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ABSTRACT: Measurements of differential production cross-sections of a Z boson in associ-
ation with b-jets in pp collisions at /s = 7 TeV are reported. The data analysed correspond
to an integrated luminosity of 4.6 fb~! recorded with the ATLAS detector at the Large
Hadron Collider. Particle-level cross-sections are determined for events with a Z boson
decaying into an electron or muon pair, and containing b-jets. For events with at least one
b-jet, the cross-section is presented as a function of the Z boson transverse momentum and
rapidity, together with the inclusive b-jet cross-section as a function of b-jet transverse mo-
mentum, rapidity and angular separations between the b-jet and the Z boson. For events
with at least two b-jets, the cross-section is determined as a function of the invariant mass
and angular separation of the two highest transverse momentum b-jets, and as a function
of the Z boson transverse momentum and rapidity. Results are compared to leading-order
and next-to-leading-order perturbative QCD calculations.
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1 Introduction

The production of a Z boson (using Z as shorthand for Z/v*) decaying to electrons or
muons provides a clear experimental signature at a hadron collider, which can be used
as a probe of the underlying collision processes. Such events provide an opportunity for
the study of associated heavy flavour production and dynamics, which can be experimen-
tally identified by reconstructing displaced decay vertices associated with the relatively
long lifetimes of b-hadrons. Predictions for heavy flavour production typically suffer from
larger theoretical uncertainties than those for the more inclusive Z+jets processes, and
measurements of Z boson production in association with b-jets can therefore provide im-
portant experimental constraints to improve the theoretical description of this process. The
Z+b-jets signal is also an important background to Z H associated Higgs boson production
with H — bb, as well as for potential signatures of physics beyond the Standard Model
containing leptons and b-jets in the final state.

Two schemes are generally employed in perturbative QCD (pQCD) calculations con-
taining heavy flavour quarks. One is the four-flavour number scheme (4FNS), which only



considers parton densities of gluons and of the first two quark generations in the proton.
The other is the five-flavour number scheme (5FNS), which allows a b-quark density in the
initial state and raises the prospect that measurements of heavy flavour production could
constrain the b-quark parton density function (PDF) of the proton. In a calculation to all
orders, the 4FNS and 5FNS methods must give identical results; however, at a given order
differences can occur between the two. A recent discussion on the status of theoretical
calculations and the advantages and disadvantages of the different flavour number schemes
can be found in Ref. [1].

Next-to-leading-order (NLO) matrix element calculations have been available for as-
sociated Z+b and Z+bb production at parton-level for a number of years [2-4]. The
leading order (LO) Feynman diagrams shown in Figure 1 illustrate some of the contribut-
ing processes. Full particle-level predictions have existed at LO for some time, obtained
by matching parton shower generators to LO multi-leg matrix elements in the 4FNS [5,6],
5FNS [7], or both [8]. More recently, a full particle-level prediction for Z+ > 2 b-jets at
NLO in the 4FNS with matched parton shower has become available [9,10]. The same
framework can also be used to provide a full particle-level prediction for Z4 > 1 b-jet at
NLO in the 5FNS. In this article data are compared with several theoretical predictions
following different approaches.

Differential measurements of Z+b-jets production have been made in proton-antiproton
collisions at /s=1.96 TeV by the CDF and D0 experiments [11,12] as well as inclusively
in 1/s=7 TeV proton-proton collisions at the LHC by the ATLAS and CMS experiments
[13,14]. The results presented in this paper significantly extend the scope of the previous
ATLAS measurement, which used around 36 pb~!lof data recorded in 2010. The current
analysis takes advantage of the full sample of \/s=7 TeV proton-proton collisions recorded
in 2011, corresponding to an integrated luminosity of 4.6 fb~!, and uses improved methods
for b-jet identification to cover a wider kinematic region. The larger data sample allows
differential production cross-section measurements of a Z boson with b-jets at the LHC.
These complement the recently reported results of associated production of a Z boson with
two b-hadrons at /s=7 TeV by CMS [15].

A total of 12 differential cross-sections are presented here, covering a variety of Z boson
and b-jet kinematics and angular variables sensitive to different aspects of the theoretical
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Figure 1. Leading order Feynman diagrams contributing to Z+b-jets production. Process 1(a) is
only present in a 5FNS calculation, while 1(b) and 1(c) are present in both the 4FNS and 5FNS
calculations.



predictions, as listed in Table 1. All cross-sections include the Z boson branching fraction,
Br(Z — (T¢7), where ¢ is a single lepton flavour, and are reported in a restricted fiducial
region, defined using particle-level quantities, detailed in Section 7, which are chosen to
minimise extrapolation from the corresponding measured detector-level quantities.

The results are grouped according to different selections which give four integrated

cross-section definitions:

e 0(Zb), the cross-section for events containing a Z boson and one or more b-jets in
the fiducial region;

® 0(Zb) X Npjet , the inclusive cross-section for all b-jets in the fiducial region in events
with a Z boson;

o 0°(Zb) X Npjet, similar to o(Zb) x Nyjet , with the additional requirement that the
dilepton system has transverse momentum, pp > 20 GeV, ensuring the ¢(Z) coordi-
nate! (which is taken from the direction of the dilepton system) is well defined and

not limited by detector resolution. This is necessary for the differential measurements
of A¢(Z,b) and hence AR(Z,b)?.

e o(Zbb), the cross-section for events containing a Z boson and two or more b-jets in
the fiducial region. When there are more than two b-jets, quantities are calculated
using the two highest pt b-jets in the event.

This paper will cover the experimental apparatus, simulation and event selection in
Sections 2, 3 and 4, followed by the description of the methods used to determine back-
grounds and extract the signal in Sections 5 and 6. Conversion of the measured data to
differential cross-sections and the details of the systematic uncertainties are covered in Sec-
tions 7 and 8. A number of theoretical predictions, detailed in Section 9, are compared to
the data in Section 10, before conclusions are drawn in Section 11.

2 The ATLAS experiment

The ATLAS experiment [16] is a multi-purpose particle detector with large solid angle
coverage around one of the interaction regions of the LHC. It consists of an inner track-
ing detector surrounded by a superconducting solenoid providing a 2 T axial magnetic
field, followed by electromagnetic and hadronic calorimeters and a muon spectrometer
with three superconducting toroid magnets. The inner detector (ID) is made up of a
high-granularity silicon pixel detector, a silicon microstrip tracker, and a straw-tube tran-
sition radiation tracker. These provide measurements of charged particles in the region
In| < 2.5. The calorimeter system covers |n| < 4.9 and utilises a variety of absorbing and

LATLAS uses a right-handed coordinate system, with the origin at the nominal interaction point, with the
beam line defining the z axis, the x-axis pointing towards the centre of the LHC ring, and the y-axis vertically
up. The azimuthal angle, ¢, is defined in the transverse (x —y) plane, and the pseudo-rapidity is used instead
of the polar angle: n = —Intan(6/2). Rapidity is defined in the usual way, y = In[(E + p:)/(E — p:)]/2.

2Two measures of angular separation are used: AR = \/A¢2 + An2, and AR = /AP + Ay2.



