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ABSTRACT

Smart robots in industrial, service and household environments are increasingly present

in modern society. One necessary skill for their general usefulness is that of being able to

navigate as instructed by a person through the same physical indoor spaces that humans

use. However, this is a hard problem that is considered unsolved by the robotics com-

munity at large. With the advent of deep learning, current approaches use deep neural

networks in various ways, leveraging multiple types of information that the robot either

perceives or knows, such as vision, topological maps, or sound. Maps, in particular, are

key when challenging a robot to interpret natural language directions for indoor naviga-

tion, as a map contains valuable insights with respect to the environment topology, some-

thing that humans normally consider.

This document explores augmentations to a supervised machine learning architecture

that translates an unconstrained natural language direction “aligning” it with the topolog-

ical information to a sequence of pre-defined, semantically meaningful behaviors that the

robot will execute according to the directions. In particular, we analyze multi-head atten-

tion and graph attention networks to improve generalization in unseen maps as compared

to a neural encoder-decoder baseline. We confirm that unseen map generalization can be

improved, albeit with a performance hit for maps that are seen during training. This im-

plies that an appropriate structural prior over the architecture can be helpful, and leaves

room for future work to minimize the performance hit in seen environments.

Keywords: artificial intelligence, machine learning, natural language processing, human-

robot interaction, cognitive robotics, social robotics, graph neural networks
x



RESUMEN

Los robots inteligentes son cada vez más necesarios en ambientes industriales, caseros,

y de servicio. Una habilidad clave para su utilidad general es la de poder navegar en es-

pacios de interior cotidianos según les sea instruido. Sin embargo, este es un problema

aún no resuelto en la robótica. Gracias a la revolución del aprendizaje profundo, las solu-

ciones actuales utilizan redes neuronales profundas para aprovechar la información multi-

modal que un robot conoce de antemano, o que percibe mediante sensores. Los mapas,

en particular, sirven para que un robot interprete correctamente instrucciones en lenguaje

natural para navegar por un ambiente de interior, pues el mapa posee información útil de

la topologı́a del ambiente.

Esta tesis propone modificaciones a una arquitectura de aprendizaje de máquina su-

pervisado que traduce la instrucción de libre sintaxis –usando la topologı́a del mapa– a

una secuencia de comportamientos predefinidos de “alto nivel” semántico que el robot

ejecutará. En particular, exploramos las técnicas multi-head attention y graph attention

networks para lograr una mejor generalización sobre ambientes desconocidos comparado

a la lı́nea de base neuronal de tipo encoder-decoder. Nuestros experimentos demues-

tran que sı́ es posible mejorar las traducciones en ambientes nuevos, pero a expensas del

desempeño en ambientes conocidos al entrenar. Se concluye que una regularización es-

tructural puede ser útil como precedente, y se plantea como trabajo futuro mantener esta

mejora sin disminuir el desempeño en ambientes conocidos.

Palabras Claves: inteligencia artificial, aprendizaje de máquina, interacción humano-

robot, redes neuronales, procesamiento de lenguaje natural, robótica cognitiva
xi



1. INTRODUCTION

1.1. Context and problem description

The field of robotics is a multidisciplinary one, where both computer science and en-

gineering are required to achieve functional solutions. Computer scientists, in particular,

have researched ways of developing smart agents inspired by cognitive science, baptizing

this emerging field as “cognitive robotics” in 1993 (van Harmelen, Lifschitz, & Porter,

2008). Ever since the deep learning revolution begun –back when the 2012 ImageNet

classification challenge was won by a wide margin using a convolutional neural network

solution (Krizhevsky, Sutskever, & Hinton, 2012)– there has been quick progress towards

computational systems that are able to complete tasks that were previously thought to be

extremely hard or outright impossible for a computer agent, such as beating world cham-

pions in the game of Go (Silver et al., 2016), generating convincing synthetic free-form

text (Brown et al., 2020), achieving super-human performance on Atari games (Badia et

al., 2020), or building partially autonomous driving systems (Bojarski et al., 2016), among

others.

In the context of cognitive robotics, industrial and household agents are very important

for service roles in contemporary society. Some examples include a warehouse assistant

that fetches items for more effective packaging (Enright & Wurman, 2011), a robotic

arm that helps organizing the living space (Okuta et al., 2018), and a robot that learns to

navigate long routes in drone delivery and indoor navigation tasks (Faust et al., 2018).

