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RESUMEN 

El potencial pedagógico de los simuladores computacionales ha sido investigado 

extensivamente a medida que la tecnología ha avanzado y se ha hecho cada vez más 

accesible. Los simuladores pueden incluir guiones o métodos de guía para incorporar las 

mecánicas de juego progresivamente. El objetivo de este trabajo es estudiar cómo deben 

construirse estos componentes guía. Con este fin, definimos un modelo de simulador que 

agrupa elementos que han probado que mejoran el aprendizaje, incluyendo el 

componente guía. Experimentalmente comparamos dos simuladores educacionales 

diseñados para enseñar Respiración Celular (una unidad de biología de la célula) a 

alumnos de enseñanza media. Ambos simuladores comparten la lógica del software 

subyacente y sus mecánicas, pero difieren en sus sistemas de guía (i.e. en el guión). En 

un estudio con 130 alumnos de 2º medio, se obtuvieron resultados de aprendizaje 

estadísticamente significativos para ambos simuladores. Sin embargo, la diferencia entre 

la mejoría en el resultado promedio entre los que usaban una u otra versión del programa 

no fue significativa. Por lo tanto concluimos que el conjunto mínimo de características 

de un guión es suficiente para lograr un aprendizaje. 

 

Esta investigación recibió apoyo del Centro de Estudios de Políticas y Prácticas en 

Educación (CEPPE) CIE01-CONICYT. 

 

Palabras clave: guías, guión, simuladores educacionales, progresión de modelo 
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ABSTRACT 

The teaching potential of computer simulators has been thoroughly investigated as 

technology has advanced and become more readily available. Simulators can include 

guidance and scripting to progressively incorporate the game’s mechanics. The aim of 

this work is to study how this guiding component should be built. For this purpose we 

define a simulator model which collects elements that have proven to enhance learning 

including the guiding component. Experimentally we compare two educational 

simulators designed to teach Cellular Respiration (a unit in cellular biology) to high 

school students; both simulators share the underlying software and mechanics but differ 

in their guidance systems (i.e. script). In a study with 130 10
th

 grade students, 

statistically significant results were obtained for both simulators; however, the difference 

between the mean score improvement using either version of the software was not 

significant. We therefore conclude that a minimal set of script characteristics is 

sufficient to achieve learning. 

 

Research supported by the Center for Research on Educational Policy and Practice 

(CEPPE), Grant CIE01- CONICYT 

 

Keywords: guidance, script, educational simulators, educational simulation, model 

progression
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1. INTRODUCTION 

1.1. Motivation 

Simulators have existed almost as long as there have been computers, and have been 

attempted to be used for teaching (systematically and keeping a record of it) for at least 

four decades (Smetana & Bell, 2011). However, when a branch of software simulation 

specifically designed for educational purposes (instead of scientific experimentation, 

etc.) divided itself from the main stem, the software’s objective changed drastically. 

Going from representing a model of reality as accurately as possible to helping students 

learn concepts about a subject. Given the more ambiguous nature of this new objective, 

the best way of achieving it was much less clear, and gave way to a sort of alchemical 

process in the design and development of didactic simulators very similar to the one still 

present in game design (where the objective of entertaining users is also very open) 

(Cook, 2012). Every developer designed their simulator under the criteria they thought 

best to solve the problem, without much regard for what had been done before or if it 

had proven effective. This naturally produced a wide range of simulators that radically 

differed in their results and contradicted each other on their effectiveness as teaching 

tools, as can be seen in reviews of older research on pedagogical simulation and the 

multitude of approaches to their study (de Jong & van Joolingen, 1998; Rutten, van 

Joolingen, & van der Veen, 2012; Smetana & Bell, 2011).  

Since the beginning of the ‘90s, some efforts have been made to take a more scientific 

approach towards educational simulator design, determining the importance of certain 

common elements (Amory et al., 1999; Kuk et al., 2012), the effectiveness of distinct 

mechanics or pedagogical techniques (Charney et al., 1990; de Jong & van Joolingen, 

1998; de Jong et al., 1999), and even proposing some general guidelines or frameworks 

for their development (Amory et al., 1999; de Jong et al., 1994; Paras, 2005). 

Nonetheless, the migration towards a systematic development of optimal educational 

experiences with simulators is far from done. A specific and proved model for their 

construction has yet to be proposed and validated, and the relevance of the common 

elements, mechanics, and techniques mentioned above haven’t been compared 

extensively to each other to determine their influence in a potential model. 

This study attempts to further the shift from alchemy in the design of educational 

simulators towards a scientific approach that could guarantee optimal learning 

experiences through the use of this software.  
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A fundamental part of this is believed to be the comprehension of the design of effective 

guidance systems for this type of tool, given the importance it has had in learning 

outcomes of multiple studies (Kirschner, Sweller, & Clark, 2006; Moreno & Mayer, 

2005; Reid, Zhang, & Chen, 2003; Schrader & Bastiaens, 2012). Although these 

experiments have proven that certain types of guidance systems yield better results in 

different types of student learning when compared to non-guided experiences, little 

research has been done to assess their comparative advantages and the appropriate 

complexity they should have for optimal scripting of the simulators. In this sense, 

despite having the knowledge that guidance systems are necessary for the development 

of effective educational simulators, the details of the implementation of these is still 

somewhat of a gamble left to the designer of each individual software. Therefore it is 

highly relevant to strive for a model that comprehensively prioritizes these techniques 

and in which measure they should be included into pedagogical simulations. This 

research also delves into this matter by comparing guidance system complexities to 

begin the confection of this model. 

In summary, a schema of proven and effective elements for educational simulators needs 

to be created and refined in order for them to be ever more consistently useful and 

efficient as teaching or reinforcement tools. This work will try to bring this objective a 

step closer to the scientifically and systematically optimal and away from the 

alchemically uncertain. 
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1.2. Detailed design 

The SimBIOS educational software was designed to simulate the process of aerobic 

cellular respiration in animal cells; an integral part of the biology subject in the Chilean 

high school curriculum. 

Given the motivation for making this simulator, the objective was not only that the 

different chemical reactions involved in cellular respiration were memorized or 

understood in a theoretical sense, but that the whole process could be experienced 

holistically. All these reactions and sub-processes only really make sense when viewed 

as cogs that work in unison in a machine that has a real purpose. Therefore, in the design 

of this application, a model was created that tried to achieve this pedagogical objective, 

the holistic experience and understanding of the cellular respiration process, while 

attaining to a set of standards proposed as the effective way of making guided 

educational simulators proposed in the paper. 

1.2.1. The model 

The model devised for the simulation will be described from its most basic components, 

building towards their interaction in respiration sub-processes, to finish with the whole 

cycle where the process can be viewed in its totality. 

1.2.1.1. Molecules 

All chemical reactions and sub-processes that comprise cellular respiration involve the 

interaction between different molecules present in the cytoplasm of the cell or its 

mitochondria. In this model, the most critical of these molecules are represented by their 

3D space-filling molecular structure model (a 2D image of them), and are the only 

elements in the simulation that can be directly manipulated by the user. He can make 

them move and collide with each other or with mitochondrial structures by clicking and 

dragging them around the 2-dimensional representation of the cytoplasm (Fig 1-1). 
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The images for the molecule models were mainly obtained from models rendered for the 

Wikimedia Commons database, although some had to be modeled independently in 3D 

Studio Max, and rendered specifically for SimBIOS. Scale was relatively kept between 

molecules, but not exactly (as images came from different sources), but was not kept 

with respect to other cellular structures within the simulation, as the differences in size 

would have made direct interaction with the molecules impossible if the other structures 

were to fit in the screen. 

a. Types of molecules 

These are the different types of molecules involved in the cellular processes 

implemented in SimBIOS with their respective visual representations used in the 

program. 

Fig 1-1 An ATP molecule is dragged by the user towards a Glucose molecule in 

the cytoplasm 
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ATP: 

It is the main energetic molecule for the cell’s 

processes. It acts as the energy source for 

thousands of reactions; its production is the 

main function of the cellular respiration 

process. 

 

 

 

Glucose: 

This molecule is the “fuel” for the production 

of energy in cellular respiration. It is 

progressively broken down through the 

different sub-processes which will eventually 

produce a gradient of protons that enable ATP 

production. It is the final product of the 

decomposition of complex carbohydrates, 

proteins, or fat (i.e. food) before it is used in 

respiration.  

 

 

Glucose-6-phosphate: 

Glucose-6-phosphate is an intermediate 

molecule formed during the process of 

Glycolisis (Section 1.2.2). In the 

simulation, only an animation is shown 

of an incomplete Glycolisis to illustrate 

the necessity of a second ATP 

molecule to be added to the reaction 

and complete it. 
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Pyruvate (Pyruvic acid): 

Pyruvic acid, along with NADH, and ATP, 

is a byproduct of the decomposition of 

Glucose through the sub-process of 

Glycolisis in the cytoplasm of the cell 

(Section 1.2.2). Two of these molecules are 

produced from each Glucose molecule that 

undergoes Glycolisis. 

 

 

Acetyl-CoA: 

When Pyruvate 

molecules enter the 

mitochondria, they 

undergo oxidative 

decarboxylation by 

enzymes to be further 

transformed into one 

Acetyl-CoA molecule 

and one NADH 

molecule each. This is 

the Glucose-derived 

molecule which enters 

the Citric acid cycle 

(Krebs cycle). 
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NADH:  

When Acetyl-CoA enters the Krebs 

cycle, as well as in other sub-

processes like Glycolisis or the 

Oxidative decarboxylation of 

Pyruvate, NADH is produced. This 

molecule is relatively unstable, and 

tends to lose two electrons to 

become NAD
+
 and H

+
. That is why 

this is such an important molecule in 

the cellular respiration process; it is 

the main electron yielder molecule 

for Oxidative phosphorylation 

(Section 1.2.2). Another, less 

influential electron yielder (FADH2), 

was left out of the simulation 

because the complexity it added to the model was deemed disproportional to its less than 

10% contribution to ATP generation in respiration.  

