rμν g̃σ

σ − Rμσ g̃ν
σ − Rσν g̃μ

σ

) = 0. (12)

So, if we know gμν , then we can completely determine g̃μν with this equation. Because,
outside the sources (Tμν = 0), g̃αβ ∝ gαβ is a solution to (11) and we have gαβ = ηαβ in
vacuum, our boundary conditions will be gαβ = ηαβ and g̃αβ = ηαβ far from the sources.

In order to explore the phenomenology of the model, we need to know the equation of
motion of a test particle. We discuss this in the following section.

2. δ̃ test particle action

To find the coupling of a test particle to a gravitational background field, we follow the
prescription to construct δ̃ models (1). We know that, in the standard case, the test particle
action is

S0[ẋ, g] = −m
∫

dt
√−gμν ẋμẋν . (13)

Since in our model the modified action is obtained according to (1), where in this case φI = gμν ,
the new test particle action is

S[ẋ, g, g̃] = m
∫

dt
ḡμν ẋμẋν√−gαβ ẋα ẋβ

, (14)
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where ḡμν = gμν + κ2
2 g̃μν . But (13) and (14) are useless for massless particles. To solve this

problem, we will start from

S0[ẋ, g, v] = 1

2

∫
dt(vm2 − v−1gμν ẋμẋν ), (15)

where v is a Lagrange multiplier. This action is invariant under reparametrizations

x̄μ(t̄) = xμ(t)

v̄(t̄) dt̄ = v(t) dt

t̄ = t − ε(t). (16)

From (15), we can obtain the equation of motion for v:

v = −
√−gμν ẋμẋν

m
. (17)

If we substitute (17) in (15), we recover (13). In other words, (15) is a good action that
includes the massless case. If we substitute (15) in (1) now, we obtain

S[ẋ, g, g̃, v, ṽ] = 1

2

∫
dt(vm2 − v−1(gμν + κ2g̃μν )ẋ

μẋν + κ2ṽ(m2 + v−2gμν ẋμẋν )). (18)

This action is invariant under the reparametrization transformations (16) plus ¯̃v(t̄) dt̄ = ṽ(t) dt.
So, (18) is the action that we need to generalize (14). Two Lagrange multipliers are unnecessary,
so we will eliminate one of them. The equation of motion for ṽ is

ṽ = m2 + v−2(gμν + κ2g̃μν )ẋμẋν

2κ2v−3gαβ ẋα ẋβ
. (19)

If we now replace (19) in (18), we obtain the δ̃ test particle action:

S[ẋ, g, g̃, v] = 1

4

∫
dt

(
3m2v − v−1(gμν + κ2g̃μν )ẋ

μẋν

+ m2v3

gαβ ẋα ẋβ
(m2 + v−2(gμν + κ2g̃μν )ẋ

μẋν )

)
. (20)

The equation of motion for v is still given by (17). If we substitute it in (20), then we obtain
(14). So, (20) is a good modified action to represent the trajectory of a particle in the presence
of a gravitational field, given by g and g̃, for the massive and massless cases, respectively.
Evaluating m = 0 in (15) and (20), they respectively are

S(m=0)

0 [ẋ, g, v] = −1

2

∫
dt v−1gμν ẋμẋν (21)

S(m=0)[ẋ, g, g̃, v] = −1

4

∫
dtv−1gμν ẋμẋν, (22)

with gμν = gμν + κ2g̃μν . The equation of motion for v implies that, in the usual and modified
case, a massless particle will move in a null geodesic. In the usual case, we have gμν ẋμẋν = 0,
but in our model the null geodesic is gμν ẋμẋν = 0.

On the other hand, to describe the massive case in the usual and modified models, we can
use (13) and (14), respectively. We know that (13) implies that a massive particle will move in
a typical geodesic with gμν ẋμẋν = −1, after choosing t equal to the proper time. On the other
side, the equation of motion of the modified action is more complicated; however, we can use
the same gauge, gμν ẋμẋν = −1.

