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Three different quantifiers, entanglement of formation (ENT), quantum discord (QD), and measurement-induced
disturbance (MID), are used to measure the quantum correlations of two qubits in a common squeezed bath. A
subspace was found for initial conditions in a squeezed bath, where the system experiences no decoherence. We
relate the three measurements with the “distance” from the initial condition to the decoherence free subspace, in
order to study the effect of the decoherence in the quantum correlations. We show examples of a system with
quantum correlations even when entanglement is null. Furthermore, we study the necessary conditions for the
system to become truly classical. We found that, under certain initial conditions and at specific times, the system
becomes classical and both the QD and theMID vanish, thus observing the phenomena of sudden death and revival
of the quantum correlations. Finally, we observe discontinuities in the QD. © 2012 Optical Society of America
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1. INTRODUCTION
The phenomenon of decoherence is caused when, in nature,
an initially pure state interacts, intentionally or unexpectedly,
with the environment (other quantum degrees of freedom).
The system loses information to the environment, resulting
a nonunitary evolution [1–3] of the reduced density matrix
of the system, which becomes a mixed state. This process,
named decoherence, has the undesired effect of producing
the death or degrading of the entanglement. The entangle-
ment is useful for diverse tasks, such as teleportation [4],
cryptography [5,6], and quantum computation. However, re-
cently, several researchers have found that entanglement
does not exhaust the realm of quantum correlations. As it was
found that some separable states have quantum correlations
[7–12], two new quantifiers emerged, based on entropy mea-
surement of information, quantum discord (QD) [13,14] and
measurement-induced disturbance (MID) [15].

QD determines whether a state is a semiquantum state, which
is immune to a partial measurement in one party of a composite
quantum system. A bad feature of the QD is that it is asymme-
trical with respect to which subsystem is measured. Moreover,
in some cases, the nullity of QD is also asymmetrical.

The MID defines a classical state as a state that remains
unperturbed under a complete measurement in both parties,
in the case of a quantum bipartite state. Even if a proper mini-
mization procedure has not been found, we present the con-
ditions under which the MID vanishes. This may happen even
in the presence of coherences. In this paper, we include a dis-
cussion about the relation between decoherence and QD and
also MID. We use entanglement of formation (ENT) and these
two new quantifiers to measure the correlations between two
two-level atoms interacting with a common squeezed reser-
voir. We put special interest in studying the conditions for zero
quantum correlations, as when QD, MID, and ENT vanish, the
system becomes completely classical. Our present system
has a decoherence free subspace (DFS) that consists in a

two-dimensional plane, within the four-dimensional Hilbert
space [16]. The term “decoherence free subspaces” was used
by Lidar and Whaley [17] to refer to robust states against per-
turbations, in the context of Markovian master equations. One
uses the symmetry of the system–environment coupling to
find a quiet corner in the Hilbert space not experiencing this
interaction.

In this work, we make use of an initial state that has a vari-
able component in the DFS, giving us a way of monitoring the
various decoherence effects as a function of the “distance”
from the DFS. In this way, we hope to find “distances” for
which all correlations are zero. While the study of the effect
of decoherence on the entanglement for this specific model
was made by Hernandez and Orszag in [18], we add here
the analysis of QD and MID, confirming that, in most cases,
the QD and MID are not null, even when the entanglement
vanishes. We observed that, when the system is initially in
the DFS, there is no degrading effect in the quantum correla-
tions due to the reservoir. However, as we get far from DFS,
we found that, besides entanglement, also QD and MID pre-
sent the phenomenon of death and revival, as depicted in
Fig. 1. For some specific times in the dynamical evolution,
we found that both the QD and the MID vanish and the system
becomes classical, whereas the quantum coherences sponta-
neously disappear and the density matrix becomes diagonal in
the computational basis. However, it seems that the squeezed
reservoir manages to create quantum coherences again.

We also study the discontinuities that are present in the QD,
when choosing the measurement that disturbs the less the
overall quantum system.

2. CORRELATIONS
A. Entanglement of Formation
For a given ensemble of pure states fpi; jψ iig, the ENT is the
average entropy of entanglement over a set of states that
minimizes this average over all possible decompositions
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of ρ, [19], defined as E�ρ� � min
P

ipiE�ψ i�, where the en-
tanglement E�ψ� is defined as the von Neumann entropy
of either of the two subsystems E�ψ� � S�ρA� � S�ρB�, with
S�ρ� � −tr�ρ log2 ρ�.

