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A B S T R A C T   

Bike-sharing systems (BSS) have arisen worldwide as an attractive and sustainable travel alter
native. As these systems have shown positive effects in reducing congestion and emissions, it is 
relevant to properly analyze their potential implementation in different contexts. Evidence has 
shown that BSS can only provide benefits when their network is adequately designed, in order to 
capture ridership and generate demand. This study proposes an integrated approach to model the 
demand of bike-sharing trips and the optimal location of stations in the system, based on built 
environment and accessibility-based variables. The methodology consists of two steps. On the 
first step, trip generation models are estimated through multiple regressions for different types of 
trips and periods of the week. On the second step, maximum demand coverage models are 
developed to allocate the BSS stations, according to the trip generation models and to different 
proposed scenarios. To test the proposed methodology, information from the BSS of Santiago de 
Chile is used. Results suggest a relationship between the built environment and the use of public 
bicycles, with a main effect of residential and office land uses, and the presence of long bicycle 
lanes near the stations. In addition, the presence of endogeneity, associated with the location of 
BSS stations and BSS demand generation, is confirmed and controlled using accessibility vari
ables. As for the optimal location models, their outcomes differ significantly from the observed 
spatial distribution of stations in Santiago, with higher density in central areas and along corri
dors with cycling infrastructure. The forecasted demand level for the optimal distribution of 
stations is 64% higher than the observed demand. This study confirms the benefit of an integrated 
modelling of the trip generation and the station location to foster higher public bicycle usage, a 
relevant point for BSS decision planning and the promotion of a more sustainable mobility.   

1. Introduction 

Tackling traffic growth and encouraging public and non-motorized transport modes are actions that lead cities to a more sus
tainable and livable future (Banister, 2000; Kenworthy, 2006). In this context, evidence from multiple places around the world shows 
that Bike-Sharing Systems (BSS) contribute to a sustainable urban development by offering significant environmental and social 
benefits. For instance, the implementation of this kind of systems has reduced the emission of polluting gases and decreased congestion 
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in some areas, especially in zones of high urban density and during rush hours (Hamilton & Wichman, 2018; Zhang & Mi, 2018). These 
effects are enhanced by the presence of robust public transport systems, offering more and better intermodal mobility options (Wang & 
Zhou, 2017). Other observed benefits of bike-sharing are an increase in the overall use of bicycle as a transport mode (Fuller et al., 
2013; Vogel et al., 2014), shorter journey times than other transport modes (Bullock et al., 2017), a slight modal shift from cars to 
bicycles (Fishman et al., 2014), a lower accident rate compared to private bicycle users (Fishman & Schepers, 2016), a positive impact 
on urban landscape perception (Hurtubia et al., 2021), and positive effects on people’s health in the long term (Otero et al., 2018; 
Woodcock et al., 2014). 

Nevertheless, international experiences of different BSS have revealed a set of practical issues that may cause substantial difficulties 
for these services. Some of these issues are inadequate docking stations location and density (Conrow et al., 2018), limited bicycle 
availability (Kabra et al., 2018), insufficient cycling infrastructure and safety concerns (Fishman et al., 2012), theft and vandalism 
(Midgley, 2011), adverse geographical and climate factors (Sun et al., 2018), and financial difficulties (Audikana et al., 2017). Also, 
these systems face major challenges regarding the uncertainty of future demand and the long-term sustainability of their business 
models (S. Shaheen et al., 2010). Consequently, further research in the design and operations of BSS is still needed. 

In recent years, dockless (or free-floating) BSS have gained attention because they allow the user to use the public bicycles without 
the restriction of movements given by the spatial distribution of stations, thus reducing the walking distance to their destination and 
eliminating the worry of finding no available docks to return the bike at the end of the trip (Pal & Zhang, 2017). Still, evidence shows 
that both types of systems may coexist in a city and recent studies suggest that their services may be complementary and suitable for 
different kinds of users and trips (Chen et al., 2018; Mckenzie, 2018). In fact, the experience from China in the past years indicates that 
station-based BSS can still be a better option for medium and small size cities to promote sustainable transport modes, especially 
among cities with low bicycle use levels (Gu et al., 2019). Accordingly, this research focuses on having a deeper understanding of 
station-based BSS to generate useful insights for the design of these systems. 

The main objective of this study is to develop a methodology to support better planning and decision-making decisions regarding 
the location of BSS stations. This aim considers, first, the identification of built environment attributes and accessibility measures that 
are related to the generation of bike-sharing trips and the quantification of each effect. Second, the construction of an optimal location 
model to determine efficient spatial distributions of public bicycle stations, consistent with the previously selected built environment 
and accessibility variables and according to different operational scenarios. The proposed method departs from previous studies due to 
the use of accessibility measures to account for the endogeneity caused by the spatial distribution of stations in the demand for public 
bicycles and, therefore, in the optimal BSS network structure. 

The methodology is applied to Bike Santiago, a BSS in Santiago de Chile. Analyses from Bike Santiago data motivated the 
exploration of different research paths that ended up shaping this research. In this regard, the proposed methodology combines both 
validated tools that can be found in the literature and novel ideas that emerged upon the observation of this case study. This study is 
consequently part of the few studies that analyze a station-based BSS operating in Latin American cities (Cerutti et al., 2019; Midgley, 
2011; Shaheen et al., 2014). 

This paper is organized as follows: Section 2 presents a literature review on demand and location optimization research on BSS. 
Section 3 describes the methods that are used in this investigation. Section 4 presents the case study. Section 5 shows and analyzes the 
results, and Section 6 concludes with final remarks. 

2. Literature review 

There are several publications about public bicycle related topics that can be found in the literature. These cover sustainability and 
cycling promotion policies, bike and station technologies, benefits and impacts of the BSS, user preferences and user profiles, safety 
aspects, usage patterns and operational considerations, among others (Fishman, 2016; Fishman et al., 2013). The present study focuses 
on some previous investigations about demand and strategic aspects of these systems, topics that are briefly summarized in this section. 

