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Vector (�) and pseudoscalar (�b) bottonium ground states are studied at finite temperature in the

framework of thermal Hilbert moment QCD sum rules. The mass, the onset of perturbative QCD in the

complex squared energy plane, s0, the leptonic decay constant, and the total width are determined as a

function of the temperature. Results in both channels show very little temperature dependence of the mass

and of s0, in line with expectations. However, the width and the leptonic decay constant exhibit a very

strong T dependence. The former increases with increasing temperature, as in the case of light- and heavy-

light-quark systems, but close to the critical temperature Tc and for T=Tc ’ 0:9 it drops dramatically,

approaching its value at T ¼ 0, as obtained recently in this framework for charmonium states. The

leptonic decay constant is basically a monotonically increasing function of the temperature, also as

obtained in the charmonium channel. These results are interpreted as the survival of these bottonium states

above Tc, in line with lattice QCD results.
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I. INTRODUCTION

The abundant literature on the extension of the method
of QCD sum rules (QCDSR) [1] to finite temperature [2]
leads to the following scenario. In the complex squared
energy s plane, Cauchy’s theorem allows us to relate
hadronic parameters, e.g. masses, couplings and widths,
to QCD parameters such as vacuum condensates and s0,
the onset of perturbative QCD (PQCD). For light-quark
and heavy-light-quark systems s0ðTÞ and the current cou-
pling fðTÞ have been found to be monotonically decreasing
functions of T, with the width �ðTÞ increasing substantially
with increasing temperature, and the mass showing a small
increase or decrease, depending on the channel (for recent
results see [3] and references therein). This behavior is
consistent with quark-gluon deconfinement and chiral
symmetry restoration at a critical temperature Tc ’
200 MeV. In fact, as s0ðTÞ approaches the hadronic thresh-
old, poles and resonances begin to disappear from the
spectrum as the coupling decreases and the width in-
creases. The thermal behavior of the mass is irrelevant in
this scenario, as it only provides information on the real
part of the Green function. An intriguing exception has
been the results in the charmonium channel [4,5], where
the vector (J=c ), scalar (�c), and pseudoscalar (�c)
ground states appear to survive beyond Tc. Indeed, the
width of these states initially increases with temperature,
but it reverses this trend close to Tc, where it decreases
dramatically, approaching its value at T ¼ 0. The coupling
is basically a monotonically increasing function of T.
These results are in qualitative agreement with lattice
QCD (LQCD) [6]. A quantitative, point by point compari-
son is not feasible, as the definition of the critical tempera-
ture, and of the deconfinement parameter in LQCD, is
different from that in QCDSR. Nevertheless, keeping this

difference in mind, it is rewarding to find such a qualitative
agreement.
In this paper we extend the QCDSR analysis of charmo-

nium [4,5] to ground state bottonium in the vector (�) and
the pseudoscalar (�b) channels. This is particularly rele-
vant in view of LQCD results for the temperature depen-
dence of the � and the �b width [7]. It would probably be
the first time that a T-dependent parameter determined
from QCDSR could be directly compared with that from
LQCD. Our results for the thermal mass and PQCD thresh-
old in both channels show a very slight decrease with
increasing temperature. Such a behavior was already
obtained for charmonium [4,5], and it is due to s0ð0Þ being
very close to the hadronic/QCD threshold. The T depen-
dence of the width and coupling of� and �b also resemble
that of the J=c and �c, respectively, thus suggesting the
survival of bottonium beyond Tc. In fact, we find that the
thermal behavior of �ðTÞ as a function of T=Tc, in both
bottonium channels, is in qualitative agreement with
LQCD results, as after increasing at first, it then drops
dramatically near T ’ Tc. It should be recalled that in the
QCDSR approach, once s0ðTÞ reaches the hadronic/QCD
threshold there are no longer solutions to the sum rules, as
there is no support for the hadronic/QCD integrals which
vanish identically. It must also be kept in mind that in
applications of QCDSR for heavy-heavy-quark systems Tc

is basically determined by the vanishing of the gluon
condensate. Given these differences with LQCD it is
reassuring to find agreement on the qualitative temperature
behavior of the width.