However, it is very difficult to know which ensemble
fpi;Ψig is the one that minimizes the average. A concept
closely related to the entanglement of formation is the
concurrence [20,21].

For a general mixed state ρAB of two qubits, we define ~ρ to
be the spin-flipped state ~ρAB � �σy � σy�ρ�AB�σy � σy� where
ρ� is the complex conjugate of ρ, and σy is the Pauli matrix.
The concurrence is defined as

C0�ρ� � maxf0; λ1 − λ2 − λ3 − λ4g; (1)

where fλig are the square roots, in decreasing order, of the
eigenvalues of the non-Hermitian matrix ρ~ρ.

Finally, the entanglement of formation is related to

concurrence, via E�ρ� � H
h
1
2 � 1

2

���������������
1 − C02p i

with H�x� �
−x log2 x − �1 − x�log2�1 − x�.

The entanglement vanishes for a separable state, defined
as:

ρ �
X
i

piρAi � ρBi ; (2)

and it is equal to 1 for maximally entangled states.

B. Quantum Discord
The total correlation of a quantum system is quantified by
the quantum mutual information I�ρ� � S�ρA� � S�ρB� − S�ρ�,
which can be separated into classical and quantum correlations
I�ρ� � C�ρ� � Q�ρ�.

In search of a formula for classical correlation, Henderson
and Vedral proposed a list of conditions that a classical
correlation must satisfy [14]. The obtained expression that ful-
fills all the conditions is C�ρAB� � maxfBkg�S�ρA� − S�ρjfBkg��,

with the quantum conditional entropy defined as S�ρjfBkg� �P
kpkS�ρk�, where fρk; pkg is the ensemble of all possible results

for the outcome, after a set of von Neumann measurements
fBkg, made in subsystem B. Also ρk � 1

pk
�I � Bk�ρ�I � Bk�

is the system state after a measurement, where pk � tr�I �
Bk�ρ�I � Bk� is the probability for obtaining the outcome
ρk after the measurement. The maximization in the classical
correlation is done over all possible measurements of B,
although we can choose to measure in A obtaining a different
result due to the asymmetry of QD. However, this problem
disappears for systems where S�ρA� � S�ρB�.

With this definition for the classical correlation, we get the
QD as

Q�ρ� � I�ρ� − C�ρ�. (3)

In order to identify the zeros of QD, a new simple criterion
is proposed in [22]. Given a general matrix ρAB of dimensions
N ×M , this matrix will have zero discord with respect to
system B, which can be written in the following way:

ρ �
X
ik

pikρAi � ΠB
k ; (4)

whereΠk � jkBihkBj is a complete basis of orthogonal projec-
tors. This matrix is called semiquantum with respect to B,
because we can always find a measurement Bk � jkBihkBj that
does not affect the initial quantum state.

To verify if our matrix can be written in this way, we just
have to take the submatrices

ρ�iAjA� � hiAjρABjjAi �
XM
k�1

XM
l�1

hiAkBjρABjjAlBijkBihlBj; (5)

where fjii; jji; jki; jlig are j0i or j1i, and then verify that
(a) they are normal, �ρ�iAjA�; �ρ�iAjA��†� � 0, and (b) that they
all commute with each other.

For real matrices, and performing the measurement in B,
these conditions can be expressed as the following equalities:

ρ14 � ρ23;
ρ12�ρ13 − ρ24� � ρ23�ρ11 − ρ22�;
ρ34�ρ13 − ρ24� � ρ23�ρ33 − ρ44�. (6)

For an X -form matrix, this reduces to ρ14 � ρ23, ρ11 � ρ22,
and ρ33 � ρ44.

The same analysis can be done if we measure in A. But in
this case, in the conditions of Eq. (6), we must exchange 2↔3.
For an X -form matrix, this reduces to ρ14 � ρ23, ρ11 � ρ33,
and ρ22 � ρ44.

The last condition under which QD vanishes is the trivial
one, when we have no coherences, and the matrix is just
in a diagonal form, without any condition on the diagonal
elements except that the trace is one.

