
          

 

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE 

FACULTAD DE AGRONOMÍA E INGENIERÍA FORESTAL 

DIRECCIÓN DE INVESTIGACIÓN Y POSTGRADO 

MAGISTER EN RECURSOS NATURALES 

        

 

 

 

ASSESSING RECENT TRENDS OF AGROCLIMATIC INDICES 

USING MODIS DATA IN CENTRAL CHILE 

 

 

 

Tesis presentada como requisito para optar al grado de  

 

Magister en Recursos Naturales 

por: 

Stephanie Orellana Bello 

 

Comité de Tesis 

Profesor Guía: Francisco Meza D. 

Profesores Informantes: 

Horacio Gilabert 

Mauricio Galleguillos 

 

Junio 2018 

Santiago-Chile 

  

 



Agradecimientos 

 

Este trabajo fue apoyado por la Red Internacional de Seguridad Hídrica, fundada por Lloyd's 

Register Foundation, una fundación benéfica que ayuda a proteger la vida y la propiedad 

mediante el apoyo a la educación relacionada con la ingeniería, el compromiso público y la 

aplicación de la investigación. También recibimos el apoyo del Instituto Interamericano para 

la Investigación del Cambio Global (IAI) CRN3056, que cuenta con el apoyo de la National 

Science Foundation [GEO-1128040] y del proyecto de subvención Fondecyt 1170429. 

Agradezco a mi profesor guía Francisco Meza por la confianza, las ideas y el apoyo durante 

la realización de este trabajo. A los profesores informantes Mauricio Galleguillos y Horacio 

Gilabert por los valiosos comentarios aportados y su disposición para ser parte de este 

proyecto. 

Al laboratorio de Biometeorología y Climatología Aplicada y a los investigadores del Centro 

UC de Cambio Global, David Morales, Eduardo Bustos y Nicolás Bambach por su 

retroalimentación constante que hacen de este trabajo un mejor producto. 

A mi familia. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

  

 



Contenido 
1 Introduction ................................................................................................................................ 5 

2 Methods ..................................................................................................................................... 9 

2.1 Study area ......................................................................................................................... 9 

2.2 Agroclimatic Indices ....................................................................................................... 11 

2.2.1 Indices for heat category ....................................................................................... 12 

2.2.2 Indices for cold category ........................................................................................ 13 

2.3 MODIS data ..................................................................................................................... 14 

2.3.1 Daily Land Surface Temperature ......................................................................... 14 

2.3.2 NDVI ......................................................................................................................... 16 

2.4 Trend analysis ................................................................................................................. 16 

2.5 Directional variogram analysis ...................................................................................... 17 

3 Results ..................................................................................................................................... 17 

3.1 Gap filling model ............................................................................................................. 17 

3.2 Modis based air temperature ........................................................................................ 19 

3.2.1 Maximum temperature ........................................................................................... 20 

3.2.2 Minimum temperature ............................................................................................ 21 

3.3 Trend analysis in agroclimatic indices ......................................................................... 22 

3.3.1 Heat category .......................................................................................................... 26 

3.3.2 Cold Category ......................................................................................................... 29 

3.3.3 Start and end of growing season derived from NDVI data ............................... 31 

4 Discussion ............................................................................................................................... 34 

5 Conclusion ............................................................................................................................... 37 

6 Acknowledgments .................................................................................................................. 38 

7 Resumen .................................................................................................................................... 38 

8 References .............................................................................................................................. 39 

 

 



5 
 

Assessing recent trends of agroclimatic indices using 

MODIS data in Central Chile 

Stephanie Orellana; Francisco Meza. 

 

Abstract 
Stephanie Orellana and Francisco Meza. Assessing recent trends of agroclimatic 

indices using MODIS data in Central Chile. Tesis, Magister en Recursos Naturales, 

Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile. 

Santiago, Chile. 42 pp.  

Agriculture is one of the most susceptible activities to climate change. Increasing 
temperatures and changes in precipitation will affect crop growth and development 
reducing agricultural productivity. Recent observed trends in temperature may have 
already produced changes in the suitability of crops. Trend analysis is one of the most 
accepted methodologies to assess the effect of observed changes in temperature on the 
physiological crop response. Unfortunately, only few studies analyze the effect of climate 
trends on agroclimatic indices, specially performing a comprehensive spatial analysis.  

This work presents an analysis of recent trends (2002-2016) in central Chile for 
temperature based agroclimatic indices derived from MODIS Land Surface Temperature 
product. To investigate the spatial structure of calculated trends, directional variograms 
were estimated. Indices associated with a heat category show marked trends towards an 
early start of growing season and an increase in length of growing season, as well as to 
appositive response of growing degree days in winter and summer. The indices 
associated to a cold category have less clear trends and a smaller number of significant 
trends. The analysis of NDVI for vegetation response shows an adaptive debt, defined 
as to the difference between the potential growing season length and the actual response 
of vegetation, because the beginning and the length of the growing season present 
opposite trends to the ones found in agroclimatic indices. The most significant results in 
trends were found in the humid and sub-humid Mediterranean areas which present a new 
productive potential to be less limited by low temperatures. The cold indexes suggest an 
increase of frost period with a greater number of extreme events. 
 
Key words:  Agroclimatic indices, recent trends, MODIS, Mann-Kendall, variogram. 

1 INTRODUCTION 

Increasing levels of carbon dioxide (CO2), temperature, and changes in precipitation 

patterns are the most common impacts of climate change, which have a direct effect on 

agriculture (Hatfield et al., 2011). These variables determine agricultural production by 

modifying crop yields, increasing water requirements, and affecting the suitability of 

different varieties for specific geographical areas, among others. However, not all 

changes produce negative consequences, under some circumstances, it is also possible 
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to identify beneficial effects of climate change such as an increase of agricultural 

productivity in areas where temperature has been a limiting factor (Roco et al., 2014).  

Knowledge of future climate change conditions allow farmers to modify cropping systems. 

An example of such response is found in Meza et al. (2008), who evaluated double 

cropping as an emerging adaptation strategy to future climate conditions in a 

Mediterranean region. This response becomes more efficient because climate change 

accelerates the rate of development, allowing the crop to complete its growing cycle in 

shorter periods of time.  

The correct characterization of the climate environment and the development of 

agroclimatic indices that allow us to assess the effect of climate conditions on crop 

adaptability and yield potential during growing season, represents a fundamental step for 

the identification of successful adaptation strategies. 

The most widely accepted agroclimatic indices, defined as an indicator of an aspect of 

the climate that has specific agricultural significance, are based on temperature and 

precipitation and are used as simple and straightforward variables to support agronomic 

decisions. Although temperature and precipitation are relatively easy to access from 

traditional weather stations, and the dissemination of automatic weather stations has 

increased substantially over the last decade, these networks are not equally spread in 

the territory as they tend to be concentrated around highly population centers, or areas 

of high productive interest, generating large gaps in information that prevent from reliable 

data interpolation and correct identification of spatial patterns (Li and Heap, 2008).  

In Chile around of 66% of meteorological stations with temperature registers were 

installed after 2000 (44% after 2010) considering sources available in “Red Agroclimática 

Nacional” (www.agromet.cl) and data of “Dirección General de Aguas” (DGA) and 

“Dirección Metorológica de Chile” (DMC) compiled by Center for Climate and Resilience 

Research (www.cr2.cl). This condition precludes an exhaustive trend analysis because 

despite having a denser network of stations, most of them still do not have more than 10 

years of complete records. 

