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ABSTRACT

Generative models have become an area of utmost importance in recent times, due to

their ability to learn a probabilistic data distribution from an input data set. Currently these

models have been explored mainly in the generation of images, but not so much in the mu-

sical field, where the use of these models makes sense since music is rich in structured

information which can be learned by these models. In this paper we present the analy-

sis of two case studies of generative models based on deep convolutional networks. We

study their ability to generate symbolic music for one or more instruments in the pianoroll

format, and whether it is possible to condition the output to display characteristics of dif-

ferent composers or genres. Also we study how controllable are the results generated. We

evaluate both models using the Fréchet Inception Distance (FID), a metric for generative

image models, in addition to musical metrics defined by us. One of these cases is the use

of the recently developed StyleGAN 2 model. Using this type of architecture in a non-

visual domain is novel and we present interesting results in terms of FID and in qualitative

musical terms. Despite this model was designed for a visual domain to generate high qual-

ity images, it can be adapted to a totally different context. In addition, it has properties

that are of interest to the area of musical composition, such as having a disentangled latent

space, where it is easy to explore different musical ideas, and conditional input to further

control the output of the model. We believe that the results we show in this work are a step

forward in understanding how to create better generative models in the symbolic music

domain, taking into account the concepts of conditionality and controllability to develop

better tools for the end users.

Keywords: generative models, symbolic music generation, machine learning.
xi
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RESUMEN

Los modelos generativos se han convertido en un área de gran importancia en los

últimos tiempos, debido a su capacidad para aprender una distribución probabilı́stica de

los datos de entrada. Actualmente estos modelos han sido explorados para la generación

de imágenes, pero no tanto en el ámbito musical, donde la música es rica en información

estructurada que puede ser aprendida por estos modelos. En este trabajo presentamos el

análisis de dos casos de estudio de modelos generativos basados en redes convolucionales

profundas. Estudiamos su capacidad para generar música simbólica para uno o más in-

strumentos en el formato pianoroll, y si es posible condicionar la salida para mostrar car-

acterı́sticas de diferentes compositores o géneros. También estudiamos hasta qué punto

son controlables los resultados generados. Evaluamos ambos modelos utilizando Fréchet

Inception Distance (FID), una métrica para modelos generativos de imágenes, además

de métricas musicales definidas por nosotros. Uno de estos casos es el uso de Style-

GAN2, donde por primera vez se utiliza este tipo de arquitectura en un dominio no vi-

sual, adaptándolo a un contexto distinto con resultados interesantes tanto en FID como en

términos musicales cualitativos. Además, tiene propiedades que son de interés para el área

de la composición musical, como tener un espacio latente desenredado, donde es fácil ex-

plorar diferentes ideas musicales, y la entrada condicional para controlar aún más la salida

del modelo. Creemos que los resultados que mostramos en este trabajo son un paso ade-

lante en la comprensión de cómo crear mejores modelos generativos en el dominio de la

música simbólica, teniendo en cuenta los conceptos de condicionalidad y controlabilidad

para desarrollar mejores herramientas para los usuarios finales.

Palabras Claves: modelos generativos, generación de música simbólica, aprendizaje de

máquina.
xii
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1. INTRODUCTION

1.1. Motivation

Today, the area of artificial intelligence is one of the fastest growing

areas of study, which has permeated practically in every other area in one

way or another. Specifically, the deep learning branch has long made it

possible to obtain excellent results in many tasks such as image classifica-

tion, anomaly detection, language processing, among others (Sengupta et

al., 2020). The advancement of deep learning has influenced the arts, either

in the way certain tasks are performed, or the tools available to create new

pieces of art. The availability of new and better models in the music domain

have made it possible to improve tasks such as genre classification of music,

instrument separation from audio files, text-to-speech, among others.

Although machine learning started to be used long ago in music mainly

for information retrieval tasks rather than for the generation of new con-

tent, probabilistic approaches existed. These early approaches were mainly

handcrafted algorithmic tools for composing new pieces.

Due to the appearance of large volumes of data, increasingly deeper

models have been developed, with millions of trainable parameters that can

solve the most complex tasks. These models can also learn a data distribu-

tion instead of solving a task, being able to have a representation of these

immense volumes of data in a neural network. This learned distributions

can be used to generate new examples that resemble our input data, al-

lowing this type of models to contribute to the creation of artistic content,
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and also to nurture the creativity of its users to compose music or find new

sounds through the use of these new tools.
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2. BACKGROUND THEORY

In this chapter, we introduce the music and machine learning concepts

necessary to understand this work. We explain how generative adversar-

ial networks work, which are the main architecture used throughout this

work. We also explain the MIDI representation and how it translates to the

pianoroll representation used as input for the models described in section

5.

2.1. Generative Adversarial Network (GAN)

Generative adversarial networks (Goodfellow et al., 2014) were intro-

duced in 2014 as a new framework for generating new synthetic instances

of data using two neural networks: the generator and the discriminator. The

generator consists of a network that produces new samples that tries to re-

semble the training data, while the discriminator is in charge of classifying

this samples as real samples from the training data or fake samples that do

not belong to the distribution of the input data. In Figure 2.1, there is a gen-

eral representation of the architecture used to train a GAN. The generator is

fed with some input noise, usually sampled from a normal distribution, and

from this input transforms it to generate an example that the discriminator

classifies.

This new approach of training both networks simultaneously, where

one of them tries to “fool” the other corresponds to a minimax game that

can reach a global optimum when the discriminator can not tell whether a

sample from the generator is real or fake, implying that the generator has
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Figure 2.1. Basic representation of a GAN architecture.

learned the training data distribution and that is capable of generating new

samples that seems similar to the original data.

2.2. Symbolic Music Representations

2.2.1. MIDI

The MIDI (Music Instrument Digital Interface) Protocol (Association

et al., 1983) was introduced in 1983 to synchronize and communicate dif-

ferent electronic music instruments. At its core, MIDI is a standard for

communicating musical events, which consist of multiple controls whose

values are quantized as 7-bit integers, therefore, allowing to pass 128 dif-

ferent values per message. In 1988 it was defined the MIDI file standard,

which to this day is one of the simplest ways to store a musical score that

can be played in different instruments that implement this standard. This

8-bit binary file standard stores a score using one or more MIDI streams
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with timing information for each event. These streams allow having mul-

tiple instrument information for a song. Other information such as tempo,

time signature information, and track names, among others, can be stored.