II. QCD SUM RULES

In order to study vector and pseudoscalar bottonium we
consider the thermal current correlator
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�ðq2; TÞ ¼ i
Z

d4xeiqx�ðx0Þhhj½JðxÞ; J y ð0Þ�jii; (1)

where JðxÞ ¼ : �QðxÞ�QðxÞ:, with � ¼ �� (� ¼ �5) for the

vector (pseudoscalar) channel, andQðxÞ is the heavy-quark
field. The vacuum to vacuum matrix element above is the
Gibbs average

hhA � Bii ¼ X
n

exp ð�En=TÞhnjA � Bjni=Trðexp ð�H=TÞÞ;

(2)

where jni is any complete set of eigenstates of the (QCD)
Hamiltonian H. We adopt the quark-gluon basis, as this
allows for a straightforward and smooth extension of the
QCD sum rule method to finite temperature [2]. In the case
of heavy-quark systems it has been customary to use
Hilbert moment QCD sum rules [1], e.g. in the vector
channel (requiring a once subtracted dispersion relation)

’NðQ2
0; TÞ �

1

N!

�
� d

dQ2

�
N
�ðQ2; TÞjQ2¼Q2

0

¼ 1

�

Z 1

0

ds

ðsþQ2
0ÞðNþ1Þ Im�ðs; TÞ; (3)

where N ¼ 1; 2; . . . , and Q2
0 � 0 is an external four-

momentum squared to be considered as a free parameter
[8]. Using Cauchy’s theorem in the complex squared en-
ergy s plane, leading to quark-hadron duality, the Hilbert
moments become finite energy QCD sum rules [1], i.e.

’NðQ2
0; TÞjHAD ¼ ’NðQ2

0; TÞjQCD; (4)

where the hadronic and the QCD moments are

’NðQ2
0; TÞjHAD � 1

�

Z s0ðTÞ

0

ds

ðsþQ2
0ÞðNþ1Þ Im�ðs; TÞjHAD;

(5)

’NðQ2
0; TÞjQCD � 1

�

Z s0ðTÞ

4m2
b

ds

ðsþQ2
0ÞðNþ1Þ Im�PQCDðs; TÞ

þ ’NðQ2
0; TÞjNP; (6)

withmb the bottom-quark mass, Im�PQCDðs; TÞ the PQCD
spectral function, and ’NðQ2

0; TÞjNP the nonperturbative

moments involving vacuum condensates in the operator
product expansion (OPE) of the current correlator. For
heavy-heavy-quark Green functions the gluon condensate
is the leading term in this expansion. In the sequel, the
quark mass is considered independent of the temperature, a
good approximation [9] for T < 200–250 MeV.

Starting with the vector channel, the hadronic spectral
function is parametrized as usual in terms of the ground
state resonance, i.e. �ð1SÞ, followed by a continuum given
by PQCD starting at a threshold s0, the radius of the
integration contour in the complex s plane. At finite
temperature this ansatz is a much better approximation
than at T ¼ 0 because s0ðTÞ is expected to decrease

monotonically with increasing temperature. The ground
state must be considered in finite width, � ¼ �ðTÞ, as
this is a crucial parameter providing information on de-
confinement. The hadronic Hilbert moments then become

’NjVðQ2
0; TÞjHAD

¼ 2

�
f2VðTÞMVðTÞ�VðTÞ

Z s0ðTÞ

0

ds

ðsþQ2
0ÞNþ1

� 1

½s�M2
VðTÞ�2 þM2

VðTÞ�2
VðTÞ

; (7)

where the leptonic decay constant is defined as

h0jV�ð0ÞjVðkÞi ¼
ffiffiffi
2

p
MVfV��: (8)