 

Oxygen: 

Its main function in cellular respiration 

comes in the Oxidative phosphorylation 

sub-process (Section 1.2.2), where it is 

used to extract the electron pairs yielded 

by NADH molecules to the Electron 

transport chains and keep electron flow 

going to maintain proton concentration 

gradient. It is the electron receiver in this 

process. 
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ADP: 

This is the molecule which, 

through the addition of a third 

phosphate group by the ATP 

Synthase enzyme during the 

Oxidative phosphorylation 

phase of respiration (Section 

1.2.2), becomes ATP. The 

whole process of cellular 

respiration revolves around 

transforming ADP into ATP. 
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1.2.1.2. Structures 

All other elements, with which the user can interact indirectly by moving molecules, are 

considered structures. Specifically, these are the mitochondrion and its most important 

membrane proteins. 

a. The Mitochondrion 

Mitochondria are the cellular organelle whose primary role is aerobic respiration (i.e. the 

production of energy in the form of ATP molecules needing oxygen), and most of the 

sub-processes that compose it occur inside them. 

In the SimBIOS simulator, only one mitochondrion can be interacted with, and is shown 

in the foreground, covering a large portion of the visible area for the user. Other 

mitochondria can be seen floating in the background, but only one was kept for user 

interaction for simplicity and focus. Since the simulation is in two dimensions, an 

abstraction needed to be made for the representation of the mitochondrion. As with most 

academic texts and diagrams, this comes from a simplification of the electron 

microscope images taken of mitochondria (Fig 1-2), and a longitudinal cross section of 

the organelle was chosen for representation. However, it was still modeled and rendered 

in 3D to clarify that in reality it has depth (Fig 1-3). This cross-section was chosen 

because it clearly shows both membranes of the mitochondrion, and it allows the most 

space in the mitochondrial matrix for the user to carry out the processes inside. 

Fig 1-2 Electron microscope image of a mitochondrion 
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Fig 1-2 Typical textbook cross section representation of a mitochondrion. 

Fig 1-3 Representation of a mitochondrion used in the SimBIOS simulator 
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1.2.1.3. Electron transport chain (cytochrome chain) 

One of the protein structures present in the mitochondrial inner membrane are 

cytochromes, which form chains of four specific types of cytochrome to transport 

electrons from donor molecules to acceptor molecules through redox reactions (Section 

1.2.2). 

For the SimBIOS simulator, the electron transport chains were modeled roughly based on 

their spatial configuration since the importance of their functions as a group was 

considered a higher priority than their molecular anatomy. The transport chains had 

several animations, including one for when electrons are transported through the 

cytochromes, for the expulsion of hydrogen protons from the mitochondrial matrix, and 

for the donation and reception of electrons in the first and last cytochrome of each chain. 

The cytochromes in the chain were color coded and labeled since it is important to be 

able to distinguish them, especially the first and last where the donor and acceptor 

molecules must respectively collide to produce electron transport (Fig 1-4). 

 

Fig 1-4 The SimBIOS representation of an electron transport chain on the 

mitochondrion's inner membrane 
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For simplicity and to avoid information overload, only a few electron transport chains 

are displayed on the inner membrane of the mitochondrion in SimBIOS. In reality there 

are many more, but it would have been impractical to show them all. 

1.2.1.4. ATP synthase 

This is the other main proteic structure present in the mitochondrion’s inner membrane. 

It uses the electrochemical proton gradient between the intermembrane space and the 

matrix to transform mechanical energy (protons entering the matrix in favor of the 

concentration gradient) to transform ADP molecules into ATP (Section 1.2.1.1). 

The ATP synthase enzyme was represented, like the electron transport chain, by its 

rough spatial shape in the SimBIOS software (Fig 1-5). It is also animated to show the 

influx of protons from outside the inner membrane, the addition of ADP molecules to it, 

and the completion of ATP molecules as a result of the previous two. 

 

 

 

 

 

 

 

 

 

 

 

 

Like the electron transport chains, only a few instances of the ATP synthase enzyme are 

displayed in the mitochondrion of the simulation to reflect the presence of many of them 

in reality, but diminish information overload. 

Fig 1-5 The SimBIOS representation of an ATP synthase enzyme on the 

mitochondrion's inner membrane 
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1.2.1.5. Other design elements 

Some elements not pertaining directly to the simulation were added to the SimBIOS 

software either for aesthetical effect and immersion of the user, or for a better interface 

between the user and the simulation and its feedback. 

a. Heads-Up Display (HUD) 

In videogames, a heads-up display (HUD) is a part of the user’s interface with the virtual 

environment in which information is placed as an overlay to the main visualization. In 

this way, the player is able to quickly ascertain the state of multiple variables pertaining 

to the current experience without having to rely on menus or other instruments. 

In SimBIOS, a simple semitransparent HUD was implemented to be permanently 

overlaying the simulation. It has four main sections which display different types of data 

relevant to the activity being carried out at every moment (Fig 1-6). 

 Text area: This is the biggest segment of the HUD, and it is used to 

display text segments from the script to describe context, current activity 

information, or objectives. It has two buttons which can be used to fast-

forward to the next text segment of the script if it doesn’t require some 

objective to be completed, or to revisit previous text segments. 

Fig 1-6 Running SimBIOS simulation with overlayed HUD 
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 Feedback window: This square right beside the Text area displays 

information about the molecule or structure over which the user’s cursor is 

currently hovering. For each molecule and structure, a feedback sprite was 

made which contains a larger image of the entity, its name, and its main 

function or characteristic. This was made so the molecules and structures 

mentioned in the texts and objectives could be identified by the user 

without previous knowledge of their appearance or if the display window 

describing it was already closed. 

 Molecule counter: Most objectives presented by the script during the 

simulation require the user to produce a certain amount of some type of 

molecule using the different sub-processes of cellular respiration. These 

counters show how many of the type of molecule required by the objective 

are currently in the simulation, therefore giving a constant gauge of 

progression towards objective completion. 

 Gradient gauge: From the third level onward, the user must generate an 

electrochemical concentration gradient of protons within the mitochondrion 

to produce ATP. To measure if there is enough gradient to produce the 

reaction, a concentration gradient gauge is present on the HUD for these 

levels. When there is no gradient (i.e. the amount of protons is the same on 

both sides of the mitochondrion’s inner membrane), the gauge is empty. As 

gradient is created by the user through the electron transport chains, the 

gauge is gradually filled until a maximum is reached (there is a limit to the 

difference in concentrations possible). When gradient decreases again 

because of ATP synthesis, the gauge gradually empties. 

The HUD also includes two extra buttons in its overlay, one of which restarts the current 

level, and the other returns the user to the main menu. 

Also, in the Full version of SimBIOS, the script includes an extra type of overlay, called 

the display window. These are pop-up screens that overlay the simulation and 

accompany the script’s text segments displaying the different molecules and schematics 

of the processes that are being described (Fig 1-7). These images are not displayed in the 

Minimal version, and have no equivalent. 
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1.2.2. Cellular respiration sub-processes 

The main cycle of cellular respiration is subdivided into a series of sub-processes or 

reactions which progressively break down glucose molecules to finally produce ATP 

from ADP molecules. Each sub-process’ produces output molecules which serve as 

input molecules for another reaction in the chain. In the SimBIOS simulator, these sub-

processes must be carried out by the user by dragging the appropriate molecules towards 

other molecules or mitochondrial structures in the correct order and place. They are 

progressively included into the simulation according to the script (Section 1.2.4), and 

can be roughly divided into four distinct sub-processes. 

1.2.2.1. Glycolysis 

This is the first step in cellular respiration, and all glucose molecules must undergo this 

reaction to be further processed. It basically consists of a series of reactions between a 

glucose molecule and 2 ATP molecules to produce an output of 2 pyruvic acid 

molecules, 4 ATP molecules, and 2 NADH molecules. It is the only sub-process of 

Fig 1-7 A display window describing electron transport through a cytochrome chain 

in the SimBIOS Full version 
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aerobic cellular respiration which occurs outside of the mitochondrion (in the 

cytoplasm). 

To generate glycolysis in SimBIOS, the user must first drag an ATP molecule, and make 

it collide with a glucose molecule or viceversa. This triggers an animation which 

represents the intermediate reactions of glycolisis (including the generation of the 

glucose-6-phosphate molecule described in Section 1.2.1.1). Then, the user must drag 

another ATP molecule towards the incomplete reaction to produce the glycolysis 

reaction and the output molecules (Fig 1-8). 

1.2.2.2. Oxidative decarboxylation 

After a glucose molecule undergoes glycolisis, two pyruvate molecules are obtained. 

These pyruvic acid molecules, upon entering the mitochondria, react with various 

enzymes in a process called oxidative decarboxylation. After this sub-process of 

respiration, each molecule of pyruvate is transformed into an Acetyl-CoA molecule and 

one NADH molecule. 

For this process to occur in the SimBIOS software, the user must simply drag a pyruvate 

molecule to the edge of the mitochondrion’s outer membrane, which automatically 

transports it through the membranes and into the mitochondrial matrix where it is 

processed into Acetyl-CoA and NADH (Fig 1-9). 

 

Fig 1-8 The process of glycolysis. a) Dragging the first ATP molecule towards the 

glucose molecule, b) intermediate reaction, and c) glycolysis reaction and output after the 

second ATP molecule is added 
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1.2.2.3. Citric acid cycle (Krebs cycle) 

The citric acid or Krebs cycle is a series of ten consecutive reactions starting with the 

reaction between acetyl-CoA (product of the previous oxidative carboxylation), 

oxaloacetate, and water and ending with the production of oxaloacetate which enables it 

to react with a new Acetyl-CoA molecule indefinitely. During the cycle, 3 molecules of 

NADH and 1 GTP (energy source like ATP) molecule are produced as well as 

byproducts like FADH2, carbon dioxide, water, and protons. 