These examples show the importance and value of having agents that are able to navi-

gate indoor environments. However, something that has not been explored with the same

emphasis is how to instruct robots to navigate by interacting with them through uncon-

strained natural language.
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Recently, there has been interesting work in the intersection of robotics and natural

language processing. In (Hatori et al., 2018), natural language is explored as a way of

instructing a robotic arm which item to pick from an assorted set of objects distributed in a

series of container bins. Regarding mobile agents, in (Matuszek, Fox, & Koscher, 2010) a

statistical model is used to tackle natural language translation to a motion plan for a robot,

explicitly encoding metric information in the map that the agent can access.

In this thesis, we study the problem of successfully instructing a robotic agent to nav-

igate indoor spaces through free-form natural language directions.

Based on the framework established by (Sepulveda, Niebles, & Soto, 2018), we frame

the problem as a high-level planning task, where the robotic agent is capable of robustly

executing behaviors such as “exit the room” or “cross the hall”, coping with sensor noise,

localization errors, and geometry variations, among other difficulties. In this formulation,

we can think of any navigation plan as a sequence of high-level behaviors. Then, the

problem of correctly interpreting directions is reduced to a translation problem: given the

natural language instruction and information about the environment, we aim for translating

to the correct sequence of behaviors that, when executed, let the robot navigate according

to the intended directions.

Figure 1.1. Problem definition. Map of an environment (a), its partial be-
havioral navigation graph (b), and the problem setting of interest (c). Figure
from (Zang, Pokle, et al., 2018).
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Figure 1.1 shows an example problem instance. We want the robot to navigate from

the starting room “Office-13” to the goal room “Office-3” by following the route described

in natural language directions, corresponding to the blue path in the environment map (a)

and the red path in the graph (b). This route can be navigated by executing high-level

behaviors such as oo-right (“go out and turn right“) and cf (“follow the corridor“),

which we assume the agent can successfully complete as in (Sepulveda et al., 2018). The

framing of our problem as a translation task is depicted in (c), and formally defined in

Section 4.1.

1.2. Hypotheses and objectives

Our work expands upon previous efforts that explore this problem formulation. In

particular, we analyze two distinct neural network augmentations: 1) multi-head attention

and 2) graph attention networks, as mechanisms that could further improve the correct

translation rate.

Specifically, this thesis hypothesizes that:

(i) It is possible to develop language models that improve the translation of natural

language instructions to a high-level sequential behavioral plan, using a topo-

logical map about the environment as a knowledge base.

(ii) Compared to a single-headed attention mechanism, multi-head attention (MHA)

improves the alignment between natural language instructions and their associ-

ated indoor environments, boosting the performance of the model.

(iii) A graph attention network (GAT) can leverage information about the indoor

environment, encoded in a topological map that the robot can access at any mo-

ment. As GATs can inductively handle unseen graphs, we expect an improved

generalization capability compared to the encoder-decoder model proposed in

(Zang, Pokle, et al., 2018) that we establish as a baseline.

3



The objective of this work is to determine whether these hypotheses hold true or not.

To achieve this, we implement all modifications and integrate them with a reimplementa-

tion of the model introduced in (Zang, Pokle, et al., 2018).

We run experiments with each variant model (and hybrid combinations thereof) to

compare performance and contributions towards solving the task, offering some insights

into future work that could further improve these capabilities in modern robotics.

1.3. Thesis organization

The rest of this document is structured as follows: in Chapter 2, we explain con-

cepts that are necessary for understanding the proposed approaches. Chapter 3 presents

an overview of work related or relevant to this thesis, framing it with respect to the exist-

ing literature in the broader fields of machine learning, natural language processing, and

robotics. Chapter 4 introduces the proposed modifications to the architecture as the main

contribution of this work. In Chapter 5, we describe the conducted experiments and an-

alyze our results. Finally, in Chapter 6 we conclude with our main findings, rejection or

validation of the established hypotheses, and proposed lines of research for future work.

4



2. BACKGROUND INFORMATION

In this chapter we present background information that is necessary for understanding

this thesis. Readers that seek more in-depth explanations are encouraged to refer to books

such as (Goodfellow, Bengio, & Courville, 2016) and (Zhang, Lipton, Li, & Smola, 2020).

2.1. Machine learning

Machine learning (ML) is a subset of the computer science area known as artificial

intelligence. Formally, ML is the study of computer programs that learn from experience

E with respect to some class of tasks T and performance measure P . We say a program

learns when the performance at tasks in T , as measured by P , improves with experienceE

(Mitchell, Carbonell, & Michalski, 1986). This discipline pursues the development of in-

ductive learning in artificial agents, hoping to confer “intelligence” by correctly reasoning

in novel situations through application of previously acquired knowledge.