C. Measurement-Induced Disturbance
Luo [15] defined a classical system as one that is not disturbed
by a measurement, so the quantumness of a system depends
on how much is changed after the measurement. Let fΠA

i g and
fΠB

i g be complete projective measurements for parties

Fig. 1. (Color online) All the possible time evolutions for QD.
(a) Birth of QD, (b) simultaneous death and revival of QD, (c) asymp-
totic death of QD, (d) several points of death and revival of QD, (e) QD
never vanishes, and (f) zero QD. The same evolutions are possible for
MID, but we must replace the inside region by classical states.
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A and B. Then, after the measurement, the state ρ changes
to ρ → Π�ρ� � P

ijΠA
i � ΠB

j ρΠA
i � ΠB

j . If the final state re-
mains unchanged Π�ρ� � ρ, then ρ is called a classical state.
If it changes, then a natural measure of quantum correlations is

M�ρ� � min
Π

fI�ρ� − I�Π�ρ��g;

where I is the quantum mutual information. It is found that the
measurement that keeps invariant the reduced density matrices
is the one induced by the spectral decompositions of the margin-
al states, ρA � P

ip
A
i ΠA

i and ρB � P
ip

B
i ΠB

i . While it is not
certain that this measurement minimizes the impact of measure-
ment, we use it in order to compare the effect of theMIDwith the
QD. This choice of measurement makes MID not well defined
when the reduced matrices are multiples of the identity.

MID vanishes for a classical state, defined as

ρ �
X
ij

pijΠA
i � ΠB

j ; (7)

which is unperturbed under measurement in both parties. This
happens when the conditions for B [Eq. (6)] and the analogous
conditions for A are satisfied simultaneously. For an X -form
matrix, this means ρ11 � ρ22 � ρ33 � ρ44 and ρ23 � ρ14. This
condition is independent of the measurement basis.

For pure states, the calculation of quantum correlations is
simpler, the density matrix of any bipartite pure state,
ρ � jϕihϕj, can be written in the Schmidt decomposition,
where the state is jϕi � P

jαjjji � jji. Thus the distribution
of quantum information corresponds to

I�ρ� � 2S; C�ρ� � S; Q�ρ� � S; M�ρ� � S; (8)

where S � −
P

jjαjj2 log2jαjj2.
In the case of a product state, S � 0, and, for a maximally

entangled state, S � 1.

3. MODEL
We consider two two-level atoms that interact with a common
squeezed reservoir, and we will focus on the evolution of the
entanglement and QD, using as a basis, the DFS states, as
defined in [16,17,23].

We write now a general master equation for the density
matrix in the interaction picture, assuming that the correlation
time between the atoms and the reservoirs is much shorter
than the characteristic time of the dynamical evolution of
the atoms, so that the Markov approximation is valid:

∂ρ̂
∂t

� γ
2

X2
i;j�1

�
�N � 1��2σiρ̂σ†j − σ†iσj ρ̂ − ρ̂σ†iσj�

� N�2σ†i ρ̂σj − σiσ†j ρ̂ − ρ̂σiσ†j �
−M�2σ†i ρ̂σ†j − σ†iσ†j ρ̂ − ρ̂σ†iσ†j �
−M��2σiρ̂σj − σiσj ρ̂ − ρ̂σiσj�

�
; (9)

where γ is the decay constant of the qubits, and σi � j1iih0j
and σ†i � j0iih1j are the raising (�) and lowering (−) operators
of the ith atom. It should be pointed out that, in Eq. (9), the
i � j terms describe the atoms interacting with independent

local reservoirs, while the i ≠ j terms denote the couplings
between the modes induced by the common bath.

It is simple to show that this master equation can also be
written in the Lindblad form with a single Lindblad operator S:

∂ρ
∂t

� 1
2
γ�2SρS† − S†Sρ − ρS†S�; (10)

with

S �
��������������
N � 1

p
�σ1 � σ2� −

�����
N

p
eiΨ�σ†1 � σ†2�

� cosh�r��σ1 � σ2� − sinh�r�eiΨ�σ†1 � σ†2�; (11)

where the squeeze parameters are Ψ, and N � sinh2jrj,
r � jrjeiΨ. Here we consider M �

���������������������
N�N � 1�

p
. The DFS con-

sists of the eigenstates of S with zero eigenvalue. The states
defined in this way form a two-dimensional plane in Hilbert
space and are not affected by decoherence when the system
interacts with the environment. Two orthogonal vectors in
this plane are

jϕ1i �
1��������������������

N2 �M2
p �Nj � �i �Me−iΨj − −i�; (12)

jϕ2i �
1���
2

p �j −�i − j � −i�: (13)

We can also define the states jϕ3i and jϕ4i orthogonal to the
fjϕ1i; jϕ2ig plane:

jϕ3i �
1���
2

p �j −�i � j � −i�; (14)

jϕ4i �
1��������������������

N2 �M2
p �Mj � �i − Ne−iΨj − −i�: (15)

We solve analytically the master equation by using the
fjϕ1i; jϕ2i; jϕ3i; jϕ4ig basis; however, we use the standard ba-
sis to calculate the concurrence and discord. For simplicity,
we will consider Ψ � 0.