In the SimBIOS simulation, the Krebs cycle is represented by a spinning icon and an 

oxaloacetate molecule with which an acetyl-CoA molecule can interact. When the user 

drags an acetyl-CoA molecule to the cycle, an animation representing the 

transformations it undergoes is displayed and the steps where NADH or ATP is 

produced can be seen (Fig 1-10). Although in reality this sub-process of respiration 

occurs simultaneously many times around the mitochondrial matrix, in SimBIOS only 

one such cycle is displayed to be able to see it more clearly and allow space for the other 

reactions the user must perform. 

1.2.2.4. Electron transport 

Although technically a part of the oxidative phosphorylation, the transport of electrons 

through the cytochrome chains is described as a separate sub-process just to highlight 

the importance of its two distinct steps. On this first one, NADH molecules produced in 

glycolisis, oxidative decarboxylation, and the citric acid cycle (as well as other electron 

Fig 1-9 Oxidative decarboxylation in SimBIOS. a) A pyruvate molecule being transported 

to the inside of the mitochondrion, and b) the pyruvate molecule breaking up into acetyl-

CoA and NADH 
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donor molecules like FADH2; see Section 1.2.1.1) collide against the first cytochrome 

(cytochrome I) of mitochondrion’s electron transport chains to break up into NAD
+
 and 

H
+
 molecules, and “donate” or “yield” two electrons to the cytochrome. These donated 

electrons are then transferred sequentially to the others in the chain until they arrive at 

the fourth cytochrome (cytochrome IV). There, they must be retrieved by an electron 

“receiver” or “acceptor” molecule such as oxygen.  The passage of electrons along the 

ETC complexes releases energy that enables them to act as pumps that expel protons 

from inside the mitochondrial matrix towards the intermembrane space, creating a 

proton concentration gradient which will later be used by ATP Synthase enzymes to 

generate ATP. 

Like the other processes of the simulator, for this one, the user must simply drag the 

correct molecules to the adequate mitochondrial structures. First he must drag a NADH 

molecule to the first cytochrome complex (complex I). When they collide, an animation 

is shown that notifies the user that 2 electrons were donated, they are shown “jumping” 

along the electron transport chain, and a particle emitter shows hydrogen protons going 

out of the mitochondrial matrix through the ETC. Then, the user must drag an oxygen 

molecule towards the final cytochrome of the same chain where the electrons were 

donated (complex IV), and an animation is displayed to notify him that the 2 electrons 

were retrieved. Then the gradient bar on the HUD rises by the appropriate amount to 

represent the increase in the proton gradient difference (Fig 1-11). 

Fig 1-10 Acetyl-CoA undergoing the citric acid cycle, highlighting the steps in which 

NADH or ATP is produced 
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1.2.2.5. Oxidative phosphorylation (ATP synthesis) 

The proton gradient between the outside and inside of the mitochondrial matrix 

produced by electron transport through the cytochrome chains effectively creates a 

mechanical energy potential. These protons flow back into the mitochondrial matrix 

through the ATP synthase complexes present in the inner membrane, doing mechanical 

work, much like a turbine. This work enables a third phosphate group to be coupled to 

an ADP molecule inside an ATP synthase to produce an ATP molecule, and be released 

from the mitochondrion. This is the main mechanism through which ADP molecules are 

transformed into the ATP chemical energy cells need. 

In the SimBIOS simulation, this last step requires the user to have previously generated a 

proton gradient between the inside and outside of the mitochondrial membrane by using 

the ETCs. Then he must drag an ADP molecule (present in the cytoplasm) towards the 

Fig 1-11 Electron transport in ETCs and proton gradient generation in SimBIOS 
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mitochondrion, where it is automatically transported towards the nearest ATP synthase 

enzyme of the inner membrane. If the proton gradient is enough, as soon as ADP 

molecules are added to the ATP synthase structures, an animation is displayed showing 

the spinning ATP synthase and the protons going back into the matrix. After a few 

seconds an ATP molecule is produced, notifying the user (Fig 1-12). If ADP molecules 

are loaded into an ATP synthase structure, but there isn’t enough proton gradient to 

produce ATP, a warning from that enzyme issues every few seconds to notify the user 

that more is needed. 

1.2.3. Cellular respiration 

All the sub-processes described in Section 1.2.2 form the cycle of eukaryotic aerobic 

cellular respiration; the most important form of energy generation in animal cells. By the 

end of the experience with the SimBIOS simulator, the user must be able to understand 

and concatenate all these sub-processes, using the output of each as the input for the next 

to simulate the parallelism of the whole process and ultimately produce ATP from 

glucose and ADP. 

1.2.4. Script 

The main comparison in this study was made between different ways in which the 

activities and concepts trying to be taught by the simulator were presented to the student. 

That is, in the scripting of the experience; specifically on the impact of complexity and 

rigidity/flexibility of the script in the learning of concepts. 

For this purpose, two versions of the SimBIOS simulator were made. One which 

incorporates the minimal elements of model progression and game-like objectives 

described in Section 3 of the paper (the Minimal version) and one which incorporates 

more elements of tutorial type guides, contextual images, and intermediate objectives 

Fig 1-12 An ADP molecule being transformed into an ATP molecule by an ATP synthase 

structure using the proton gradient 
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which restrict the user’s actions, limiting the discovery process and making it more 

expository (the Full version). 

In both cases, the script of the activity is divided into four levels, each one introducing a 

sub-process of cellular respiration (Section 1.2.2) and then incorporating it with the ones 

already learned in an end-of-level objective that allows the student to progress to the 

next level. When the simulator is started, a screen is shown where the user can select a 

level to begin (Fig 1-13). This is in case he wants to go back to a previous level or wants 

to skip to a specific level if restarting the experience. The users can go back to this menu 

at any time, but it is usually recommended that they start on the first level (Glycolysis), 

and go through the levels by completing the objectives in each one, thus following the 

planned model progression. 

The four levels are described in detail below, showing the differences between the Full 

and Minimal versions in each one. 

Fig 1-13 SimBIOS main menu where the user can pick the level he wants to start in 
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1.2.4.1. Level 1: Glycolysis 

In this level, the student is presented with the context of the activity (presentation of the 

cell, its cytoplasm and the mitochondrion) and cellular respiration’s glycolysis sub-

process. 

Minimal version Full version 

Welcome text and animation of zooming 

in from outside the cell towards a 

mitochondrion. 

Welcome text and animation of zooming in 

from outside the cell towards a 

mitochondrion 

Introduction text to the mitochondrion. Introduction text to the mitochondrion 

accompanied by images of mitochondria 

through electron microscope and its 

representation in SimBIOS. 

Introduction texts to cellular respiration 

and the first sub-process of glycolysis. 
 Introduction text to cellular respiration 

and the first sub-processes of glycolysis. 

 Each text is accompanied by an image 

of the molecules  

End-of-level objective is given: produce 

10 pyruvate molecules with a simplified 

glycolysis formula as a clue. All actions 

on molecules are enabled. 

 Objective is given: drag a first ATP 

molecule towards a glucose molecule. No 

other actions can be performed. 

 Objective is given: drag a second ATP 

molecule towards the incomplete 

glycolysis reaction. No other actions can 

be performed. 

 When first glycolysis is achieved, the 

simulation is reset. 

 End-of-level objective is given: 

produce 10 pyruvate molecules with a 

simplified glycolysis formula as a clue. All 

actions on molecules are enabled. 

 

1.2.4.2. Level 2: Oxidative decarboxylation and Krebs cycle 

This stage teaches the oxidative decarboxylation sub-process, but since the mechanics 

involved are too simple, it also includes the citric acid or Krebs cycle sub-process. First, 

a pyruvate molecule provided must be decomposed to acetyl-CoA and NADH, to then 

use the former in the Krebs cycle. After that, the simulation resets and the student must 
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produce a number of NADH molecules using all sub-processes up to that point (i.e. 

glycolysis, oxidative decarboxylation, and citric acid cycle). 

Minimal version Full version 

Introduction texts to the sub-processes 

to be learned. 

Introduction text saying that pyruvate will 

now be used inside the mitochondrion to 

produce ATP.  

Objective is given: produce NADH 

molecules from pyruvate. Simplified 

equations for oxidative 

decarboxylation and Krebs cycle are 

given as clues. 

Objective is given: drag a pyruvate molecule 

to the mitochondrion. No other actions can 

be performed. 

  Explanation texts of the process by which 

pyruvate are decomposed into acetyl-CoA 

and NADH with images of relevant 

molecules. 

 Explanation texts of the Krebs cycle 

process with schematic images of its steps. 

 Objective is given: drag an acetyl-CoA 

molecule to the Krebs cycle  

When 4 NADH molecules are 

produced (1 from oxidative 

decarboxylation and 3 from the Krebs 

cycle), the simulation is reset with 

glucose and ATP molecules. 

When the previous objective is completed, 

the simulation is reset with glucose and ATP 

molecules. 

End-of-level objective is given: 

produce 20 NADH molecules from 

glucose. All previous clues are given, 

and all actions on molecules are 

enabled. 

End-of-level objective is given: produce 20 

NADH molecules from glucose. Relevant 

clues to the sub-processes needed are 

presented (see Minimal version script), and 

all actions on molecules are enabled. 

 

1.2.4.3. Level 3: Oxidative phosphorylation 

This is the last level in which new sub-processes are introduced. They are the ones that 

compose oxidative phosphorylation (ATP synthesis): the creation of proton gradient 

through electron transport, and the production of ATP from ADP on ATP synthase 

enzymes. They are introduced separately during the level to keep the model progression. 

Minimal version Full version 

Introduction texts explaining the 

necessity of a proton gradient 

Introduction texts explaining the necessity of 

a proton gradient accompanied by images 

illustrating proton gradient in mitochondria.  