In the case of Chile, due to the great heterogeneity of the landscape (especially the area 

devoted to agriculture), it is important to model the spatial variability of these indexes as 

well as to characterize their temporal variability within the recent period to monitor impact 
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of recently observed climate changes on the main productive activities of the country. 

Recent studies show a mega drought in Central Chile in 2010-2015 period, with changes 

in potential evapotranspiration (PET) contributed by a rise in temperatures between 0.5 

and 1°C. Two areas with considerable increase in PET were identified: the interior valleys 

of northern Chile (30-33 °S) and to the south of 36 °S, this suggest a substantial water 

stress for vegetation in these areas (Garreaud et al., 2017a). This condition can be an 

advantage for agriculture to the extent that better irrigation systems  are used, being less 

susceptible than other vegetation types to the decrease in rainfall recorded in the last 

decade (Garreaud et al., 2017b). 

Trend analysis is the most widely used technique to detect changes in time series. The 

majority of the literature focuses on raw climatic variables with only few studies evaluating 

the performance of agroclimatic indexes and, even to a lesser extent, analyzing the 

spatial coherence of observed trends. An extensive review of historical (1940-2007) and 

recent (1975-2007) trends based on information from meteorological stations in 

Argentina is presented by Fernández-Long et al. (2013). The authors found significant 

trends that show a delay on the first frost day in comparison to the historical period, in 

addition to detecting an earlier appearance of the last frost day. However, this trend was 

not spatially homogeneous, because there have been areas where frost risk has 

increased and remains as a major environmental threat to agricultural production. On the 

other hand, earlier start and a delaying in the end of growing season were found, this 

larger growing period could be an opportunity to incorporate more flexible agricultural 

practices that would result into an increase in yields.  

A similar exercise was carried out in Poland where the authors incorporated a climate 

change model to generate future scenarios (Graczyk and Kundzewicz, 2016). Using a 

point-based analysis (i.e. analyzing specific stations) the authors found trends consistent 

with climate change projections that showed an increase of the growing season and an 

increase in growing degree days. Because stations did not show similar results, authors 

concluded that the stations were subject to a strong natural variability. Another example 

of such analysis was the assessment of long-term trends in agroclimatic indices for three 

main field crops grown in Canada (Qian et al., 2010). Here, the authors found an 

increasing trend in growing season and a longer frost-free period. 
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An alternative to the use of measurements from meteorological stations, is the use of 

satellite images that can cover larger areas and enable us to identify spatial patterns in 

these changes. Remote sensing data has been used to study the effect of climate on 

natural vegetation by evaluating indices such as the widespread used Normalized 

Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). These 

variables have been commonly used to evaluate Gross Primary Productivity as a proxy 

of growing season length (Suzuki et al., 2006). NDVI uses the reflectance of the red and 

near-infrared channels and can be obtained for series that date back to 1970 using the 

Advanced Very High Resolution Radiometer (AVHRR) inside NOAA’s meteorological 

satellites. Since 2000, the moderate resolution imaging spectroradiometer (MODIS) has 

allowed the calculation of a variety of new vegetation indices, such as EVI that require 

blue band information, enable us to monitor the index more frequently (with 1, 8 or 16 

days products) and with a more detailed spatial resolution (250-1000 m.) (Zhou et al., 

2014). 

Even though the use of satellite data for the calculation of specific agroclimatic indices 

and detection of major trends and changes represents a promising alternative if a series 

of technical requisites are met. Records should have enough temporal resolution to 

perform daily calculations and are able to monitor nocturnal surface temperatures that 

can be used as proxies for minimum temperatures and have a considerable temporal 

extension to perform trend calculation. MODIS images are a good alternative, since their 

daily products satisfy all these requirements and are freely accessible. Their spatial 

resolution allows for studies at valley level that are of great interest for agricultural policy, 

while farm level specific studies require higher resolution images and/or the presence of 

a weather station nearby.  

Given the advantages of MODIS images as tool to perform systematic spatiotemporal 

analysis of agroclimatic indices, we have designed a study to evaluate trends of 

agroclimatic indices that are relevant for agriculture with the greatest spatial coverage 

possible. This study focuses on temperature related indices as it represents the main 

variable for monitoring crop adaptability, and because reliable indirect measurements of 

this variable can be obtained from satellite images. Our hypothesis is that, in the recent 

period, changes in temperature have been verified in agricultural areas that turn out to 

be significant and may have an impact on crop growth and development. 
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2 METHODS 

The assessment of trends in agroclimatic indices requires the integration of databases 

and the derivation of specific variables from remote sensing data. A diagram of the 

methodological framework adopted in this work, including a sequence of the processes 

followed and input data required to obtain the necessary database is presented in Figure 

1.  

 

Figure 1: Methodological framework for the study of trends in temperature based agroclimatic indices using 
remote sensing data from MODIS images. 

2.1 STUDY AREA 
The study area corresponds to the main agricultural locations between Coquimbo and 

Biobio regions in Chile. This area is known to have a Mediterranean climate, with a range 

of subtypes that vary from a semi-arid condition in the northern part, with eight to ten dry 

months per year, to humid in the south, with two to four months without precipitation in 

the summer season (DiCastri and Hajek, 1976; Luebert and Pliscoff, 2008). While 

precipitation gradient is significant, there is a slight downward temperature gradient 

towards the south. 

To analyze the results, we divided the study area into four main regions given by 

ombrotype indices in Mediterranean macrobioclimate as calculated by Luebert and 
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Pliscoff (2016). For simplification, we merged the humid ombrotypes subclasses 

(hyperhumid, ultrahiperhumid) under the name of “humid” because this class was 

predominant in agricultural pixels for the study area and its subclasses represents less 

than 1% of pixels. The ombrotermic index is calculated as the ratio between average 

precipitation and temperature accumulation in months whose average temperature is 

higher than 0°C, this index evaluates the annual water availability and is used as predictor 

of the relationship between the climate (temperature and precipitation) and the presence 

of vegetation (Rivas-Martínez et al., 2011). 

 

Figure 2: Mediterranean bioclimates and ombrotype division for the study area. Adapted from (Luebert and 

Pliscoff, 2016b). The crosses represent selected weather stations in cropland and grassland pixels. 
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The geography is shaped by the Cordillera de Los Andes (3500 - 4500 m) in the east, the 

low coastal mountains in the west (Cordillera de la Costa), which has few important 

agricultural valleys. Between these two major features we can identify a central valley, 

where the main cities and economic activities, along with most important agricultural 

locations, are found. The study area concentrates around 47% of all farm land used for 

agriculture in the country, 93% of all agricultural area is concentrated in farms larger than 

100 hectares (ODEPA, 2017).  

Between 30 and 35° of latitude (administrative regions of Coquimbo, Valparaiso, 

Santiago and O´Higgins), most of the agricultural activities are found in the longitudinal 

valleys and Cordillera de la Costa with greater dependence on irrigation, whereas 

towards the south in Maule and Biobio regions (36 - 38°S), agriculture becomes more 

extensive and diversified. In this part of the country natural grasslands are sustained by 

greater amounts of precipitation.  

The soil cover characterization for Chile (Zhao et al., 2016) was used to define agricultural 

areas. This classification uses images from the Landsat and MODIS satellites and control 

points throughout the national territory to conduct a supervised classification of soil cover 

at 30 m resolution. We carried out a downscaling to MODIS resolution of 1000 x 1000 

meters using a majority algorithm within filter window of 33 neighbor pixels.  