Variable Definition Range Integrated
cross-section
pr(2) Z boson transverse momentum | 0-500 GeV o(Zb)
ly(Z2)| Z boson absolute rapidity 0.0-2.5 o(Zb)
pr(b) b-jet pr 20-500 GeV | o(Zb) X Np.jet
ly(b)] b-jet absolute rapidity 0.0-2.4 o(Zb) X N jet
Voo (Z,1) W(Z) + y(b)]/20 0025 | o(Zb) x Ny
AY(Z.D) 9(2) - y(b) 0050 | 0°(Z6) % Nyje
AG(Z,b) 6(2) - o) 007 | 0*(Z8) X Nyju
AR(Z,b) VAG(Z,b)% + Ay(Z, )2 0.0-6.0 0*(Zb) X Npjet
pr(Z) Z boson transverse momentum | 0-250 GeV o(Zbb)
ly(Z2)| Z boson absolute rapidity 0.0-2.5 o(Zbb)
m(b, b) bb invariant mass 20-350 GeV o(Zbb)
AR(b,b) bb angular separation 0.4-5.0 o(Zbb)

Table 1. Definitions of variables for which differential production cross-sections are measured
and the ranges over which those measurements are performed. The integral of each differential
cross-section yields one of the four integrated cross-sections defined in the text.

sampling technologies. For |n| < 3.2, the electromagnetic (EM) calorimeters are based on
high-granularity lead/liquid-argon (LAr), while the 3.1 < |n| < 4.9 forward region uses
copper/LAr. Hadronic calorimetery is based on steel and scintillating tiles for |n| < 1.7,
copper/LAr for 1.5 < |n| < 3.2, and tungsten/LAr for 3.1 < |n| < 4.9. The muon spec-
trometer (MS) comprises resistive plate and thin gap trigger chambers covering |n| < 2.4,
and high-precision drift tubes and cathode strip tracking chambers, covering |n| < 2.7.
ATLAS uses a three-level trigger system to select potentially interesting collisions. The
Level-1 trigger is hardware based, and uses a subset of detector information to reduce the
event rate to at most 75 kHz. Two software-based trigger levels follow, which reduce the
event rate to about 300 Hz, for offline analysis.

3 Simulated event samples

The Monte Carlo (MC) simulations of proton-proton collisions and the expected response
of the ATLAS detector to simulated particles are used in three ways in this analysis: first,
to estimate signal and background contributions to the selected data sample; second, to
determine correction factors for detector effects and acceptance when calculating particle-
level cross-sections; and finally to estimate systematic uncertainties.

Inclusive Z(— £¢) events, produced in associations with both light and heavy flavour
jets, are simulated using ALPGEN 2.13 [5] interfaced to HERWIG 6.520 [17] to model the
parton shower and hadronisation, and JiMMY 4.31 [18] to model the underlying event and
multi-parton interactions (MPI). ALPGEN produces matrix elements with up to five partons
using a LO multi-legged approach; these are matched to final state jets using the MLM
method [19] to remove overlaps in phase-space between events containing jets produced in



the matrix element and jets produced in the parton shower. Samples are generated with the
CTEQ6L1 [20] PDF set and the AUET?2 tuning of parameters [21] for the description of the
non-perturbative component of the generated events. In addition, overlaps between samples
with heavy-flavour quarks originating from the matrix element and from the parton shower
are removed. Events containing b-quarks are reweighted after hadronisation to reproduce
b-hadron decay particle multiplicities predicted by the EVTGEN package [22], to correct
mismodelling found in the decay tables of the HERWIG generator version used. Alternative
Z(— 00) samples used for systematic cross-checks are generated with SHERPA 1.4.1 [7].
This generator is based on a multi-leg matrix element calculation using the CT10 [23] PDF
set and matched to the parton shower using the CKKW prescription [24].

Backgrounds from tt, single top quark production in the s-channel, W + ¢ production,
and diboson processes are simulated using MC@QNLO 4.01 [25] interfaced to HERWIG and
JiMMy using the CT10 PDF set. Single top quark production in the ¢-channel is gener-
ated with ACERMC 3.7 [6] interfaced to PYTHIA 6.425 [26] using the CTEQ6L1 PDF set.
Corrections to HERWIG b-hadron decay tables using EVTGEN are made for both ¢t and
ZZ(— bbll) events which are the dominant backgrounds containing real b-jets. Samples
of W(— {v) events are generated using ALPGEN interfaced to HERWIG and JIMMY in an
identical configuration to that used for Z(— ¢¢)+jets events described above. An alterna-
tive ¢t sample used for systematic cross-checks is generated with POWHEG [27] interfaced
to PyTHIA using the CT10 PDF set.

The total cross-sections of the W, Z and tt simulated samples are normalised to NNLO
predictions [28,29], while other backgrounds are normalised to NLO predictions [30,31]. All
samples are overlaid with minimum bias interactions, generated with PYTHIA 6.425 using
the CTEQG6L1 PDF set and AMBT2b tune [32], to simulate multiple interactions per bunch
crossing (pile-up) such that the distribution of the average number of interactions observed
in 2011 pp collision data, with mean value of 9.1, is accurately reproduced. Furthermore, the
samples are weighted such that the z distribution of reconstructed pp interaction vertices
matches the distribution observed in data. The ATLAS detector response is modelled
using the GEANT4 toolkit [33,34], and event reconstruction similar to that used for data
is performed.

4 Event selection

The data analysed were collected by the ATLAS detector in 2011 during stable pp col-
lisions at 1/s=7 TeV when all components of the ATLAS detector were fully function-
ing. Dielectron candidate events were selected with a trigger requiring two electrons with
pt > 12 GeV. Dimuon candidate events were selected with a trigger requiring a single
muon with pp > 18 GeV. An integrated luminosity of 4.5840.08 fb~! [35] was taken with
these triggers.

The primary interaction vertex (PV) is defined as the vertex with highest > pgf of ID
tracks with pp > 0.4 GeV associated to it. Candidate events are required to have at least
three such associated tracks.



Electron candidates are reconstructed by associating a cluster of energy deposits in the
EM calorimeter to a well reconstructed ID track, and are required to have Ep > 20 GeV and
In| < 2.47, excluding the region 1.37 < |n| < 1.52 where the transition between the barrel
and endcap of the EM calorimeter occurs. Candidates are required to pass a ‘medium’
quality requirement based on analysis of various cluster properties and the associated ID
track [36]. Muon candidates are reconstructed by associating well identified ID tracks to
MS tracks [37]. Candidates are required to have pp > 20 GeV and |n| < 2.4. Selections on
the transverse energy (transverse momentum) of electron (muon) candidates are chosen to
ensure the trigger is fully efficient.