To conclude, in the usual case we have

ẍμ + �μ
αβ ẋα ẋβ = 0, (23)

5
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with

�μ
αβ = 1

2 gμγ (gγα,β + gγ β,α − gαβ,γ ),

where

gμν ẋμẋν = 0 if: m = 0 (24)

gμν ẋμẋν = −1 if: m > 0. (25)

On the other hand, the equations of motion for a test particle in the modified case are

ẍμ + �μ
αβ ẋα ẋβ = 0 if: m = 0 (26)

Mμ
ν ẍν + Gμ

αβ ẋα ẋβ + Nμ
αβγ ε ẋα ẋβ ẋγ ẋε = 0 if: m > 0 (27)

with

�μ
αβ = 1

2 [g−1]μγ (gγα,β + gγ β,α − gαβ,γ )

Mμ
ν = 2ḡμ

ν + δμ
ν ḡαβ ẋα ẋβ + 2ḡνβ ẋμẋβ

Gμ
αβ = gμγ (ḡγα,β + ḡγ β,α − ḡαβ,γ )

Nμ
αβγ ε = Symαβγ ε

(
ḡβγ �μ

αε + δμ
α ḡβγ ,ε

)
,

where

gμν ẋμẋν = 0 if: m = 0 (28)

gμν ẋμẋν = −1 if: m > 0. (29)

This means that, in our model, massive particles do not move on geodesics of a four-
dimensional metric. Only massless particles move on a null geodesic of gμν . So, δ̃ gravity is
not a metric theory.

3. Distances and time intervals

In this paper, we will study photons emitted from the supernovas, so we will need the modified
null geodesic given by (28). But, it is important to observe that the proper time is defined in
terms of massive particles, so that it is necessary to reinterpret the supernova data. So, in this
section, we define the measurement of time and distances in the model.

The geodesic equation, (23), preserves the proper time of the particle along the trajectory.
Equation (27) satisfies the same property: along the trajectory, gμν ẋμẋν is constant. So, we
define proper time using the original metric gμν ,

dτ = √−gμνdxμdxν = √−g00dx0. (30)

Following [53], we consider the motion of light rays along infinitesimally near trajectories,
using (28) and (30), to obtain the three-dimensional metric:

dl2 = γi jdxidx j

γi j = g00

g00

(
gi j − gi0g j0

g00

)
. (31)

Therefore, we measure proper time using the metric gμν , but the space geometry is
determined by both tensor fields, gμν and g̃μν . These considerations are fundamental to explain
the expansion of the Universe with δ̃ gravity. In the following section, we will see this in detail.

6
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4. FRW and photon trajectory

To describe the supernova data, we must use the FRW metric. When a photon emitted from the
supernova travels to the Earth, the Universe expands. This means that the photon is affected
by the cosmological Doppler effect. So the metric g is

gμν =

⎛
⎜⎜⎝

−c2 0 0 0
0 R2(t) 0 0
0 0 R2(t)r2 0
0 0 0 R2(t)r2 sin2(θ )

⎞
⎟⎟⎠ , (32)

where R(t) is the scale factor that depends on the time parameter t. Assuming an isotropic and
homogeneous Universe, we can use the following ansatz for g̃:

g̃μν =

⎛
⎜⎜⎝

−c2Ã(t) 0 0 0
0 B̃(t) 0 0
0 0 B̃(t)r2 0
0 0 0 B̃(t)r2 sin2(θ )

⎞
⎟⎟⎠ . (33)

So, g̃only has two independent functions, Ã(t) and B̃(t), that depend on the time parameter
t just like R(t). We know that the Einstein equations lead to(

Ṙ(t)

R(t)

)2

= κ

3

∑
i

ρi(t) (34)

ρ̇i(t) = −3Ṙ(t)

R(t)
(ρi(t) + pi(t)) (35)

with ḟ (t) = d f
dt (t). But now we have additional equations arising from those of g̃μν given by

(11). These equations are

Ṙ(t)

R(t)
˙̃B(t) − Ṙ2(t)

R2(t)
B̃(t) − R̈(t)

R(t)
B̃(t) − Ṙ2(t)Ã(t) = 0 (36)

¨̃B(t) − Ṙ(t)

R(t)
˙̃B(t) − 2

R̈(t)

R(t)
B̃(t) − R(t)Ṙ(t) ˙̃A(t) − R(t)R̈(t)Ã(t) − 2Ṙ2(t)Ã(t) = 0. (37)

To solve the system (34)–(37), we need equations of state which relate ρi(t) and pi(t), for
which we take pi(t) = ωiρi(t). Since we wish to explain DE with δ̃ gravity, we will assume that
in the Universe we only have non-relativistic matter (cold DM, baryonic matter) and radiation
(photons, massless particles). So, we will require two equations of state. For non-relativistic
matter, we use pM(t) = 0 and for radiation pR(t) = 1

3ρR(t), where we have assumed that their
interaction is null. Replacing in (34)–(37) and solving them, we find the exact solution:

ρ(t) = ρM(t) + ρR(t)