For this study, we selected those pixels represented with class 100 (agricultural crop). 

Towards the south (36°S) we also included pixels with class 300 (grassland) associated 

with livestock farming. One of the assumptions of the study is that there has not been a 

significant change in land use during the last 16 years, and therefore pixels with some 

type of agricultural or grassland type vegetation have not changed abruptly into other 

classes such as urban or forestry (Miranda et al., 2017; Schulz et al., 2010). 

2.2 AGROCLIMATIC INDICES 
 

Agroclimatic indices allow us to study the effect of changes in the climatic variables on 

the growing season conditions. Agroclimatic indices can be used in agricultural planning 

and crop management, for example, in the characterization of suitable land for a certain 

crop and the selection of varieties, as well as, to monitor changes in weather variables in 

real time (Qian et al., 2012, 2010). 
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Crops have different environmental requirements throughout their life cycles (Hatfield et 

al., 2011). With regards to temperature, these requirements are associated to a range 

defined by cardinal temperatures: the maximum temperature and the minimum 

temperature and the optimum temperature, allowing us to characterize the response of 

crops to the fluctuations of ambient temperature (Qian et al., 2010).  

While in some cases low temperatures are beneficial for the development of certain crops 

inducing changes in their phenological stages, it is more common that cold temperatures, 

especially if they fall below zero, limit the growth and/or induce severe damages to crop. 

Warm temperatures, on the other hand, contribute to accelerate the rate of development, 

allowing crops to reach maturity earlier within the growing season.  

Selected yearly agroclimatic indices were obtained for Fernández-Long et al. (2013) and 

Graczyk and Kundzewicz (2016). These indices have been classified into “heat” and 

“cold” category. Specific description of these indices is provided in the subsections below. 

2.2.1 Indices for heat category 

Here Tx is the maximum temperature, and Tn is the minimum temperature of day 𝑡. Sub 

indices 𝑖 and 𝑛 in the summation correspond to May 1st and December 31st in the case 

of winter crops, and October 1st to March 31st in the case of summer crops. Although 

crops have specific base temperatures for the calculation of growing degree days, in this 

case we have used a single value of 7 ºC to facilitate the calculation. One would expect 

only minor changes in the trend analysis results when using a different set of base 

temperatures for winter and summer crops. 

 shows those indices associated to a “heat” category. The selected indices are:  the start 

of growing season (SGS), which is calculated as the first occurrence of seven 

consecutive days with mean temperature above a threshold of 7°C; the end of growing 

season (EGS) that is calculated as the last occurrence of the previously described 

condition; and the length of growing season that corresponds to the number of days 

between SGS and EGS. A fourth index in this category corresponds to Growing Degrees 

Days, that are calculated separately for winter crops (considering a growing period 

between May 1st –December 31st) and summer crops (covering the period between 

October 1st –March 31st).  
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Table 1: Description of indices associated with “heat” category. 

Indices Abbr. Description 

Start of growing season SGS Seven consecutive days with mean temperature above 7°C. 

End of growing season EGS Last seven consecutive days with mean temperature above 7°C. 

Length of growing season LGS Number of days between SGS y EGS. 

Growing degree days  GDD Cumulated degree days between October 1st –March 31st for summer  

crops and May 1st –December 31st for winter crops. (Equation 1) 

 

The calculation of growing degree days is done using a single base temperature and 

according to the following equation: 

𝐺𝐷𝐷 =  ∑ 𝜑𝑡

𝑛

𝑡=𝑖

 

𝜑𝑡 =
𝑇𝑥𝑡 + 𝑇𝑛𝑡

2
− 7 𝑖𝑓 

𝑇𝑥𝑡 + 𝑇𝑛𝑡

2
> 7 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

Equation 1 

Here Tx is the maximum temperature, and Tn is the minimum temperature of day 𝑡. Sub 

indices 𝑖 and 𝑛 in the summation correspond to May 1st and December 31st in the case 

of winter crops, and October 1st to March 31st in the case of summer crops. Although 

crops have specific base temperatures for the calculation of growing degree days, in this 

case we have used a single value of 7 ºC to facilitate the calculation. One would expect 

only minor changes in the trend analysis results when using a different set of base 

temperatures for winter and summer crops. 

2.2.2 Indices for cold category 

Table 2 shows the indices used to describe the “cold” category. In this category, the first 

and last day with frost (FFD, LFD), the period of frost (FP) and the number of days with 

frost (NFD) are included. We assume that frost occur whenever minimum temperature 

falls below 0 °C. In addition to those indices, we recorded the lowest minimum 

temperature (LMT) and chilling hours (CH) (i.e. hours with temperature less than or equal 

to 7°C). 
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Table 2: Description of agroclimatic indices asociated with “cold” category. 

Indices Abbr. Description 

First frost day  FFD First day before 15th July with minimum temperature under 0°C 

Last frost day LFD Last day after 16th July with minimum temperature under 0°C 

Frost period FP Number of days between FFD y LFD. 

Number of frost days NFD Number of days with minimum temperature under 0°C 

Lowest minimum temperature LMT Lowest minimum temperature (°C) 

Chilling hours CH Hours with temperature under less or equal to 7°C. (Equation 2) 

 

The calculation of chilling hours was done using the following equation: 

𝐶𝐻 =  ∑ 𝜔𝑡

𝑚

𝑡=𝑗

 

𝜔𝑡 = 24 ×  
(7 − 𝑇𝑛𝑡)

(𝑇𝑥𝑡  − 𝑇𝑛𝑡)
  

 

Equation 2 

This method assumes that the fraction of the number of hours that can be counted as 

chilling hours depends linearly with the minimum temperature. If maximum temperature 

in day 𝑡 is lower than 7 °C the value of the function should be set to the maximum number 

of chilling hours in a day (24).    

2.3 MODIS DATA 
To determine changes in agroclimatic indices based on satellite data, we collected 

images from MODIS sensor for the Daily Land Surface Temperature (MYD11A1) (Wan 

et al., 2015) and 16-Day NDVI (MOD13Q1) (Didan, 2015) products. Land Surface 

Temperature and NDVI data was downloaded and processed in the software R with “rts” 

library (Naimi, 2015) and MODIS Reprojection Tool from NASA to carry out mosaics from 

tiles and projected to WGS1984 coordinate system. Additionally, a resampling of NDVI 

information of a resolution of 250 m. to 1000 m. was made using MODIS Reprojection 

Tool using bilinear method. 

Quality filter of the products was done using QC bands, keeping only the pixels classified 

as good quality (value = 0) in order to ensure reliable information of land surface 

temperature (daytime and nighttime) and NDVI. 
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2.3.1 Daily Land Surface Temperature 

For the calculation of agroclimatic indices associated with “cold” and “heat” categories it 

is necessary to have data of minimum temperature and maximum temperature. For this 

purpose, the use of satellite images that have nighttime temperature is crucial. In the 

case of the spatial calculation of agroclimatic indices, the surface temperature data from 

MODIS sensor turns out to be a good alternative as a proxy for extreme temperatures 

(Bustos and Meza, 2015; Gregory et al., 2009; Zhu et al., 2013). These images, besides 

being free, can be obtained at a daily level, four times a day and with a spatial resolution 

of 1000 meters, which allows to rescue general patterns in variables associated with 

agriculture. 