To ensure that lepton candidates originate from the PV and to suppress those can-
didates originating from heavy flavour decays, 1D tracks associated to lepton candidates
are required to have an absolute longitudinal impact parameter with respect to the PV,
|z0], less than 1 mm and absolute transverse impact parameter, |dy|, no larger than ten
(three) times its measured uncertainty for electron (muon) candidates. Muon candidates
are additionally required to be isolated from local track activity by rejecting candidates
where the summed transverse momenta of additional ID tracks within AR = 0.2 from
the muon candidate is larger than 10% of the transverse momentum of the candidate it-
self. No additional isolation requirement is applied to electron candidates as the quality
requirement and impact parameter selections already sufficiently reduce the contribution
from jets misidentified as electrons in the calorimeter.

Selection efficiencies of lepton candidates as well as their energy resolution and mo-
mentum resolution are adjusted in simulation to match those observed in Z — £¢ events
in data [36,37]. The lepton energy scales and momentum scales are calibrated based on
a comparison of the position of the Z boson mass peak in data and simulation. Events
with exactly two lepton candidates of same flavour and opposite measured charge are kept
for further analysis, provided the invariant mass of those leptons, my, falls in the range
76 < myp < 106 GeV.

Jets are reconstructed from topological energy clusters in the calorimeter [38] using
the anti-k; algorithm [39,40] with radius parameter R = 0.4. The jet energy is calibrated
as a function of pp and 7 using MC simulation after correcting first for the energy offset
due to pile-up activity in the calorimeter, and then redefining the origin of the jet to be the
event PV. A residual in situ correction determined from Z+jet and «y+jet control samples
is applied to jets in data to account for remaining differences in calorimeter response
between data and simulation [41]. Jets from pile-up interactions are suppressed by requiring
that ID tracks associated to the PV contribute at least 75% of the total scalar sum of
transverse momenta from all ID tracks within AR = 0.4 from the jet centroid. Calibrated
reconstructed jets are required to have pr > 20 GeV, |y| < 2.4 and any jet within AR = 0.5
of a selected lepton candidate is removed.

Jets containing b-hadrons are identified using a neural network (NN) algorithm, MV1 [42].
The MVT1 algorithm takes as inputs the results of lower-level likelihood and NN based b-
tagging algorithms, which in turn take both secondary vertex kinematics and impact pa-
rameter information with respect to the PV as inputs, obtained from analysing ID tracks
within AR = 0.4 from the jet centroid. The MV1 variable lies in the range [0,1] with a



value closer to unity denoting a higher probability for the jet to be a b-jet. Reconstructed
b-jet candidates are selected for the analysis when their MV1 output is greater than the
value corresponding to a 75% average b-tagging efficiency in simulated ¢t events. In simula-
tion, reconstructed jets are labelled as b-jets if they lie within AR = 0.3 from one or more
weakly decaying b-hadrons with pr > 5 GeV. Reconstructed jets not identified as b-jets
are considered as c-jets if they lie within AR = 0.3 from any c-quark with ppr > 5 GeV.
All other jets are classified as ‘light-jets’. Tagging efficiencies in simulation are scaled to
match those measured in data for all flavours as a function of jet pr (and 7 for light-jets)
using weights derived from control samples enriched in jets of each flavour [42-44].

In each event, the missing transverse momentum, E%liss, is also used to reject back-
grounds which typically contain high energy neutrinos, such as t£. The EX is calculated
by first forming the vector sum of all calibrated leptons and jets, along with any additional
topological energy clusters not already associated to a reconstructed physics object. The
magnitude of this sum in the transverse direction is a measure of the energy imbalance in
the event, and is taken as the ERsS [45].

Events used for further analysis are separated into two categories: those with at least
one tagged jet, referred to as 1-tag events; and those with at least two tagged jets, referred
to as 2-tag events, which is a subset of the 1-tag sample.

5 Background estimation and reduction

Selected events in data contain the signal of interest as well as various background processes
with either real or fake leptons and real or fake b-jets. By far the dominant contributions
are Z+jets events where either a light-jet or c-jet has been misidentified as a b-jet. The
amount of this background present in data is determined using fits to data as described in
Section 6.

The next most important background arises from ¢t events where both W bosons
decay to leptons. This background is estimated using simulated events normalised to the
theoretically predicted cross-section. The ¢ background is suppressed by the requirements
on myy, and its overall contribution to the event sample is small. However, it can be
significant in some kinematic regions, particularly at higher jet pp. To further reduce
the ¢t contamination, events are required to have Effniss < 70 GeV. Figure 2 shows the
E%iss distributions for signal and t¢ simulations in 1-tag and 2-tag events after combining
the electron and muon channels. The 70 GeV selection rejects 44.8% (44.3%) of the tt
background in 1-tag (2-tag) events while remaining over 99% efficient for signal events.

The total contribution to the final data sample from single top quark and diboson
processes is estimated using samples of simulated events normalised to their theoretically
predicted cross-sections. Other electroweak processes such as W+jets and Z — 77 events
are found to have a negligible contribution in the selected phase space.

Background contributions from multijet events are estimated using data-driven tech-
niques separately in the electron and muon channels for both 1-tag and 2-tag events.
Multijet-enriched control regions are used to derive the expected shape of this background
in the my, variable. These control regions drop the b-tagging requirement, and use an
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Figure 2. Comparison of simulated ERisS distributions for (a) 1-tag events and (b) 2-tag events
after all other signal selection criteria are applied, normalised to the expected yields in the data
sample. The shaded distributions are signal ALPGEN+HERWIG+JIMMY events, and the open dis-
tributions are selected tf events. The vertical line shows the selection applied to the analysis sample
to reject tt events while keeping signal events.

extended range 50 < my, < 200 GeV in order to maximise the available sample size.
Studies found that no bias was introduced within the statistical uncertainties between the
b-tagged and non-b-tagged samples. In the Z(— ee)+jets channel the multijet enriched
control region is defined by following the full signal event selection with the exception of
electron candidate impact parameter requirements, and requiring that one reconstructed
electron candidate fails the ‘medium’ quality requirement. As requirements based on the
shower shape and associated ID track are applied to both electrons at trigger-level in the
default trigger, events for the control region are selected with a trigger which requires only
a single electron with Ep > 20 GeV. This trigger was only available for about one third
of the full 2011 data-taking period (1.7 fb=! in total). In the Z(— pu)+jets channel the
multijet-enriched control region is defined by following the full signal event selection with
the exception of muon candidate impact parameter requirements, and inverting the iso-
lation selection for both reconstructed muon candidates. In both channels, contributions
from non-multijet sources in the control regions are taken from simulation, and subtracted
from the data. The remaining distributions are used as shape templates for the dilepton
invariant mass distribution of the multijet background.

Fits to mye are then made after applying the full signal event selection, fixing the
multijet shapes to those measured in the control regions. For 1-tag events the multijet
contribution is determined to be 0.1+0.1% in the electron channel and 0.024+0.07% in the
muon channel. The control regions are investigated as a function of all variables used
to define the differential cross-sections measured here, and no significant variation in the
multijet fraction is found; therefore, the measured multijet fractions are assumed to be
constant in all differential analysis bins. For 2-tag events the multijet contributions are
fitted to be zero, with an uncertainty of approximately 0.5%. This uncertainty is taken as a



systematic uncertainty to account for a possible residual multijet contribution, as discussed

in Section 8.