2.1. Bike-sharing demand modelling 

BSS have special mobility patterns related to its stations network and to specific functional features. Therefore, BSS trips can be 
classified into different types, regarding the visited stations, the duration of the trips and the dwell time between trips (Bordagaray 
et al., 2016). Also, bike-sharing trips can be separated into simple and chain trips. (Zhao et al., 2015). Usually, BSS have a time 
threshold for trip duration to avoid the users from retaining the bikes for long periods. Trips longer than the threshold time are 
penalized by an additional cost. Thus, users can avoid this penalization by making consecutive trips in chain, not exceeding the time 
threshold in each stage. Additionally, BSS users can end a trip at any station they want if there is an available dock to return the bike at 
the destination. Consequently, trips can be divided into origin–destination (OD) trips and loop trips, depending on if the bike is 
returned to the station where the trip started or to a different station (Noland et al., 2016). 

Other variations in bike-sharing mobility patterns have been identified for different travel purposes and socioeconomic charac
teristics of the users. For example, symmetrical patterns are frequent in commuting trips, while more heterogeneous and asymmetrical 
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patterns are more frequent in casual trips (Bordagaray et al., 2016). Gender related differences have also been observed, such as the 
fact that women tend to cycle slower than men and the tendency of men to be more likely to make loop trips (Zhao et al., 2015). 
Likewise, other studies suggest that member users have a greater probability of commuting and casual users have a greater probability 
of using public bicycles for recreational purposes (Faghih-Imani & Eluru, 2015; Noland et al., 2019). 

Data used in bike-sharing mobility analyses can come from passive or active sources. Passive data usually consists of records of the 
number of bicycles present at each station of the system and separated by a regular interval of time. In these cases, the modeling of 
bike-sharing demand is performed based on the changes observed between different periods and different spatial aggregations of 
stations (Faghih-Imani et al., 2014; Levy et al., 2017; Médard de Chardon & Caruso, 2015). On the other hand, active data is based on 
the record of every transaction that is generated in the system (Kaspi et al., 2016). This usually includes temporal information and 
identifications for the user, bicycle and stations that are involved in the transaction. 

Bike-sharing trip generation has frequently been modelled using linear regressions (Duran-Rodas et al., 2019). Less frequent ap
proaches include discrete choice models, such as Ordinal and Mixed Logit models (Faghih-Imani & Eluru, 2016a; Raux et al., 2017), 
and negative binomial models (Noland et al., 2019). When disaggregated data has been available, the models have been divided by 
season and by time-of-day intervals, which may be defined following peak and off-peak hours (Noland et al., 2019; Zhang et al., 2017) 
or by time intervals of the same length (Faghih-Imani et al., 2014; Faghih-Imani & Eluru, 2016b; Gebhart & Noland, 2014). 

Built environment variables are amongst the most frequent variables that have been used to model bike-sharing trips. This type of 
variables includes aspects of the density and diversity of land uses around the stations, urban design, destination accessibility and 
distance to transit measurements (Ewing & Cervero, 2010). All of them have been included in previous publications via different 
measurements and data processing approaches. Some of the factors that have shown a positive effect in bike-sharing usage are the 
following: high values of residential and points of interest densities (Duran-Rodas et al., 2019; Faghih-Imani et al., 2017; Faghih-Imani 
& Eluru, 2016b); diverse land uses (Noland et al., 2019; Zhang et al., 2017); availability of cyclist infrastructure (El-Assi et al., 2017; 
Mateo-Babiano et al., 2016); accessibility to jobs (Faghih-Imani et al., 2014; Wang et al., 2015) and proximity to mass transit services 
(Nair et al., 2012; Noland et al., 2016). 

In some cases, the models have been complemented with measurements of the network effect (Rixey, 2013), topographical 
measurements (Mateo-Babiano et al., 2016) or have been corrected by spatiotemporal aspects of the trips (Faghih-Imani & Eluru, 
2016b). Other approaches have also considered logistic aspects of the system in modelling, such as the balance between more stations 
or larger stations based on higher levels of demand, which is linked to the effects of accessibility and availability of bicycles (Kabra 
et al., 2018). 

2.1.1. The role of cycling infrastructure 
The presence of bike lanes stands out as a key factor of bike-sharing success. For example, in Rossetti et al. (2018, 2019) the authors 

identify that public bicycle users are more likely to be very concerned about safety and to prefer highly segregated cycling infra
structure and even the sidewalk rather than riding on the streets, compared to cyclists who do not use these systems. Also, in Gutiérrez 
et al. (2020) the authors find that the presence of bicycle lanes increases the willingness of people to change their mode of trans
portation for commuting trips from motorized modes to the bicycle or public bicycle. 

2.2. Optimal location of BSS stations 

In relation to the second part of this study, there are a few publications that have covered the modelling of optimal location of BSS 
stations. Within the purely deterministic approaches, minimum impedance (p-median) and maximum coverage models have been 
considered, most of them inspired in the work on location modelling presented in Church and ReVelle (1974) and other previous 
publications. In the first type of models the average distance to the demand points covered from the stations to be allocated is 
minimized. On the other hand, in the second type of models the amount of reachable demand within a certain coverage area is 
maximized (Conrow et al., 2018; Frade & Ribeiro, 2015). In particular, some publications have compared these approaches, obtaining 
greater spatial coverage, and spacing between stations with the use of the minimum impedance models, while a higher level of covered 
demand and a higher density of stations in certain important areas with the use of maximum coverage models (García-Palomares et al., 
2012; Park & Sohn, 2017). 

On the other hand, some studies have taken stochastic approaches. For example, bi-objective modeling, which considers both the 
minimization of social transport costs and the maximization of the modal partition of public bicycle trips (Romero et al., 2012). 
Minimizing unmet demand has also been to the station allocation modelling approach (Çelebi et al., 2018). Also, the use of minimum 
cost models has been considered, which establish a value for different elements related to the use and implementation of a SBP and 
have the objective of minimizing the total cost of the system (Lin et al., 2013; Lin & Yang, 2011). However, modeling schemes with 
high stochastic components are more frequent in modeling the use and redistribution of public bicycles (Shu et al., 2013). 