In this study, data from the AQUA platform registered at 13:30 p.m. and 1:30 a.m. local 

time were used, as they were close to the time when maximum and minimum daily 

temperatures are usually observed. Unfortunately, this information presents several gaps 

due to cloud cover. For this reason, it was necessary to fill out missing values before 

performing the calculation of agroclimatic indexes that require a consecutive recording of 

days under a specific condition (e.g. beginning and end growing season). 

2.3.1.1 Gap filling model 

Gap filling procedure allowed us to easily calculate indices, especially those that require 

consecutive days in a particular condition (e.g. beginning and end growing season).  

We selected a simple regression model where candidate pixels (independent variables) 

are used to fill the objective pixel (dependent variable). Independent variables must fulfill 

two conditions. First, each candidate pixel must be located within 50 kilometers of the 

pixel where temperature values are going to be estimated (filled), the main assumption 

is that the closest pixels are under the same cloudiness condition. Second, candidate 

pixels must have a linear Pearson correlation greater than 0.5 to ensure a reasonable fit. 

To simplify the calculation, we considered a set of no more than 25 candidate pixels, 

whose contribution in the model was determined by distance and correlation. 

The resulting filled pixels were subjected to an outlier detection process, excluding data 

above and below 1.5 times the inter-quartile range of the distribution (Hodge and Austin, 

2004). In addition, we excluded pixels whose proportion of available data per month was 

less than 40% for not having enough information for the calculation of agroclimatic 
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indexes. We selected 40% considering that the monthly distribution proportion of all pixels 

has the inflection value between the pixels with less and more information in value of 0.4. 

2.3.1.2 MODIS based air temperature estimation 

Oftentimes surface temperature obtained by satellite images is not equivalent to air 

temperature measured under standard conditions in meteorological stations. The 

relationship between the two variables has been studied in Chile by (Bustos and Meza, 

2015), finding high correlation between both variables, especially in pixels that 

correspond to agricultural areas. 

To validate the use of the satellite information we composed a dataset containing 46 

meteorological stations for the period 2002 to 2016 located at cropland and grassland 

pixels (Figure 2). These data were obtained in “Red Agroclimática Nacional” 

(www.agromet.cl) and Center for Climate and Resilience Research (www.cr2.cl) who 

compiled information of “Dirección General de Aguas” (DGA) and “Dirección 

Metorológica de Chile” (DMC). The selected stations must have at least 24 days of 

records for each month in minimum and maximum temperatures, which is 80% of the 

complete monthly information, and no missing years. 

Furthermore, we extracted data of time series of surface temperature for each pixel where 

a meteorological station is located. The relationship between both series was studied by 

adjusting a linear model, recording the values of the determination coefficient and Root 

Mean Square Error. 

The coefficients b0 (intercept) and b1 (slope) of the obtained linear model are used to 

create a continuous surface using interpolation by weighted inverse distance (IDW). The 

results of this interpolation were used, applying the corresponding linear equation for time 

series obtained in each pixel of satellite surface temperature, to convert satellite data into 

a more reliable estimate of air temperature. 

2.3.2 NDVI 

To study the response of vegetation to observed trends in temperature, we used NDVI 

MODIS (MOD13Q1) 16 days product for the period 2002 to 2016 at a spatial resolution 

of 1 km. This product used an algorithm that chooses the best available pixel value from 

all the images in the 16 days period using the criteria of low clouds, low view angle and 

the highest NDVI value (Didan et al., 2015).  
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For each pixel, the beginning and end of growing season was assessed considering an 

agricultural year as the period between May 1st (mid-autumn) and April 31st (late summer 

early autumn) of the following year. The start of the growing season was considered as 

the date after of minimum NDVI value, above this date the values start an ascending 

curve to the maximum NDVI. After the maximum NDVI the curve start a decreasing slope 

value which marks the end of growing season (Verbesselt et al., 2010). 

2.4 TREND ANALYSIS 
Mann-Kendall test was performed to assess the statistical significance of observed trends 

in the time series of agroclimatic indices calculated both with station and satellite data. 

Mann-Kendall is a nonparametric test, where the null hypothesis states that data are 

independent and ordered randomly, implying that there is no trend or structure of serial 

correlation between observations (Hamed and Ramachandra Rao, 1998). The value of 

the linear trend is computed with Sens´s slope estimator (Sen, 1968) where the trend is 

the median of all possible trend estimates from a pair of estimations in two distinguished 

times. Mann-Kendall and Sen´s slope are not reliable in series with autocorrelated data 

(Zhang and Zwiers, 2004). For this study we consider that the annual step series of 

agroclimatic indices are statistically independent as proposed by (Fernández-Long et al., 

2013),  as no previous autocorrelation whitening process was conducted. Both tests were 

performed using the "wq" library (Jassby and Cloern, 2016) in the software R (R Core 

Team, 2014). 

2.5 DIRECTIONAL VARIOGRAM ANALYSIS 
To evaluate spatial patterns of trends found via Mann-Kendall and Sen´s slope analysis, 

we conducted a directional variogram analysis using latitude, longitude and trend value 

for pixels with significant trend. This method allows us to understand the spatial structure 

of the data. In this case, we were interested in identifying if trends are grouped at lower 

distances and what is the predominant direction of variability. 

The variogram method allows us to know the variability between two separated points at 

determined intervals and their evolution at increasing distances. There are different 

techniques to identify (fit) the best model that describes the spatial variability, which is 

later used in interpolation by means of Kriging (Li and Heap, 2014, 2011). In this case we 

used an auto fitted model available in the geoR library (Jr and Diggle, 2016) in the R 
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software. As variability can occur asymmetrically (anisotropy) or symmetrically (isotropy) 

in space, we studied the variability in nearby points in cardinal directions, using the 

azimuth angles 0, 45, 90 and 135° that represent vertical (north/south), horizontal 

(east/west) and diagonal directions. 

3 RESULTS 

3.1 GAP FILLING MODEL 
 

Figure 3 shows the proportion of complete data by month using diurnal MODIS data 

before and after gap filling process. The amount of information varies depending on the 

degree of cloudiness of each month, whereby in summer months the complete data 

reaches an average proportion of 0.8, while in winter months this proportion drops to 0.3. 

There is no noticeable effect of the cloud cover comparing daytime and nighttime 

information. Note that, at the moment of accessing the data (year 2017) complete 

information never reaches above 80% due to missing MODIS data during the period April 

and June of 2015. 

The gap filling model used in this study provides similar results for all months regardless 

of the land cover classifications. In pixels with classification 300 (grasslands) the 

proportion of complete data increased in average by 12%, whereas for pixels with 

classification 100 (agricultural), the proportion of complete data increased by 8 %. In all 

cases the differences in means are statistically significant.  
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Figure 3: Proportion of complete data before and after gap filling process for daytime observations. 

The gap filling procedure reduces the number of outliers in the lower part of the 

distribution and reduces the interquartile range for all months. Nevertheless, in May, 

June, July and August, the final proportion of monthly data reaches maximum 0.5 due to 

cloudiness.  

3.2 MODIS BASED AIR TEMPERATURE 
Results from the linear regression used to correct MODIS data using surface station data 

show that 90% of the stations have linear models with r-square above 0.65 (Figure 4), 

though only 5 stations have regression coefficients between 0.4 and 0.6.  