For a thermal reservoir N � n, where n is the mean num-
ber of thermal photons. For a squeezed reservoir, N � sinh2r
is the average number of squeezed photons. N � 0 for a
vacuum reservoir.

4. RESULTS
Now we present some analytical results obtained by taking as
initial conditions states of the form

jΨ1i � ϵjϕ1i �
�������������
1 − ϵ2

p
jϕ4i; (16)

jΨ2i � ϵjϕ2i �
�������������
1 − ϵ2

p
jϕ3i; (17)

which evolve with the master equation [Eq. (10)], with the
density matrix maintaining its original X -form matrix, for
all times. This allows us to study if the effect of global noise
on the entanglement, QD, and MID decay may depend on
whether the initial two-party state belongs to a DFS or not.
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We analyze this feature by moving the parameter ϵ, which
moves the initial condition to the DFS. First, the analytical
formulas for the different quantifiers for an X -form matrix
are presented here. The density matrix, written in the base
j1i � j11i, j2i � j10i, j3i � j01i, and j4i � j00i, is

0
BB@
ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

1
CCA. (18)

For this kind of density matrix, the concurrence can be easily
found [24] as

C0�ρ� � maxf0; C0
1�ρ�; C0

2�ρ�g; (19)

where

C0
1�ρ� � 2

� �������������ρ23ρ32
p

−
�������������ρ11ρ44

p �
; (20)

C0
2�ρ� � 2

� �������������ρ14ρ41
p

−
�������������ρ22ρ33

p �
; (21)

which, as we mentioned, is related to entanglement.
In order to evaluate the QD, we follow the procedure of

[25–27]. We found three possibilities for the minimum for
the expression S�ρjfBkg� � p0S�ρ0� � p1S�ρ1� in the classical
part of Eq. (3). Thus, for QD, we have

min
fBkg

Q � min
fBkg

fQ1; Q2; Q3g; (22)

where

Q1 � S�ρB� − S�ρAB� � −ρ11 log
ρ11

ρ11 � ρ33
− ρ33 log

ρ33
ρ11 � ρ33

− ρ22 log
ρ22

ρ22 � ρ44
− ρ44 log

ρ44
ρ22 � ρ44

;

Q2;3 � S�ρB� − S�ρAB� � 1 −
1
2

�
1 −

������������������������
Γ2 � 4Θ2;3

q �

× log
�
1 −

������������������������
Γ2 � 4Θ2;3

q �
−
1
2

�
1�

������������������������
Γ2 � 4Θ2;3

q �

× log
�
1�

������������������������
Γ2 � 4Θ2;3

q �
; (23)

where Γ � ρ11 − ρ33 � ρ22 − ρ44 and for real density matrices
Θ2 � �ρ14 � ρ23�2 and Θ3 � �ρ14 − ρ23�2.

The exact formula for MID is the result of comparing
the matrix ρ with the diagonal matrix diag�ρ11; ρ22; ρ33; ρ44�,
obtaining:

M�ρ� � −S�ρAB� �
X
i

ρii log ρii. (24)

A. Decoherence Free Subspace for a Squeezed Reservoir
After the computation of the dynamical evolution of the quan-
tum correlations, we present the main results obtained. The
first observation arises when starting from an initial state
in the DFS plane (ϵ � 1). The local and nonlocal coherences

Fig. 2. (Color online) Quantum correlations for initial condition jΨ1i in squeezed reservoir. (a) Entanglement for the initial condition jΨ1i,
with N � 0.1, and different values of ϵ: ϵ � 0.0001 (dotted–dashed), ϵ � 0.2 (long dashed), ϵ � 0.5 (solid), ϵ � 0.7 (dotted), and ϵ � 0.8 (dashed).
(b) QD for the initial condition jΨ1i, with N � 0.1, and different values of ϵ: ϵ � 0.0001 (dotted–dashed), ϵ � 0.2 (long dashed), ϵ � 0.5 (solid),
ϵ � 0.7 (dotted), and ϵ � 0.8 (dashed). (c) MID for the initial condition jΨ1i, with N � 0.1, and different values of ϵ: ϵ � 0.0001 (dotted–dashed),
ϵ � 0.2 (long dashed), ϵ � 0.5 (solid), ϵ � 0.7 (dotted), and ϵ � 0.8 (dashed).