6 Extraction of detector-level signal yields

The extractions of the integrated and differential detector-level signal yields for both the
1-tag and 2-tag selections are performed using maximum-likelihood fits to data based on
flavour-sensitive distributions. The distribution used is constructed from the output of
a neural network algorithm, JFComb, which is one of the inputs to the MV1 b-tagging
algorithm described in Section 4. JEComb itself combines the information from two further
algorithms, one of which aims to identify weak b — ¢ cascade topologies using secondary
vertices and displaced tracks reconstructed within a jet [46], and the other which calculates
a likelihood based on the impact parameter significance with respect to the PV of pre-
selected tracks within AR = 0.4 of the jet centroid [42,47]. The JFComb algorithm has
three outputs in the range [0,1]: pb, pc, and pu, corresponding to the probability that a
given jet is a b-jet, c-jet or light-jet, respectively. Combinations of these variables, namely
CombNNc = In(pb/pc) and CombNN = In(pb/pu) provide good separation between jet
flavours as shown in Figure 3 for all jets in the Z+jets MC simulation after the 1-tag event

selection.
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Figure 3. Distributions of (a) CombNNc and (b) CombNN for different jet flavours in simulated
Z+jets events for all selected tagged jets, in events with at least one tagged jet. The Z — ee and
Z — pp channels are combined and simulated data are normalised such that the predicted number
of jets in 4.6 fb~! are shown.

In the 1-tag event selection, fits are made to the CombNNc distribution as it is found
to give the best statistical separation between b-jets and non-b-jets. Templates are de-
rived from MC simulation for all non-multijet contributions. For the multijet background,
templates are derived from the respective control regions in each lepton channel after rein-
troducing the b-tagging requirement as in the baseline selection. As shown in Figure 3(a),
the c-jet and light-jet CombNNc shapes are very similar. They are therefore combined into
a single non-b-jet template before the fit, using the predicted c-to-light jet ratio from sim-
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Figure 4. Example fits to the distribution of (a) CombNNc at jet-level for 1-tag events with
1.2 < ly(Z)] < 1.6, and (b) > (CombNNCc) at event-level for 2-tag events with 3.2 < AR(b,b) < 5.0.

ulation. Fits to data allow the b- and non-b-jet Z-+jets yields to float, while backgrounds
from sources other than Z+jets are combined into a single template whose normalisation is
determined from the sum of their predicted contributions and fixed in the fit. Where a per
b-jet yield is measured, all tagged jets are used in the fit; where a per-event yield is mea-
sured, only the highest pr tagged jet in an event is used in the fit. The electron and muon
channel templates in data are combined before the fit to maximise the statistical precision.
For measurements of differential cross-sections, these fits are performed independently in
each bin, and Figure 4(a) shows an example fit to the CombNNc distribution in one dif-
ferential bin, which is typical of the results obtained. Table 2 summarises all signal and
background contributions compared to data for the integrated 1-tag selections at detector-
level after the jet-flavour fits. Also shown in Table 2 are the ALPGEN+HERWIG+JIMMY
1-tag predictions, where it can be seen that they significantly underestimate the fitted b-jet
yields.

In the 2-tag event selection fits are made to > (CombNNc), where the sum is over
the two highest pr tagged jets in an event. There are six possible flavour combinations of
b-jets, c-jets, and light-jets in the Z+jets MC simulation. The highest statistical precision
on the signal bb-yield is obtained when the other five flavour combinations are combined
into a single non-bb template. However, the shapes of the non-bb templates are not de-
generate, as the presence of a single b-jet in the b+light or b + ¢ cases results in a higher
value of > (CombNNc) compared to light+light, light+c and ¢ + ¢ cases. Therefore, the
overall number of these single-b events is important in determining the shape of the non-bb
template. As discussed above, and can be seen in Table 2, the ALPGEN+HERWIG+JIMMY
simulation is observed to underestimate the b-jet yield in data, and it follows that the
number of b+light and b + ¢ events cannot be taken directly from the simulation when
forming the non-bb template, but must be measured. To determine the appropriate scaling
for the templates containing a single b-jet, a fit is performed to CombNN in an alternative
sample containing a reconstructed Z boson with at least two jets, of which exactly one is

~ 10 —



tagged. The b-jet, c-jet and light-jet Z+jets yields are allowed to float in the fit, while
all non-Z+jets backgrounds are combined into a single template whose normalisation is
determined from the sum of their predicted contributions and fixed in the fit; the multijet
yields and shapes in this sample are extracted in a fashion analogous to that used for the
1-tag events. Even after scaling up the total Z cross-section to the NNLO prediction as
described in Section 3, the predicted b-jet yield must be increased by an additional factor
of 1.35+0.03 to match the fitted data yield, where the quoted uncertainty is the statistical
component of the fit to data. Scale factors for c-jet and light-jet yields are found to be
consistent with unity. Based on this result, templates containing one b-jet are weighted
by a factor 1.35 compared to the predicted cross-section, while templates with no b-jets
are included using the default predicted cross-section. This factor of 1.35 is taken as con-
stant across all distributions as, normalisation aside, the default simulation is found to
give a good description of the kinematics of the single b-jet sample. This scale factor is
slightly different from the Z+ > 1 b-jet scale factors in Table 2, due to the different jet
requirements. A systematic uncertainty on the scale factor is obtained by varying these
requirements, as described in Section 8.

Signal fits to data float the Z+jets bb and non-bb yields while combining all other
backgrounds into a single template whose normalisation is determined from the sum of
their predicted contributions and fixed in the fit. As with 1-tag events, the electron and
muon channels are combined before fitting to data to maximise the statistical precision.
Figure 4(b) shows an example fit of > (CombNNc) in one differential bin, and Table 2
summarises all signal and background contributions compared to data for the integrated
2-tag selection at detector-level after the jet-flavour fit.

All fits are checked with ensemble tests using the simulated samples, including checks
for any bias in the fit results compared to the true number of b-jets in the simulation.

Negligible biases in the fit responses are observed.

Analysis Data Fitted Components Fixed Components
selection vield | Z 4 b(b)-jets [ALPGEN+HJ] Z+(other)jets | ¢t other
0(Zb) X Npjer | 49701 180104210 [12470] 297804230 1330 590
0*(Zb) x Npjer | 41243 15640+190 [10460] 23840+210 1230 540
o(Zb) 47138 16610200 [11410] 29090+220 930 520
a(Zbb) 2494 1170460 [950] 860+50 395 60

Table 2. Detector-level yields for each analysis selection. Statistical uncertainties from the fits
to data are shown for the signal and Z+jets backgrounds. The ¢ and other (diboson, single top
quark and multijet) background normalisations are also shown. The signal yields predicted by
ALPGEN+HERWIG+JIMMY (ALPGEN+HJ) are shown in square brackets for reference.