For both cardinal temperatures, the major part of the stations has an R² value greater 

than 0.6, indicating a strong relationship between station registers of maximum and 

minimum temperatures with MODIS daytime and nighttime land surface temperature. 
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Figure 4: Coefficient of determination (R2) for linear regression between registers of meteorological stations and 
MODIS data. 

The root mean square error is higher for maximum temperatures than minimum 

temperatures when errors are, in general, bellow 2°C (Figure 5). For maximum 

temperatures mostly of the stations have errors above 2°C but no higher tan 4°C. For 

minimum temperatures the average of RMSE is 1.65 degree Celsius, the maximum error 

value corresponds to 2.8 °C in “Santa Rosa INIA” station (-36.5 S, -71.9 O). There is no 

latitudinal pattern in these values. 
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Figure 5: Root mean square errors in linear regression between registers of meteorological stations and MODIS data. 

 

3.2.1 Maximum temperature 

Maximum temperature derived from MODIS data was obtained using the interpolation of 

coefficients of linear models between maximum air temperature and daytime land surface 

temperature. The interpolation parameters are shown in Figure 6.  

Between latitude -30 to -34 the intercept (bo) is above five, that means that daytime 

surface temperature is 5 - 15 ºC higher than maximum air temperature. Whereas in the 

southern part of study area, this difference is less than 5 °Celsius (Figure 6). The slope 

(b1 coefficient) indicates the average change in the response variable by increasing the 

predictor variable by one unit. For our study, this variation of maximum air temperature 

and daytime land surface temperature is below 1° Celsius, and lesser in the northern part 

of study area.  
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Figure 6: Spatial distribution of interpolated by IDW coefficients of a linear regression between MODIS data 

and surface station data, intercept (bo, left) and slope (b1, right). These coefficients are used for rescaling 

dayttime land surface temperature to maximum air temperature. 

3.2.2 Minimum temperature 

For the case of minimum air temperature, the interpolation of regression coefficients is 

shown in Figure 7. The intercept has an average of 0.38°C showing that nighttime land 

surface temperature differs in less than 0.5 degree Celsius from the minimum 

temperature recorded in meteorological stations.  

The slope coefficient (b1) varies between 0.42 and 0.97 °C, similar to the coefficient found 

for maximum temperature.  
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Figure 7: Spatial distribution of interpolated by IDW coefficients of a linear regression between MODIS data 

and surface station data, intercept (bo, left) and slope (b1, right). These coefficients are used for rescaling 

nighttime land surface temperature to minimum air temperature. 

3.3 TREND ANALYSIS IN AGROCLIMATIC INDICES 
Trend analysis is performed in each pixel of the land use class with sufficient information. 

Arithmetically, it is very likely that results show positive or negative trends but only a few 

of them can be regarded as statistically significant as the sample size is still very low 

(only 16 years)  
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Table 3 synthesizes the results of trend analysis by different Mediterranean zones. In 

order to establish spatial patterns in trend values we include directional variograms which 

are shown in Figure 8, directions with average maximum and minimum semi variance are 

highlighted with thick line. 
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Table 3: Summary of the spatial coverage of detected trends in agroclimatic indices 

expressed as a percentage of pixels in a specific type by main Mediterranean zones. 

  Number of pixels 
Pixels with trend 

(%) 
Pixels with 

significant trend (%) 
Mediterranean 

Zone Index Name Agricultural 
No 

data Positive  Negative  Positive  Negative 

Arid - Semiarid 
Start of growing 
season 

1975 335 0.2 12.4 0 6.4 

Arid - Semiarid 
End of growing 
season 

1975 305 50.7 48.2 0.2 2.5 

Arid - Semiarid 
Length of 
growing season 

1975 382 56.6 41.4 4.6 1 

Arid - Semiarid 
Growing degree 
days (Winter 
crops) 

1975 828 89.5 10.5 43.7 0 

Arid - Semiarid 
Growing degree 
days (Summer 
crops) 

1975 540 84.5 15.5 1.5 0 

Arid - Semiarid First frost day 1975 1092 28.3 70.2 0.1 7.6 
Arid - Semiarid Last frost day 1975 1069 74.8 23.3 6.3 0.3 
Arid - Semiarid Frost period 1975 1071 75.8 15.3 8 0.2 

Arid - Semiarid 
Lowest 
minimum 
temperature 

1975 447 19.1 80.4 0.1 10.5 

Arid - Semiarid 
Number of frost 
days 

1975 343 44 0.4 1.7 0 

Arid - Semiarid Chilling hours 1975 302 99.8 0.2 7 0 

Arid - Semiarid 
NDVI Start of 
growing season 

1975 131 33.8 35.3 4.3 4.5 

Arid - Semiarid 
NDVI End of 
growing season 

1975 83 17.3 41.1 1.7 8.5 

Arid - Semiarid 
NDVI Length of 
growing season 

1975 74 37.8 42.5 3.4 6.4 

Dry 
Start of growing 
season 

4542 180 0.3 27.4 0 7.3 

Dry 
End of growing 
season 

4542 280 40.7 56.6 0.9 0.2 

Dry 
Length of 
growing season 

4542 284 67.2 31.7 5.3 0 

Dry 
Growing degree 
days (Winter 
crops) 

4542 355 95.8 4.2 16.4 0 

Dry 
Growing degree 
days (Summer 
crops) 

4542 234 92.7 7.3 2.1 0 

Dry First frost day 4542 2154 22.2 76.5 0.3 10.4 
Dry Last frost day 4542 2165 72 25.4 7.5 0.5 
Dry Frost period 4542 2119 77.5 13 7.9 0.1 

Dry 
Lowest 
minimum 
temperature 

4542 203 14.2 85.6 0 12.1 

Dry 
Number of frost 
days 

4542 174 46.7 0.3 1.5 0 

Dry Chilling hours 4542 144 99.9 0.1 1.7 0 

Dry 
NDVI Start of 
growing season 

4542 171 30.3 29.7 3.8 3.2 

Dry 
NDVI End of 
growing season 

4542 124 19.9 34 2.8 8.9 
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Dry 
NDVI Length of 
growing season 

4542 152 33.5 46.9 2.4 7 

Sub Humid 
Start of growing 
season 

7185 213 0.4 61.5 0 21.6 

Sub Humid 
End of growing 
season 

7185 574 39.8 59.1 0.2 1.3 

Sub Humid 
Length of 
growing season 

7185 478 85.8 13.6 10 0 

Sub Humid 
Growing degree 
days (Winter 
crops) 

7185 247 99.5 0.5 58.6 0 

Sub Humid 
Growing degree 
days (Summer 
crops) 

7185 248 93.8 6.2 8.9 0 

Sub Humid First frost day 7185 1960 38.9 58.7 0.8 4.8 
Sub Humid Last frost day 7185 2030 76.4 18.7 11.6 0.1 
Sub Humid Frost period 7185 2032 73.6 19 4.7 0 

Sub Humid 
Lowest 
minimum 
temperature 

7185 307 19.2 80.7 0.1 9.4 

Sub Humid 
Number of frost 
days 

7185 236 63 0.3 1.4 0 

Sub Humid Chilling hours 7185 535 98.7 1.3 0.3 0 

Sub Humid 
NDVI Start of 
growing season 

7185 136 27.9 35.4 2 2.8 

Sub Humid 
NDVI End of 
growing season 

7185 207 13.2 44.7 1.6 11.8 

Sub Humid 
NDVI Length of 
growing season 

7185 190 27.7 54.1 1.2 6.6 

Humid 
Start of growing 
season 

8874 1012 0.8 71.2 0 40.2 

Humid 
End of growing 
season 

8874 779 19 79.8 0.2 6.8 

Humid 
Length of 
growing season 

8874 808 75.7 23.4 9.1 0.4 

Humid 
Growing degree 
days (Winter 
crops) 

