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Abstract

In this Letter we make use of the Background Field Method (BFM) to compute the effective potential of an SU(2) gauge field theory, in the
presence of chemical potential and temperature. The main idea is to consider the chemical potential as the background field. The gauge fixing
condition required by the BFM turns out to be exactly the one we found in a previous article in a different context.
© 2006 Elsevier B.V. All rights reserved.
1. Introduction

The background field method (BFM) is an easy and common
tool for quantizing gauge fields without breaking explicitly the
gauge invariance. This method, well described in [1–3], can be
used to find, perturbatively, in a simple way, the effective ac-
tion [4]. The BRST, the Slavnov–Taylor and the Ward identities
are preserved [5]. It is also possible to show, in this frame, the
renormalization of the standard model [6].

The extension of the BFM to theories at finite tempera-
ture, and/or densities, has not been properly formulated. For
example, there are ambiguities in the formulation of the renor-
malization group, so that, finally there is not a unique answer
for the thermal/density behavior of the running coupling con-
stants [7]. The first attempt to extend the BFM to finite tempera-
ture was proposed in [8] employing the thermal renormalization
group [9].

Recently we have discussed how to compute the thermody-
namical potential (Ω) of the standard model, in the presence of
finite chemical potentials and temperature, using a new gauge
fixing condition that allows to separate the contribution of the
different fields [10]. This gauge fixing condition can be inter-
preted as an extension of the well-known Rξ gauge introduced
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by ’t Hooft. In this Letter, we show that this gauge fixing con-
dition emerges in a natural way from a description based on
the BFM, by interpreting the chemical potentials as background
fields. Notice that this is a new way of handling chemical po-
tentials, since in the BFM they are not introduced as Lagrange
multipliers associated to conserved charges. An advantage of
this way of handling chemical potentials is the fact it is not nec-
essary to compute the conserved charges, and to integrate over
the canonical field momenta, as it is usually done, see, for ex-
ample, [11].

We will concentrate our discussion on a pure SU(2) Yang–
Mills theory, considering, afterwards, the inclusion of scalar
and fermion fields. We show how to compute the effective po-
tential according to the BFM prescription, in the presence of
chemical potential and temperature.

2. Pure SU(2) gauge theory

As it is well known, the generating functional for a non-
Abelian gauge theory is given by

(1)

Z[J ] =
∫

DAdet

[
δGa

δwb

]
exp

{
i

[
S[A] − 1

2ξ
G · G + J · A

]}
,

where Aa
μ is the SU(2) gauge field, Ga is the gauge fixing

condition, wb are the infinitesimal gauge parameters and the
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classical action S[A] is given by

(2)S = −1

4

∫
d4x Fa

μνF
μν
a ,

where

(3)Fa
μν = ∂μAa

ν − ∂νA
a
μ + gεabcAb

μAc
ν.

According to the BFM, we must shift our field Aa
μ → Aa

μ +
Ba

μ, where Ba
μ is the background field. Then, the new generating

functional will be

Z̃[J,B] =
∫

DAdet

[
δG̃a

δwb

]

(4)× exp

{
i

[
S[A + B] − 1

2ξ
G̃ · G̃ + J · A

]}
,

where G̃a is the modified gauge fixing condition. In order
to maintain gauge symmetry, we need a G̃a of the following
shape:

(5)G̃a = ∂μAa
μ + gεabcBb

μAμ
c ≡ D̄μAμ

a .

The new infinitesimal transformations, will be defined accord-
ing to

δAa
μ ≡ −εabcwbAc

μ,

δBa
μ ≡ −εabcwbBc

μ + 1

g
∂μwa,

(6)δJ a
μ ≡ −εabcwbJ c

μ,

so that the gauge symmetry remains unbroken, including the G̃ ·
G̃ term. Notice that the gauge field transforms as a matter field
and the gauge parameters appear associated to the background
field [3]. The sum of both fields transforms in the usual way:

(7)δ
(
Aa

μ + Ba
μ

) = −εabcwb
(
Ac

μ + Bc
μ

) + 1

g
∂μwa,

i.e., as gauge fields, so that the classical action in (4) remains in-
variant. In the loop calculation of the effective action, the back-
ground field (Ba

μ) appears as external amputated legs, whereas
the quantum gauge fields (Aa

μ) and the ghost fields (ηa) live
only in internal lines.