 Explanation texts of the functions of 

ETCs, electron donation by NADH, 

 Explanation texts of the functions of 

ETCs accompanied by images of the 
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electron transport, and electron 

reception by O2. 

 Objective is given: produce proton 

gradient using ETCs. NADH and O2 

are provided, as well as a simplified 

formula for electron transport as a clue. 

Only actions related to ADP are 

restricted. 

structure. 

 Explanation text of electron donation by 

NADH accompanied by a schematic image 

of the process in SimBIOS. 

 Objective is given: drag a NADH 

molecule to the first cytochrome complex in 

an ETC. No other actions can be performed 

  Explanation texts for electron transport 

and reception are displayed along with 

schematic images of these reactions in 

SimBIOS. 

 Objective is given: drag an O2 molecule 

to the fourth complex of the same ETC to 

retrieve the electrons and produce gradient. 

No other actions can be performed. 

 Once a concentration gradient has 

been established, explanation texts for 

ATP synthesis and subsequent gradient 

decrease are displayed. 

 Objective is given: produce 6 ATP 

molecules from ADP while 

maintaining proton gradient. 

Simplified formulas for ATP synthesis 

and electron transport are given as 

clues, and all actions on molecules are 

enabled. 

 Once a concentration gradient has been 

established, explanation texts for ATP 

synthesis are displayed along with schematic 

images of the reaction in ATP synthases. 

 Objective is given: drag an ADP molecule 

to an ATP synthase. No other actions can be 

performed. 

  Explanation texts for the decrease in 

proton gradient due to ATP synthesis are 

displayed 

 Objective is given: produce 6 ATP 

molecules from the remaining molecules 

while maintaining proton gradient. 

Simplified formulas for ATP synthesis and 

electron transport are given as reminders, 

and all actions on molecules are enabled. 

 

1.2.4.4. Level 4: Integration 

This level is actually the continuation of the previous one, as it is the incorporation of 

the last two sub-processes of cellular respiration to the cycle as a whole. In it, the student 

must simulate the complete respiration process from glycolisis to ATP synthesis starting 

from a single glucose molecule. 
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Minimal version Full version 

End-of-simulation objective is given: produce 32 ATP molecules from a single glucose 

molecule. All auxiliary molecules (ADP, O2, and 2 ATP) are provided and all actions 

on molecules are enabled. 

 

When the end-of-simulation objective is achieved, the experience is over. A 

congratulation message displays, and the program restarts to the main menu screen to be 

able to redo any level if desired. 
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1.3. Software engineering 

The SimBIOS educational computer simulator was written in the C# programming 

language with the Flat Red Ball engine over the Microsoft XNA engine, using well 

known software engineering conventions and best practices for current object-oriented 

programming. Given the platform on which it was developed, the software should be 

able to run on any computer with an operating system supporting the .NET Framework 

2.0, although it has only been successfully tested in Windows Vista and Windows 7. 

1.3.1. The FlatRedBall engine 

When the project first started, a team of engineering students was contracted to assist 

with the programming of the SimBIOS software, and their first task was to assess the 

viability of developing it in one of the multiple engines that could suit the needs of the 

enterprise. The one deemed most promising from early prototypes was the FlatRedBall 

game engine; a cross-platform set of tools developed independently by Victor Chelaru, 

and first released in 2005. It was developed as an abstraction of the Microsoft XNA API 

for DirectX, and distributed as freeware for commercial and non-commercial game 

development. 

1.3.1.1. Pros and cons 

The main advantage this engine has, aside from being free to use, is the availability of 

multiple tools to facilitate the development of 2.5D computer games (i.e. games that 

simulate 2D graphics through the use of 3D objects), such as an animation editor, sprite 

editor, level editor, etc. It is also relatively easy to use, well documented, and has a 

relatively active community giving support for it. 

1.3.1.2. Essential functioning 

Like most game engines, FlatRedBall provides abstractions in the form of APIs and 

functions for the display of graphical objects, simulation of physics, and real-time 

processing of user input, backend logic, and updating of the graphical interface. The first 

is done through a content pipeline which incorporates files referenced in templates made 

previously in the sprite, animation, and level editors as needed; and managed through an 

API by the program implementing the engine. Simple physics like collisions, 

accelerations, and forces are implemented in the main engine, but all graphics related 

tasks are passed on to XNA, and through to DirectX. As in XNA, a FlatRedBall program 

must instance a Game class which will run its two main loops: Update and Draw. These 
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will process user input and game (or simulator) logic continuously while redrawing all 

visible graphical objects on the screen at the configured refresh rate per second.  

Aside from these functionalities and some extendable classes to work with them, most of 

the rest of the logic is left to the implementing program, making it quite flexible if a bit 

“bare bones”. 

1.3.2. The architecture of SimBIOS 

The simulator was built hierarchically through class inheritance so as to resemble the 

semantics of the cellular respiration model as closely as possible while maintaining 

certain classifications and constraints imposed by the FlatRedBall engine (FRB from 

here onward)(Fig 1-14). Therefore, all classes and content were divided into 5 

categories: Base, Entities, Screens, User interface, and Content. 

1.3.2.1. Base 

In the Base category, all base classes from the engine and their corresponding interfaces 

are stored. These classes are inherited by most other classes in a FRB application. In this 

implementation it included the following classes and interfaces: 

Fig 1-14 FRB engine, its two main content managers and the types of classes they 

manage 
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 Entity: This class must be inherited by any other class that wants to be 

managed by one of the engine’s managers. This usually implies the 

presence of a sprite or a collision polygon, since Entity inherits from the 

PositionedObject class of the engine; which is handled by managers that 

place objects on the screen. In this implementation, the Entity class also 

implements the IFeedbackWindowable interface. 

 FRBExtension: This was created as a wrapper extension for the normal 

FRB libraries because of the absence of inner collision detection in the 

original engine. That is, FRB can detect if two polygons are colliding along 

their borders or if one polygon is completely within the other. However it 

cannot state if, when one polygon is within the other, if the one within is 

colliding along its border with the one containing it (i.e. if the inside 

polygon is “trying to get out” of the outer polygon). This feature had to be 

added for the purpose of this simulation. 

 IFeedbackWindowable (interface): Most objects in the simulator display 

a feedback window on the lower right corner of the Heads Up Display 

(HUD) when the cursor is hovered upon them which describes it briefly. 

This interface was implemented to have a reliable way of assigning, 

getting, and displaying feedback windows for all Entity derived classes. 

1.3.2.2. Entities 

As its name implies, this category holds all classes that correspond to objects shown on 

screen (inheriting from the Entity class of Section 1.3.2.1) or classes inherited by these. 

Here the main semantics of the simulation model can be seen in the syntaxes (Fig 1-15). 
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 Molecule: Class from which all molecules of the simulation inherit. It 

inherits directly from the Entity class and implements their common 

functions such as their movement and overrideable methods for reactions 

with other molecules. Each inheriting Molecule class must provide its own 

sprite, molecule type (from an enum), and feedback window file. 

 AcetylCoa: It is a molecule present in cellular respiration. It has two 

reactions particular to it and a particle emitter for feedback notices on its 

processes. 

Fig 1-15 The simulation's most important elements and their derivation from the Entity 

class 
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 ADP: A molecule with no particular methods, only its particular sprite and 

feedback window. 

 ATP: A molecule that implements a particular reaction with other 

molecules; specifically Glucose. 

 Glucose: A molecule that implements a particular reaction with other 

molecules; specifically ATP. 

 GlucoseATP: This intermediate molecule represents an incomplete 

Glycolysis process. It is particularly animated, and implements a reaction 

with ATP as well to complete the process. 

 NADH: A molecule with no particular methods, only its particular sprite 

and feedback window. 

 Oxygen: A molecule with no particular methods, only its particular sprite 

and feedback window. 

 Pyruvate: This molecule implements a particular reaction depending on its 

location, and its subsequent transformation into AcetylCoA and NADH 

molecules. 

 MembraneStructure: Class from which all mitochondrial membrane 

structures in the simulation inherit. Like Molecule, it inherits directly from 

the Entity class, and implements common elements that all of them have 

such as their animation. Each inheriting mitochondrial structure must 

provide its own sprite, animations, type (from an enum) and feedback 

windows. 

 ATPSynthase: It represents the mitochondrial enzyme that synthesizes 

ATP; therefore it implements the transformation function between ADP 

and ATP molecules. It has two animations and a particle emitter for 

feedback notices. 

 CytochromeChain: It represents the electron transport chain proteins in 

the mitochondrial structure. It has particular functions to manage the 

reception and release of electron charges from NADH and Oxygen 

molecules, as well as two animations, and 3 particle emitters. Two of the 

emitters are for feedback notices of electron reception and release, and one 

is for the simulation of Hydrogen protons exiting the mitochondrial matrix. 

 CellProcess: Class from which all cellular sub-processes that are 

represented by a constantly present sprite (or group of sprites) on screen (as 

opposed to being represented by multiple objects interacting) inherit. It 

implements no particular methods except to determine if it is collideable or 

interactable. 
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 KrebsCycle: The only sub-process that was left inheriting from 

CellProcess in the final version. It implements all the steps of the reaction it 

represents (the citric acid cycle), including the processing of AcetylCoA 

molecules, and production of NADH and ATP molecules. It has two 

animations that must be managed simultaneously on two different sprites. 

 Mitochondrion: This is one of the most important Entities in the 

simulation, as it handles most of the molecule’s movement. This is done by 

multiple particular functions that manage the mitochondrion’s inner and 

outer bounds, modifying other Molecules and MembraneStructures’ 

position, reaction status, etc. It has two sprites (one for the inner membrane 

and one for the outer), an array of MembraneStructures, and it is constantly 

animated. 