7 Correction to particle-level

Signal yields fitted at detector-level are corrected for reconstruction efficiencies and detector
resolution effects using simulation. This unfolding procedure determines fiducial particle-
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level yields in data, which when divided by the measured integrated luminosity determine
cross-sections. Particle-level objects are selected with requirements chosen to be close to
the corresponding requirements for reconstructed signal candidate detector-level objects, in
order to minimise unfolding corrections. Final state electrons and muons are ‘dressed’, such
that the four-momentum of collinear photons within AR = 0.1 from those leptons are added
to their four-momentum. These dressed leptons are then required to have pp > 20 GeV
and |n| < 2.5. The two leptons with highest pp, same flavour and opposite charge are
used to reconstruct the Z boson, with the invariant mass of the pair required to lie in the
range 76 < myp < 106 GeV. Jets of particles, excluding leptons used to reconstruct the Z
boson and any photons used in dressing them, but including leptons and neutrinos from
heavy flavour decays, are reconstructed with the anti-k; algorithm with radius parameter
R = 0.4. As with simulated reconstructed jets, particle-level jets are defined as b-jets if
they lie within AR = 0.3 from one or more weakly decaying b-hadrons with pr > 5 GeV.
Selected jets are required to have pp > 20 GeV and |y| < 2.4. Jets within AR = 0.5 of a
lepton used to reconstruct the Z boson are discarded.

The classification of simulated signal events is based on the presence of detector-level
and particle-level objects, and matching criteria between the two are defined. The matching
criteria require that detector-level and particle-level event selections are passed and that
each detector-level b-jet lies within AR = 0.4 from a particle-level b-jet. For event-level
(jet-level) differential measurements, matched events (b-jets) are used to populate detector
response matrices for the distribution in question. These matrices characterise the bin
migrations between detector-level and particle-level quantities and are used to unfold the
fitted signal yields at detector-level into signal yields at particle-level.

Before unfolding, a multiplicative matching correction derived from simulation is ap-
plied to the fitted signal yields, to account for cases where the detector-level signal failed
the matching criteria. This correction is 6-9% for the integrated selections, although it
becomes as large as 20% in the lowest bin of b-jet p in the 1-tag analysis due to migra-
tion from particle-level b-jets below the 20 GeV pr threshold. In order to avoid bias in
the differential cross-section measurement of b-jet pr, detector-level b-jets are considered
as matched if they are associated to particle-level b-jets with pr > 10 GeV. For other
variables the migration outside of acceptance is found to introduce negligible bias and
hence the particle-level b-jet selection is only relaxed in the unfolding of b-jet pp. For
2-tag events, where simulation sample size for matched events is a limiting factor, the b-
tagging efficiency correction is included as part of the matching correction. This allows all
detector-level b-jets, tagged or otherwise, to be used in the response matrices.

In the 1-tag analysis, corrected fitted yields and response matrices are used as input
to an iterative Bayesian technique [48] to extract the particle-level signal yields. Three
further iterations on the initial response matrix are required to remove bias from previous
iterations as determined from MC simulation ensemble tests of the statistical robustness
of the unfolding procedure. The binning of differential distributions is chosen to always be
significantly wider than the detector resolution in that quantity, which is only a relevant
factor for b-jet pr. Related to this resolution effect, and to again mitigate the biases
mentioned above, the response matrix for b-jet pr is also populated with particle jets with
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pt > 10 GeV, and the portion of the resulting particle-level distribution below 20 GeV is
removed. In the 2-tag differential distributions, fewer events are selected and binnings are
chosen to optimise statistical precision while maintaining as many bins as possible. This
coarse binning results in little bin-to-bin migration, and a negligible difference is observed
between the result of the iterative procedure used for 1-tag events and that obtained by
simply applying fiducial matching and efficiency corrections® individually for each bin. As
a consequence, the latter, more straightforward, technique is used to extract differential
yields in 2-tag events.

Since the electron and muon Z boson decay channels are combined to increase the
precision of the signal fits to data, the corrections and response matrices described above
must unfold both channels simultaneously to obtain combined particle-level yields. To val-
idate this approach, an identical analysis of each individual lepton channel is performed.
Their sum after unfolding is checked for consistency with the default combined unfolded
result and excellent agreement is observed in both the 1-tag and 2-tag cases. Furthermore,
the results obtained from the individual lepton channels agree reasonably well, being com-
patible within 1.7¢ or less, considering only the sum in quadrature of the statistical and
uncorrelated systematic uncertainties.

8 Systematic uncertainties

Several sources of systematic uncertainty are considered. These can impact either the fit,
through modification of template shapes and background normalisations; the unfolding,
through modification of correction factors and response matrix; or both the fit and unfold-
ing in a correlated manner. Each independent source of uncertainty is varied successively
up, and then down by one standard deviation, and in each case the full analysis chain is
repeated. The relative change in the result with respect to the default analysis is then
assigned as the up or down uncertainty due to that source. The following sources are
considered and the resulting uncertainties on the measured 1-tag and 2-tag cross-sections
are summarised in Table 3.

Tagging efficiency and mistag rates. Calibration factors are applied to the jet
b-tagging efficiency in simulation to match that measured in data for each flavour. These
have associated systematic uncertainties as a function of jet pt (and 7 for light-jets). For b-
jets, the uncertainties derived from calibration analyses are divided into 10 sub-components
corresponding to the eigenvectors which diagonalise the associated covariance matrix; each
sub-component is then varied independently by +1¢ and the systematic uncertainties from
each are added in quadrature. Typically two of the sub-components dominate the un-
certainty, with one at around 4.5% at low b-jet pp, and the other rising to around 13%
at high b-jet pr. Across other distributions, both remain between 2-3%. For c-jets and
light-jets, the mistag correction factors from each respective calibration analysis are varied
by +1¢ and propagated through the analysis chain to obtain the corresponding systematic

3The efficiency correction refers to the multiplicative factor obtained from the ratio of the total number
of fiducial particle-level events to the number which is also reconstructed at the detector-level and matched
appropriately.
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uncertainties. These contribute significantly smaller uncertainties, peaking at around 1%
at high b-jet rapidity and low pr. All uncertainties related to b-jets approximately double
in size when requiring two tagged jets for the Z+4 > 2 b-jets distributions.

Jet energy scale. Systematic uncertainties on the difference between the jet energy
scale (JES) in data and simulation are derived using a variety of studies based on in situ
measurements and simulation [41]. These uncertainties are decomposed into 16 indepen-
dent components, including those arising from the influence of close-by low-energy jets,
the correction for pile-up activity and differences in detector response to light-quark jets,
gluon jets and heavy flavour jets. Each component is propagated through the analysis
chain independently by simultaneously varying the signal and background simulation jet
response by +1o. The impact of the total JES uncertainty on the final cross-sections is
typically around 2-5%, rising with pr and rapidity, with uncertainty on the b-jet response
uncertainty being an important contribution.