At finite temperature there is, in principle, an additional
hadronic contribution [4,5] arising from a cut centered
at the origin in the complex energy ! plane, of length
�jqj � ! � þjqj, with spacelike q2 ¼ !2 � q2 < 0.
This is interpreted as arising from the vector current
scattering off heavy-light-quark pseudoscalar mesons
(B mesons). It has been shown in [4] for the case of
charmonium that this term is exponentially suppressed.
Given the mass gap between charmonium and bottonium,
this term is absolutely negligible here. Turning to the QCD
sector, the PQCD moments in the timelike (annihilation)
region, ’a

NðQ2
0; TÞjPQCD, are [4]

’a
NjVðQ2

0; TÞjPQCD
¼ 1

8�2

Z s0ðTÞ

4m2
b

ds

ðsþQ2
0ÞNþ1

vðsÞ½3� vðsÞ2�

�
�
1� 2nF

���������
ffiffiffi
s

p
2T

��������
��

; (9)

where v2ðsÞ ¼ 1� 4m2
b=s, s ¼ !2 � q2 � 4m2

b, and

nFðzÞ ¼ ð1þ ezÞ�1 is the Fermi thermal function. In the
spacelike region there is a non-negligible contribution
from the center cut in the complex energy plane,
’s

NðQ2
0; TÞjPQCD, given by [4]

’s
NjVðQ2

0; TÞjPQCD ¼ 2

�2

1

ðQ2
0ÞNþ1

�
m2

bnFðmb=TÞ

þ 2
Z 1

mb

ynFðy=TÞdy
�
: (10)

As in all applications of QCD sum rules at finite tempera-
ture, we consider all QCD correlation functions only to
leading order in PQCD (one-loop approximation). In fact,
QCD sum rules are valid in the whole range 0 � T � Tc, a
region where thermal PQCD beyond one-loop order is not
valid. In fact, the strong coupling �sðQ2; TÞ involves two
scales, �QCD as well as Tc, so that PQCD is expected to be

valid for Q2 � �2
QCD, as well as for T > Tc. This two-

scale problem was identified long ago [2], but it remains
unsolved. From a practical point of view this has very
limited impact on thermal QCD sum rule applications, as
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results are not intended to be of high precision. In addition,
by determining the ratio of parameters at finite and at zero
T as a function of T=Tc, one effectively minimizes the
uncertainty.

The Hilbert moments of the leading nonperturbative
correction in the OPE, i.e. the gluon condensate, are given
by [8]

’NjVðQ2
0; TÞjNP

¼ � 1

3

2NNðN þ 1Þ2ðN þ 2ÞðN þ 3ÞðN � 1Þ!
ð2N þ 5Þð2N þ 3Þ!!

� 1

½4m2
bð1þ 	Þ�Nþ2

F

�
N þ 2;� 1

2
; N þ 7

2
; 


�

�
�
�s

�
G2

�
T
; (11)

where

Fða; b; c; zÞ ¼ X1
N¼0

ðaÞNðbÞN
ðcÞN

zN

N!
(12)

is the hypergeometric function with ðaÞN ¼ aðaþ 1Þ�
ðaþ 2Þ . . . ðaþ N � 1Þ, 	 � Q2

0

4m2
b

, 
 � 	
1þ	 , and h�s

� G2iT
is the thermal gluon condensate, i.e. the dimension d ¼ 4
leading term in the OPE. At finite temperature there are, in
principle, additional contributions to the OPE arising from
nondiagonal (Lorentz noninvariant) condensates. Both
gluonic and nongluonic terms can be safely ignored, as
discussed in detail in [4].