 Background: This class handles the display and movement of the 

background sprites. It contains the sprites of the 3 background layers and it 

has particular functions that move each independently in pseudo-random 

directions and different speeds to give the illusion of multiple depths; while 

keeping them inside predetermined bounds. 

 IntroAnimation: An Entity derived class particularly made to display the 

first contextualization animation of the simulation where the cell is shown 

from outside and then zoomed into the cytoplasm to start the first stage. 

Since this animation was radically different from the other sprites and had 

so many variables that could be tweaked to fit the script text and events 

(e.g. time until zoom, zooming speed, amount to zoom, point of the image 

to zoom to), that it was decided worthwhile to implement on its own. 

1.3.2.3. Screens  

Screen type classes are a convention that the FRB engine uses to manage game “levels” 

or “stages”. Each represents a managed context in which certain sprites, animations, 

polygons, etc. are loaded and handled under certain logic until a different Screen is 

loaded (e.g. change of level, pause screen, main menu). These classes are also the ones 

which hold all the game’s, or in this case the simulator’s, rules and backend logic. The 

FRB recommendation is that all common logic that applies to all levels is programmed 

into a base Screen class (that directly inherits from Screen), and then all other specific 

levels are programmed with their particular logic into classes inheriting from that base 

class (Fig 1-16). This was implemented in SimBIOS through the following classes: 
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 Screen: This is a pre-made class bundled with the FRB engine, and not 

meant to be instantiated; only inherited. It manages the loading and 

unloading of sprite, animation, and physics managers, be it synchronous or 

asynchronous. It also implements the methods to clean up after a screen is 

destroyed (to be replaced by another), changing states (pause, unpause, 

etc.), and some cross-platform compatibility (e.g. with the Xbox 360 

console). 

 Level: The base class inheriting from Screen where all the main logic and 

rules of the SimBIOS simulator are housed. In the main activity loop, called 

by the engine continuously, the user’s input is processed as well as the 

collision between all Molecules and structures in the simulation. Depending 

on these, the appropriate reactions on those objects are called. This class 

also handles the creation and destruction of Molecules influenced by the 

different sub-processes, the calls to update the HUD, the movement of the 

camera according to user cursor position, the calls to update the 

background animation, the display of feedback windows, and other general 

management of objects. 

Also, since it was decided that the levels were not going to be hard coded 

into separate classes due to the necessity of two different scripts (i.e. 

different level events and logic) for the two versions of SimBIOS, this class 

also handles the loading of scenes from the parametrized XMLs which 

contain the scripts (detailed in Section 1.2.4) when ordered by the 

LevelEventManager (Section 1.3.2.7). 

 LoadingScreen: This Screen is a simple one without much logic in its 

activity loop aside from showing a background sprite and an animation 

while Level loads the selected stage of the simulator asynchronously in the 

background. 

1.3.2.4. User interface 

In this category were all the classes that correspond to objects which help the user 

interact with the simulation. It contains the following classes: 

 HUD: This class displays the Heads-Up Display overlay on all the stages 

of the simulation (except the main menu). It handles the text shown, the 

feedback windows for when an object of the simulator is hovered upon 

with the cursor, the counters of different molecules which indicate 
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objective completion, and the buttons to skip/rewind texts, restart the 

current stage, return to main menu, etc. 

 DisplayWindow: This was used to show pop-up windows with 

information about molecules or structures of the simulation and schematics 

overlaying the simulation to aid the text script in the Full version of 

SimBIOS. These were not used in the Minimal version of the simulator. 

 SimulationButton: This was an extension of the FRB Button class 

(FlatRedBall.Gui.Button) made to instantiate the different buttons available 

to the user in the HUD. It doesn’t have particular logic different from its 

parent class, as it was implemented mainly for typification purposes. 

1.3.2.5. Content 

This section contains all the resources used by the application during simulation.  

 Fonts: Image based font files that the FRB engine uses to display text 

characters during simulation. 

 Levels: XML files made by the FRB level editor which indicate presence 

and position of the initial sprites of a level and which are parsed by the 

Level class of the application. 

 Sprites: Contains the image files of every sprite in the simulation. It also 

contains animation XML files (made through the FRB animation editor) 

which parametrize the size, number of frames, animation speed, etc. in the 

spritesheets of animated sprites. The polygon XML files (made through the 

FRB polygon editor) for the sprites that need more detailed collision boxes 

are also included. Finally, the particle emitter XML files (made through the 

FRB particle editor) are contained for the sprites that have them. 

1.3.2.6. Scripts 

This folder of the Content section contains the XML files where the events, actions, and 

steps of each level of the simulator are described. A customized XML template was 

made to divide the script: contextualizing texts, feedback, objectives, etc. into 

ScriptedEvent instances when parsed by the LevelEventManager (Section 1.3.2.7). By 

doing this, the parametrization of the script was externalized from the logic of the main 

simulator, making it much easier to make two distinct versions of it without modifying 

its code. The only difference between the Full and the Minimal versions of SimBIOS are 

their XML files for the levels. 
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Each level consists of two XML files. One is divided into events, each of which must be 

triggered by user actions, in-simulation timers, the production or destruction of 

molecules, etc. to proceed to the next, until the end of the level. The other holds the text 

strings linked to each of the ScriptedEvents. These are the texts that are shown in the 

HUD to give context to the activities, feedback, or describe objectives for the current 

event of the script. 

1.3.2.7. Other classes 

Since the FRB standard was not implemented to the letter in the SimBIOS application 

due to the intent of making two different versions of the software from the same code, 

and therefore trying to hardcode the least amount of script (i.e. level or stage) related 

code possible, some extra classes for the management of scripts and levels were required 

(Fig 1-16). Here is a description of their functionality, along with other necessary basic 

classes to complete the program. 

Fig 1-16 The Level class and its most relevant interactions with other classes and the 

LevelEventManager 
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 ScreenManager: This is FRB’s main manager for changing screens (i.e. 

levels). However, since this type of level management was essentially 

bypassed by the LevelEventManager to load and unload each stage on the 

same Screen object, it is only used to show the LoadingScreen instance 

while Level asynchronously loads the correct stage onto the different 

managers from the scripted XMLs. According to FRB documentation, this 

is also a valid form of Screen management for certain cases. 

 LevelEventManager: This singleton pattern class orchestrates the script of 

the simulator for both versions. When a level is selected, it parses the XML 

file corresponding to that level, and creates an array of ScriptedEvent 

objects to which it subscribes. As these events are triggered (by user 

actions or timers), this class handles the appropriate response and passes on 

to the next step in the script for that level, changing the corresponding 

texts, images, loading scenes, destroying objects, etc. When the end of the 

script is reached (a specific ScriptedEvent), it signals the Level class to 

load the next stage. 

 ScriptedEvent: Instances of this class represent steps in the script of a 

level or stage of the simulator. They correspond to a type of in-simulator 

event (e.g. collision of two molecules or structures, the production of a 

molecule, click of a button, timer elapsed, etc.). When any event is fired in 

the simulation, the LevelEventManager checks if the current ScriptedEvent 

corresponds to that type of event, and proceeds to the next step in the script. 

Each ScriptedEvent instance is tied to a segment of text in the script and a 

series of ScriptedAction instances to be performed when the ScriptedEvent 

is handled. 

 ScriptedAction: Instances of this class represent actions to be carried out 

by the LevelEventManager when a ScriptedEvent is handled. They consist 

in producing or destroying molecules, loading new scenes, showing or 

hiding feedback windows, changing levels, and enabling or disabling 

certain allowed user actions on the simulator. A ScriptedAction instance is 

directly linked to one ScriptedEvent, but a ScriptedEvent instance can have 

many ScriptedAction instances to be executed when being handled. 

 Polygonizer: A static class implemented to detect the borders of a non-

transparent body inside a sprite, and transform it into an optimized FRB 

polygon type. This is used to obtain the bounding polygon of irregular 

sprite shapes which need more accurate collision detection than a square or 
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circle around the sprite. Specifically it is used to determine the contours of 

the two sprites of the Mitochondrion to establish the bounding frontiers of 

its inner and outer membrane. 

 PolygonNode: A construct used in the construction and optimization of 

FRB polygons found by the Polygonizer class. 

 Game: A mandatory instance of this class must be started in the main loop 

of the program to initiate an instance of the FRB engine. It handles the 

engine’s initialization and calls its main loops (Update and Draw) as well 

as setting the screens resolution, refresh rate, or other programmed 

variables. 

 Program: Contains the main loop of the application, which initiates the 

instance of the Game class to start the FRB application. 

1.4. Experimental experience 

The experience with the SimBIOS software consisted of two sessions, one of which was 

destined to the pre-experience test (45 minutes) and the use of the simulator (45 

minutes), and the other to the post-experience test. 

For the use of the software, two groups of 10
th

 grade Chilean private school students 

were formed and assigned to each of the SimBIOS versions. Since four classes were part 

of the experiment (for a total of 148 male students), each group consisted of two of these 

36 or 37 alumni classes. In other words, there were 2 classes of 36-37 students using the 

Minimal version of SimBIOS, and 2 classes of 36-37 students using the Full version. The 

experience was conducted separately with each class in the school’s computer labs, 

where each user had an individually assigned computer with the corresponding version 

of SimBIOS installed. 

At the start of the experience, students were told to start form the first level of the 

simulator (Glycolysis, see Section 1.2.4.1) and try to progress through the activities 

presented without outside help. They were encouraged to attempt to figure out the 

problems and objectives by themselves, but interaction with other students or asking the 

teachers or researchers for help was not forbidden in case they got stuck. 

Although the time taken to complete the four levels of the simulator varied slightly from 

student to student, there was an approximately 30 minute interval in which they were 

completely focused on their tasks, with minimal interaction between each other. As the 

first users completed the simulation (usually the ones who grasped the concepts 

quickest), there was a natural tendency for them to try to help their classmates who were 



37 

 

 

struggling with some part of it. However, there was also a segment of the students who 

managed to get through the objectives by random trial and error (i.e. dragging all 

molecules against all other molecules and structures until the correct ones reacted). 