2.2.1.1. Pitch

This term refers to which of the 12 notes of the traditional western tun-

ing an instrument is playing and in which octave. When two or more notes

are played simultaneously, it is called polyphony.

2.2.1.2. Velocity

In the MIDI standard, velocity can be interpreted as the force used to

play a note, meaning that higher velocity results in a note played harder on

a keyboard than a note with lower velocity. This feature was implemented

to incorporate dynamics.

2.2.2. Pianoroll

A pianoroll is a symbolic music format, inspired by old self-playing

pianos that used rolls of paper, which represents a music piece by a 2-

dimensional matrix. The vertical axis represents note pitch information and

the horizontal axis represents the timing of when these notes are played.

The values stored on this matrix represent the velocities of the notes. In

Figure 2.2, there is an example of a single-track pianoroll, showing a piano

performance from the Maestro dataset (Hawthorne et al., 2019), which only

has information from a single instrument.
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Figure 2.2. Pianoroll example, the Y-axis represents note
pitches and the X-axis represents the timing for the musical
events. The information stored on the matrix represents ve-
locity, which is a value from 0 to 127, but in this example
the values are normalized.
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3. RELATED WORK

In this section we provide an overview of relevant related work. The

section is split into three parts: Recurrent Neural Network (3.1), Varia-

tional Autoencoder (3.2) and Generative Adversarial Network (3.3). All

the sub-sections are important to better understand the different approaches

to the problem we are targeting on this work, and their main differences are

the type of model architecture. A final section Differences to Previous Re-

search (3.4) highlights what we add with our work to the already existing

literature in the area.

3.1. Recurrent Neural Network (RNN) methods

Recurrent neural networks area a type of neural network for handling

sequential data and can have an internal state to process and “remember”

dynamic behaviour of the input data, which is a feature desired for mod-

elling structured temporal data like music.

3.1.1. DeepBach

DeepBach (Hadjeres, Pachet, & Nielsen, 2017), is a neural network

that models 4-voice polyphonic music and specifically hymn-like pieces

using a Deep-RNN (Pascanu, Gulcehre, Cho, & Bengio, 2013) architecture

to generate Bach-like chorales in a special encoding of the MIDI format

proposed in this work for taking advantage of the chorales metadata. The

model uses two Deep-RNN to encode past and future information from the

chorale, and a third neural network for the information of the current played
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notes. These three outputs are merged into a fourth neural network which

makes the prediction.

3.1.2. Music Transformer

Classic RNN-type models have trouble learning long sequences be-

cause of the vanishing gradient problem. The transformer architecture first

introduced by Vaswani et al. (2017) fixed this problem using self-attention,

achieving to learn coherent long structures, although this models are mainly

used for natural language processing, in music there is a heavy use of rep-

etition in their structures, like in language, which these models are suited

for. In the work of Music Transformer (Huang et al., 2018), utilizing a new

algorithm to alleviate the complexity of modelling very long sequences for

music, the authors managed to generate new music in the MIDI representa-

tion with a transformer architecture.

3.2. Variational Autoencoder (VAE) methods

These kinds of models use an autoencoder architecture to learn a re-

duced embedding space to represent the training data. By replacing this

encoded representation space with a prior probability distribution, these

models can learn how to represent the input data as a probability distribu-

tion.
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3.2.1. MusicVAE

Roberts, Engel, Raffel, Hawthorne, and Eck (2018) used a hiearchical

RNN style encoder-decoder in order to produce a latent representation of

sequential data in the Midi representation. The input was encoded through

a bidirectional RNN encoder to obtain a latent code that serves as the con-

ductor, which the decoder transforms into a sequence.

3.3. Generative Adversarial Network (GAN) methods

Goodfellow et al. (2014) introduced this new framework for training a

generative network that could represent rich data distributions. The follow-

ing works use this type of network for generating symbolic music.

3.3.1. MidiNet

MidiNet (Yang, Chou, & Yang, 2017) uses a deep convolutional net-

work GAN to generate melodies as 2D matrices, with additional conditions

to the input, like chords or previous melodies that the model should con-

tinue, and can be extended to multitrack melody generation. They used a

Midi dataset of pop songs with 2-channels one for melody and the other for

accompaniment.

3.3.2. MuseGAN

In the work of Dong, Hsiao, Yang, and Yang (2018), the authors ap-

proached the problem of music generation for multi-instrumental tracks.

Three types of models were developed with different hierarchical types of
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generation. The first one uses a common generator and noise input to rep-

resent a conductor that coordinates the piece. The second uses 5 different

generators and noises to resemble independent “jamming” of the instru-

ments. Finally a hybrid model that have separate noise inputs and a shared

one for all the generators. In this work, there is also a RNN component for

generating multiple bars with a coherent structure between them.

3.4. Differences to Previous Research

Compared with past research, our work focuses on how to use existing

generative methods with the capacity to condition its result, in the domain

of symbolic music. Taking into account that methods based on recurrent

networks are predominant in this field and widely studied, we wanted to

analyze how GANs, which have a completely different approach to genera-

tion, can contribute in terms of variability and controllability of the results.

In GANs, MidiNet uses a DCGAN architecture for melody generation,

while MuseGAN uses a mixture of RNN and GAN to produce sequences

and uses conditionallity only on a track-basis, meaning that they input a

piece that the network has to continue. We tried to condition on the type of

output generated rather than on a per-example approach. MidiNet has con-

ditioning but they approach a different problem, which is melody and chord

progression generation, where they condition based on musical knowledge

of chords key and type. This limits the datasets available to use because of

the prerequisites to obtain the labels. In the field of VAEs there is a work

called MidiMe (Dinculescu, Engel, & Roberts, 2019) that forces condition-

ality on a previously trained model of a MusicVAE network, constraining
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its output to a desired condition like tonality or note density. We wanted to

train a model that did not need extra training to allow for this type of condi-

tions, that also enforces to have separate models for each of the conditions.
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4. OBJECTIVES

We proposed to implement and study generative models that could gen-

erate single or multi-track new pieces of music with and without input con-

ditioning, meaning, that a user could generate a random excerpt of music,

or explicitly tell the model to generate music with different characteristics

as part of the input.