Fig. 3. (Color online) Quantum correlations for initial condition jΨ2i in a squeezed reservoir. (a) Entanglement for the initial condition jΨ2i, with
N � 0.1, and different values of ϵ: ϵ � 0.0001 (dotted–dashed), ϵ � 0.369192 (solid), ϵ � 0.6 (long dashed), ϵ � 1∕

���
2

p
(dotted), and ϵ � 0.9

(dashed). (b) QD for the initial condition jΨ2i, with N � 0.1, and different values of ϵ: ϵ � 0.0001 (dotted–dashed), ϵ � 0.369192 (solid), ϵ �
0.6 (long dashed), ϵ � 1∕

���
2

p
(dotted), and ϵ � 0.9 (dashed). (c) MID for the initial condition jΨ2i, with N � 0.1, and different values of ϵ: ϵ �

0.0001 (dotted–dashed), ϵ � 0.369192 (solid), ϵ � 0.6 (long dashed), ϵ � 1∕
���
2

p
(dotted), and ϵ � 0.9 (dashed).
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are not affected by the environment, thus it experiences no
decoherence and the quantum correlations stay constant in
time [18].

For the initial state jϕ1i, the quantum correlations do
increase with the squeeze parameter N , getting a maximally
entangled Bell state jϕ1i → 1��

2
p �j � �i � j − −i� for N → ∞.

In fact, in the information distribution of Eq. (8), S increases
with N , getting the maximum value S � 1 when N → ∞.

This means that this reservoir is not acting as a thermal one,
in the sense of introducing randomness. On the contrary, a com-
mon squeezed bath tends to enhance the quantum correlations,
as we increase the parameter N .

On the other hand, for jΨ2i, if we start with the initial state
jϕ2i, this state is independent of N and it is also maximally
entangled, so C0 � 1 and again S � 1 for all times and all N .

Now, we consider as initial states the superpositions given
in Eqs. (16) and (17), where we vary ε between 0 and 1 for a
fixed value of the parameter N � 0.1.

From Fig. 2, we can see that the asymptotic limit with initial
jΨ1i does not depend on ϵ, and is of the form jΨ1ilimt→∞

�
αj11i � βj00i, and is given by

α �
����������������

N
1� 2N

r
;

β �
��������������������������������������������������������������
−1� 11N � 24N2 � 12N3

�1� 2N��−1� 12N � 12N2�

s
.

Since the above state is pure, the entropy is given by

S � −β2 log2 β2 − α2 log2 α2; (25)

and all the quantum correlation MID, QD, and ENT are
the same.

When we have jΨ2i as the initial state, our steady state is
mixed, and depends on ϵ.

It is noteworthy that, for the initial state jΨ1i, we obtain
the match ρ22 � ρ33, therefore, S�ρA� � S�ρB�. This equality
implies that QD is independent of the subsystem we choose
to measure. On the other hand, for an initial state jΨ2i, we
obtain ρ22 ≠ ρ33, therefore, we do not get the same result
when measuring in A or B. Here, we chose to measure at
subsystem B.

B. Sudden Death and Revival of QD and MID
We have a special interest to study under which conditions the
quantum correlations vanish. In some cases, the QD can van-
ish even with finite (nonzero) coherences. The conditions
for zero QD are the ones given by Eq. (6) and the equivalent
conditions when we measure A, also when both conditions
(for A and B) are satisfied MID will be zero. An example of
null QD that satisfies the conditions for an X -form matrix
is given by [28]. This state corresponds to a semiquantum
state [Eq. (4)].

Fig. 4. (Color online) Quantum correlations for the initial condition
jΨ2i with ϵ � 0.369192 and N � 0.1. Entanglement (dashed), QD
(solid), and MID (dotted).

Fig. 5. The points are the zeros of QD and MID; each of them
corresponds to a different value of ϵ.

Fig. 6. (Color online) Quantum correlations for the initial condition
jΨ2i in a vacuum reservoir (N � 0), for ϵ � 0.4, entanglement
(dotted–dashed), QD (solid), and MID (dashed). The inner plot
represents the point where the quantum correlations are zero as
we vary ϵ.