A similar problem regarding location decisions for shared transportation services can be found in carsharing systems literature 
(Correia & Antunes, 2012; Boyacı et al., 2015). Despite the differences in the transportation mode that is modelled, the average 
distance of the trips and other particularities about the use of the system, an important part of the principles behind the models 
coincide. 
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The methodology that is proposed in this research considers some aspects present in the literature and proposes new considerations. 
Previously developed optimization models for BSS have considered demand and accessibility aspects regarding the use of public bi
cycles using simplified networks and variables. This study contributes to the design of optimization models for BSS stations that 
comprehensively consider the complexity of the BSS trip demand in its relation to the built environment, to the network structure and 
to its variations across different spatial and temporal conditions. Nevertheless, some of the mentioned aspects, such as socio-economic 
characteristics of users and bicycle relocation aspects are not incorporated due to the limitation in the available data. 

3. Methodology 

This section presents the methodological approach that is considered to identify significant built environment and accessibility 
variables that can explain the generation of trips in a BSS and to determine an optimal location for BSS stations, with focus on the 
maximization of the covered demand. This process consists of two parts. First, the estimation and calibration of BSS demand generation 
models using data from an observed BSS system and its urban context. Second, a model for the optimal location of public bicycle 
stations, based on parameters associated with the previously calibrated trip generation models and using built environment infor
mation from a selected urban scenario. 

3.1. Bike-sharing trip generation modelling 

To model the BSS trip generation, a multiple linear regression structure is used. On the one hand, this step considers the use of 
actively generated transaction records from an observed BSS, with spatial and temporal references. These transactions are processed to 
obtain complete trips information, binding consecutive trip segments that are part of a trip chain and eliminating short trips that may 
indicate a malfunction in the bicycle or another practical inconvenience that produced an unfinished trip (Bordagaray et al., 2016; 
Kaspi et al., 2016). The trips corresponding to redistributions of bicycles made by the system operator are also not considered. Then, a 
set of trip categories is selected, each category considering specific days of the week, periods of the day, and one type of trips (OD trips 
or loop trips). Consequently, the dependent variables for the models are constructed as the average daily trip generation at each station 
for each trip category. On the other hand, different built environment attributes are processed to create the local and accessibility 
variables that compose the set of independent variables for the models. 

3.1.1. Local built environment variables 
Local variables incorporate built environment features present within an area of influence surrounding each BSS station. The area 

of influence of an observed station is defined in this work as a circular buffer around it, whose radius is associated with a walk access 
distance determined for the city where the observed BSS operates. If an element of the built environment is covered by two or more 
areas of influence of different stations, its information will be assigned either to the area of influence of the closest station or distributed 
between the areas of influence, depending on if the attribute that is considered is cumulative or non-cumulative. Cumulative attributes 
consist of amounts that can be added, such as the square meters of a type of land use, while non-cumulative attributes consist of non- 
summable values, such as average or binary values. Thus, Thiessen polygons are used to shape the areas of influence to avoid double 
counts on the cumulative variables (Duran-Rodas et al., 2019; Noland et al., 2019). This is shown in Fig. 1. 

Fig. 1. Area of influence for non-cumulative (left) and cumulative variables (right).  
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3.1.2. Accessibility variables 
Accessibility variables consist of integral distance-weighted measures of built environment features present in the surroundings of 

each one of the BSS stations that are reachable from the station in the origin of a trip. These variables incorporate information about the 
built environment at the possible destinations of a trip and about the spatial distribution of the stations, features that capture part of the 
endogeneity that is present in the public bicycles travel demand, as trips are only allowed to start and finish in an operating station of 
the system. 

The accessibility variables considered in this investigation are of the integral type, since they are calculated as the sum of the 
relative accessibility values between a station in the origin of a trip and each of the possible destination stations located within a 
distance range. For each pair of stations, the relative accessibility value consists of the amount of a built environment attribute present 
in the vicinity of the destination station, weighted by the value that an empirical accessibility function takes for the shortest path 
distance between the two stations, considering the network of streets and bike lanes. Here, a distance measurement is used instead of a 
time measurement because the duration of the shared bicycle trip may vary significantly between users and in relation to weather 
effects (Gebhart & Noland, 2014). Although users are likely to take longer routes than the shortest route between two stations, this 
minimum distance measurement is independent of user behavior and is comparable between different cities and systems, while the 
minimum or average time measurements depend on the speed of the cyclists and other factors. 

The empirical accessibility function that is used to measure accessibility in this methodology considers that the BSS trips distance 
follow a log-normal distribution. This distribution has previously been proposed for modelling both travel times and travelled distance 
for bike-sharing trips and has shown satisfactory results, especially for large-scale cities where the routes that users choose are not 
restricted by the city limits or a reduced set of route options (Kou & Cai, 2019; Li et al., 2015). Also, this functional form is better 
adapted to the observed OD-type trips than the negative exponential forms commonly used for accessibility measures in the literature. 
This is due to the rapid growth in the number of trips observed as the distance increases from zero to medium distance values, followed 
by a less pronounced decrease in trips as the distance increases beyond that point. This means that maximum accessibility for public 
bicycles is not necessarily achieved at the shortest distance but, instead, at a “too long to walk” but “short enough to cycle” one. In 
practical terms, this responds to the fact that the public bicycle competes more directly with (and is dominated by) walking on shorter 
trips and then with motorized modes of transport for longer trips. Other successful applications of log-normal distribution in transport 
modelling include travel times in private vehicles and public transport (Arezoumandi, 2011; Kieu et al., 2015). 