Therefore, when they had finished for the first time, they were encouraged to try to do 

the simulation again with as few moves as possible, trying to understand the underlying 

processes instead of just the mechanics. This generally gave the students focus for 

another, more conscientious run of the activities. 

After the post-test in the second session, a survey of the experience was administered, 

registering students’ perceptions, motivation, and general opinions about the software 

and the experiment. According to their answers, it seems that it was generally a 

motivating experience where they felt they learned in a fun and intuitive way. A 

majority of them felt they would benefit from more didactical software like SimBIOS if 

incorporated into the regular curriculum. 

The results of the pre-tests and post-tests, and the improvement in scores is discussed in 

Section 2.6. 

1.5. General conclusions 

Given the significant improvement in test scores by students using the SimBIOS 

software, it is clear that effective educational simulators can be designed through a 

methodical approach. In fact, by proving that software based on a specific model 

compiled from research and experience yields good results, the “gamble” of producing 

didactic software by the instincts of the developer is greatly diminished. In other words, 

the alchemical process by which educational simulators (and games) are made-- in 

which the design choices are based primarily on what the creator thinks will work-- can 

begin to advance towards a more scientific approach that guarantees certain results. 

However, the progress made here through the proposed model and guidance, and the 

subsequent simulator based on them only scratches the surface of a very complex 

subject. The proposed model has yet to be proven in other domains of science, and the 

experiment to be extrapolated for software dedicated to longer experiences, older and 

younger students, etc. Also, the individual characteristics of the model can still be 

refined by further experimentation, similar to what was done in this research with script 

complexity (which is only a specific part of the whole design). 

Specifically for SimBIOS, although it achieved its goal of teaching the concepts of 

cellular respiration while maintaining a strong motivation and engagement of the 

students, some improvements could be made to achieve an even better performance. For 
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example, a limitation could be introduced to the number of moves a user can make 

during a level. This could reduce the amount of trial and error used by some students, 

and allow for different difficulty levels to motivate students who found the experience 

too easy. Another improvement (or design consideration for other software made along 

these lines) would probably be the porting of the software to a browser based 

application. This would greatly increase its compatibility with almost any current 

hardware and operating system, thus making its distribution and widespread use much 

easier. 

1.5.1. Limitations of this work 

One great drawback in the implementation of the SimBIOS simulator was the use of the 

FRB engine. Since at first this project consisted principally of a game, it seemed an ideal 

choice. However, after two years of programming with it, its shortcomings became 

evident. Since it is developed by a very small team (principally just one person in the 

main engine), the software has quite a few bugs, and they are not able to fix them fast 

enough. The project is not open-source, so there is no possibility to try to fix or debug 

encountered errors inside the engine’s processes or to extend its functionalities. There 

are also some fairly important performance issues, especially with collisions between 

objects, which made it hard to develop for low-end computers with only integrated 

graphic cards (i.e. typical school computer lab PCs). In the end, this caused unexpected 

errors like the random crash of the program within FlatRedBall’s main loops. Without 

the option of debugging the problem or getting reliable support from the developers 

(given the stochasticity of the issue), the only choice was to leave the bug and hope it 

didn’t occur during experimentation with the software. Some features had to be taken 

out of the simulator because of performance issues as well. Since some of the engine’s 

functions weren’t optimized, their use slowed the program too much in low-end 

computers for correct usability. 

During the experiment, this did eventually cause some unexpected crashes while using 

the simulator. However, since it was programmed so that any state in the simulation was 

easily regainable through the main menu, much progress was never lost. Crashes and 

bugs did not affect the attitude of the students toward the experience according to the 

post-experience survey, but it is still a problem to fix in future iterations. This could 

probably be done with the port to a browser-based application. 
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2. THE VALUE OF GUIDANCE WHEN TEACHING SCIENCE USING AN 

EDUCATIONAL SIMULATOR 

2.1. Introduction 

Simulators or computer simulations have been used since the beginning of modern 

computing, and in education for the past forty years (Smetana & Bell, 2011). A 

simulator mainly consists of interactive software that models a natural or artificial 

system and emulates its processes (Blake and Scanlon 2007; de Jong and van Joolingen 

1998). It allows users to experiment with phenomena that are either too difficult or too 

expensive to test in the physical world, manipulate the different variables of their 

processes, and observe what happens when they are modified (Efe, H. A. and Efe, R. 

2011).  

The teaching potential of this medium has been thoroughly investigated as technology 

has advanced and become more readily available (Rutten et al. 2012; Smetana and Bell 

2011; Vogel et al. 2006). This has created a branch of educational simulation software 

which has added a plethora of new elements to conventional simulators. Initially, the 

software used for this purpose was very similar to its scientific counterpart, providing 

only the relevant processes and variable manipulation. Although this could be used to 

reinforce learning acquired through other teaching methods or as a tool for exploratory 

or discovery learning (de Jong 1991; Reigeluth and Schwartz 1989), it was generally 

established that this was not enough. Students could easily become lost, confused, and 

generally unable to gain maximum knowledge from the educational simulator, especially 

when they were expected to learn material that was either partially or completely new to 

them using only the simulator (or any other type of discovery learning technique). The 

need for guidance methods in discovery learning and simulators therefore emerged (de 

Jong and van Joolingen 1998; Honomichl and Chen 2012; Lee 1999). 

In terms of guidance and scripting, much can be taken from the experience of 

videogames, educational or otherwise. In their most primitive form, computer games 

offer the player guidance in the form of increasingly challenging and complex objectives 

which can be solved by progressively incorporating the game’s mechanics (Fullerton et 

al. 2004). In the more elaborate game guides (or tutorials), the player is taken through a 

series of short steps in which the objectives are very concise and the user’s actions are 

limited to the relevant subset of the total mechanics required to complete each objective 

(i.e. model progression). This can be accompanied by explanatory images, text, 
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animations, pedagogical agents, and other ways of focusing the player’s attention on 

learning the new mechanics introduced by the game (Andersen et al., 2012). 

These guidance and scripting techniques have been successfully implemented in 

educational games and simulators. It has also been proven repeatedly that students 

learning or reinforcing learned concepts using guided computer simulators perform 

better in evaluations than those exposed to purely exploratory simulators or unguided 

experiences (Kirschner et al. 2006; Moreno and Mayer 2005; Reid et al. 2003; Schrader 

and Bastiaens 2012). However, little research has been done into how these guiding 

systems should be built or which are better for different subjects or types of experience. 

Moreover, there is no comprehensive categorization for these systems. Some broad 

aspects of guides, such as the times at which feedback is given to the user, the effects 

involving pedagogical agents, and the need for an instructional overlay have been 

categorized (Alessi 2000; Kuk et al. 2012; Moreno and Mayer 2005; Osman et al. 2012; 

Reid et al. 2003). Furthermore, the elements that are useful for developing guides (e.g. 

text, images, objectives, feedback, etc.) have been discussed (van Joolingen and de Jong 

2003), but they have seldom been compared to each other (de Jong et al. 1999), and their 

correct use has not been determined. There has also been no attempt made to find the 

optimal complexity of simulator guides for achieving the best learning results. 

The aim of this research is to define a model which collects elements that have proven to 

enhance learning and would benefit educational simulators that incorporate them. 

Another goal is to define a model for the guidance systems of these simulators based on 

a review of the literature.  Studies have been done to determine the effects of single 

elements of guidance systems within educational simulators, but not on the optimal 

amount or complexity of such elements. In this context, we analyze which elements are 

effective in simulator guides, and how complex or heavily-present they should be.  

In order to do so, we compare two educational simulators designed to teach Cellular 

Respiration (a unit in cellular biology) to high school students. Both simulators have the 

same underlying software and mechanics and are based on the same proposed model. 

However, the two differ in their guidance systems (i.e. script). The first guides the user 

by giving them only background text, general objectives and feedback on their actions. 

The users are therefore left to discover for themselves the specific actions required to 

meet the objectives. The second simulator incorporates all of the features of the first, but 

also includes more complex tutorial elements such as explanatory images and texts for 

each mechanism, and step-by-step instructions with feedback that the user must follow 

sequentially in order to meet the overall objectives. Our aim in comparing the process of 

learning about cellular respiration concepts between these two test groups is to 
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determine the degree of complexity and amount of guidance needed in educational 

simulators. 

 The rest of the paper is divided as follows. In Section 2, a model is proposed based on 

a collection of characteristics gathered from previous research into the construction of 

effective pedagogical computer simulators, and a description of how each of these 

characteristics was implemented in the experimental simulator for this study. Section 3 

describes a set of elements that have proved effective in guidance systems for 

educational simulators. The complexity and quantity of the aforementioned elements 

will later be compared in the two versions of the simulator. Section 4 describes the tools 

used in the experiment, namely the two versions of the SimBIOS educational simulator 

and the differences in their guidance systems. Section 5 explains the experimental design 

used to test for the correct amount and type of guidance required in simulators. Section 6 

reports the results of the tests and their significance in determining the differences 

between the two simulator guides. Finally, Section 7 discusses the implications of these 

results and the possibilities for future research.   
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2.2. Gaming language, fidelity, and transparency in educational simulators 

A model was devised to collect and identify the components of an effective educational 

simulator. This was done by studying various simulators that have proven successful in 

teaching or reinforcing subjects and reviewing the literature on individual elements that 

improve learning in educational simulators and games. An educational simulator 

(SimBIOS) was then developed following this model. Here, each element is described 

together with how it was implemented in the SimBIOS software. 

2.2.1. Gaming language: 

In a time when children and teenagers are in constant contact with videogames and other 

interactive media for entertainment, gaming language has been found to be a very 

effective tool to communicate and engage with students (Amory et al. 1999; Annetta et 

al. 2009; Dickey 2005; Garris et al. 2002).  