Fig. 7. (Color online) Coherences ρ14 and ρ23 for the initial condi-
tion jΨ2i, with N � 0.1, and different values of ϵ: ρ23, ϵ � 0.0001
(dotted–dashed), ρ23, ϵ � 0.369192 (long dashed), ρ23, ϵ � 0.6
(dashed), ρ23, ϵ � 0.9 (dotted), ρ14, and ϵ � 0.9 (solid).
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As we see from Figs. 2 and 3, there are several curves for
which entanglement presents sudden death and revival,
where there is a time interval where the state remains separ-
able. This effect was studied in [18] for the same initial con-
ditions jΨ1i and jΨ2i, and they showed that, as we get near to
the DFS �εc < ε ≤ 1�, the system shows no disentanglement
and these phenomena of entanglement sudden death and
revival disappear.

Also, another case where the system becomes semiquan-
tum was studied in [28] and corresponds with curve (b)
in Fig. 1.

The interesting case is the initial condition jΨ2i, where, be-
sides the death and revival of ENT, we also observe another
phenomena, the death and revival of QD and MID (Fig. 3). For
the case of N � 0.1, this value corresponds to ϵ � 0.369192
and it happens at t � 1.120824.

As expected, the point of zero discord and MID belongs to
the separable interval where ENT is zero, as shown in Fig. 4.
This phenomena is represented graphically in Fig. 1 by curve
(b), which touches the classical region in a single point.

As we vary the squeeze parameter N , we have a similar be-
havior for the zero of QD and MID, except that the point of
zero quantum correlations shifts to the right, as one can
see from Fig. 5. Also, each point in this curve is determined
by a different value of ϵ, which varies as 0.3 < ϵ ≤ 0.5. For
large N , all these points correspond to ϵ � 0.5. For a vacuum
reservoir (N � 0), the system shows a classical point for every
ϵ ≤ 0.707, and coincides with the points described in [18] for
entanglement (Fig. 6). The time of simultaneous death and re-
vival is given by t � 1∕2 log ��1 − ϵ2�∕ϵ2�. In this case, the state
goes directly from an entangled to a classical state without
any gap between them.

In particular, for the case of a squeezed reservoir, the phe-
nomenon of death and revival for QD and MID is produced by
the squeezed bath. The reservoir destroys the interaction via
one photon (ρ23), but at the same time enhances the interac-
tion via two photons (ρ14), as we can see in Fig. 7. When both
coherences coincide with the horizontal axis ρ14 � ρ23 � 0,
we get a classical system. It seems that the system suffers
from decoherence, but somehow the environment generates
new coherences through pairs of photons.

This phenomenon, in some cases, is also the responsible
for the points with a discontinuity in the slope of the QD
[Fig. 3(b)], as the minimum changes between the different
measurements Q2 and Q3 in Eq. (23), depending on the
relative sign of the coherences.

This behavior is produced by the change between Θ2 and
Θ3. When ρ14 and ρ23 have the same sign, then the minimum is
obtained by S�ρjfB2g�. On the contrary, when the coherences
have different sign, the termΘ increases the value of S�ρjfBkg�
and the minimum is obtained with S�ρjfB3g� (see Fig. 7).

This analysis is valid when the minimum is achieved by
S�ρjfB2;3g�, but, also for both initial conditions, there are almost
unnoticed discontinuities when the minimum changes between
S�ρjfB1g� and S�ρjfB2;3g�. The phenomenon of discontinuity
was observed experimentally in [29].

5. CONCLUSIONS
In this work we study the behavior of ENT, QD, and MID for
two two-level atoms interacting via a squeezed reservoir. The
time evolution of this system is given by the Lindblad master

equation. This system presents a special set of initial condi-
tions that are not affected by decoherence. We show that
the behavior of the three quantifiers (ENT, QD, MID) is similar
when we take an initial condition belonging to the DFS, but far
from the DFS the behavior is very different. We further ob-
serve that ENT vanishes during some time periods while
the QD and MID are different from zero. These states are se-
parable states. Also, we have shown that, for some states with
a nonzero “distance” from the DFS, there exists a specific
value of N (the mean number of thermal photons) for which
QD, MID, and entanglement are zero at a particular time. This
result shows that, at some point, the system becomes truly
classical (with zero QD and MID), but immediately after, the
reservoir starts again generating quantum correlations. The
system also presents discontinuities in the QD generated by
the relative sign between the coherences of the density matrix.
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