4.1. Contribution

In this work we present an exploration of deep generative models for

symbolic music generation, specifically we analyze different GAN models

available for music generation using the pianoroll representation, in partic-

ular we studied the capability of conditioning and control of the output of

these models.

We trained different models that could generate musical excerpts from

different classes and for different instruments using a state-of-the-art model

for image generation, finding a new use for type of models in a completely

different domain that they were designed to.

To the best of our knowledge, there are no other works to this date that

use the StyleGAN 2 (Karras et al., 2019) architecture to generate symbolic

music using for input pianorolls as images. We tested this new approach

in two well known datasets in this area, with interesting results both mu-

sical and in terms of potential to develop new creativity tools for music

composers. We made available web based tools to explore the results and
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generate new pieces of music, along with the datasets generated to train

these models.

4.2. Research Questions

To drive our research, the following questions were defined:

• RQ1. Are image-based deep generative models capable of chang-

ing domains and producing symbolic music?

• RQ2. Are image-based deep generative models trained with sym-

bolic music capable of producing musically similar pieces to train-

ing ones?

4.3. Hypothesis

(i) A Deep Convolutional GAN (DCGAN) could be trained in or-

der to generate symbolic music controllably and condition-

ally.

We want to test if a DCGAN architecture (Radford, Metz, &

Chintala, 2015), designed for generating images, can be adapted

for a different domain and have the same results.

(ii) The StyleGAN2 architecture will be capable of generating

controllable and conditional symbolic music.

We want to test if this state-of-the-art GAN architecture, mainly

designed for generating images of faces, can be adapted for a

different domain and have the same results and controllability of

the output.
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5. METHODOLOGY

In this section we will present the materials used for this work, how

we processed them to be used with the methods selected to answer the

hypothesis presented.

5.1. Datasets

5.1.1. MAESTRO

We used the MAESTRO V2.0.0 dataset (Hawthorne et al., 2019) which

gathers over 200 hours of piano performances of classical pieces from the

International Piano e-Competition. This source offers the raw audio data

of each performance along with a direct MIDI capture of the recording.

There are 1282 performances in version 2.0.0 of the dataset, from 61 differ-

ent composers, Figure 5.1 shows the distribution of this performances per

composer(s).

5.1.1.1. Preprocessing

Each MIDI file was transformed to a pianoroll, which is a 2D represen-

tation for music, where one axis represents time and the other represents

which notes are played on a given time, the library used to make this trans-

formation was pypianoroll (Dong, Hsiao, & Yang, 2018), the performances

were binarized to remove the velocity of the played notes. We decided

to binarize the input to facilitate learning in the different models tested in
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Figure 5.1. Number of compositions from each composer
available on the MAESTRO dataset.

the hope of obtaining better results. Because, without dynamics, the in-

formation of the notes played is less diffuse. The plan was to incorporate

dynamics after obtaining and analyzing these results. In Figure 5.2 there is

an example of a single-track pianoroll from the MAESTRO dataset.

Because the majority of composers has less than 10 performances in

this dataset, and also there are compositions written by more than one per-

son, these were grouped into a single class keeping the first composer and
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Figure 5.2. Single-track pianoroll of a performance from
the MAESTRO dataset.

arbitrarily chose the 6 composers with the most performances after this

procedure.

After transforming each MIDI file and sorting them by the reduced

composer classes, the performances were quantized to a resolution of 24

time steps per quarter note, this is in order to cover common temporal pat-

terns such as triplets and 32th notes, and split into chunks of 128 time steps,

resulting in matrices of size (128, 128), because the MIDI protocol can rep-

resent up to 128 notes. In Figure 5.3 there are the resulting performances

per composer after processing.
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Figure 5.3. Nº of perfomances distribution after processing
the Maestro dataset.

5.1.1.2. Availability

The processed dataset previously described and used for the experi-

ments in this work is available at https://zenodo.org/record/

4747698.
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5.1.2. LAKH

We used the LAKH pianoroll dataset (Dong, Hsiao, Yang, & Yang,

2018), which is a derivative of the LAKH MIDI dataset (Raffel, 2016),

specifically we used the cleansed LPD-5 variation of the dataset which con-

sists of 5-track pianorolls of the match between the LAKH MIDI dataset

and the Million Song dataset (Bertin-Mahieux, Ellis, Whitman, & Lamere,

2011) considering additional rules to ensure consistency between the songs.

The variation used has 21425 multitrack songs from all genres derived from

the Million Song Dataset, the specific tracks included are piano, guitar,

bass, strings and drums.

5.1.2.1. Preprocessing

Each pianoroll file was binarized and separated per instrument in 5 dif-

ferent single track pianorolls, and like with the MAESTRO dataset, each

track was quantized to a 24 time step resolution and split into chunks of

128 time steps resulting in matrices of size (128, 128).

The dataset is divided in 13 genres from, the Million Song Dataset All-

music Top Genre Dataset (Top-MAGD), Figure 5.4 shows the distribution

of songs per genre.

5.1.2.2. Availability

The processed dataset previously described and used for the experi-

ments in this work is available at https://zenodo.org/record/

4768780.
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Figure 5.4. Number of songs from each genre after preprocessing.

5.2. Models

We tried different methods to achieve results that would meet the objec-

tives set on the beginning of this work, and that generated the best results

according to our subjective judgement.
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5.2.1. Deep Convolutional Generative Adversarial Network (DCGAN)

Our first approach was to develop a DCGAN (Radford et al., 2015)

model that could generate pianoroll images unconditionally, meaning that

the output of the network does not have a predetermined class or feature.

The goal of this approach was to have a baseline model to improve adding

conditionallity as a next step.