This does not necessarily mean that an educational simulator has to be a game; rather 

that gaming elements such as vividly colored and attractive graphics, animations, 

intuitive and interactive interface, interactive virtual realities, competition, exploration, 

story, etc., enhance students’ experience of the software. Since this language is native to 

them, they can quickly understand activities presented as a game, and will generally 

have a more positive attitude and be more motivated towards using the software. 

Evidence of this is available in extensive reviews of the literature evaluating motivation 

and other pedagogical factors in educational games (Amory 2010; Dondlinger 2007; 

O’Neil et al. 2005; Paras 2005). In turn, this motivation facilitates the student’s 

immersion into the activity, allowing them to remain more concentrated on the subject 

for a longer period of time (Paras 2005). 

SimBIOS was designed to incorporate several gaming elements. It has a graphical, two-

dimensional virtual environment depicting the interior of a cell in a style similar to 

modern real-time strategy or simulation games (Fig 2-1). The different structures, 

organelles, and molecules with which the user can interact are all animated and can be 

directly manipulated using the mouse. 
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2.2.2. Fidelity: Abstraction of a complex model 

All simulations are abstractions or representations of real processes, and will thus always 

be susceptible to simplifications while attempting to emulate real complexity (Reigeluch 

and Schwartz 1989). However, in the simulator’s early stages, there was a tendency to 

build simulation software that was “as close to reality as possible” so as to get the most 

reliable results by factoring in as many variables as possible (Alessi 1988). This has 

been repeatedly proven not to be a good approach, since students could be overwhelmed 

by the complexity. Also, they might first need to learn things that are outside the scope 

of the target concept in order to interact with the tool. This can lead them to become 

frustrated or bored without ever interacting with the intended target concepts (Feinstein 

and Cannon 2001).  

From this evidence, it can be surmised that in order to be more effective the software 

must have a clear educational objective and that the model to be simulated must be 

oriented towards that objective. Given that this model will always be an abstraction of 

Fig 2-1 Cellular respiration simulation in SimBIOS 
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reality, seeking to meet this objective is more important that maintaining absolute 

fidelity to the processes themselves. This is true both in the semantic and syntactic 

sense, , i.e. while the model must be an abstraction of reality in terms of the concepts it 

teaches, the interaction with the user might also need to be abstracted to suit the 

pedagogical needs of the software. This could even mean that the interface has to be 

extremely simplified. This allows immediate usage of the simulation with minimal 

training, and the conjunction of these abstractions results in simplicity in the interaction 

between user and software. 

The aim of the SimBIOS educational software was to teach the processes of animal 

cellular respiration as a whole. The focus of the designed model was therefore the direct 

interaction of the user with the steps (or sub-processes) involved in respiration. It was 

also important for the user to understand the way in which these steps connect to form a 

cycle of parallel sub-processes, where the output of each sub-process provides the input 

for the following. In reality, cellular respiration involves fairly complex chemical 

reactions and millions of molecules and intracellular structures. However, in this case 

only the most relevant steps to understand the overall process were included, with 

varying degrees of simplification. For example, the Krebs cycle in mitochondria 

involves 10 distinct and intricate steps, but in SimBIOS it was simplified to a process 

where the user inputs the correct molecules, and the output is given after a brief 

animation of the 10 stages (Fig 2-2). 

 

Fig 2-2 SimBIOS animation of the Krebs cycle highlighting the steps that produce 

important output 
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The interface is also simplified. In reality, the chemical processes of cellular respiration 

happen because of the random clash between millions of molecules. In the simulator, 

however, the user directly manipulates a few molecules to join them together and 

produce these effects. Although this strays from an “accurate” representation of reality, 

it allows the students to interact much more directly with the sub-processes and their 

relevance in the overall cycle. The abstraction of the model enabled the design of a 

simpler and more intuitive interface. 

2.2.3. Transparency: Direct interaction with the processes 

In general, the more direct a relationship the user can have with the process being 

learned, the better. Studies in scientific discovery learning over the last few decades 

have found that it is very difficult for students to formulate theoretical hypotheses based 

on observed data (i.e. the influence of variables on a system). Students also tend to 

maintain false hypotheses even in the face of contradicting evidence (de Jong and van 

Joolingen 1998; Swaak et al. 1998; van Joolingen and de Jong 1997). Therefore, if the 

variables or interfaces that the student manipulates only indirectly affect the outcomes of 

the different processes or elements, any hypothesis of causality between the two is 

probably incorrect. This proposed model deviates from scientific discovery learning to a 

more expository learning experience in the discovery/expository spectrum (Alessi 2000). 

Here, the pedagogical objective is to teach a specific process or concept (i.e. conceptual 

knowledge) rather than for the student to infer an underlying model by observing 

changes in abstract variables (de Jong et al. 1994; van Joolingen et al. 2005). Therefore, 

it is deemed that the ambiguity added by variables and different layers of abstraction in 

the processes (van Joolingen and de Jong, 1997) is detrimental to understanding these 

processes. For this reason we propose that the variables used in the simulation should be 

chosen in such a way as to make their effect on the processes as transparent as possible. 

The decision regarding the level of abstraction of these variables, however, has to be 

weighed against the possibility of adding complexity to the abstraction model described 

in Section 2.2. Consequently, interaction with the processes should be as direct as 

possible, while striving to minimize the complexity of the abstraction model. 

In the SimBIOS educational software, the user directly interacts with the molecules and 

mitochondrial structures that carry out the multiple chemical reactions composing 

cellular respiration. This is done by clicking and dragging the molecules with the mouse. 

This method was preferred over other options (e.g. manipulating the amount of the 

different compounds present in the cell) because it allows the user to directly see which 

molecules must be joined in each process, the quantities required, and the exact output 

of each process. All this information, which was an important part of the simulator’s 
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pedagogical objective, would have been left to the students’ deduction if more indirect 

interactions had been implemented In SimBIOS this information is observed directly. 

2.3. Guidance systems 

The most important characteristics of optimal educational simulators are the guidance 

systems. As stated in the introduction, the presence of an incorporated guide (i.e. a 

script) in educational experiences with simulators has repeatedly yielded better results 

than purely exploratory simulations (Kirschner et al. 2006; Moreno and Mayer 2005; 

Reid et al. 2003; Schrader and Bastiaens 2012). These guidance systems are based 

primarily on the concepts of model progression and assignments (or objectives), and on 

the feedback given to the user as described below. 

The primary objective in the comparative experiment with the SimBIOS educational 

simulator was to find the optimal level of complexity and flexibility for these guides. 

2.3.1. Model progression and distinction of sub-processes: 

An important concept incorporated into guided educational simulators is the progressive 

incorporation of new knowledge, increasing levels of difficulty, and understanding of 

mechanics during the experience with the software. This concept had already been 

incorporated into videogames much earlier. This basically consists of a cycle in which 

the user is presented with a new mechanic or concept and is made to practice it in 

isolation from the rest of the system. This new element is then incorporated into the part 

of the system that the user has already mastered, and is further used in conjunction with 

the other mechanics until a new one is introduced (Swaak et al. 2004; White and 

Frederiksen 1990). A number of studies have shown that similar concepts of model 

progression in educational simulators lead to higher student performance (Alessi 1995; 

Rieber 2005; Rieber and Parmley 1995; Swaak et al. 2004). This has also been stated as 

being good practice in the making of interactive, educational material (Plass 2009).  

This technique allows students to progressively achieve the pedagogical objective 

without becoming overwhelmed by large amounts of unknown data or complex 

processes. It builds upon the knowledge acquired until a certain point in order to 

effectively teach the following segment. Also, since a new element is only included once 

the previous elements have been mastered, the risk of an element going unnoticed due to 

an information overload is lowered. In other words, it allows users to focus on the 

relevant parts of a process because it generates a context within a more manageable 

chunk of what might be a very complex process. If students are not able to distinguish 
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between and understand the different parts of a system, it will be more difficult for them 

to understand it effectively as a whole. 

SimBIOS implements this concept as a game; using levels or stages of increasing 

complexity and difficulty. In each level, a new sub-process of cellular respiration is 

introduced and practiced on its own. The remaining necessary elements (inputs) and 

conditions are provided by the software. The simulation, including all the elements and 

sub-processes encountered up to that point, is then restarted and students must complete 

an objective that involves the new mechanic. However, this must be done in conjunction 

with the rest of the previously learned concepts (i.e. they must acquire the necessary 

elements and conditions through other sub-processes). In doing so, students obtain a 

clear understanding of each element (sub-process) that makes up respiration in order to 

better comprehend the entire process later on. 

2.3.2. Presence of context, progressive objectives, and feedback: 

The guidance mechanism proposed here must first provide context or a scenario in 

which the activities can be carried out, as well as the learning objectives (Choi 1997; 

Rieber 2002). This means at least describing what is going to be simulated in the 

software and the role the user will play in each simulation or activity. 

Furthermore, the script must provide a sequence of game-like objectives consisting of 

assignments similar to those proposed by de Jong et al. (1996), but subject to the model 

progression described in Section 3.1. It is often difficult for students to self-regulate their 

learning process and assess their progress without the presence of assignments. This is 

especially the case if there is little prior knowledge of the subjects involved (Charney et 

al. 1990; Swaak et al. 1996). Given this tendency, the objectives that the user must 

complete have to be clearly defined and present at every stage of the activity. These 

should focus students on trying to overcome obstacles or solve problems or puzzles in 

order to achieve those objectives and progress through the activity. In accordance with 

the model progression (Section 3.1), the script must provide incremental objectives and 

challenges. In other words, the concepts and new mechanics must be gradually included 

as students progress through the activities or assignments. They must also be integrated 

and used in conjunction with those previously mastered to achieve each new objective 

before another concept or mechanic is incorporated into the simulation. Finally, users 

need to be given feedback about their actions inside the simulations so they can 

understand the consequences of those actions in the virtual environment as well as their 

implications for the current objective.  
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In the SimBIOS simulator, context and instructions for each activity were given using a 

Heads-Up Display (HUD) type interface in the form of text, images, and animations. 