Turning to the pseudoscalar channel, the hadronic
Hilbert moments, requiring now a twice-subtracted disper-
sion relation, are

’NjPðQ2
0; TÞjHAD ¼ 2

�
f2PðTÞM3

PðTÞ�PðTÞ

�
Z s0ðTÞ

0

ds

ðsþQ2
0ÞNþ2

� 1

½s�M2
PðTÞ�2 þM2

PðTÞ�2
PðTÞ

;

(13)

where the leptonic decay constant is defined as

h0jJ5ð0Þj0i ¼
ffiffiffi
2

p
fPM

2
P: (14)

The PQCD moments corresponding to the timelike
(annihilation) region become

’a
NjPðQ2

0; TÞjPQCD ¼ 3

8�2

Z s0ðTÞ

4m2
b

ds

ðsþQ2
0ÞNþ2

svðsÞ

�
�
1� 2nF

� ffiffiffi
s

p
2T

��
: (15)

The PQCD contribution in the spacelike (scattering) region
vanishes identically, as shown in [5]. The corresponding
hadronic term is loop suppressed, as it would involve a

two-loop diagram instead of a tree-level one. The Hilbert
moments of the gluon condensate are now

’NjPðQ2
0;TÞjNP¼� 3

8�2

2ðNþ1ÞN!

ð4m2
bÞðNþ1Þ

1

ð1þ	ÞNþ2

�ðNþ1ÞðNþ2ÞðNþ3ÞðNþ4Þ
ð2Nþ5Þð2Nþ3Þ!!

�
�
F

�
Nþ2;�3

2
;Nþ7

2
;


�

� 6

Nþ4
F

�
Nþ2;�1

2
;Nþ7

2
;


��
�ðTÞ;

(16)

where

�ðTÞ � 4�2

9

1

ð4m2
bÞ2

�
�s

�
G2

�
ðTÞ: (17)

III. RESULTS AND CONCLUSIONS

We follow closely the procedure employed previously to
analyze charmonium in the vector channel [4], as well as in
the scalar and pseudoscalar channels [5]. The PQCD
threshold s0ðTÞ and the parameter Q2

0 are obtained from

the QCD ratio

’NðQ2
0; TÞjQCD

’Nþ1ðQ2
0; TÞjQCD

¼ ’Nþ1ðQ2
0; TÞjQCD

’Nþ2ðQ2
0; TÞjQCD

; (18)

where ’NðQ2
0; TÞjQCD ¼ ’NðQ2

0; TÞjPQCD þ ’NðQ2
0; TÞjNP.

A posteriori, this ratio, and therefore s0ðTÞ, is fairly
insensitive to Q2

0 in a very wide range. These equations

hold in the zero-width approximation, which remains valid
even if the width were to increase with temperature by 3
orders of magnitude, say from �ð0Þ ’ 100 KeV to �ðTÞ ’
300 MeV. The hadron mass follows from

’1ðQ2
0; TÞjHAD

’2ðQ2
0; TÞjHAD

¼ ’1ðQ2
0; TÞjQCD

’2ðQ2
0; TÞjQCD

; (19)

and the width follows from

’1ðQ2
0; TÞjHAD

’3ðQ2
0; TÞjHAD

¼ ’1ðQ2
0; TÞjQCD

’3ðQ2
0; TÞjQCD

: (20)

Finally, the coupling is obtained e.g. from

’1ðQ2
0; TÞjHAD ¼ ’1ðQ2

0; TÞjQCD: (21)

We begin this procedure at T ¼ 0 in order to confront
results with experimental data and thus check the
accuracy of the method. As input values of the various
parameters we use a bottom-quark pole mass [10,11]
mbðmbÞ ¼ 4:65 GeV, which gives a PQCD threshold sth ¼
4m2

b ¼ 86:5 GeV2, and a gluon condensate [12]

h�s

� G2iT¼0 ¼ 0:005 GeV4, allowing for a 50% uncertainty.