The parameters of the log-normal accessibility function (μ,σ) are calibrated using the trip data of the observed BSS. Then, for each 
pair of stations (i, j) of the observed system the empirical accessibility density value fi,j is calculated based on the distance between both 
stations 

(
di,j
)

and according to the following expression, corresponding to the log-normal probability density function: 

fi,j =
1

di,j

1
σ
̅̅̅̅̅
2π

√ exp

(

−

(
ln
(
di,j
)
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)2

2σ2

)

,∀i, j (1) 

Once the empirical accessibility function is calibrated, it is possible to calculate the value of the integral accessibility measures to be 
considered in the econometric analysis. For each i station and for each k attribute of the built environment (e.g. a density, diversity, or 
design element), the accessibility variable Acck

i is then constructed as the weighted sum of the attributes of the built environment Nk
j 

and the values of the accessibility density function fi,j for the j stations present in the set of Si stations located within a cut-off distance 
(at which the relation between stations becomes neglectable) relative to station i : 

Acck
i =

∑Si

j,j∕=i

(
fi,j∙Nk

j

)
, ∀i, k (2) 

For greater flexibility in the design of accessibility variables, it is also possible to add information about the built environment in the 
proximity of the station in the origin. This can be incorporated by weighing the expression present in equation (2) by a factor related to 
an attribute of the built environment present in the vicinity of station i. For example, a binary factor can be used to consider a non-zero 
value of accessibility just for the BSS stations that have a subway station nearby. 

It is important to indicate that, given the characteristics of loop trips, they do not necessarily interact with stations other than the 
one where the trip started. For this reason, loop trips are modelled only using local variables. 

3.1.3. Models selection 
An independent trip generation model is estimated for each trip category. These models are calibrated using Ordinary Least 

Squares. The model selection is performed iteratively, a process in which independent variables are added and omitted based on 
achieving a better fit, getting the expected signs for the parameters, and obtaining a statistical confidence level (t-test) of at least 90% 
for each regressor. In addition, models that can more easily be related to the probable trip purpose for the selected category are 
preferred. 

3.2. Optimal BSS stations location models 

To model the optimal location for BSS stations, a maximal demand covering approach is taken. As bike-sharing travel demand 
does not only depend on spatially distributed independent variables but also on endogeneity associated with the location of the 
BSS stations, this model considers both decision variables related to possible station locations and auxiliary variables related to 
elements of the built environment present in the surroundings of these possible station locations. Together, these variables 
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incorporate the effects of the local and the bike-accessible built environment that were previously considered in the trip gener
ation models. 

To build the model, a target urban area is selected and divided into a set of T equilateral triangles that tessellate the study 
area. This geometrical form has been selected because of its flexibility linking possible station locations with their area of 
influence, without generating multiple counts of the elements in the area that is covered by two or more near station locations. 
The size of each triangle t is such that the surface of 6 triangles is equal to the surface of the circular area of influence that 
was previously estimated for the stations in the observed city. A set of I possible station locations is then created, based on 
every point of intersection of triangle vertices that is surrounded by 6 equilateral triangles in the tessellation. Then, a circular 
buffer is also created around each possible station location to incorporate the built environment attributes in the surroundings 
that are not cumulative. Fig. 2 shows a possible station location, surrounded by a circular buffer and its 6 adjacent equilateral 
triangles. 

The built environment attributes are then linked to the spatial items in the optimization model, following the previously estimated 
travel demand models. Attributes related to cumulative variables are calculated within each equilateral triangle t, while attributes 
related to non-cumulative variables are calculated within the circular buffers and assigned each of to the respective possible station 
locations i. To incorporate the effect of the selected accessibility variables, the distance of the shortest path between every couple of 
possible station locations is measured and the accessibility weights (fi,j) are calculated. Then, accessibility weights between the 
possible station locations and the triangles (fi,t) are also calculated, a value that is determined as the mean of the accessibility weights 
from the location in the origin to the locations at the vertices of the triangle. 

The mathematical formulation of the problem is structured as shown in Table 1 and in the following equations (3) to (13). 

Table 1 
Maximum coverage optimization model: subscripts, sets, parameters and variables.  

Subscripts and sets 
i, j ∈ I denote the possible station locations 
t ∈ T denotes the triangles that define the modelled urban area 
i ∈ δt denote the locations present at the edges of the triangle t 
j ∈ δI

i denote the locations present within the distance cutoff from the location i 
t ∈ δT

i denote the triangles present within the distance cutoff from the location i 
k, l ∈ KI ,KT denote the attributes of the local built environment, related to a location or a triangle, respectively 
k, l ∈ KII ,KIT denote the attributes of the built environment for accessibility variables, between two locations or between one location and a triangle 
p ∈ P denotes the trip category 
Parameters 
αp is the weight in the model for the p trip category (it depends on its frequency within the modeled month) 
βk,p, β(k,l),p are the coefficients related to the trip generation models 
ck

i , cl
j are the value of a built environment attribute for a station location 

qk
t , ql

t are the value of a built environment attribute for a triangle 
fi,j, fi,t are the empirical accessibility density function values between two station locations or between a station location and a triangle, respectively 
N is the maximum amount of BSS stations to be allocated (budget) 
Variables 
xi equals 1 if a station is installed in the location i, 0 if not 
gt equals 1 if a station is installed in at least one of the locations present in the edges of triangle t, 0 if not. This variable activates triangle t 
mi,j equals 1 if both locations i and j have a station installed, 0 if not 
yi,t equals 1 if location i has a station installed and triangle t is active, 0 if not  

Fig. 2. A possible station location and its area of influence within an equilateral triangle space tessellation.  
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Optimization model 

Max
∑P

p
αp
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⎣
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)
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(
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l
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)

⎤

⎦ (3)  

such that 
∑I

i
xi ≤ N (4)  

gt ≤
∑

i∈δt
xi,∀t ∈ T (5)  

gt ≥ xi,∀t ∈ T,∀i ∈ δt (6)  

mi,j ≤ xi, ∀i ∈ I,∀j ∈ δI
i (7)  

mi,j ≤ xj, ∀i ∈ I,∀j ∈ δI
i (8)  

mi,j ≥ xi + xj − 1,∀i ∈ I,∀j ∈ δI
i (9)  

yi,t ≤ xi,∀i ∈ I,∀t ∈ δT
i (10)  

yi,t ≤ gt, ∀i ∈ I, ∀t ∈ δT
i (11)  

yi,t ≥ xi + gt − 1,∀i ∈ I,∀t ∈ δT
i (12)  

xi, gt,mi,j, yi,j ∈ {0, 1} (13) 