Using MuseGAN (Dong, Hsiao, Yang, & Yang, 2018) as inspiration,

we developed both the discriminator and generator so that they could work

with 5-channel matrices to generate multi-instrumental music, using the

LAKH pianoroll dataset (Dong, Hsiao, Yang, & Yang, 2018). A version

with one channel was also developed for the MAESTRO dataset (Hawthorne

et al., 2019). One major difference between our model and the MuseGAN

one (Dong, Hsiao, Yang, & Yang, 2018), is that they also take into account

the temporal aspect of music using a RNN Network to generate longer

pieces of music, which we planned to implement once we had a working

baseline.

For the addition of conditional information, based on the MidiNet (Yang

et al., 2017) architechture, we used a 1-dimension vector as extra input

for both the generator and discriminator networks, where information like

genre was encoded in a one-hot vector to force the model to generate music

according to this extra input.

In Figures 5.5 and 5.6, we have the generator and discriminator archi-

tectures respectively, for the generator, we feed the model with a one dimen-

sional noise vector sampled from a normal distribution into 6 transposed
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Figure 5.5. DCGAN generator architecture.

convolution layers and finally reshaping the output to the desired shape of

(number of tracks, number of notes, number of timesteps per measure, num-

ber of measures) which can be then transformed into a MIDI file. For the

discriminator, we used a similar layer architecture, but using conventional

convolutions, we used 8 layers until a flatten layer follower by a dense layer

of 1 neuron to obtain the model decision over the input images. We tested

different losses, and ended up using the Wasserstein loss (Arjovsky, Chin-

tala, & Bottou, 2017) which had the least convergence problems and which

we could see some learning qualitatively. Further information of the layers

and the values used are in Appendix A.

5.2.2. StyleGAN 2

Our second approach was based on the newly developed StyleGAN 2

(Karras et al., 2019), this network achieved state-of-the-art results in image

generation, specially for creating new human faces that look highly real-

istic. Considering the amazing results for generating images, which are a
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Figure 5.6. DCGAN discriminator architecture.

2D representation of visual information, we experimented to see if this net-

work could generate pianorolls, which are also a 2D representation, but in

this case of a musical composition.

Our hypothesis was that even though pianorolls are conceptually very

different from the image of a human face, we wanted to study if certain

properties captured from visual information can be useful for training a

musical generator model from 2D “images” of music.

One of the most interesting aspects of using this network is the amount

of control over the latent space. This network does not use the most typical

setting of sampling from a normal distribution as the noise input, but rather

use this noise to further train a series of fully-connected layers mapping

this noise to a new space that they call the w-space. Figure 5.7 shows how

the mapping network is built. This new space is much more disentangled,

meaning that moving in this space does not change many features of the

output, e.g. altering the input would only change the color of the hair of

a generated person, instead of changing the color and gender for example.

Although in music this type of changes are difficult to measure even in a
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Figure 5.7. StyleGAN 2 mapping network. FC stands for
fully connected layer.

qualitative manner. Because it requires a high level of musical training and

knowledge to differentiate and identify between the musical characteristics

of different composers and genres.

This disentanglement is highly desired in music to modulate the output

of the generated pieces, in tonality, density of notes, polyphony, among

other types of features that can be of interest to composers.

Some of the improvements of StyleGAN 2 with respect to the original

StyleGAN architecture can be found in the synthesis network, where the

progressive growing is discarded because of the phase artifacts it produced
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on the resulting images. Instead they propose a high-resolution image gen-

erator similar to MSG-GAN (Karnewar & Wang, 2019). Also, the Adaptive

Instance Normalization (AdaIn) blocks were changed for a modulation and

normalization block to remove water-like droplet artifacts while still retain-

ing control over the style mixing.

5.2.3. Evaluation

One of the main difficulties of working with generative models, spe-

cially in the music domain is that there is no objective method of evaluat-

ing if a generated piece of music is better than other because of the inherent

subjectivity of music appreciation and lack of objective quality metrics.

We used the Fréchet Inception Distance (Heusel et al., 2017) metric,

which uses the Fréchet distance to improve the Inception score (Salimans

et al., 2016), to evaluate the generated images of pianorolls in comparison

with the real examples seen by the network during training. This metric

helps to discern between different models and implementations which gen-

erate the most similar images to a real pianoroll, therefore, the models that

best capture the input data distribution. Because the Fréchet distance com-

pares the real data distribution with the fake data distribution, it exhibits a

better performance in assessing image quality. In equation 5.1 we can see

how this metric works by measuring the Fréchet distance between two mul-

tivariate Gaussians, Xr = N (µr,Σr) and Xg = N (µg,Σg) where r stands

for real and g for generated.
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FID = ‖µr − µg‖2 + tr(Σr + Σg − 2(ΣrΣg)
1
2 ) (5.1)

We also calculated additional metrics derived from the C-RNN-GAN

(Mogren, 2016) work, in order to have a better understanding of the gen-

erated pieces in comparison with the input data. This metrics consist in

polyphony, number of silences, and used pitches. This metrics are an at-

tempt to find an objective way of measuring the musical output of the de-

veloped models.

• Polyphony: Percentage of timesteps where there‘s more than one

note played simultaneously.

• Number of silences: Percentage of empty timesteps.

• Used pitches: List of used pitches, used for determining known

musical scales.

Although this metrics can not be directly optimized, they can be easily

interpreted, for example, for different applications a person would want

higher polyphony in the output and with lower number of silences, or the

used pitches can be used to determine if the output belongs to a certain

scale.
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5.2.4. Training

5.2.5. Class conditions

Both architectures were trained from scratch using both datasets. For

the MAESTRO dataset (Hawthorne et al., 2019), the class conditions con-

sisted of the 6 composers with the most performances, according to Figure

5.1. For the LAKH dataset (Dong, Hsiao, Yang, & Yang, 2018), the class

conditions consisted of the 13 genres derived from the Million Song Dataset

(Bertin-Mahieux et al., 2011), which can be seen in Figure 5.4. Figure 5.8

shows how to condition the generation based on a composer.

5.2.5.1. DCGAN

This model was implemented in Tensorflow 2 with Keras and trained

on 2 Nvidia GeForce GTX 1080.