= H2
0 �R

κC4

X (t) + 1

X4(t)
(38)

p(t) = 1

3
ρR(t)

= H2
0 �R

3κC4

1

X4(t)
(39)

√
X (t) + 1(X (t) − 2) = 3H0

√
�R

2C2
t − 2 (40)

7



Class. Quantum Grav. 30 (2013) 085002 J Alfaro and P González

Ã(t) = − l̄

κ2C
5
2

√
X (t) + 1

X (t)(3X (t) + 4)2
(41)

B̃(t) = −R2
eq

l̄

4κ2C
5
2

X (t)
√

X (t) + 1

3X (t) + 4
(42)

X (t) = R(t)

Req
, (43)

where Req is the scale factor at matter-radiation equality, that is, ρM(teq) = ρR(teq), l̄ is an
arbitrary parameter, C = �R

�M
, and �R and �M are the radiation and non-relativistic matter

density in the present, respectively, with �M = 1 − �R. We know that �R � 1, so �M ∼ 1
and C � 1. By definition, X (t) � 1 describes the non-relativistic era and X (t) � 1 describes
the radiation era.

Since we have the cosmological solution of the δ̃ gravity action now, we can analyze the
trajectory of a supernova photon when it is traveling to the Earth. For this, we use (28) in a
radial trajectory from r1 to r = 0. So, we have

−(1 + κ2Ã(t))c2dt2 + (R2(t) + κ2B̃(t)) dr2 = 0.

In the usual case, we have that cdt = −R(t) dr. In the δ̃ gravity case, we define the modified
scale factor

R̃(t) =
√

R2(t) + κ2B̃(t)

1 + κ2Ã(t)
(44)

such that cdt = −R̃(t) dr now. With this definition, we obtain that

r1 = c
∫ t0

t1

dt

R̃(t)
. (45)

If a second wave crest is emitted at t = t1 + �t1 from r = r1, then it will reach r = 0 at
t = t0 + �t0, so

r1 = c
∫ t0+�t0

t1+�t1

dt

R̃(t)
. (46)

Therefore, for �t1, �t0 small, which is appropriate for light waves, we obtain

�t0
�t1

= R̃(t0)

R̃(t1)
. (47)

Since t is the proper time according to (30), we have that

�ν1

�ν0
= R̃(t0)

R̃(t1)
, (48)

where ν0 is the light frequency detected at r = 0, corresponding to a source emission at
frequency ν1. So, the redshift is now

1 + z(t1) = R̃(t0)

R̃(t1)
. (49)

We see that R̃ (t) replaces the usual scale factor R(t) in the calculation of z. This means that
we need to redefine the luminosity distance too. For this, let us consider a mirror of radius b
that receives light from our distant source at r1. The photons that reach the mirror are inside a
cone of half-angle ε with origin at the source.

8
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Let us compute ε. The path of the light rays is given by �r(ρ) = ρn̂ +�r1, where ρ > 0 is a
parameter and n̂ is the direction of the light ray. Since the mirror is in �r = 0, then ρ = r1 and
n̂ = −r̂1 +�ε, where ε is the angle between −�r1 and n̂ at the source, forming a cone. The proper
distance is determined by the three-dimensional metric (31), so we obtain b = R̃(t0)r1ε. Then,
the solid angle of the cone is

�� =
∫ 2π

0
dφ

∫ ε

0
sin(θ )dθ = 2π(1 − cos(ε))

= πε2 = A

r2
1R̃2(t0)

,

where A = πb2 is the proper area of the mirror. This means that ε = b
r1R̃(t0)

. So, the fraction
of all isotropically emitted photons that reach the mirror is

f = ��

4π
= A

4πr2
1R̃2(t0)

.

We know that the apparent luminosity, l, is the received power per unit mirror area.
Power is energy per unit time, so the received power is P = hν0

�t0
f , where hν0 is the energy

corresponding to the received photon, and the total emitted power by the source is L = hν1
�t1

,
where hν1 is the energy corresponding to the emitted photon. Therefore, we have that

P = R̃2(t1)

R̃2(t0)
L f

l = P

A

= L
R̃2(t1)

R̃2(t0)

1

4πr2
1R̃2(t0)

,

where we have used that �t0
�t1

= ν1
ν0

= R̃(t0)

R̃(t1)
. On the other hand, we know that, in a Euclidean

space, the luminosity decreases with distance dL according to l = L
4πd2

L
. Therefore, using (45),

the luminosity distance is

dL = R̃2(t0)