First, the objective function (3) is presented as a sum of the generated travel demand in each of the P categories that are considered, 
weighted by a value (αp) that represents the frequency of the category in the modelled period. Then, the generated travelled demand 
for each P category is modelled according to four terms. Following the same order presented in (3), these terms represent: i) local 

Fig. 3. A Bike Santiago public bicycle station. Source: Bicicultura.cl.  
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generation by non-cumulative variables, ii) local generation by cumulative variables, iii) accessibility-based generation by non- 
cumulative variables and iv) accessibility-based generation by accessibility cumulative variables. Each of the terms considers, at 
least, a variable related to the activation of stations locations (xi) or triangular sections (gt) of the built environment, multiplied by the 
value of a build environment attribute present in that circular buffer (ck

i ) or triangular buffer (qk
t ) and weighted by the trip generation 

coefficient related to that attribute (βk,p or β(k,l),p). As the last two terms are related to accessibility variables, these terms include the 
empirical accessibility density function values (fi,j or fi,t) and a parameter ck

i . This last parameter is used for accessibility variables that 
also consider non-cumulative attributes of the station of origin i, such as the presence of a subway in its surroundings, for example. In 
other cases, this parameter is replaced by a constant equal to 1. 

Second, the set of the model constraints is presented. The first constraint considers the number of stations to be allocated (4), while 
the following constraints are used to activate the auxiliary variables and to define their minimum and maximum levels. These are used 
for the triangle activation (5 and 6), accessibility activation for non-cumulative variables (7, 8 and 9) and accessibility activation for 
cumulative variables (10, 11 and 12). Lastly, the nature of the variables is presented (13). 

Different scenarios for BSS planning can be tested with this formulation, by changing the distribution of the built environment 
variables that are used as the input of the problem and by relaxing the budget restriction. Additionally, the allocation of some of the 
stations can be previously fixed in the model (e.g. having stations close to attractive places) and the allocation of isolated stations far 
from the main clusters or in places that are not feasible in practice can also be controlled by additional constraints to the model. 

All the spatial treatment of the attributes of the built environment can be performed through the QGIS platform. The optimization 
model is written in Python and it uses libraries associated with the GUROBI optimizer to solve the different scenarios that are 
evaluated. 

4. Case study 

To test the proposed methodology, this study focuses on the case of Bike Santiago, a station-based BSS that operates in Santiago, the 
capital, principal financial center, and largest city of Chile, with an area of approximately 640 km2 and over 7 million inhabitants. 

4.1. Bike Santiago 

The operational information used in this study comes from the observed transactions in the Bike Santiago system during March 
2016. It considers a network of 168 public bicycle stations distributed across 14 municipalities, yet mainly located within the central 
and northeast areas of the city, in high-income districts. Back then the stations looked like the one showed in Fig. 3 and included 
between 7 and 35 docks each. The transactions were associated with the individual key cards that allowed the use of the bicycles 
according to one of the more than 20 different subscription options. These plans were paid in advance and varied in price, available 
ride time (30, 60 or 90 min) and subscription period (from a daily pass to an annual membership). Later, in 2018, the system was 
acquired by the Brazilian bike-sharing operator Tembici. 

4.1.1. Trips 
After processing the observed transactions of the system, a total of 170,536 trips are considered valid for this study. Of this total, 

8.77% is related to chained trips that have 2 or more linked stages. The trips are distributed over a total of 22 business days and 9 non- 
business days in the month observed. Within non-business days there are 8 weekend days and a holiday, date on which the trips 
observed are similar to those of a weekend day. On average, there are 6,852 trips generated on a business day and 2,198 trips generated 
on a non-business day. Regarding the type of trips, 96.6% of the total corresponds to OD trips and the remaining 3.4% corresponds to 
loop trips. The distribution of trips throughout a day can be seen in Fig. 4, where the different trip patterns between business and non- 
business can be observed. This heterogeneous behavior leads to categorizations to analyze the travel demand. 

Fig. 4. Average daily bike-sharing trips in Bike Santiago BSS.  

R. Mix et al.                                                                                                                                                                                                            



Transportation Research Part A 160 (2022) 126–142

134

4.1.2. Trip categories 
To study the trips in this BSS, 6 different independent trip categories have been determined, following the literature review of 

section 2.1. In total, these categories account for 97.97% of the trips, leaving only night trips aside. These categories are presented in 
Table 2. 

4.1.3. Trip spatial distribution 
To calibrate the empirical accessibility function for Bike Santiago, the shortest path length between the stations in the system is 

calculated, taking the network of streets that can be used by cyclists in Santiago, that is, every bike lane and street, excepting 
pedestrian streets and motorways. This distance was measured with graph libraries and Open Street Map for Python (Boeing, 2017). To 
reduce the computational cost of this calculation, only pairs of stations separated by less than 10 km of Euclidean distance are 
considered, since farther distanced pairs represent just 2% of the trips and do not contribute significantly to the accessibility analysis. 

Then, using the trip data information and the shortest path distance matrix the empirical accessibility curve for the system is 
calibrated. The estimated parameters for this curve are μ = 0.86 and σ = 0.69, corresponding to the mean and standard deviation of 
the logarithm of the distance in kilometers, respectively. The distribution of trips according to the estimated distance and the cali
brated accessibility level curve, as described by equation (1), can be seen in Fig. 5. Maximum accessibility (and number of trips) is 
achieved around 1.5 km while trips longer than 7 km provide very low accessibility (below 2%). 

4.2. Built environment attributes 

The attributes of the built environment that are considered in this study come from different georeferenced data sources of the city 
of Santiago, such as the Chilean Internal Revenue Service (SII, 2014), the Chilean National Statistics Institute (INE, 2011) and Open 
Street Maps. These datasets include multiple measures of land uses, streets and sites design, the transit network, and the topology of the 
city, among others. In total, more than 100 measurements of built environment attributes are considered in this study. 