Jet energy resolution. Jet energy resolution (JER) is studied in dijet data and
compared to simulation [49]. Simulated signal and background samples are then modified
by applying a Gaussian smearing of the resolution function according to the maximum
degradation allowed by the JER measurement from data to evaluate the associated sys-
tematic variation. This is taken as a symmetrised uncertainty on the measured results,
and is typically less than 1%.

b-jet template shapes. The uncertainty on the shape of b-jet templates used in fits
to data is a dominant contribution to the overall systematic uncertainty for this analysis.
The shape is cross-checked in a tf-enriched control region which requires a single well
identified and isolated lepton in association with at least four reconstructed jets passing
the same kinematic cuts as signal jets, of which exactly two are tagged with the MV1
algorithm described in Section 4. This selects a sample of ¢t events in which over 90%
of the tagged jets are expected to be true b-jets. Contributions from W4jets and single
top quark events in this control region are estimated from simulation; contributions from
other electroweak processes and multijet backgrounds are found to be negligible. A residual
underestimate of the total number of events predicted by simulation is found to be less than
10%, and is corrected for by scaling up the tf contribution to match the data normalisation.
Figure 5 shows the CombNNc distributions for different jet flavours, and the ratio of data to
default simulation for all tagged jets in this control region; the corrections of the HERWIG
b-hadron decays to the EVTGEN prediction described in Section 3 are applied. It can
be seen that the simulation provides a reasonable description of the data; the residual
differences of up to 5% are used to derive a b-jet template reweighting function shown
by the dashed line in Figure 5. Investigation of the control-region data in bins of tagged
jet pr and rapidity finds that the deviations between data and simulation have no strong
dependence on tagged jet kinematics; this is despite the CombNNc distribution shape
itself having a strong dependence on tagged jet pr. The reweighting function is used to
directly reweight CombNNc b-jet distributions in the signal Z+jets simulation and the
fits to data are repeated. The relative differences with respect to the default results are
typically less than 5%, and this difference is taken as a systematic uncertainty due to b-
jet template shape, which is then symmetrised around the nominal value to give an up-
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and down-uncertainty. It is possible that the b-jet template reweighting function derived
reflects some mismodelling of the non-b-jets component in Figure 5. To this end the
systematic uncertainty is also evaluated by only reweighting b-jet templates for values
of CombNNc larger than 2.0. The result is a smaller overall uncertainty; however, as the
fraction of b-jets is still larger than the fraction of non-b-jets for CombNNc less than 2.0
in Figure 5, the more conservative value obtained from reweighting the full b-jet template
is taken as the uncertainty. As a further cross-check, the fits are repeated using b-jet
templates obtained from the SHERPA Z+jets sample; deviations observed are all within
the uncertainties already derived from the tt-enriched control-region method, so no further
uncertainty is assigned.

——
ATLAS
® DataVs=7TeV,46fh™

- b-jets
\j non-b-jets

8000
7000
6000

Entries / 0.67

5000
4000
3000
2000
1000

0
14 T T T T T T
1.3
1.2
1.1

i data/simulation {s =7 TeV, 4.6 fb™*

"""" systematic template weight

[=y

Ratio to simulation

o o
00 ©
-l>|||||
'

N
o
N
i
»

(@)
e}
3
=4
P
P
o

Figure 5. The tagged-jet CombNNc distribution in the #¢ enriched control region described in
the text, with the simulation split by jet flavour (top), and the ratio of data to default simulation
(filled circles, bottom). The dashed line shows the b-jet template reweighting function derived from
the difference between data and simulation in this control region.

Non-b-jet template shapes. Mismodelling of template shapes derived from Z+jets
simulation for c¢-jets and light-jets can also cause a systematic shift in the results of fits to
data. The corresponding uncertainties are estimated by substituting the default templates
with templates derived from the SHERPA Z-+jets simulation, which uses a different parton
shower and hadronisation model. The difference between the default fit response and the
response obtained with the alternative templates is taken as the systematic uncertainty,
which is typically less than 1%.

Further tests are made by repeating the entire analysis using an MV1 operating point
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which rejects significantly more ¢- and light-jet background (but with a lower signal ef-
ficiency), reducing the sensitivity to any potential mismodelling of these templates. The
results are entirely consistent with those obtained using the default value, so no further
uncertainty is assigned.

Finally, the template shapes may be influenced by a mismodelling of the light- and
c-jet kinematics, and by the light-/c-jet ratio in the simulation when building the non-b
template. The data are fitted using CombNN rather than CombNNc (defined in Section 6),
which provides a better discrimination between light- and c-jets, and all three templates
(light-, c- and b-jet) are allowed to float. Across all distributions, the fitted light- and
c-jet normalisations are consistent with the prediction of the default simulation within
the statistical uncertainties (typically 2-4%), indicating the kinematic modelling of these
contributions, and their ratio, is correct. Therefore no further systematic uncertainty is
assigned.

Template scale factor. The b+c and b+light jet templates in 2-tag events are scaled
up by a factor of 1.35, as described in Section 6, based on fits to data with two or more jets,
of which exactly one is tagged. A fit to integrated 1-tag data yields a factor of 1.48; the
default scale factor of 1.35 is varied up and down by 0.13 to cover this difference, resulting
in a change in the final cross-sections of around 2%, which is assigned as a symmetric up
and down systematic uncertainty. The ¢- and light-jet fractions in these templates are also
independently varied up and down by 0.13, significantly larger than the fit uncertainties
and differences in the two control regions used to derive the b-jet scale factor, but chosen
to based on the b-jet result to provide a conservative bound on mismodelling of the c-jet
fraction. This results in a further systematic uncertainty of around 1%.

Multiple parton interactions. Associated Z+b-jets production from MPI where
the Z and b-jets are produced in separate hard scatters within a single pp interaction
(double parton interactions) is included in the analysis signal definition. Fits to data and
unfolding to particle-level use the MPI fraction predicted by JIMMY in Z+jets simulation
to determine its relative contribution to the signal processes. The contribution is largest
at lower b-jet pp; any misestimate of this fraction can alter the CombNNc shapes, which
are pp-dependent, and can also alter the efficiency correction and the bin-by-bin migration
in pp-dependent variables. The default double parton interaction fractions as a function
of b-jet pr and rapidity are cross-checked by combining ATLAS measurements of the Z
boson production cross-section [50], the differential inclusive b-jet cross-section [51] and pp
effective cross-section [52] using the phenomenological model described in reference [52].
The prediction from JiMMY is found to be consistent with this data-based cross-check
to within 50%, hence the predicted fraction is varied by this amount to determine an
associated systematic uncertainty. The uncertainty is typically around 2% on the measured
cross-sections.

Gluon splitting. The dominant mechanism to produce two b-hadrons in one jet is
the ¢ — bb process. An inaccurate estimate of the rate of two b-hadron decay vertices
within AR = 0.4 from the jet centroid can affect the accuracy of the CombNNc template
shapes, by impacting distributions which are inputs to the NN. Furthermore, as gluon
splitting becomes more important for high pr jets, a mismodelling of its rate can impact the
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efficiency correction and bin migrations in variables correlated with b-jet pr. No well defined
data control region has been identified to constrain this process; therefore the sample of
simulated events with reconstructed and particle-level jets matched to two b-hadrons is first
enhanced by a factor of 2, then completely removed, with the full analysis being repeated
in both cases. This variation is larger than the difference observed between predictions
from the default signal ALPGEN+HERWIGH+JIMMY and SHERPA Z-+jets simulations and is
therefore considered to give a conservative upper limit on the magnitude of this uncertainty,
and is found to be less than 2%.