The modified Lagrangian, including the ghost fields will
read

(8)Lmod = LAμ +Lghost +LGF,

such that

LAμ = −1

4

(
Ba

μν + D̄μAa
ν − D̄νA

a
μ + gεabcAb

μAc
ν

)2
,

Lghost = −(
D̄μη∗

a

)(
D̄μηa − gεabcηbA

μ
c

)
,

(9)LGF = − 1

2ξ

(
D̄μAμ

a

)2
,

where

(10)D̄μAa
ν ≡ ∂μAa

ν + gεabcBb
μAc

ν,

(11)D̄μηa ≡ ∂μηa + gεabcBb
μηc,

and

(12)Ba
μν ≡ ∂μBa

ν − ∂νB
a
μ + gεabcBb

μBc
ν .
3. Chemical potentials as background fields

The basic idea of this section is to introduce the chemical
potential (μ) as the background field. This is different from the
usual approach, where chemical potentials appear in covariant
derivatives as constant external time component gauge fields.
We will use the following prescription:

(13)Ba
μ = μ

g
vμδa3,

where vμ is a 4-velocity with respect to the thermal bath, that
allows us to keep a formal covariant language, although, finally
we have to choose the frame of reference where the heat bath is
at rest, i.e., vμ = (1,0,0,0). We have chosen the third compo-
nent of the internal SU(2) group. This restriction corresponds
to a simple orientation in the group manifold. The appearance
of the quotient μ/g is a consequence of keeping the usual BFM
relation between ZB and Zg , the background field and coupling
constant renormalization factors, respectively, given by

(14)Zg = Z
−1/2
B .

The gauge fixing conditions acquires the form

(15)Ga = ∂μAa
μ + μεabcAc

μvμδ3b.

We would like to emphasize that the same gauge fixing con-
dition was found in our previous Letter [10], using a complete
different approach. In [10], we found an exact expression for the
effective potential of the Weinberg–Salam model in the pres-
ence of chemical potentials and thermal effects. The idea was
to diagonalize the effective potential to get separate contribu-
tions from each field. The splitting of the effective potential is
not possible without our gauge fixing condition. For example,
in [12] the author gives an expression for the effective potential,
but only in the high temperature expansion.

To show the efficiency of this method, we will proceed with
the calculation in the one loop approximation of the effective
potential for a pure gauge theory. As it is well known, the one-
loop thermal effective action is given by

(16)exp
{
Γ

β

1 [φc]
} =

∫
D[Fields] exp

{ β∫
0

dτ

∫
d3xLq(x̄)

}
,

where we shifted to Euclidean metric (τ = it), with

(17)x̄ = (−iτ,x), p̄ = (iωn,p),

with ωn = 2πn/β for bosons and ωn = 2π(n + 1)/β for fermi-
ons. In Eq. (16) the Lq denotes the quadratic Lagrangian for the
Aa

μ and ηa fields. Now, as it is well known, the effective poten-
tial corresponds to the effective action, by taking the classical
field as a constant.

(18)Γ
β

1 [φc = constant] = −β

∫
d3x Ω

β

eff.

Since the internal lines in the Feynman diagrams are associ-
ated to the gauge and the ghosts fields, we will need to find the
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quadratic Lagrangian in both fields, in order to form

β∫
0

dτ

∫
d3xLq = −1

2

∫
dx̄′

∫
d x̄ Aa

μ(x̄′)Bμν
ab (x̄′, x̄)Ab

ν(x̄)

(19)−
∫

dx̄′
∫

d x̄ ω∗(x̄′)C(x̄′, x̄)ω(x̄).

Now, the effective potential will be given by

(20)−β

∫
d3x Ωeff = −1

2
Tr ln B + Tr ln C.

The quadratic Lagrangian for a pure gauge theory is

Lq = −1

4

(
D̄μAa

ν − D̄νA
a
μ

)2 − 1

2
Bμν

a εabcAb
μAc

ν

(21)− 1

2ξ

(
D̄μAμ

a

)2 − (
D̄μω∗

a

)(
D̄μωa

)
.

Taking into account the choice (13), we notice that Ba
μν = 0.

Since Z
1/2
B multiplies Ba

μν , we need three different chemical
potentials μa associated to a particular flavor. Otherwise Ba

μν

vanishes and we are not able to carry on the renormalization
procedure [3]. The idea is that renormalizability has already
been proved, and then we are free to select one direction in the
isospin space in order to compute the effective potential. This
remind us the problem that appears when quantizing gauge field
theories, between the Rξ and the unitary gauge.

A very simple way to calculate the effective potential is to
write each field explicitly. Let us choose, to simplify the calcu-
lations, ξ = 1. The sum of all contributions of the gauge fields
will give

Lq = −1

2

[
∂μA1

ν∂
μAν

1 + μ2A1
νA

ν
1

]
− 1

2

[
∂μA2

ν∂
μAν

2 + μ2A2
νA

ν
2

]
− 1

2

[
∂μA3

ν∂
μAν

3

]
(22)− μvμ

(
Aν

1∂
μA2

ν − Aν
2∂

μA1
ν

)
.