The construction of variables of the built environment in this case responds to the categories previously considered in the literature, 
that is, variables of density, diversity, design, accessibility to destinations and distances to public transport (Ewing & Cervero, 2010). 
This process is carried out using the QGIS platform (QGIS.org, 2018), with small differences depending on the type of variable 
(accumulative or non-accumulative) and the model for which it is used, either a demand model or an optimal location model. A 500- 
meter buffer radius is considered as the reference area of influence, value that has previously been used in studies of bicycle trips in 
Santiago (Oliva et al., 2018) and that is within the ranges reported in the literature (García-Palomares et al., 2012; ITDP, 2013; Noland 
et al., 2019). Consequently, the side length of the equilateral triangles that are used in the optimal location model is set to 550 m, so the 
surface of 6 triangles matches with the surface of the circular buffer, as shown in Fig. 2. The spatial distribution of Bike Santiago 
stations, the bikeway network in Santiago and the spatial division of Santiago for the optimal demand model, with a total of 2,780 
possible station locations and 5,220 covering triangles, are shown in Fig. 6. 

Table 2 
Selected trip categories for Bike Santiago BSS.  

Category Type of day Period of the day Type of trip Number of observed monthly trips 

Morning Peak Business day 7:20 – 9:20 OD 31,942 
Evening Peak Business day 17:30 – 20:00 OD 43,062 
Off-peak Business day 6:30 – 7:20 /9:20 – 17:30 /20:00 – 23:00 OD 69,075 
Non-business day Non-business day 6:30 – 23:00 OD 4,315 
Business day loop Business day 6:30 – 23:00 loop 17,374 
Non-business day loop Non-business day 6:30 – 23:00 loop 1,301  

Fig. 5. Trip distribution and accessibility level based on the shortest path distance for the observed trips in Bike Santiago.  
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5. Results 

The main results of the application of the proposed methodology in the case study are presented in this section. Also, some general 
lines of discussion about public policies related to PBS are mentioned. 

5.1. Bike Santiago trip generation models 

The selected demand models for the 6 categories of bike-sharing trips that are considered for the Bike Santiago BSS are presented in 
Table 3. These models have been calculated for daily trip generations in a station and for the period of the day that corresponds to each 
trip category. Finally, only 11 of the more than 100 available variables were selected. All the estimated coefficients for the chosen 

Table 3 
Calibrated daily trip generation models for Bike Santiago BSS.    

Morning Peak Evening Peak Off-peak Non-business day Business day loop Non-business  
day loop  

Intercept − 5.25 (− 2.82) − 2.39 (− 0.99) 1.05 (0.5) − 3.67 (− 2.12) − 0.06 (− 0.29) − 0.66 (− 3.61) 
Cumulative variables        

Empty lots (tens of units) − 0.56 (− 3.69) − 0.75 (− 3.43) − 0.66 (− 2.92) − 0.38 (− 2.36) − 0.07 (− 4.28) − 0.06 (− 4.21)  
Dwellings (thousands of units) 2.31 (4.52) – – 2.08 (3.94) 0.19 (3.23) 0.36 (6.98)  
Offices (ha) – 0.98 (5.42) 1.44 (9.21) – 0.12 (10.31) –  
Urban parks (ha) – – – – – 0.03 (2.33) 

Local non-cumulative variables  
Average street length  
(hundreds of meters) 

1.26 (3.03) – – – 0.11 (2.11) 0.2 (4.48)  

Total bike lanes length (km) 1.54 (5.21) 1.83 (4.16) 2.38 (5.0) 1.95 (6.52) 0.16 (4.89) 0.14 (5.13)  
Street intersections (hundreds of units) – 5.47 (3.39) – – – – 

Accessibility variables  
Accessibility to dwellings from a  
subway station (accessibility units every  
ten thousand dwellings) 

– 2.49 (2.79) – – – –  

Accessibility to offices (accessibility  
units every ten hectares of offices) 

0.65 (3.02) – 2.1 (6.06) – – –  

Accessibility to commerce (accessibility  
units every ten hectares of commerce) 

– – – 1.52 (6.42) – –  

Accessibility to the subway  
(accessibility units) 

0.6 (2.81) – – – – – 

Adjusted R2 0.6 0.52 0.71 0.62 0.59 0.51 

Hyphen “− ” shows that the variable was not included in the respective model. 

Fig. 6. Spatial distribution of Bike Santiago stations and the bikeway network in Santiago (left). Spatial division for the optimal location 
model (right). 
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variables meet a statistical confidence level higher than 90%; their t-test values are shown in parenthesis in the table. Additionally, the 
values of elasticity for the different variables, considering the trip generation models for a reference month of 22 working days and 9 
non-working days in the studied BSS, are shown in Fig. 7. 

In general terms, the travel structure is confirmed to be highly associated with commuting trips, going from areas of residential use 
(dwellings) to areas with higher presence of jobs (offices) in the morning peak and the other way around in the evening peak. During 
off-peak periods on business days, trips are predominantly generated in areas with higher presence of (and access to) business activities 
(office land use). The relevance of work and residential land uses is also confirmed by the high elasticity of their related variables. In 
total, variables related to office surface explain 50.2% of the trips while variables related to dwellings explain 19% of the trips, 
considering local and accessibility variables. 

For OD trips made on non-business days, the results suggest a higher generation of trips to access commerce land uses and orig
inated in residential areas. In this case, users may possibly prefer to change their mode of transportation to return home after reaching 
their destination, because trips from commerce areas with higher access to residential areas were not significant for this trip category. 
In contrast, loop trips on non-business days are mostly generated in areas with a high presence of urban parks surfaces. This is possibly 
related to a recreational use of public bicycles around areas where users can rent a bike, use it to move around the park and return it to 
the same station where they took it from. 