5.2.5.2. StyleGAN 2

We used a modified version of the Tensorflow 1.14 implementation of

StyleGAN 2 Ada (Karras et al., 2020), developed by NVidia, to use condi-

tional classes. The Ada version of StyleGAN 2 was designed to improve

training with limited data, they introduce an adaptive discriminator aug-

mentation that stabilizes training. The conditional classes are encoded with

both the generator and discriminator inputs. All the different variations of

the model were trained on a Tesla V100 GPU in Google Colab Pro (Bisong,

2019), for approximately 40 hours which correspond to approximately 3000
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Figure 5.8. Google Colab interface showing how to select a
class condition for generation, particularly for composers of
the MAESTRO dataset.

kimg (3 million images) seen during training. Longer training time did not

significantly improve the FID score for all the models.

5.2.6. Generation

To produce a pianoroll image utilizing the DCGAN model, the network

is fed with an input noise (z) sampled from a normal distribution. If the
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DCGAN model uses conditionality as input, the one-hot encoding of the

desired class is concatenated.

For the StyleGAN2 models, the class identifier is embedded into a 512-

dimensional vector that is concatenated with the latent code input (z) after

normalizing each one (Karras et al., 2020), and passed as input to the gen-

erator.

The process of generating an audio file from the output image of any

of these models has two parts: (1) defining a threshold and tempo for the

generated piece, and (2) transforming the image to a numerical matrix. The

first step is needed because the models returns a grayscale image, where the

pixel values are between 0 and 255, and has 3 color channels. Figure 5.9

shows an image generated by StyleGAN 2 (Karras et al., 2019). With the

threshold defined, we took the mean of the 3 channels and binarize the im-

age using this threshold to determine which pixels correspond to the played

notes, thus, obtaining the numerical matrix which can be transformed to

a pianoroll using the pypianoroll package developed by (Dong, Hsiao, &

Yang, 2018) to later convert it to a MIDI file. For listening to these files we

used Timidity++ to convert them to a wave file in the preselected tempo.

We can generate new musical excerpts using this GAN models through

exploration of the latent space, changing the input values to get new pieces.

Another interesting musical application is to interpolate between two exam-

ples generated by the network, defining the number of steps we can generate

a sequence of concatenated outputs while moving from one point in the la-

tent space to another, as shown in Figure 5.10. In the supplemented folder
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Figure 5.9. Output image from StyleGAN 2 model trained
on the Maestro dataset, with input condition to be a piece
from Johann Sebastian Bach. Analysing the pitches used,
which are (D, E, F, G, G#, B), correspond to a G diminished
wholetone scale. Also, the first group of 3 notes is a G major
chord.

there are examples of different sequences from two random sampled points

in the latent space, showing how the trained model evolves one excerpt into

another in a series of steps.
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Figure 5.10. The StyleGAN 2 model is able to generate a
variety of musical ideas (A to F). The latent space can also
be interpolated between 2 outputs to generate a musically-
meaningful sequence. In this case, the generated sequence
exhibits how the network morphs from sample A to sample
F in 4 steps, visually divided by a red line for easier differ-
entiation.
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6. RESULTS

6.1. DCGAN

The results obtained with the DCGAN model (Radford et al., 2015),

with or without conditioning, were not good enough to provide subjec-

tively acceptable pieces of music. Mainly because of common problems

with GAN training, such as mode collapse, convergence problems, among

others.

We tried many of the tricks seen on the literature to improve on this

aspects (Salimans et al., 2016) (Mescheder, Geiger, & Nowozin, 2018)

(Miyato, Kataoka, Koyama, & Yoshida, 2018), but the results showed that

the symbolic music domain is more difficult than the image domain for this

type of generative model. Even when the loss decreased during training,

the qualitative results showed no signs of learning from the model. In Fig-

ure 6.1 we can see that the output from the model is very noisy and when

transformed to audio is not a desirable outcome.

6.2. StyleGAN 2 ADA

Seven models were trained based on this work, two with the Maestro

dataset (Hawthorne et al., 2019), with and without composer conditioning,

and the other five for each of the instruments available in the Lakh dataset

(Raffel, 2016) previously shown, all the Lakh models used conditional in-

formation as input. The evolution of the FID metric during training can be

seen in Figures 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, most of this models converged
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Figure 6.1. DCGAN image generated using the Maestro dataset.

with a similar FID score, except for drums which achieved the lowest FID

of them all, we believe this is due to the stronger use of repetition in popular

music drum tracks.

The Lakh models were trained for approximately 3000 kimg while the

Maestro model was trained for almost twice as much time, but the model

apparently converged on a value of around 30 in FID and did not improve

on this score while training for longer time.

Listening to the results, it is observed that all models generate pieces

similar to the input data, and although the FID metric is not as low as in

what is seen in the literature for other types of images, we believe that

this may be due to a bias in using an ImageNet (Deng et al., 2009) trained

Inception network (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016).

We attribute this bias in that the InceptionNet does not fully capture the
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Figure 6.2. FID metric during StyleGAN 2 training with the
Maestro dataset.

needed features for simpler type of images like the pianorolls. In section 8

we talk about ways to improve on this aspect.

To further compare the learned distribution, we calculated additional

musical metrics which can be seen in Figures 6.8 and 6.9, we sampled 50k

images for calculating this metrics.

6.2.1. Use Cases

To the best of our knowledge, we are the first ones to use the StyleGAN

2 model to generate symbolic music in the form of pianoroll images. This

work can be seen as a creativity tool for composers, sound designers and the

general public who wants to experiment with musical excerpts generated by

an AI model. There are many use cases for this work that we investigated,
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Figure 6.3. FID metric during StyleGAN 2 training with the
Lakh dataset of piano.

Figure 6.4. FID metric during StyleGAN 2 training with the
Lakh dataset of guitar.
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Figure 6.5. FID metric during StyleGAN 2 training with the
Lakh dataset of bass.

Figure 6.6. FID metric during StyleGAN 2 training with the
Lakh dataset of strings.
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Figure 6.7. FID metric during StyleGAN 2 training with the
Lakh dataset of drums.

and this results can be seen on multiple Google Colabs (Bisong, 2019) that

are publicly shared as part of this work on section 6.4, and Figure 6.11

shows the interface of the available tools.