As usual, we will write this Lagrangian in Euclidean metric,
and the calculation of the effective potential will be given by
taking the traces of (22). After evaluating the sums over the
Matsubara frequencies, we find the gauge field contribution to
the thermal effective potential

Ω
β
Aμ

= 1

2β

∫
d3k

(
8 ln

[(
1 − e−β(|k|+μ)

)(
1 − e−β(|k|−μ)

)]
(23)+ 8 ln

(
1 − e−β|k|)).

Although it seems that we have extra degrees of freedom, we
must not forget that we still need to calculate the contribution
of the ghost fields, which reads

Ω
β

ghosts = − 1

β

∫
d3k

(
2 ln

[(
1 − e−β(|k|+μ)

)(
1 − e−β(|k|−μ)

)]
(24)+ 2 ln

(
1 − e−β|k|)).
So, the final result for the effective potential is

Ω
β

eff = 1

β

∫
d3k

(
2 ln

[(
1 − e−β(|k|+μ)

)(
1 − e−β(|k|−μ)

)]
(25)+ 2 ln

(
1 − e−β|k|)).

This is exactly the result we wanted to obtain. We can
see that we a have massless and chargeless gauge boson with
two degrees of freedom, and two massless and charged gauge
bosons with two degrees of freedom each.

4. Scalar and fermion SU(2) gauge symmetry

First, we will concentrate our attention on a scalar SU(2)

gauge-invariant theory, given by the following Lagrangian

(26)L= 1

2

(
Dμφa

)T(
Dμφa

) − 1

4
Fa

μνF
μν
a − V (φ),

where φ belongs to the adjoint representation, i.e., it is given by
a real scalar triplet

(27)φ =
(

φ1
φ2
φ3

)
,

and

(28)Dμφa = (∂μ − igAμ)φa,

(29)Fa
μν = ∂μAa

ν − ∂νA
a
μ + gεabcAb

μAc
ν,

with

(30)Aμ = Ab
μT b.

The classical potential is given by

(31)V (φ) = m2

2
φTφ + λ

4

(
φTφ

)2
,

In the SU(2) case, the group generators will be given by
T a = ωa/2, where

ω1 =
(0 0 0

0 0 −i

0 i 0

)
,

ω2 =
( 0 0 i

0 0 0
−i 0 0

)
,

(32)ω3 =
(0 −i 0

i 0 0
0 0 0

)
.

Now, following the BFM prescription, we will expand our
fields in the following way:

φa → φa + φ̄a,

(33)Aa
μ → Aa

μ + Ba
μ,

where

(34)φ̄a =
( 0

0
ν

)
,
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and

(35)Ba
μ = μ

g
vμδa3.

Here φ̄a is the vacuum expectation value of the scalar fields and
Ba

μ is the background field associated to the chemical potential.
These two background fields are constant. The Lagrangian will
now read

L= 1

2

[
D̃μ

(
φa + φ̄a

)]T[
D̃μ

(
φa + φ̄a

)] − V (φ)

(36)− 1

4

(
D̄μAa

ν − D̄νA
a
μ + gεabcAb

μAc
ν

)2
,

with

D̃μφa = (
∂μ − igT b

(
Ab

μ + Bb
μ

))
φa,

(37)D̄μAμ
a = ∂μAμ

a + gεabcBb
μAμ

c .

The gauge fixing condition should be treated in the same
way as before, but this time incorporating the scalar fields

(38)LGF = − 1

2ξ

[
D̄μAμ

a − igξφTT aφ̄
]2

.

Since

(39)
[
T a,T b

] = iεabcT c,

and the Goldstone theorem says

iT aφ̄ = 0, for every unbroken symmetry,

(40)iT aφ̄ �= 0, for every broken symmetry,

we can see that this gauge fixing condition will remove every
quadratic mixing between the scalar and the gauge fields.

For the calculation of the effective potential we only need
the quadratic terms in the Lagrangian, Lq = Lq

φ +Lq
Aμ

+Lq

GF +
Lq

ghost, with

(41)

Lq
φ = 1

2

[
∂μφT∂μφ + BμBμφTφ + i

(
φTBμ∂μφ − ∂μφTBμφ

)]
,

(42)Lq
Aμ

= −1

4

(
D̄μAa

ν − D̄νA
a
μ

)2 + φ̄†AμAμφ̄,

(43)

Lq
GF = − 1

2ξ

[(
∂μAμ

a

)2 + 2Cabc∂μAμ
a Āb

νA
ν
c

+ (
CabcAb

μAμ
c

)2 + ξ2(φ†T aφ̄
)2]

,

(44)Lq

ghost = −D̄μη∗
aD̄

μηa + ξg2η∗
aφ̄

TT aT bφ̄ηb.