As for the transport infrastructure variables, a greater generation of trips is shown in areas with more street intersections and with 
longer average street length. The values of elasticities for these variables are 16.3% and 12.8%, respectively. These measures can be 
interpreted as proxies of zones that are more permeable by the cyclist and that offer more direct paths both to reach the stations and to 
move on the bicycle from the station at the origin of the trip to any other station in the destination. 

As in previous studies, the results for this research highlight the presence of more and longer bike lanes as one of the most 
relevant factors of trip generation in BSS systems. The variable related to this effect, measured as the total length of bike lanes that 
cross the area of influence of a station, is transversely considered in the models and has an elasticity of 33.6%, the highest amongst 
the regressors. 

Also, the results suggest that a minor part of the trips include a modal change from the public bicycle to the subway in the morning 
peak and from the subway to the public bicycle in evening peak. The first effect is incorporated by the variable of accessibility to the 
subway, measurement that is only calculated for BSS stations that do not have a subway station within its local area of influence. In 
contrast, the second effect is incorporated by the variable of accessibility to dwellings from a subway station, measurement that is only 
calculated for BSS stations that have a subway station within its area of influence. 

Only the presence of empty lots is related to a negative effect in the generation of bike-sharing trips and stands as a control variable 
of all the other regressors. This variable is linked to less urbanized areas and thus fewer activities around the stations. 

Lastly, other variables like the topographical elevation, the presence of other transport modes in the surroundings and the presence 
of educational buildings, among other built environment measures, were not significant and therefore not selected in the models. 

5.1.1. Spatial autocorrelation 
When dealing with data that have a direct relationship with the use of space, it is frequent that elements that are closer to each other 

have a greater relationship than elements that are further away from each other; this effect is called spatial autocorrelation (Anselin & 
Kelejian, 1997; Legendre, 1993). Even though this study is not focused on controlling the spatial autocorrelation effect for the esti
mated demand models, the empirical accessibility curve used to calibrate part of the selected variables provides higher values for 
stations that are closer to each other and thus controls for part of this effect. This is evident in the case of the variables related to the 
presence of offices and dwellings because the presence of these attributes of the built environment is considered in the model both 
locally and within the other stations in the surroundings. 

Notwithstanding the above, the Moran’s I test for the residuals of the selected trip generation regressions has been calculated as an 
exercise to have a notion of the magnitude of the spatial autocorrelation in the models. This is one of the spatial statistics tests that has 
been designed to verify the intensity of the relationships between close data units (Bivand & Wong, 2018). In this case, a neighborhood 
of the 5 closest stations for each BSS station is considered for this calculation, using equal weights for each neighbor station. The results 
are presented in Table 4. 

Fig. 7. Variable elasticities for a month of trip generation in Bike Santiago.  
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The results show that there is randomness in the error terms and therefore no spatial bias in the specification of the models 
associated with the Evening Peak and Off-Peak categories with respect to the defined neighborhood. For the other models there are 
signs of positive spatial autocorrelation between the regression residuals. However, the values of the Moran’s I for these models are 
between 0.144 and 0.236, so this effect would not be strong enough to discard the modeling results just because of the spatial 
autocorrelation. Likewise, it is important to note that these Moran’s I values serve as a reference, but do not allow strong conclusions to 
be drawn regarding spatial autocorrelation and its possible effects in the case study, as this would require further analysis that is out of 
the scope of this work. 

5.2. Optimal allocation of BSS stations in Santiago 

After estimating the bike-sharing trip demand models, an optimal location model was applied to Santiago using the coefficients 
related to each selected variable in the models. Then, the following scenarios were analyzed. 

5.2.1. Base scenario 
During the observed month, a total of 167,069 trips were generated within all the 6 selected trip categories in the system. Adapting 

the observed locations of the 168 stations to the proposed optimization model structure, this value raises to 169,304 trips, mainly 
because the total area of influence in the modeled situation is slightly larger than that of the observed situation. The modelled spatial 
distribution of the stations is shown to the left of Fig. 8. 

Adjusting the location model to optimally allocate 168 stations yields the result present to the right of Fig. 8. This allocation has a 
theoretical generation of 277,070 monthly trips, which represents a 63.65% increase in trips compared to the modeled base scenario 
and a 65.84% improvement in relation to the observed base scenario. The result renders a greater concentration of stations in the 
central and central-eastern sectors of the city, mainly in the municipalities of Santiago and Providencia. Additionally, a set of 8 stations 
are allocated in the southern sector of the city, isolated from the rest of the stations. These are chosen by the model mainly due to their 
high values of total bicycle path length and average street length, in addition to the presence of other built environment attributes that 
are considered in the model. Nevertheless, the location of the rest of the stations does demonstrate an expected dense pattern. In fact, 
the average Euclidean distance between every pair of stations in the system is 7.3 km for the observed system, a value that decreases to 
5.9 km in the optimal setting and to 4.6 km if the cluster in the south is not considered in the calculation. This result shows a more 

Fig. 8. Spatial distribution of 168 stations for the base and optimal settings.  

Table 4 
Moran’s I for the selected trip generation models.  

Category Observed Moran’s I z 

Morning Peak  0.218  5.62 
Evening Peak  0.045  1.57 
Off-peak  0.062  1.89 
Non-business day  0.168  4.30 
Business day loop  0.144  3.77 
Non-business day loop  0.236  5.80 

Score z shows the standard deviation for each Moran’s I calculation. 
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compact system, something that coincides with the recommendation of the literature of promoting higher station density in the design 
of BSS (ITDP, 2013; Rixey, 2013; Wang & Lindsey, 2019). 

An important point to mention in this part is that both the observed scenario and the optimized scenario present a location of 
stations concentrated in higher income communes. For the observed case, this is related to strategic decisions that capture a greater 
demand thanks to the potentially higher willingness to pay by the inhabitants of those municipalities. On the other hand, in the case of 
the optimized scenario, this responds to the variables selected in the generation models and their spatial distribution in the area 
considered in the optimization. Despite this, it is interesting that a set of stations appears in a low-income location, away from the main 
set of stations and the one that probably does not have much interaction with the main set. However, the fact that the proposed 
modeling does not include variables related to the level of income prevents drawing clear conclusions regarding the financial viability 
of the optimal scenarios (ITDP, 2013; Médard de Chardon et al., 2017). It also does not consider possible bike relocation difficulties for 
the operator. 