R̃(t1)
r1

= c
R̃2(t0)

R̃(t1)

∫ t0

t1

dt

R̃(t)
. (50)

Moreover, we can use (40) to change the t variable for Y = CX (t) = R(t)
R(t0)

(the scale factor

normalized to one in the present), and then define Ỹ = R̃(t)
R(t0)

. Using (41) and (42) in (44), we
obtain

Ỹ [Y,C, l̄] = Y

√
(3Y + 4C)(4CY (3Y + 4C) − l̄

√
Y + C)

4C(Y (3Y + 4C)2 − l̄
√

Y + C)
. (51)

We note that Ỹ ∼ Y in the radiation era, that is, Y � C, so the Universe evolves normally in
the beginning of the Universe, without differences with the usual gravity. But when Y � C,
Ỹ � Y and we will have a Big Rip, i.e. Ỹ = ∞, when the denominator is null. That is

Y ∼
(

l̄
9

) 2
5
. We will give more details for this when we will study the supernova data. Now,

with all our definitions, the luminosity distance is reduced to

dL = c

√
C

H0
√

�R

Ỹ 2
0 [C, l̄]

Ỹ [Y,C, l̄]

∫ 1

Y

Y ′dY ′

Ỹ [Y ′,C, l̄]
√

Y ′ + C
(52)

9
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with Ỹ0[C, l̄] = Ỹ [1,C, l̄]. This means that the distances will be different now. In the usual
case, we have

dL = c

Y H0

∫ 1

Y

dY ′√
��Y ′4 + �MY ′ + �R

, (53)

where �� = 1 −�M −�R is the DE density in the present. We will use (53) to compare both,
a Universe with DE and our modified gravitation model, with the supernova data.

Finally, we note that (40) gives us the time coordinate. In the new notation, it is

t = 2C
1
2

3H0
√

�R
(
√

Y + C (Y − 2C) + 2C
3
2 ). (54)

Therefore, it is possible to obtain a different age of the Universe. A different perception of the
distances implies a different perception of time. All these differences arise as a consequence
of the modified trajectory of photons.

5. Analysis and results

Before we analyze the data, we will define the parameters to be determined. In the usual gravity,
dL depends upon four parameters: Y , H0 = 100h km s−1 Mpc−1, �M and �R according to (53).
However, the CMB black body spectrum give us the photons density in the present, �γ , and if

we assume that �R = �γ +�ν =
(

1 + 3
(

7
8

) (
4
11

)4/3
)

�γ , then we obtain h2�R = 4.15×10−5.

Therefore, the parameters in dL can be reduced to three: Y , h and h2�M . For the same reasons,
in our modified gravity, dL depends only on three parameters: Y , C and l̄, as shown in (52).
We use H0

√
�R = 0.644 km s−1 Mpc−1

The supernova data give the apparent magnitude as a function of redshift. For this reason,
it is useful to use z instead of Y . So, we have the following.

In the usual gravity,

m[z, h, h2�M] = M + 5 log10

(
dL[z, h, h2�M]

10 pc

)
(55)

dL[z, h, h2�M] = c(1 + z) Mpc s

100 km

∫ 1

1
1+z

dY ′√
(h2 − h2�M − h2�R)Y ′4 + h2�MY ′ + h2�R

(56)

Y (z) = 1

1 + z
. (57)

In our modified gravity,

m[z,C, l̄] = M + 5 log10

(
dL[z,C, l̄]

10 pc

)
(58)

dL[z,C, l̄] = c(1 + z)

√
CỸ0[C, l̄]

H0
√

�R

∫ Y (z)

1

Y ′dY ′

Ỹ [Y ′,C, l̄]
√

Y ′ + C
(59)

Ỹ [Y (z),C, l̄] = Ỹ0[C, l̄]

1 + z
, (60)

where m is the apparent magnitude and M is the absolute magnitude, common to all supernova,
so it is constant. To find Y (z), we must solve (60) using (51), numerically. Now we will
introduce the statistical method to fit the data.

10
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We interpret errors in data by the variance σ in a normally distributed random variable.
If we are fitting a function y(x) to a set of points (xi, yi) with errors (σxi, σyi), then we must
minimize [54]

χ2(per point) = 1

N

N∑
i=1

(yi − y(xi))
2

σ 2
f i

σ 2
f i = σ 2

yi + y′(xi)
2σ 2

xi,

where N is the number of data points. In our case, we want to fit the data (zi, mi) with errors
(σzi, σmi) to the model

m(z) = M + 5 log10

(
dL(z)

10pc

)
.