6.2.2. Exploring the latent space

The most interesting aspect of using generative models such as GANs

is that we have a very large latent space to sample and obtain new outputs.

Because StyleGAN uses a disentangled w-space rather than directly using

the z-space sampled from a normal distribution to synthesize a new image,

it is easier to find directions in this new latent space that change different

features, without changing more that one. This is easier to understand in

practice looking to how an image changes, but due to the lack of good
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Figure 6.8. Polyphony metric for the Maestro Dataset

musical metrics is hard to understand which features are being changed.

In the work of Ganspace (Härkönen, Hertzmann, Lehtinen, & Paris, 2020)

there is an approach using Principal Component Analysis (PCA) to find this

directions automatically rather than experimentally, in the supplemented

audio material there are different directions generated by Ganspace in the

MAESTRO dataset.

6.2.3. Projecting samples

Another use case is to find in the latent space the most similar sample

to an input pianoroll image, whether to analyze if there is over-fitting of

the network in the case that it learned the exact same pieces from the input

data, but also to find a starting point similar to a previously defined piece
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Figure 6.9. Empty timesteps metric for the Maestro Dataset

Figure 6.10. Metrics for the Maestro Dataset using uncon-
ditional models.
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Figure 6.11. Google Colab interface for exploring the latent
space of one of the StyleGAN 2 models trained on the Lakh
dataset.

from the user. The projection can be done using any type of optimization

technique to find the point in latent space that’s closest to the target image

according to a distance metric. In Figure 6.12 there is an example of a target

sample and the projected result in the w-space, qualitatively, it can be seen

that there are similar structures between both images, in addition to having

a similar temporality of the note events.

6.2.4. Interpolating samples

Because of the fact that the disentangled w-space can change differ-

ent features according to the direction of movement. We can interpolate
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Figure 6.12. Target image to project on the latent space on
the left, and resulting projection on the right.

between 2 points in this latent space in a determined number of steps to

generate musical sequences that morph from one to the other. In Figure

5.10 there is a sequence generated by interpolating linearly between two

points in the latent space, getting a way to convert one sample to another.

There are other types of interpolation methods that can achieve new ways

of moving between samples.

6.3. Comparison

In table 6.1 there is a comparison of the best FID score for both mod-

els on different datasets. The DCGAN model could not achieve results that

were not similar to noise to be able to compare with the StyleGAN 2 model,

although, in Figure 6.10 we still calculated the musical metrics for all the

unconditional version of the models to compare it to the original distribu-

tion. The DCGAN results differ a lot from the original data distribution,
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while the StyleGAN 2 model is almost the same to the input data, showing

a correlation between FID and the musical metrics.

Table 6.1. Comparison table of the best FID results for each
model on different datasets. 50000 images were sampled for
calculating this metric.

FID 50k Samples
Model Maestro Lakh

Piano
Lakh Gui-
tar

Lakh Bass Lakh
Strings

Lakh
Drums

DCGAN 259.9782 192.6182∗ 192.6182∗ 192.6182∗ 192.6182∗ 192.6182∗

StyleGAN2 26.8372 21.5397 22.2263 26.0752 38.1092 9.2536
*Same value because it was multi-instrumental generation.

6.4. Models availability

We published the StyleGAN 2 models for exploration on Google Colab

which can be used in the following links:

• Maestro

(i) https://colab.research.google.com/drive/

1bueGBYpBX-M4dX1y4FdY3mChocCI3Qa4?usp=

sharing

• Lakh

(i) Bass https://colab.research.google.com/

drive/1ejmpgtI6woanbTK04xp31DHfkBCt0IHs

?usp=sharing

(ii) Drums https://colab.research.google.com/

drive/1M54m4JfX-shEX-IVHreanADFRNacuiZB

?usp=sharing
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(iii) Guitar https://colab.research.google.com/

drive/1 IAyo-YStHYnvUDnyrtv-ThxFz2UeV2c

?usp=sharing

(iv) Piano https://colab.research.google.com/

drive/1t-wcqUpSSfsrWr2-5oZW1VuxGJTi-xum

?usp=sharing

(v) Strings https://colab.research.google.com/

drive/13x9kofba2IzaT p8ktDuaimBnrK0T9u7

?usp=sharing

6.5. Audio examples

We collected different samples from both models and made them

available in the following link: https://drive.google.com/

drive/folders/1p2H jTl5vGdeZLuP9H9qT7dL lLhj4Rg

?usp=sharing
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7. LIMITATIONS

7.1. Hardware

The StyleGAN 2 model used in this work has approximately 30 mil-

lion trainable parameters, because this and the type of operations the hard-

ware needed is very demanding. As previously stated, this models were

trained on a Tesla V100 which has 16Gb of GPU RAM, video cards with

lower RAM had more problems when training, needing to change training

configurations to diminish the requirements, resulting in difficulties when

training.

7.2. Image Size

The official implementation of StyleGAN 2 from Nvidia only accepts

squared images, which for this application is a limitation of the length of

pianorolls capable of producing. In the vertical axis of the images we have

the different notes available to play, which are 128 in the MIDI protocol,

and on the horizontal axis of the images there is the temporal placement of

these notes. With a longer horizontal axis we could represent more time

from a given performance or song, resulting in a model that can generate

longer pieces. There are two solutions for this problem, one is to use a

larger squared image size like 256, 512 or 1024, and only use a predefined

portion of the vertical axis to represent the notes and the rest as black pixels,

or scale the notes in the vertical axis, letting them use more than one pixel of

height. The other solution to this problem is to modify the implementation
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to accept rectangular images, although there are some implementations that

do this, none of them have the conditional input implementation.

7.3. Pianoroll representation

One of the main advantages of using the pianoroll representation, is that

it is easy to pass this information as an image to convolutional networks.

But there is a loss of information in this MIDI to pianoroll transfer. Unlike

the MIDI format where there are specific messages to communicate when

a note start and stop playing. Depending on the quantization used, if there

are 2 consecutive notes without silence in between, in the resulting matrix

these will become a single long note. Therefore, these small details of the

performance are lost in the transformation.
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8. FUTURE WORK

The field of generative models is rather new, and has been increasing

in popularity on this recent times because of the huge array of applications

to different areas, but in music there is still a wide gap in what this models

can do and what they are generating to this day.