Background normalisation. The contributions of ¢, single top quark and diboson
backgrounds are taken from theoretical predictions. To account for theoretical uncertain-
ties in these predictions the normalisation of each component is varied independently by
+10%, which covers both cross-section and acceptance uncertainties. For 1-tag events the
multijet background is varied within its fitted uncertainty. For 2-tag events, fits for the
multijet backgrounds yielded a normalisation close to zero, and the uncertainty from those
fits is taken as an upper bound for possible multijet contamination, translating into an
uncertainty of 0.5% on the bb yield.

Background modelling. A cross-check of t{-background modelling is made by sub-
stituting the default MC simulation with an alternative sample simulated with POWHEG
and repeating the data fits. For 1-tag events no significant difference is found, either in-
clusively or differentially. In 2-tag events a systematic deviation in excess of the existing
template-shape uncertainty described above is observed. This difference is approximately
3%, which is taken as an additional systematic uncertainty due to ¢t modelling in the 2-tag
sample.

Signal modelling. The corrections to particle-level cross-sections may include some
residual dependence on the modelling of the kinematics in the simulation. To test for
this, the particle-level b-jet pt distribution in simulation is reweighted to the measured
differential cross-section, and the full analysis repeated. A negligible effect is found. As
the main kinematic distributions are generally well modelled by the simulation, no further
uncertainties are assigned.

Simulation sample size. The impact of the finite simulation sample sizes in both
the fit template shapes and unfolding procedure are evaluated through ensemble tests,
repeating the analysis and randomly fluctuating bin entries of a given distribution in the
simulation within their statistical uncertainty. The spread determined from these ensemble
tests is around 1%, which is assigned as the systematic uncertainty.

Lepton efficiency, energy scale and resolution. The trigger and reconstruction
efficiency, energy scale, and resolution of both reconstructed electron and muon candidates
have been measured in Z — ¢¢ events and used to correct the simulation as described
in Section 4. The uncertainties associated with the measurement of these quantities are
propagated through the full analysis chain resulting in an uncertainty of around 1% on the
final cross-sections.

Missing transverse momentum. The calculation of E%iss in each event is repeated
for every systematic variation of reconstructed jet and lepton candidates as described above.
An additional uncertainty arises from possible differences in data and simulation between
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the component of Effmss from topological clusters not associated to reconstructed physics
objects [45]. This additional component is propagated through the analysis as an indepen-
dent uncertainty, and is typically well below 1%.

Luminosity. The luminosity scale is determined from a single calibration run taken
in May 2011. The associated uncertainty is derived from the calibration analysis itself and
from the study of its stability across the 2011 data taking period. A total uncertainty of
1.8% is assigned to the luminosity [35].

Source of

uncertainty a(Zb) (%] o(Zbdb) %]

b-jet tagging efficiency 3.4 9.8

c-jet mistag rate 0.2 2.3

light-jet mistag rate 0.4 0.6

JES 2.9 4.7

JER 0.3 0.7

b-jet template shape 4.8 4.8

c-jet template shape 0.2 0.6

light-jet template shape 0.9 0.9

b-jet template scale factor N/A 2.3

MPI 2.5 0.8

gluon splitting 1.2 1.5

background normalisation 1.1 3.6

tt modelling 0.0 2.9

MC sample size 1.0 14

lepton efficiency, scale and resolution 1.2 1.2

Emiss 0.1 0.6

luminosity 1.8 1.8

total 7.7 14.0

Table 3. Summary of the systematic uncertainties determined for the cross-section measurements
of the Z+ > 1 b-jet and Z+ > 2 b-jets final states.

9 Theoretical predictions

Several theoretical predictions are compared to the measurements. Fixed-order pQCD
parton-level predictions at NLO in the 5FNS are obtained from mMcrM [53] for both the
Z+ > 1 b-jet and Z+ > 2 b-jets final states. The calculation of Z+ > 1 b-jet is made
up of several sub-processes [2,3] at (’)(a%), and the b-quark mass is ignored except in pro-
cesses where one b-quark falls outside the acceptance or two b-quarks are merged in a single
jet. For Z+ > 2 b-jets production, the MCFM calculation uses a single process with both b-

quarks in acceptance at O(ag) and the b-quark mass is ignored throughout. In all cases, the
2

renormalisation and factorisation scales are set to \/m(Z)2 + pr(Z)?, and varied up and
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down independently by a factor of two to assess the dependence on this scale choice. The
MCFM predictions are performed using the CT10 [23], NNPDF2.3 [54] and MSTW2008 [55]
PDF sets. The uncertainties associated with the PDF fits to experimental data are prop-
agated appropriately for each PDF set. The dependence on the choice of ag(m(Z)) is
assessed by using PDF sets with ag(m(Z)) shifted up and down by the 68% confidence
level interval around the default value used in the PDF. For MSTW2008, fits using different
b-quark masses are also available. The prediction from MCFM is at the parton-level, so must
be corrected for the effects of QED final-state radiation (FSR), hadronisation, underlying
event and MPI. The correction for QED FSR is obtained using PHOTOS, interfaced to the
ALPGEN+HERWIGHJIMMY samples used in the data analysis, and evaluated by compar-
ing the cross-sections obtained by applying the selection requirements to leptons before,
and after FSR. The correction factors for hadronisation, underlying event and MPI are
obtained for each differential cross-section from both PYTHIA and SHERPA, by taking the
ratio of the predictions with these effects turned on and turned off. The versions used are
PyTHIA 6.427, with the CTEQ5L PDF set and the Perugia 2011 tune, and SHERPA 1.4.1,
with the CT10 PDF set. Differences between the correction factors obtained in PYTHIA
and SHERPA, which are typically at the 1%-level, as well as the 50% uncertainty on MPI
described in Section 8, are assigned as systematic uncertainties.

Full particle-level predictions with NLO matrix element calculations are also obtained
using aMC@QNLO [10], in both the 4FNS and 5FNS. In the 4FNS, the Z+ > 2 b-jets process
is calculated at O(ad), including the effects of the b-quark mass, and interfaced to the
MSTW2008NLO_nf4 PDF set [55]. No kinematic cuts are applied to the b-jets in this
calculation, therefore it is also used to derive a 4FNS prediction for the Z+4 > 1 b-jet final
state. For the 5FNS prediction, the more inclusive Z+> 1-jet process is calculated at O(a%)
neglecting the b-quark mass and using the MSTW2008NLO PDF set. This is then used to
derive a 5FNS prediction at O(ad) for Z+ > 1 b-jet and Z+ > 2 b-jets. The latter process
is therefore LO only. In both cases, HERWIG++ is used to simulate the hadronisation,
underlying event and MPI. Both predictions require a correction for a missing component
of MPI, in which the Z boson and b-quarks are produced in separate scatters within the
pp collision. This correction is estimated using the ALPGEN+HERWIG+JIMMY samples
where the MPI contribution is included. Since the 4FNS and 5FNS use different matrix
elements (Z+bb and Z+jet respectively), a different correction factor is derived in each
case. In both the 4FNS and 5FNS predictions from aMC@NLO, the renormalisation and
factorisation scales are set dynamically to the same definition used for the MCFM prediction.
Since variations of the scales are the dominant sources of theory uncertainty, they have been
evaluated for all aMC@NLO predictions using the same procedure as for MCFM. The overall
scale uncertainty is found to have a comparable size in the 4FNS and 5FNS predictions,
and to be consistent with the scale uncertainty for MCFM. However, the uncertainty is
fully dominated by variations of the renormalisation scale in the 4FNS case, while for the
5FNS renormalisation and factorisation scale variations produce shifts which are similar
in magnitude and opposite in direction, giving a total uncertainty dominated by the cases
where one is shifted up and the other down (and vice versa). Uncertainties arising from
the PDFs and the choice of ag are obtained using MCFM.
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Predictions are also obtained from SHERPA and ALPGEN-+HERWIG+JIMMY, which
combine tree-level matrix elements for multiple jet emissions with a parton shower, hadro-
nisation and underlying event package. ALPGEN uses the 4FNS and has up to five partons
in the matrix element, while SHERPA uses the SFNS and has up to four partons in the
matrix element.