In the vector channel (�) the sum rules at T ¼ 0 give
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s0ð0Þ¼95:3GeV2 [
ffiffiffiffiffiffiffiffiffiffiffi
s0ð0Þ

p ¼9:76GeV], MVð0Þ ¼ 9:6 GeV
to be compared with the experimental value MVð0ÞjEXP ¼
9:46 GeV, �Vð0Þ ¼ 54 KeV, identical to its experimen-
tal value, and fVð0Þ ¼ 180 MeV. These results are for
Q2

0 ¼ 10 GeV2; varying it in the range Q2
0 ¼ 1–20 GeV2

changes the output by less than 5%. In the pseudoscalar
channel (�b) the solutions give s0ð0Þ ¼ 88:6 GeV2

[
ffiffiffiffiffiffiffiffiffiffiffi
s0ð0Þ

p ¼ 9:41 GeV], MPð0Þ ¼ 9:4 GeV to be compared
with the experimental value MPð0ÞjEXP ¼ 9:39 GeV,
�Pð0Þ ¼ 50 KeV, not known from experiment, and
fPð0Þ ¼ 90 MeV. The parameter Q2

0 was varied in the

rangeQ2
0 ¼ 0–10 GeV2, with stable results as in the vector

channel. One should notice that s0ð0Þ in both channels is
very close to the hadronic threshold sthjHAD ’ M2

V;P, as

well as to the QCD threshold sthjQCD ¼ 4m2
b. From expe-

rience in the charmonium system this means that at finite T
the PQCD threshold s0ðTÞ and the hadron mass MðTÞ are
expected to change very little with temperature. Once s0ðTÞ

FIG. 1. The ratios of hadron masses, MðTÞ=Mð0Þ, against
T=Tc in the vector channel (�) [curve (a)] and in the pseudo-
scalar channel (�b) [curve (b)].

FIG. 2. The ratios s0ðTÞ=s0ð0Þ against T=Tc in the vector
channel (�) [curve (a)] and in the pseudoscalar channel (�b)
[curve (b)].

FIG. 3. The ratio of width to temperature, �VðTÞ=T, against
T=Tc in the vector channel (�).

FIG. 4. The ratio �PðTÞ=T against T=Tc in the pseudoscalar
channel (�b).

FIG. 5. The ratio of the couplings fðTÞ=fð0Þ against T=Tc in
the vector channel (�) [curve (a)] and in the pseudoscalar
channel (�b) [curve (b)].
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decreases to sth close to T ¼ Tc the moment integrals
vanish; thus, the region above Tc cannot be explored with
this method.

Turning on the temperature, the only additional input
quantity is the thermal gluon condensate for which we use
a recent smooth fit [3] to the LQCD data of [13]

h�sG
2iT

h�sG
2iT¼0

¼ 1� a

�
T

Tc

�
�
; (22)

where a ¼ 1:015 and� ¼ 3:078. Results for the mass ratio
MðTÞ=Mð0Þ and for the PQCD threshold ratio s0ðTÞ=s0ð0Þ
as a function of T=Tc are shown in Figs. 1 and 2, respec-
tively. As expected, there is a very small change with
increasing T, as s0ð0Þ is quite close to threshold. Indeed,
at T=Tc ’ 1, s0ðTÞ=s0ð0Þ ’ 0:91ð0:98Þ, for the vector
(pseudoscalar) channel, translating in both cases into the
same final value s0ðTcÞ ¼ 4m2

b. In contrast, the behavior of

the width and leptonic decay constant is quite different, as
shown in Figs. 3–5. We plot the ratio �ðTÞ=T versus T=Tc

for the � in Fig. 3, and for the �b in Fig. 4, to facilitate a
comparison with LQCD results which have used these
axes [7]. There is a remarkable qualitative agreement
between both methods, once we take into account the
different conceptual meanings and numerical values of
the critical temperature. As in the charmonium channel
[4,5], these results, together with those for the leptonic
decay constants shown in Fig. 5, strongly suggest the
survival of � and �b beyond Tc.
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