We believe that the approach shown in this work can be a first step to

explore the use of the StyleGAN 2 (Karras et al., 2019) architecture in the

music realm, both in its symbolic form and in the raw audio domain.

For future work, we want to conduct a user study to compare our results

against other symbolic music generation models. Also, the velocity infor-

mation was discarded in this work, so a logical next step is to use this infor-

mation to have better note articulation of the generated pianorolls. Another

idea is to extend the StyleGAN 2 model to work with multi-instrumental

pieces of music, using each channel of the input image for a different in-

strument, hoping that the network is capable of learning to generate mu-

sical pieces that work together rather than having little to none interaction

between instruments.

For future research we believe that this models can be trained on audio

spectrograms to generate new sounds that can be modulated using the dis-

entangled w-space, as can be seen on how easy is to modulate the output

of the StyleGAN 2 model, which can be a powerful tool for composers and

sound designers.
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Addressing one of the limitations of the StyleGAN 2 model, we want to

train versions with larger inputs, not only constrained by the square input,

there are variations on this model that can achieve this, but they need more

iterations to work with different conditional classes and arbitrarily shaped

inputs. Other possibility for further research is to use an extra recurrent

network to model the implicit temporality of music and generate multiple

images that form a sequence.

Finally, we want to train an InceptionNet (Szegedy et al., 2016) specifi-

cally for symbolic music like pianorolls, hoping that a specific model better

represents this type of images and test if it correlates with better audible re-

sults. Another approach to this would be to experiment with different layers

of an ImageNet (Deng et al., 2009) trained network, because in convolu-

tional networks the first layers tend to capture more general features like

textures and shapes. Finding a better way to evaluate this type of models is

important to have better tools to compare different symbolic music models

across the literature and with a musical foundation to interpret the results.
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9. CONCLUSIONS

In this work, we explored how to generate music using deep generative

models, presenting two models based in GANs (Goodfellow et al., 2014).

One of these models did not perform as desired, despite efforts made to

make it work in this new domain. The second model had innovative and in-

teresting results for the area in terms of a new approach to how it is possible

to generate music using methods designed for high quality image genera-

tion, specifically realistic object generation.

The final results, which answer RQ1, show that it is possible to use

image-based models to generate symbolic music, as is the case with both

DCGAN (Radford et al., 2015) and StyleGAN 2 (Karras et al., 2019), de-

spite the fact that the DCGAN model did not have the expected results in

the proposed metrics or in the auditory evaluation, there is still room to im-

prove this type of model and obtain better results, as seen on the literature

on different variations of this type of GAN architecture.

In StyleGAN 2, the results exceeded the expectations set at the begin-

ning of this work and showed a lot of potential for creating tools to enhance

creativity on composers. Since the generated latent space is disentangled

and allows its exploration, it remains to be able to find a simple way to

connect different directions within the space with musical characteristics,

although Ganspace (Härkönen et al., 2020) is an alternative, further inves-

tigation and better metrics are needed to adapt it to the symbolic music

domain.

DocuSign Envelope ID: A45620FC-EBBD-4C8A-992C-368A0B5297F0



48

With respect to RQ2, the results show that the generated musical pieces

with or without the input conditions, are very similar to the training data

distribution, according to the FID metric and the proposed musical metrics,

as seen on the comparison in Figure 6.10.

Finally, we have found a new domain where the architecture type of

StyleGAN 2 can also stand out and generate new uses and applications

for the field of musical composition, where it can be highlighted how this

type of models can expand the creativity of its users, by providing multiple

ideas in the form of a pianoroll image that can be altered moving through

the latent space. Allowing to interpolate between images to create moving

sequences or to project an existing idea to see alternatives provided by the

model. This is a first approach on symbolic music generation using a Style-

GAN 2 architecture, and more research on this topic is promising for the

future of music and artificial intelligence.

DocuSign Envelope ID: A45620FC-EBBD-4C8A-992C-368A0B5297F0



49

REFERENCES

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative

adversarial networks. In International conference on machine learning (pp.

214–223).

Association, I. M., et al. (1983). Midi musical instrument digital interface

specification 1.0. Los Angeles.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., & Lamere, P. (2011). The

million song dataset. In Proceedings of the 12th International Conference

on Music Information Retrieval (ISMIR 2011).

Bisong, E. (2019). Google colaboratory. In Building machine learning and

deep learning models on google cloud platform (pp. 59–64). Springer.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Im-

agenet: A large-scale hierarchical image database. In 2009 ieee conference

on computer vision and pattern recognition (pp. 248–255).

Dinculescu, M., Engel, J., & Roberts, A. (2019). Midime: Personalizing a

musicvae model with user data.

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., & Yang, Y.-H. (2018). Musegan:

Multi-track sequential generative adversarial networks for symbolic music

generation and accompaniment. In Proceedings of the aaai conference on

artificial intelligence (Vol. 32).

DocuSign Envelope ID: A45620FC-EBBD-4C8A-992C-368A0B5297F0



50

Dong, H.-W., Hsiao, W.-Y., & Yang, Y.-H. (2018). Pypi-

anoroll: Open source python package for handling multitrack pi-

anoroll. Proc. ISMIR. Late-breaking paper;[Online] https://github.

com/salu133445/pypianoroll.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., . . . Bengio, Y. (2014). Generative adversarial networks. arXiv

preprint arXiv:1406.2661.

Hadjeres, G., Pachet, F., & Nielsen, F. (2017, 06–11 Aug). Deep-

Bach: a steerable model for Bach chorales generation. In D. Precup &

Y. W. Teh (Eds.), Proceedings of the 34th international conference on

machine learning (Vol. 70, pp. 1362–1371). PMLR. Retrieved from

http://proceedings.mlr.press/v70/hadjeres17a.html

Härkönen, E., Hertzmann, A., Lehtinen, J., & Paris, S. (2020). Ganspace:

Discovering interpretable gan controls. arXiv preprint arXiv:2004.02546.

Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Diele-

man, S., . . . Eck, D. (2019). Enabling factorized piano music modeling

and generation with the MAESTRO dataset. In International conference

on learning representations. Retrieved from https://openreview

.net/forum?id=r1lYRjC9F7

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G.,

& Hochreiter, S. (2017). Gans trained by a two time-scale update rule

converge to a nash equilibrium.

DocuSign Envelope ID: A45620FC-EBBD-4C8A-992C-368A0B5297F0

http://proceedings.mlr.press/v70/hadjeres17a.html
https://openreview.net/forum?id=r1lYRjC9F7
https://openreview.net/forum?id=r1lYRjC9F7


51

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I.,

Hawthorne, C., . . . Eck, D. (2018). Music transformer. arXiv preprint

arXiv:1809.04281.

Karnewar, A., & Wang, O. (2019). Msg-gan: multi-scale gradient gan for

stable image synthesis. arXiv preprint arXiv:1903.06048.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., & Aila, T.

(2020). Training generative adversarial networks with limited data.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T.

(2019). Analyzing and improving the image quality of stylegan. arXiv

preprint arXiv:1912.04958.

Mescheder, L., Geiger, A., & Nowozin, S. (2018, 10–15 Jul). Which

training methods for GANs do actually converge? In J. Dy & A. Krause

(Eds.), Proceedings of the 35th international conference on machine learn-

ing (Vol. 80, pp. 3481–3490). PMLR. Retrieved from http://

proceedings.mlr.press/v80/mescheder18a.html

Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral

normalization for generative adversarial networks. CoRR, abs/1802.05957.

Retrieved from http://arxiv.org/abs/1802.05957

Mogren, O. (2016). C-rnn-gan: Continuous recurrent neural networks with

adversarial training. arXiv preprint arXiv:1611.09904.

Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct

deep recurrent neural networks. arXiv preprint arXiv:1312.6026.

DocuSign Envelope ID: A45620FC-EBBD-4C8A-992C-368A0B5297F0

http://proceedings.mlr.press/v80/mescheder18a.html
http://proceedings.mlr.press/v80/mescheder18a.html
http://arxiv.org/abs/1802.05957


52

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv

preprint arXiv:1511.06434.

Raffel, C. (2016). Learning-based methods for comparing sequences, with

applications to audio-to-midi alignment and matching (Unpublished doc-

toral dissertation). Columbia University.

Roberts, A., Engel, J., Raffel, C., Hawthorne, C., & Eck, D. (2018, 10–

15 Jul). A hierarchical latent vector model for learning long-term struc-

ture in music. In J. Dy & A. Krause (Eds.), Proceedings of the 35th

international conference on machine learning (Vol. 80, pp. 4364–4373).

PMLR. Retrieved from http://proceedings.mlr.press/v80/

roberts18a.html

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., &

Chen, X. (2016). Improved techniques for training gans.

Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V., Atiah, F., . . .

Peters, A. (2020). A review of deep learning with special emphasis on

architectures, applications and recent trends. Knowledge-Based Systems,

194, 105596.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016, June).

Rethinking the inception architecture for computer vision. In Proceedings

of the ieee conference on computer vision and pattern recognition (cvpr).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

DocuSign Envelope ID: A45620FC-EBBD-4C8A-992C-368A0B5297F0

http://proceedings.mlr.press/v80/roberts18a.html
http://proceedings.mlr.press/v80/roberts18a.html


53

A. N., . . . Polosukhin, I. (2017). Attention is all you need. arXiv preprint

arXiv:1706.03762.

Yang, L.-C., Chou, S.-Y., & Yang, Y.-H. (2017). Midinet: A convolu-

tional generative adversarial network for symbolic-domain music genera-

tion. arXiv preprint arXiv:1703.10847.

DocuSign Envelope ID: A45620FC-EBBD-4C8A-992C-368A0B5297F0



54

APPENDIX

DocuSign Envelope ID: A45620FC-EBBD-4C8A-992C-368A0B5297F0



55

A. DCGAN ARCHITECTURE

A.1. Generator

Layer filters kernel size strides
Conv3DTranspose 512 (1, 2, 1) (1, 2, 1)
BatchNormalization - - -
LeakyReLU - - -
Dropout - - -
Conv3DTranspose 256 (1, 2, 1) (1, 2, 1)
BatchNormalization - - -
LeakyReLU - - -
Dropout - - -
Conv3DTranspose 128 (1, 2, 1) (1, 2, 1)
BatchNormalization - - -
LeakyReLU - - -
Dropout - - -
Conv3DTranspose 64 (1, 2, 1) (1, 2, 1)
BatchNormalization - - -
LeakyReLU - - -
Dropout - - -
Conv3DTranspose 16 (1, 2, 1) (1, 2, 1)
BatchNormalization - - -
LeakyReLU - - -
Dropout - - -
Conv3DTranspose 4 (1, 1, 4) (1, 1, 4)
BatchNormalization - - -
LeakyReLU - - -
Dropout - - -
Reshape - - -
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A.2. Discriminator

Layer filters kernel size strides
Conv3D 128 (1, 1, 2) (1, 1, 2)
BatchNormalization - - -
LeakyReLU - - -
Conv3D 128 (1, 1, 3) (1, 1, 3)
BatchNormalization - - -
LeakyReLU - - -
Conv3D 128 (12, 1, 1) (12, 1, 1)
BatchNormalization - - -
LeakyReLU - - -
Conv3D 128 (7, 1, 1) (7, 1, 1)
BatchNormalization - - -
LeakyReLU - - -
Conv3D 128 (1, 2, 1) (1, 2, 1)
BatchNormalization - - -
LeakyReLU - - -
Conv3D 128 (1, 2, 1) (1, 2, 1)
BatchNormalization - - -
LeakyReLU - - -
Conv3D 256 (1, 4, 1) (1, 4, 1)
BatchNormalization - - -
LeakyReLU - - -
Conv3D 512 (1, 3, 1) (1, 3, 1)
BatchNormalization - - -
LeakyReLU - - -
Flatten - - -
Dense (1) - - -
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