10 Results

The cross-sections for Z+ > 1 b-jet and Z+ > 2 b-jets are shown in Figure 6, and Table 4.
The MCFM predictions always agree with the data within the combined experimental and
theoretical uncertainties. The prediction obtained with CT10 is lower, due primarily to the
default choice of ag(m(Z)) in this PDF (0.118) compared to MSTW2008 and NNPDF2.3
(0.120 in each). The predictions do agree within the uncertainty on the choice of ag(m(2)).
For amc@NLO, the 5FNS prediction describes Z+ > 1 b-jet well, while the 4FNS underes-
timates the measured cross-section. This situation is reversed for the Z+ > 2 b-jets case,
where the 4FNS provides a good description, while the 5FNS underestimates the cross-
section. However, as explained in Section 9, the 5FNS prediction from aMC@QNLO is only
LO for Z+ > 2 b-jets, which may explain this underestimate. Considering only statistical
uncertainties, both the 4FNS prediction from ALPGEN+HERWIG+JIMMY and the 5FNS
prediction from SHERPA underestimate the data, with ALPGEN+HERWIG+JIMMY being
consistently below SHERPA by around 30-40%.

o(Zb)[fb]  o(Zb) X Nyjes [fb]  0*(Zb) X Nyjes[fb]  o(Zbb)[fb]

Data 4820+ 607350 5390 +60+480 4540+ 55+330  520+2077
MCFM®MSTW2008 5230 £ 307975 5460 £ 407750 4331 £307500 410+ 1013
MCFM®CT10 4850 £ 307350 5070 £ 307510 4030 + 30+320 386 + 512
MCFM&NNPDF23 5420 + 207570 5660 4+ 307720 4490 + 307380 420+ 10779
aMC@NLO 4FNS®MSTW2008 3390 + 207580 3910 4 207850 3290 + 201750 485 + 7150
aMC@NLO 5FNS®MSTW2008 4680 + 4073250 5010 440735 4220 + 401399 314+ 9730
SHERPA®CT10 3770+ 10 4210+ 10 3640 + 10 42242

ALpGEN+HI®CTEQ6L1 2580 + 10 2920 + 10 2380 + 10 31742

Table 4. The measurement and theory predictions for the integrated cross-sections and the in-
tegrated inclusive b-jet cross-sections. The MCFM results are corrected for MPI, non-perturbative
QCD effects and QED radiation effects. The statistical uncertainty is quoted first in each case. The
second uncertainity is either the total systematic uncertainty (data), the sum in quadrature of all
theory uncertainties (MCFM), or the scale uncertainty (aMC@NLO).

Figure 7 shows o(Zb) x Nyt , as a function of the b-jet pr and |y|. The theoretical
predictions generally provide a good description of the shape of the data. The 4FNS
prediction from aMC@NLO underestimates the data most significantly at central rapidities.
Figure 8 shows o(Zb), as a function of the Z boson pr and |y|. In general, all theoretical
predictions provide a reasonable description of the shape of the data within uncertainties,
though there is evidence for disagreement at very high Z boson pr, and a slope in the ratio
of the MCFM prediction to data for the Z boson rapidity.

~90 —



In general, good agreement with the data can be seen for Ay(Z,b) and Ypoost(Z, b)
in Figure 9, though with some evidence for a slope in the ratio of aMc@NLO 4FNS rela-
tive to the data for ypoost(Z, ). In A¢(Z,b) (Figure 10) the fixed-order pQCD prediction
from MCFM has significant discrepancy at A¢(Z,b) = 7, which also distorts the AR(Z, b)
prediction. This is due to the fixed-order calculation containing at most one or two out-
going partons in association with the Z boson. In the case of one parton, A¢(Z,b) = =
by construction, leading to the distorted distribution. The inclusion of higher multiplicity
matrix elements in ALPGEN and SHERPA, and matching to parton shower models in ALP-
GEN, SHERPA and aMC@QNLO helps to populate the A¢(Z,b) distribution in a way which
yields a much better agreement with data. This emphasises the importance of higher order
effects when considering such distributions. The region of low A¢(Z,b), which is most
sensitive to additional QCD radiation as well as soft corrections, is also poorly modelled
by MCFM; these effects are not fully captured in the non-perturbative corrections applied
to that prediction.

For the Z+ > 2 b-jets differential cross-sections shown in Figures 11 and 12, all pre-
dictions provide reasonable descriptions of the data within the large experimental uncer-
tainties. There is some evidence for disagreements between predictions and data at low
m(b,b) and low AR(b,b).

Finally, Figure 13 compares the MCFM predictions obtained using different PDF's to
the data for the Z boson rapidity distribution, which is the distribution found to have the
largest dependence on the PDF set used. It can be seen that, while the different PDF
sets do yield different results, they all show a similar trend relative to the data, and the
differences are small compared to the theoretical scale uncertainty.
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Figure 6. Cross-sections for (a) Z+ > 1 b-jet, and (b) Z+ > 2 b-jets. The measurement is shown as
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11 Conclusions

Differential Z+b-jets cross-section measurements from the LHC have been presented using
4.6 fb=! of \/s=T TeV pp collision data recorded by the ATLAS detector in 2011. In total,
12 distributions for Z+ > 1 b-jet and Z+ > 2 b-jets topologies have been investigated and
compared to theoretical pQCD calculations. Next-to-leading-order predictions from MCFM
and aMC@NLO generally provide the best overall description of the data. The agreement
of the aMC@NLO cross-section prediction with data differs in the Z+ > 1 b-jet and Z+ >
2 b-jets cases, with the former better described by the 5FNS prediction and the latter
better described by the 4FNS prediction. Even at NLO, scale uncertainties dominate and
currently limit any sensitivity to different PDF sets. Descriptions of the shapes of the
differential cross-sections are generally good within uncertainties for both LO and NLO
predictions. For angular distributions in the Z+4 > 1 b-jet selection, where the fixed-order
NLO prediction is observed to break down, the differential shapes in data are well modelled
by LO multi-legged predictions.
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