They described the setting and what was going to be simulated in each level. Through 

this same means and using on-screen counters, the current objective or assignment that 

students were expected to complete was always visible, along with a display of their 

progress. The amount of steps required to complete these assignments, or the number of 

tasks previous to them varied between the two versions of the software. However the 

final objective of each level was generally the formation of a certain amount of 

molecules that required an increasingly complex series of chemical reactions to be 

chained together. In this way, each level incrementally added new concepts and 

encouraged students to incorporate them into their existing knowledge in order to 

progress. 

2.4. Tools used 

For the purpose of this experiment, a simulator (SimBIOS) was developed to teach the 

processes of cellular respiration, a common topic in high school biology. Two variants 

of the principle software were then developed: one with a simplistic guidance method 

and script, and another with more elaborate (or rigid) guidance. The latter includes more 

of the elements usually employed in making tutorial guides or scripts.  

2.4.1. The two versions of SimBIOS 

Both versions of the SimBIOS simulator were based on the same back-end software (and 

the model described in Section 2) and look and behave exactly the same. However, the 

program was designed to be flexible in scripting its internal guidance system, objectives, 

permitted actions, and stages. In terms of the core simulator, the two versions (the 

Minimal version and the Full version) were distinguished by scripting a different 

guidance system for each. 

2.4.1.1. The Minimal version: 

The guidance systems in the Minimal version of SimBIOS was designed to embody the 

characteristics described in Section 3 in their most basic form. Contextualization was 

subtle, the model progression takes bigger and broader steps, and the objectives are more 

general. Completing these objectives required some exploration and experimentation on 

behalf of the students. The inclusion of these very “general” guiding mechanisms made 

this the less restrictive or less “heavily guided” version of the software. Its main guiding 

characteristics were as follows: 
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a) Context of the simulation and its assignments and objectives is given 

through short texts on the HUD. 

b) The simulation is divided into four levels in which general objectives are 

given, along with the necessary chemical formulas to achieve them. 

Students must explore the different actions available to them as well as 

decide which of the multiple molecules and structures are needed to reach 

their objective. For example, the script may give the objective “Generate 

glycolysis to produce 10 pyruvate molecules,” and offer the simplified 

chemical equation for joining glucose and ATP molecules to produce 

pyruvate molecules. In this case students would have to figure out which 

molecules the equation is referring to, drag them together in a certain 

location, etc., and then repeat the process a certain amount of times to 

generate the specified amount of pyruvate. 

c) In each of the four levels, a new sub-process of cellular respiration is 

introduced and practiced individually, and then repeated in conjunction 

with all the previous processes learned. By the end of the fourth level, all 

the sub-processes are practiced simultaneously, thus reproducing the entire 

respiration cycle. 

2.4.1.2. The Full version: 

The guide in the Full version of SimBIOS includes all the elements of the Minimal 

version. However, it also adds other components commonly found in guided software 

activities, games, and tutorials. The context is presented in several complementary ways 

such as through images, diagrams and text, and the model progression is implemented in 

much smaller increments. The objectives also detail more restricted goals. These require 

almost no exploration or experimentation in their first appearance in the script. Since the 

Full version includes all of the elements of the Minimal version, the following 

characteristics only represent the extra features of the Full script. This version of the 

software is considered to be more “heavily guided”, or having the more restrictive guide 

of the two. 

a) Context and activity texts are accompanied by images and diagrams of the 

different molecules, structures, and processes which are being mentioned. 

b) In each level, students are taken through the newly introduced sub-process 

step-by-step; indicating through text, images, and schematics, the exact 

actions they have to carry out in order to achieve the desired reaction. In 

each small step, users’ actions are restricted so that they can only perform 

those that help complete the current objective and they cannot advance to 
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the next level until it is completed. Once students have completed this 

“tutorial phase” of the level, the general objective is presented in the same 

way as in the Minimal version, and they must repeat the mechanics by 

themselves in order to complete the level’s final objective. 

c) The subdivision of levels and concepts is the same as in the Minimal 

version with the exception of the step-by-step explanation of the new 

mechanics in each level. This effectively limits the user’s exploratory 

search for strategies and solutions to a minimum. 

2.5. Experimental design 

The quasi-experiment consisted of two groups of students who used the SimBIOS 

simulation software, each in a version that only differed in its implementation of the 

script. The learning of concepts through this activity was measured using a pre- and 

post- multiple-choice test. 

2.5.1. Experimental groups 

A study was performed in a private boys school in Santiago, Chile with 10
th

 grade 

students (approximately 16 years old). Students were divided into two groups depending 

on their class schedule (making this a quasi-experimental assignment), each one 

participating in the experiment using a different version of SimBIOS (FULL or MIN). 

There was an initial total of 148 students. However, only the students that performed the 

pre-test, the experiment itself, and the post-test were considered in the study. Therefore, 

the final group sizes were 72 students for the Minimal version and 58 students for the 

Full version. In general, the students had very limited prior knowledge of the subject, 

based only on what they knew from a review in biology class the previous year. 

2.5.2. Evaluation 

The whole experiment consisted of two sessions over two separate days. The first 

session, lasting approximately 1.5 hours was divided into two 45-minute segments, the 

first of which was used to administer a pre-test as a diagnostic of their previous 

knowledge on cellular respiration. The second segment was spent using the 

corresponding version of the SimBIOS simulator. In the second session, two days later, 

the same test was administered again to compare the knowledge of cell respiration 

gained through the use of the software. 
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The instrument used in the experiment as a pre- and post-test was a 34 question, 

multiple-choice exam administered digitally using a website. The questions all focused 

on cellular respiration, its products and effects, and the cellular anatomy involved. They 

ranged from simple facts that had to be memorized in order to be answered correctly, to 

the application of the concepts relating to cellular respiration in order to deduce their 

effects or relationships with other, more general subjects of biology. The instrument was 

devised by the researcher through the analysis of a segment of the local government’s 

biology educational curriculum pertaining to cellular processes, and a review of 663 

multiple-choice biology questions taken from the PSU exam (a standardized school-

leaving exam in Chile). It was validated by secondary school biology teachers, and its 

reliability (using Cronbach’s Alpha) was 0.82. 

2.6. Results 

After answers from the pre- and post-test were gathered, the difference between the 

number of correct answers before and after the use of the SimBIOS software for one 45 

minute session was calculated to assess the improvement of each student in the 

aforementioned subjects. 

Both groups saw a statistically significant improvement in their test scores before and 

after their experience with the SimBIOS simulator (p < 1.154e-21 for the MIN group and 

p < 3.969e-13 for the FULL group; and a Cohen’s d = 1.642 and 1.342 for the MIN and 

FULL groups respectively). The Minimal version group (MIN) rose from a mean of 

21.8% correct answers to 46.5%, and the Full version group (FULL) from 31.8% correct 

answers to 52.2%. This proves that both versions of the simulator, used for one 45 

minute session, significantly improve the student’s knowledge of the concepts relating to 

cellular respiration. 

However, the difference between the mean score improvement using either version of 

the software was not significant enough to reject the null hypothesis. An independent 

sample T-test for equality of means rendered a 0.125 significance, and a one factor 

ANOVA test delivered a significance factor of 0.121 (Table 1), giving the null 

hypothesis ample favor in a 95% confidence interval. 
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ANOVA 

Improvement 

 Sum of Squares df Mean Square F Sig. 

Between Groups 70.899 1 70.899 2.431 .121 

Within Groups 3733.224 128 29.166   

Total 3804.123 129    

Table 1 One-way ANOVA test for the mean improvement of experimental groups 

2.7. Conclusions 

This research shows us that a guided pseudo-exploratory experience with an educational 

simulator proves to be an effective learning tool. According to the first research goal, a 

model was proposed to collect the elements necessary in creating an effective 

educational simulator (Section 2) as well as the necessary guidance systems it should 

incorporate (Section 3). This model was certainly validated by the significant 

improvement of the students’ knowledge of the concepts that constituted the pedagogical 

objective in this experiment. It can be affirmed then, that didactic simulators developed 

following this model will produce effective pedagogical tools, at least in the domain of 

cellular biology processes, but almost certainly not limited to it.  

Given the lack of a significant difference between the improvement in test scores with 

the two SimBIOS versions, the answer to the question of how “heavily guided” an 

educational simulator has to be in order to better achieve its pedagogical goals is fairly 

straightforward. The null hypothesis of the experiment could be translated into the 

asseveration that “the minimum guidance systems and scripting requirements for an 

educational simulator to be effective (described in Section 3)—and in their most basic 

form—should be sufficient to obtain the optimal performance from the didactic 

experience.” No evidence could be found to suggest that the addition of extra guidance 

elements and the development of a much more complex script or “tutorialized” 

objectives and model progression have a significant impact on learning the concepts 

imparted by the software. We therefore conclude that the minimal set of script 

characteristics is, in fact, sufficient for this purpose. This conclusion takes into 

consideration that the abstraction of complexity in the simulator’s model (Section 2.2) is 

the essential factor enabling the construction of the minimal set of characteristics 

required for a successful script. It is also worth noting that the results demonstrate that 

students do not need complete guidance in the activities, and that a simple focusing of 

the exploration efforts using model progression and game-like objectives is enough for 

them to understand the concepts behind their actions. 
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2.7.1. Future research 

It would be valuable to expand this research into other fields of education in order to 

validate the proposed model for the effective construction of guiding systems in other 

domains. Although other forms of evaluation such as the use of concept maps and other 

more constructivist approaches are available (Liu & Lee, 2013), we leave as future work 

how to integrate these into guidance systems 
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