Therefore, we must minimize

χ2(per point) = 1

N

N∑
i=1

(mi − m(zi))
2

σ 2
mi + (

dm
dz (zi)

)2
σ 2

zi

. (61)

Now, we can proceed to analyze the supernova data given in [55] with N = 162 supernovas.
In both cases, dL is given by an exact expression, but we need to use a numeric method to
solve the integral and fit the data to determinate the optimum values for the parameters that
represent the m v/s z of the supernova data. The parameters that minimize (61) are as follows.

In the usual gravity : h = 0.6603 ± 0.0078 and h2�M = 0.096 ± 0.014

with χ2(per point) = 1.033.

In our modified gravity : l̄ = 34.42 ± 4.27 and C = (3.61 ± 0.21) × 10−4

with χ2(per point) = 1.029.

For this, we used mathematica 7.0.1 With these values, we can calculate the age of the
Universe. We know that, in the usual case, it is 1.37 × 1010 years, but that in our model it is
given by (54). Substituting the corresponding values for l̄, C and taking Y = R(t)

R(t0 )
= 1, we

obtain 1.92 × 1010 years. Finally, we can calculate when the Big Rip will happen. For this,
we need Y when Ỹ = R̃(t)

R(t0 )
= ∞. That is Y = 1.71, so tBig Rip = 4.3 × 1010 years. Therefore,

the Universe has lived almost half of its life. Phantom fields also produce a cosmological model
that has this property [51, 52]. In the δ̃ gravity model, we can avoid a Big Rip at later time
by a mechanism that gives masses to all massless particles. Some options are quantum effects
(which are finite in this model) or massive photons due to superconductivity [56] which could
happen at very low temperatures, which are natural at the later stages of the expansion of the
Universe.

Conclusions

We have proposed a modified gravity model with good properties at the quantum level. It is
finite on shell in the vacuum and only lives at one loop. It incorporates a new field g̃μν that
transforms correctly under general coordinate transformation and exhibits a new symmetry:
the δ̃ symmetry. The new action is invariant under these transformations. We call this new

1 To minimize (61) we used FindMinimum. To estimate the uncertainties for the best-fit parameters we used
NonlinearModelFit command. See the Mathematica 7.0 help for more details.
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gravity model δ̃ gravity. A quantum field theory analysis of δ̃ gravity has been developed
[48, 49].

In this paper, we study the classical effects in a cosmological setting. To this end, we
require to set up the following two issues. First, we need to find the equations for δ̃ gravity.
One of them is Einstein’s equation, which gives us gμν , and the other equation is (8) to solve
for g̃μν . Second, we need the modified test particle action. This action, (20), incorporates the
new field g̃μν . We obtain that a photon, or a massless particle, moves in a null geodesic of
gμν = gμν + κ2g̃μν and that a massive particle is governed by the equation of motion (27).
With all this basic setup, we can study any cosmological phenomenon.

In [49], it was shown that δ̃ gravity predicts an accelerated expansion of the Universe
without a cosmological constant or additional scalar fields by using an approximation
corresponding to small redshift. We find in this work an exact expression for the cosmological
luminosity distance and verify that δ̃ gravity does not require dark energy. With this exact
expression, we could also study very early phenomena in the Universe, for example inflation
and the CMB power spectrum. This work is in progress.

On the other hand, photons move on a null geodesic of g, so we can define a new scale
factor R̃(t). If we assume that the Universe only has non-relativistic matter and radiation, then
we can obtain an exact expression for R̃(t). It is clear in (51) that 1 � C 
= 0 is necessary to
obtain an accelerated expansion of the Universe. Therefore, a minimal component of radiation
explains the supernova data without dark energy. In this way, in this model, the accelerated
expansion of the Universe can be understood as geometric effect.

Finally, we calculate the age of the Universe. We find that the Universe has lived a bit
longer than in GR. This is not a contradiction, but rather a re-interpretation of the observations.
This result is a consequence of the new equation of motion for the photons. This model ends
in a Big Rip and we calculate when it will happen. The Universe has lived almost half of its
life. Even though the Big Rip could be seen as a problem, we observe that other cosmological
models share this property too [51, 52]. Nevertheless, in our case, we have some way outs
from the Big Rip. For example, the appearance of quantum effects or massive photons at
times close to the Big Rip, by effects similar to superconductivity [56]. These effects could
occur at very low temperatures which are common at the later stages of the evolution of the
Universe.
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