5.2.2. BSS optimal expansion 
Fig. 9 shows how the optimal locations of the stations of the BSS varies when the budget restriction is relaxed, in terms of the 

number of stations that can be installed in the city. As more stations can be placed, the influence area of the system becomes larger, and 
the number of monthly generated trips increases. 

Fig. 9. BSS optimal location and expansion.  
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As the number of allocated stations increases, the growth in the number of generated trips is lower than in the previous scenario, 
since the model tends to allocate stations in the best places first. The effect associated with accessibility does not outweigh the effect by 
locating stations in relatively less convenient places, and therefore the marginal increase in trips in the system decreases with the 
number of stations, as can be seen in Fig. 10. 

Figs. 9 and 10 show results for a system that can operate in the whole city. In contrast, Fig. 11 shows the difference in the total 
demand generation in the optimal setting both for the unrestricted area and for the operational area that is observed in the data, that is, 
within the 14 municipalities where it operated in 2016. Around the 800 stations, the system is hypothetically at its maximum demand 
generation for the observed operating zone. As expected, the les restricted scenarios show better results systematically. 

5.2.3. Bicycle infrastructure expansion scenario 
In this section a scenario with a hypothetical extended network of bike lanes in Santiago is presented. The base bicycle path data 

used for this study considers a network of 224 km of bicycle routes, while the projected network used in this scenario also includes the 
bicycle route projects that have been registered by different sources such as CONASET and some municipalities, among other in
stitutions (GORE RM, 2012), for a total registry of 741 km of bike lanes distributed throughout Santiago. 

The results of the optimization of 168 BSS stations in this scenario is presented in Fig. 12. Here, the demand increases from 277,070 
monthly trips in the basal optimum to 424,641 monthly trips with the projected bikeway network. In addition, the variable total length 
of bicycle lanes goes from explaining 40.44% of trips (in the base optimal model) to explaining 74.11% of trips, ceteris paribus. 
Although this effect may be over-represented due to the linearity of this variable, the results indicate a greater dispersion of stations 
than in the basal optimum, due to the higher presence of pike paths in different areas of Santiago. This could improve connectivity 
across the city in response to the greater provision of cycling infrastructure in areas where this built environment attribute could be 
improved. 

Fig. 10. Total and marginal increase in BSS monthly trips as the system grows.  

Fig. 11. BSS optimal demand regarding the number of stations and the available operating area.  
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6. Conclusions 

In this study, a methodology to sequentially model bike-sharing trip generation, in relation to the built environment and acces
sibility measures, and the optimal allocation of BSS stations has been proposed. While the model is calibrated and applied to a city 
already operating a BSS, the application of the model to cities with no BSS could provide relevant insights and a starting point for the 
planning process. 

In relation to the case study, the demand models show that Bike Santiago BSS trips are highly represented by commuting trips and 
other work-related trips. Trips related to first and last mile transport in connection to the subway appear to be less frequent. The 
difference between mobility patterns of OD trips and loop trips is also confirmed, the latter being independent of accessibility measures 
and possibly related to recreational trips during weekends. In general terms, these results match with the outcomes from previous 
studies. 

Even though the proposed demand modelling method for the BSS trip generation did not consider socioeconomic information of the 
users, it has shown relatively high confidence levels only using built environment attributes and accessibility measures that were 
proposed based on the available data. These results might be useful to be considered in the analysis of new BSS to be deployed in cities 
for the first time and when further transportation data is scarce. 

The optimal analysis of these systems has confirmed that far and isolated stations in the system are usually less attractive for the 
system configuration than additional stations in more densely serviced areas. The expansion of the systems to new areas in the cities 
should therefore be provided with a significant number of stations so the system is substantially attractive for the user to be preferred 
instead of other transport modes. This is confirmed by the relevance of the accessibility measures in the model, that give a higher 
weight to the attributes in new stations when they are located in distances between one and three kilometers. This effect was not 
directly addressed in previous studies. 

Results have also shown that limiting the access of these systems to a reduced subset of the city districts in a city leads to suboptimal 
solutions. This situation impedes BSS to achieve its highest possible impact in a city and to give a better service for the users. Therefore, 
local governments should foster the promotion of these systems across the whole city, so people can have better access to a greener 
mode of transport like this one. 

Once again, the presence of bike lines and cycling infrastructure shows up to be a major incentive for cycling, specifically for bike 
sharing in this case. In cities like Santiago, with low rates of rain and relatively good conditions for cycling in general, there is a big 
opportunity for fostering more sustainable transport modes. Nevertheless, quality cycling infrastructure should be provided to increase 
the safety levels for cycling in the city and to incentive more users to start using this transport mode more frequently. 

As for the limitations of this research, the presented methodology does not consider logistical aspects related to the operation of 
BSS, such as the size of the stations, the use of the available bicycles in the system, the redistribution difficulties or system costs. Also, 
the proposed location model gives a reference location for each station but does not go into detail about the specific location for the 
station within the selected area, something that is relevant for potential space limitations, for the safety of the cyclist and for the 
system’s visibility. Other limitations come from the fact that the shortest path routes used to compute accessibilities ignore several 
elements that are known to influence route (and even destination) choice, such as the presence of cycling infrastructure and other built 
environment elements (Rossetti et al., 2019; Echiburu et al., 2021), factors related with safety and comfort or the slope. Regarding the 
latter, while not relevant for most of the areas of our case study, it may play a significant role in zones near the mountains, where slopes 

Fig. 12. Optimal distribution of stations with the projected network of bicycle paths in Santiago, for a system of 168 stations.  
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can be steeper (Oliva et al., 2018). Future studies could incorporate these aspects and include relevant data of different cases to build 
more robust models that can be applicable across different types of cities. 
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