8874 593 100 0 83.7 0 

Humid 
Growing degree 
days (Summer 
crops) 

8874 983 73.9 26.1 2.4 0 

Humid First frost day 8874 1295 38.9 59.4 1.1 6 
Humid Last frost day 8874 1279 52.2 33.7 4.3 1.8 
Humid Frost period 8874 1319 63.9 30.2 5.7 0.2 

Humid 
Lowest 
minimum 
temperature 

8874 908 24.6 75.2 0.4 7.6 

Humid 
Number of frost 
days 

8874 1048 79.7 0.7 3 0 

Humid Chilling hours 8874 921 99.9 0.1 2.8 0 

Humid 
NDVI Start of 
growing season 

8874 266 31.2 35.7 2 3.7 

Humid 
NDVI End of 
growing season 

8874 354 17.2 39.8 2.9 10.8 

Humid 
NDVI Length of 
growing season 

8874 339 31 50.8 1.8 4.2 

 

  



27 
 

 

Figure 8: Directional variograms for the evaluated indices. Maximum and minimum semivariance curves are 
highlight in thick lines. Azimuth directions 0, 45, 135 and 90° corresponds with north, northeast, east and 
southeast coordinate 
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3.3.1 Heat category 

3.3.1.1 Growing Season 

Results of trend analysis for indices of start, end and length of growing season are shown 

in Figure 9. The start of growing season has a noticeable spatial pattern indicating a 

strong trend towards earlier occurrence of (4-5 days) in valleys near to the Andes 

mountain (east) and a slight trend in central valleys and valleys near to coastal mountains 

(west). Directional variograms in Figure 8 shows a low spatial variability in trend values 

in pixels located at 0 to 600 kilometers of proximity, up to this distance, there is a 

latitudinal pattern variation (0° direction). Significant negative trends were found in all 

zones. In humid and sub-humid Mediterranean types, the percentage of pixels with 

significative negative trends reaches 21.6 and 40.2% respectively, while in arid and dry 

zones this value falls below 10% (see  
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Table 3). This suggests a greater effect of high temperatures in the area between 35 and 

38 ° S, which has more temperate climate and greater annual precipitation. 

 

Figure 9: Trend values (number of days per year) for indices associated with growing season length. 

The end of the growing season shows a negative trend below 36°S and above 32°S in 

northern areas, whereas central locations do not show trend except for some coastal 

valleys at 33.5 °S. For this variable, the number of significative trends is low, in humid 

type only 6.8 % of pixels exhibit negative significant trend, these values are concentrated 

in the southern region between 36 and 38°S, while in the arid zone, only 2.5% of pixels 

show a significative trend being concentrated in the agricultural valleys of the Coquimbo 

Region (30.5°S). The spatial variability occurs in shorter distances than SGS. Pixels with 

less than 100 km of proximity show a strong variability in the latitudinal component, while 

the maximum variability is found at distances between 400-800 km in the north east 

component. There is not longitudinal pattern (Figure 8). These trends must be monitored 
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in the future, for a prompt detection and correct attributed of climate change or to evaluate 

the effect of natural variability associated with geography. 

The length of the growing season varies from 4 days/year in eastern valleys near to 

mountainous regions (71.5°W) to 0-2 days/year in central valleys between 72 and 73°W. 

The spatial variability has a latitudinal trend at distances greater than 350 km. and there 

is no detectable longitudinal pattern, because the variability is similar for all the distances 

(Figure 8). Some western spots with negative trends around -2 to -4 days/year have 

agronomic importance for the cultivation of varieties requiring cold, these places 

correspond to valleys of San Antonio and Casablanca (around 33.5°S) and Biobio 

(around 37°S) which has recognized importance in viticulture. The number of significant 

trends is low, in zones with arid and dry Mediterranean type, positive trends only reach 

5% of pixels, while in sub humid and humid zones, this value is around 10%. 

3.3.1.2 Growing Degree Days 

Growing degree days in Figure 10 show important upward trends for winter crops, 

between an average of 15-30 additional degree days per year. For the arid-semiarid 

zone, around 43.7% of the evaluated pixels have a significative positive trend in the case 

of winter crops (May to December), this value increases to 58.6% in the sub humid 

regions and up to 83.7% in the humid region. Only in the case of dry zone, there is a 

lesser percentage of significative pixels (16.4%) that are in agreement with a greater 

number of pixels with small or even zero trend (yellow colors).  

The latitudinal pattern in number of pixels with significative trends suggest a higher 

incidence of increasing temperatures in the southern regions (sub humid and humid) 

characterized by moderate temperatures and higher amounts of rainfall than the ones 

located to the north in the study area. For all indices evaluated, growing degree days for 

winter crops have the greater number of significative pixels. Directional variogram 

analysis show similar patterns of variability in all directions and distances, except for 

points at distances greater than 700 km, this result sustains the homogeneous trend 

depicted in Figure 10. 

For summer crops, the percentage of significative pixels is lower than the one reported 

for winter crops, only in sub humid zone there is a percentage of significative pixels above 

5%. Maps show non-significative negative trends in coastal valleys in the below latitude 

36°S, which may be attributable to natural variability because trends are near to -5 
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growing degree days and that is a reasonable difference in values between years. 

Variogram analysis shows results similar to those described for winter. 

 

Figure 10: Trend values for growing degree days (degree days per year). In left panel, trends for growing 

degree days for winter crops (May to December) and in right panel trends in growing degree days for summer 

crops (October- May). 

3.3.2 Cold Category  

3.3.2.1 Frost season 

Frost season indices are shown in Figure 11, note that the area covered by the maps is 

slightly smaller than the area covered by indices in Heat category, because of the lesser 

amount of minimum temperatures than can be estimated due to nocturnal cloudiness.  

Negative trends are found for the first frost day, which implies an earlier appearance in 

the majority of the evaluated pixels. However, the percentage of pixels with significant 

values is below 10%. In the humid type zone, there are some pixels with significative 

positive trends (1.1%), this delay of first frost day is found in pixels located in the mountain 
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areas. Variogram analysis shows a latitudinal pattern that is stronger in pixels distant 

from each other above 400 km. At the same time, no longitudinal variation can be 

identified. 

For the case of the last frost day, we found a positive trend, with a delay between two 

and eight days per year in the last day with temperatures below 0°C. Nevertheless, some 

negative trends around 4-2 days/year are found in 1.3% of pixels at the east of humid 

region (72°W) in Biobio region (36 and 38°S), this zone shows a higher percentage of 

negative trends compared to the others. Directional variograms show similar variability in 

all directions, with the most important variability in latitudinal range for pixels that are 

more than 100 km. away. 

Frost period has a positive trend, that means an increment of days when the risk of frost 

is present. However only a few pixels show significant results, with a percentage that 

varies between 5 and 10% among zones. The spatial variability is most important in the 

diagonal component, variability can be found in all directions but for the latitude range, 

its value is minimal. 
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Figure 11: Trend values in days per year of indices associated to frost risk: First frost day (left), Last frost 

date (center) and Frost period (right). 