Because of the Goldstone theorem, the number of scalar
bosons that acquire a gauge dependent mass and the number
of massive gauge fields should be the same as the number of
spontaneously broken symmetries. If we define

(45)
(
Mab

A

)2 = φ̄TT aT bφ̄,

so that

(46)M2
A = g2ν2

4
,

the masses of the fields involved are given by

m2
φ1,2

= m2 + λν2 + ξM2
A ≡ m2

1,

m2
φ3

= m2 + 3λν2 ≡ m2
3,

m2
A1,2

= M2
A,

m2
A3

= 0,

m2
η1,2

= ξM2
A,

(47)m2
η3

= 0.

Choosing ξ = 1, and writing the Lagrangian in the form

β∫
0

dτ

∫
d3xLq = −1

2

∫
dx̄′

∫
dx̄ φa(x̄′)Aab(x̄

′, x̄)φb(x̄)

− 1

2

∫
dx̄′

∫
dx̄ Aa

μ(x̄′)Bμν
ab (x̄′, x̄)Ab

ν(x̄)

(48)−
∫

dx̄′
∫

dx̄ ω∗(x̄′)C(x̄′, x̄)ω(x̄),

we have that the thermodynamical effective potential is given
by

(49)−β

∫
d3x Ωeff = −1

2
Tr ln A − 1

2
Tr ln B + Tr ln C.

A straightforward calculation leads us to the several thermal
contributions from the different fields. For the φ3 boson we have

(50)Ω
β
φ3

= 1

β

∫
d3k ln

(
1 − e

−β
(√

k2+m2
3

))
,

and for φ1 and φ2

Ω
β
φ1,2

= 1

β

∫
d3k

[
ln

(
1 − e

−β
(√

k2+m2
1+ μ

2
))

(51)+ ln
(
1 − e

−β
(√

k2+m2
1− μ

2
))]

.

Notice that Lq
Aμ

is very similar to that calculated in (22),
but now two of the gauge fields are massive, because of the
φ̄AμAμφ term in (42). The contribution of these fields is

Ω
β
Aμ

= 1

β

∫
d3k

(
4 ln

[(
1 − e

−β
(√

k2+M2
A+μ

) )
(52)× (

1 − e
−β

(√
k2+M2

A−μ
))] + 4 ln

(
1 − e−β|k|)).

When we add the contribution of the Faddeev–Popov La-
grangian we obtain

Ω
β
Aμ,η = 1

β

∫
d3k

(
2 ln

[(
1 − e

−β
(√

k2+M2
A+μ

))
(53)× (

1 − e
−β

(√
k2+M2

A−μ
))] + 2 ln

(
1 − e−β|k|)).

Notice that the number of degrees of freedom is the expected
one. If we choose ν2 = −m2/λ we recover the usual Higgs–
Kibble mechanism. In the presence of chemical potential, the
number of Goldstone bosons is not necessarily the same as in
the μ = 0 scenario, as was shown in [13–15].
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The treatment of the fermion fields is equivalent to the usual
procedure, where the chemical potentials appear as external
zero component gauge fields forming a new covariant deriva-
tive. This a consequence of the fact that the conserved fermionic
charge does not depend on the derivatives of the fields, i.e., there
is no need to integrate over the conjugate momenta to pass from
the Hamiltonian picture to the Lagrangian formalism. For the
fermion fields we have

(54)Lψ = iψ̄(/∂ − ig/A − ig/B)ψ + m2
ψψ̄ψ,

where m2
ψ is the mass of the fermions due to the Higgs–Kibble

mechanism. The calculation of their contribution to the ther-
modynamical potential is straightforward. We found the well-
known result

Ω
β
ψ = − 1

β

∫
d3k

[
2 ln

(
1 + e

−β
(√

k2+m2
ψ+ μ

2
))

(55)+ 2 ln
(
1 + e

−β
(√

k2+m2
ψ− μ

2
))]

.

The final one loop effective potential in a SU(2) gauge the-
ory with scalars and fermions will be given by the sum of
Eqs. (50), (51), (54) and (55).

In this Letter we have shown that the gauge fixing condition
that enables to diagonalize the effective potential for a system
including gauge, scalar and/or fermion fields emerges naturally
from the description based on the BFM method.
This gauge fixing condition has been only explored for small
gauge field configurations. The analysis of the existence of Gri-
bov copies will be carried on in a future work.
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