3.3.2.2 Other cold indices 

Figure 12 shows a map of the response of additional cold indices: number of frost events, 

minimum temperatures and chilling hours. 

The number of frost events (days) has no trend or a slight positive trend for all zones, 

with its value being usually around +-1 days per year. This feature can be attributable to 

natural variability as only a limited number of pixels (around 1%) show significative 

results. There is a strong spatial variability that depends on longitude (90° direction) but 

its value of variability is smaller than 1 day. 

The lowest minimum temperature (LMT) shows a fairly large number of pixels with a 

significative negative trend, being around 10% of total pixels in all zones, this negative 

trend suggests an increment in extreme minimum temperatures associated with frost risk. 

The spatial pattern responds to the south west direction, but the variability is very low. 
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Chilling hours has a consistent positive trend around all zones, but results indicate only 

a limited number of pixels with significant trends. An exception to this pattern is observed 

in the arid-semiarid zone which has 7% of pixels with significative positive trend. Although 

is not a zone that suitable for temperate fruit trees, this region has seen an increase in 

relative terms of the number of Chilling hours that could potentially host varieties with low 

chill requirements. There are not important differences in spatial variability pattern for all 

directions evaluated in variograms. 

 

 

Figure 12: Results for indices that are associated to cold category: Number of frost days (days per year; left); 

Lower minimum temperature (°C per year, center); Chilling hours (chilling hours per year; right). 

3.3.3 Start and end of growing season derived from NDVI data 

The growing season indices based in 16 days NDVI are shown in Figure 13. A greater 

variability in trends can be noticed (Figure 8¡Error! No se encuentra el origen de la 

referencia.). For all NDVI indicators the variability is high in small distances, with a strong 

nugget effect (intercept with y axis) that represents errors in model and strong irregularity 
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at small scale, this can be explained by different states of the crop (Garrigues et al., 

2006). This difference between NDVI and temperature based growing season indices 

can be explained because NDVI rescues the variation of vegetation, unlike temperature-

based indices represents the potential condition given by climate. 

For the start of growing season there is a similar proportion of pixels with positive and 

negative trends, with bellow 5% of pixels with significate trend for all zones ( 
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Table 3). The concentration of pixels with negative trends is similar to the one found in 

SGS, being grouped in eastern zones between 71 and 72°W while positive and neutral 

trends occur in the coastal zones with longitudes up to 72°W.  

The EGS index presents trends in most of the pixels towards an earlier end of the growing 

season (negative value) with differences between 5-10 days per year, these differences 

are significative in around 10% of pixels in all Mediterranean zones evaluated. 

Length of growing season presents both positive and negative trends equally distributed 

in the territory. In this variable, the percentage of significative trends is below 10%. 

Contrary to what was found in indices based on temperature for sub humid type, when 

positive trends were up to 85% of all pixels analyzed, and in humid zones where this 

value reached 75.7%, in the NDVI based calculation, these percentages are below 30% 

with predominant negative trends. 

 

Figure 13: Trends in growing season indices (days per year) calculated using 16 days NDVI data: Start of 

the growing Season (left); End of the growing season (center) and Length of the growing season (right). 
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4 DISCUSSION 

We applied a method to identify trends in agroclimatic indices based on satellite 

information that allow us to better describe the spatial structure and the main sources of 

variability. In our case calculated agroclimatic indices had mostly non significative trends 

as a result of Mann-Kendall test application. Similar results were found in trend analysis 

of recent decades temperature-related agroclimatic indices based on meteorological 

station data (Fernández-Long et al., 2013; Graczyk and Kundzewicz, 2016). One of the 

main limitation in our study is the relatively small time series derived from MODIS data, 

with only 14 years (2002 to 2016) of study. This imply that, as many of the agroclimatic 

indices corresponds to yearly accumulated values and/or the timing of individual events, 

at most we can only have 14 data points for trend assessment in agroclimatic indices. 

This situation is not the optimum given that Mann-Kendall test, although can be used with 

reduced time series, is most robust with longer registers (Yue et al., 2002). 

Despite this situation, we found consistent spatial trends in indices of the heat and cold 

categories that provide valuable information about climatic variation in valleys located at 

Mediterranean regions of central Chile which have a wide topographic variability. The use 

of MODIS daily surface temperature data provides crucial information for the assessment 

of spatial variations in zones when meteorological stations do not cover homogenously 

the territory (Tomlinson et al., 2011) and in our study, demonstrates a good performance 

in the calculation of air temperature derived agroclimatic indices. 

In this study, we used two very simple models for gap filling and air temperature 

conversion by virtue of optimizing the computational time in its application for the series 

of daily images between 2002 and 2016. For guarantee robust results, we compromise 

the number of agricultural pixels evaluated because we select only pixels with more than 

70% of information in months which agroclimatic indices needs calculation. An alternative 

for spatially distributed air temperature estimation can be seen in Lerouxel et al. (2014) 

when the use of covariates and meteorological stations was used to test a methodology 

for worldwide estimation of air temperature for year 2011. 

For four types of Mediterranean regions evaluated, the effect of temperature variations 

was most significant in sub humid and humid types when heat indices showed an early 

start of growing season and an increase in growing degree days in 10-15 units per year 
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in average. This can be explained because these zones have, in general, lower mean 

temperatures than arid-semiarid and dry zones located in the northern part of the study 

area when mean temperature are all the time above threshold value of 7ºC. In this sense, 

for the calculation of growing season indices, warming temperatures have more incidence 

in sub humid and humid types by changing base conditions for the establishment of 

crops, this supposes the option of using crops that were previously limited by cold.  

Also, in sub humid and humid zones, there are differences between climate based 

growing season indices and vegetation growing season by NDVI analysis. In these areas, 

the water availability is greater so that agriculture is mainly rainfed unlike in dry and semi-

arid types where agriculture is carried out with greater irrigation technologies and 

considering adaptation measures to improve yields in conditions of water scarcity.  

Our study demonstrates that in agricultural pixels, vegetation does not respond to the 

changes in climatic condition especially at the start and length of the growing season. 

Vegetation in agricultural related pixels does not respond to climatic trends in growing 

season, possibly due to agronomic decisions regarding crops choice, varietal selection 

and sowing/planting dates. This result suggests an “adaptive debt” in the study area that 

represents more than the 47% of agricultural land in Chile (ODEPA, 2017). Specifically, 

in zones with humid and semi-humid Mediterranean types which have rainfed agriculture 

this difference between temperature and NDVI based growing season is more important. 

This adaptive debt has been documented in Chile by Meza et al. (2008) with double 

cropping as an alternative for take advantage of the potential conditions provided by the 

current climate and Garreaud et al. (2017) when changes in EVI in 2010-2015 period 

shows a minimal variation with regard of 2001-2009 in conditions of deficit of precipitation, 

this study attributes such behavior to the combined effect of irrigation and warmer air 

temperatures. 

Hodge and Austin (2004) assessing phenological changes mediated by climate change 

in wild vegetation, fruit-trees and crops in Germany. One of their main conclusion is that 

agricultural vegetation does not follow climate warming in the same extent that wild 

vegetation, being lesser affected by changes in temperature. The possible reasons for 

this behavior have to do with the access to technologies and machinery, the 

establishment of calendars of field work to meet the dates of suppliers, buyers or 

cooperatives, use of new varieties, application of fertilizers and pesticides, and delaying 
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maturity practices. In our study, the difference between temperature based and NDVI 

growing season in Humid and Sub-humid zones may be due to a less access to this type 

of practices and technologies, as well as to the fact that the farmers have not perceived 

the changes in the climatic conditions and have not adapted their practices to take 

advantage of them, situation that can be improved with a better access for farmers to 

climatic and meteorological information (Roco et al., 2015). 

Also, the NDVI results can be affected by annual rotation of crops, interannual variations 

or field practices which are impossible to detect without punctual field information, for 

these reason, these results must be interpreted in an aggregate way and not in particular 

for specific pixels. Badeck et al. (2004) discuss the importance of conducting a phenology 

monitoring that includes ground observations and satellite data as a complementary view. 

In this way, the trends found by means of satellite indexes such as NDVI or EVI can be 

endorsed by ground observations because, in general, satellite indices trends are not 

statistically significant depending of the quality of input data. 

For indices of the cold category, there are mostly trends towards a lengthening of the 

frost period, with and early apparition of first frost day and a delay of last frost day. These 

trends are spatially reasonable but not consistent with the climate change studies that 

projected changes in cold indices associated with warmer condition (Alexander et al., 

2006), our study suggests not only an increase in maximum temperature associated 

indices, but also, an increase in indices associated with lower minimum temperatures. 

We found a small number of significative trends associated with cold, which can be 

explained by the difficulty to estimate minimum temperatures due to cloudiness in 

nocturnal data and days with lower temperatures.  

The detection of spatial patterns is an evolving knowledge that is fundamental when we 

analyze trends in phenomena using satellite data. In this work we carry out a simple study 

of directional variograms which can be improved by anisotropy tests which confirm the 

existence of patterns detected by visual inspection, a practical example can be found in 

(Weller, 2018). For the evaluated agroclimatic indices we found a differentiate behavior 

for trend variability in cardinal directions, in general, for nearby pixels, variability is low 

and not present anisotropy, while for pixels distant of more than 100 km variability present 

spatial pattern in latitudinal range. 
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The use of satellite information should be extended in the calculation of indexes 

commonly used in agriculture to recognize the valleys and their characteristics using the 

technology currently available. The use of large time series of images as in this study 

requires knowledge in satellite data processing, computational capacity and storage for 

base images. An alternative to facilitate the use of the proposed methodology is the use 

of the Google Earth Engine cloud-based platform that provides an extensive update 

library of satellite images and the capacity of web server processing by programing code 

routines (Gorelick et al., 2017).  

5 CONCLUSION 

The study of recent trends in agroclimatic indices based on satellite images of land 

surface temperature developed in this work allows us to analyze recent and current 

changes in the basic climatic conditions associated with agriculture. This type of spatial 

analysis provides the possibility of studying areas where the coverage of meteorological 

stations is nonexistent or heterogeneous and their limitations due to temporal coverage 

will be replaced in the future when the registration period increases.  

Agroclimatic indices evaluated for the heat category showed consistent trends that 

suggest an increase in the growing season determined by the increase in temperatures 

affecting the Start of Growing Season, but the End of Growing Season presents variable 

trends according to geographical location. For Growing Degree Days exist a remarkable 

positive trend for winter crops calculation that suggest a higher heat accumulation in 

months with lesser temperature. For cold category indices, a lesser number of pixels with 

significative trends were found but a consistent trend towards an increase of extremes 

events was found. 

In NDVI analysis of growing season parameters, we found an adaptive debt because 

agricultural vegetation does not respond to the changes in growing season propitiated by 

the increase in temperatures. This situation should be considered as an opportunity to 

improve field techniques, such as the choice of crop varieties and irrigation systems. 

The use of satellite information allows a systematic study both in time and space of 

variables that allow to better understand the phenology and the early detection of climate 

change impacts on agriculture. It is essential to make greater use of satellite information 
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and available technologies to communicate accurately the changes in the normal 

conditions that represent risks and development opportunities for farmers in the context 

of climate change. 

The analysis of temporal trends is a method that becomes more robust as soon as a 

great number of data is evaluated, for the case of the agroclimatic indices that are yearly 

calculated, a joint analysis with registers of meteorological stations can be useful to know 

the variation regarding to the historical period not covered by satellite information. The 

analysis of spatial trends presents potential research by including covariates that can 

explain the values of differentiated trends in valleys and zones of agricultural 

development in the future; regionalization tools such as spatially restricted conglomerates 

can be used for agricultural territory planning. 

In this sense, to take advantage of the information available in different temporal and 

spatial scales, other types of temperature-based indices related with agriculture, forestry 

and vegetation can be included at different time intervals from the annual level used in 

this study. This methodology also can be used for spatiotemporal analysis for variables 

such as precipitation, radiation, evapotranspiration, etcetera. 

 

6 ACKNOWLEDGMENTS 

This work was supported by the International Water Security Network founded by the 

Lloyd’s Register Foundation, a charitable foundation helping to protect life and property 

by supporting engineering-related education, public engagement, and the application of 

research. We also received support from the Inter American Institute for Global Change 

Research (IAI) CRN3056, which is supported by the National Science Foundation [GEO-

1128040] and from Fondecyt project grant 1170429. 

7 RESUMEN 

Stephanie Orellana y Francisco Meza. Assessing recent trends of agroclimatic 

indices using MODIS data in Central Chile. Tesis, Magister en Recursos Naturales, 

Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile. 

Santiago, Chile. 42 pp.  



43 
 

La agricultura es una de las actividades más susceptibles al cambio climático. El 
aumento de las temperaturas y los cambios en las precipitaciones afectarán el 
crecimiento y el desarrollo de los cultivos, reduciendo la productividad agrícola. Las 
tendencias recientes observadas en la temperatura pueden haber producido ya cambios 
en la idoneidad de los cultivos. El análisis de tendencias temporales es una de las 
metodologías más aceptadas para evaluar el efecto de los cambios observados en la 
temperatura sobre la respuesta fisiológica de los cultivos. Desafortunadamente, solo 
unos pocos estudios analizan el efecto de estas tendencias sobre los índices 
agroclimáticos, especialmente realizando un análisis espacial exhaustivo. 
Este trabajo presenta un análisis de las tendencias temporales recientes en Chile central 
para índices agroclimáticos basados en temperatura derivados de imágenes satelitales 
de temperatura superficial MODIS. Para investigar la estructura espacial de las 
tendencias calculadas, se estimaron variogramas direccionales. Los índices asociados 
a la categoría de calor muestran tendencias marcadas hacia un inicio temprano y un 
aumento en la duración de la temporada de crecimiento, así como una tendencia positiva 
grados día acumulados en invierno y verano. Los índices asociados a la categoría de 
frío tienen tendencias menos claras y un número menor de tendencias significativas. El 
análisis de NDVI para la respuesta de la vegetación muestra una deuda adaptativa, 
definida como la diferencia entre la duración potencial de la temporada de crecimiento y 
la respuesta real de la vegetación, debido a que el inicio y la duración de la temporada 
de crecimiento presentan tendencias opuestas a las encontradas en los índices 
agroclimáticos. Los resultados más significativos en las tendencias se encontraron en 
las áreas mediterráneas húmedas y subhúmedas que presentan un nuevo potencial 
productivo menos limitado por las bajas temperaturas. Los índices de frío sugieren un 
aumento del período de heladas con un mayor número de eventos extremos. 
 
Palabras Clave:  Índices agroclimáticos, tendencias recientes, MODIS, Mann-Kendall, 

variograma. 
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