Currently, ML application is widespread throughout academic and industrial contexts,

with numerous and varied use cases, ranging from time series forecasting in financial con-

texts, meteorology, and recommendation systems; to vision understanding in smartphones

or surveillance systems; and natural language understanding in translators, “chatbots” or

text generators (LeCun, Bengio, & Hinton, 2015). Machine learning is a fundamental tool

for the development and application of artificial intelligence.

The previous situation can be mostly attributed to “deep learning” techniques, which

rose in popularity after increased computational power in specialized architectures such

as graphics processing units (GPUs) and a bigger amount of available data made these

algorithms feasible to use. Deep learning (DL) is a family of ML techniques that use

“deep” neural networks as a main component. For challenging tasks, and when trained
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over a large dataset, DL methods can comfortably surpass the performance of other classi-

cal ML algorithms (Krizhevsky et al., 2012; Hinton et al., 2012; Sutskever, Vinyals, & Le,

2014; Kaggle, 2014). In most of the previously mentioned examples, societies are already

benefiting from DL through systems that outclass alternative approaches, sometimes even

achieving super-human performance.

2.1.1. Neural networks

We can think of neural networks (NNs) in simple terms as a graph of interconnected

neurons, where the topology of the graph defines different types of NNs. Each neuron is a

function of an input vector x, and the output n(x) can be interpreted roughly as letting the

signal through, or blocking it either totally or partially. A neuron is defined by a weight

vector w and a bias term b, with an activation function ϕ used to introduce non-linearity:

n(x) = ϕ(w · x+ b) (2.1)

A “layer” is a set of grouped neurons, and sequentially chaining layers can enable the

architecture to learn complex functions. In fact, the theorem of universal approximation

states that a simple feed-forward network with a single layer can approximate any contin-

uous function on compact subsets of Rn, although it says nothing about the feasibility of

learning weights that enable said approximation (Nielsen, 2015).

The optimization for an NN training is roughly as follows: we compute the output for

a batch of training data, and calculate the error through a loss function. After this, we use

the multivariate calculus chain rule to determine how much of each answer is attributed

to each trainable parameter, to backpropagate this error in a proportional manner. After

many iterations of this optimization process, the NN is going to find a local minimum

(or maximum, depending on what we are optimizing) that is ideally close to the global

extreme of the function.

6



2.1.2. Deep neural networks

A “deep” neural network (DNN) is an NN that has a high amount of layers, ranging

from tens to hundreds of them. This architectural change promotes hierarchical composi-

tional pattern learning, and further turns them into a tool that can capture highly compli-

cated non-linear relationships from data.

Training these architectures normally requires huge datasets and computational re-

sources, although usually DNN architectures are open-sourced along with pre-trained sets

of weights so that anyone can use them. The training procedure is performed by opti-

mizing with respect to a loss function that measures how far the NN is from accurately

predicting data.

As of today, deep neural networks are a very popular choice for applying machine

learning in industry, and are one of the most prominent research topics in ML academia

(LeCun et al., 2015). The work we present in this thesis makes abundant use of three par-

ticular types of them: fully connected (Rosenblatt, 1958), recurrent (Rumelhart, Hinton,

& Williams, 1986), and graph neural networks (Scarselli, Gori, Tsoi, Hagenbuchner, &

Monfardini, 2009).

2.1.3. Fully connected layers

As the name implies, a pair of consecutive layers are fully connected (FC) when they

are linked in such a way that every neuron in the first layer is connected with every neuron

in the second layer. Due to the high connectivity that these layers have, they are very

expensive in the number of trainable weights (and thus, computation) they add to a model

architecture, as well as being more susceptible to overfitting the data (Zhang et al., 2020).
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2.1.4. Recurrent neural networks

Recurrent neural networks (RNNs) are designed to operate over sequential inputs,

where the sequence can represent a time series, or other signals through the time domain,

such as language, speech, video or actions. To cope with this additional dimension, a

“persistent” component is now considered: these networks evolve hidden states (or mem-

ories) that encode and keep track of the input seen up to a certain moment in time. To

process each new item in a sequence, the input is analyzed in conjunction with the current

hidden state. This temporal dynamic evolution means an RNN can handle sequential data

of variable length.

There are many different RNN architectures, but two noteworthy variants are the long

short term memory (LSTM) cell (Hochreiter & Schmidhuber, 1997) and the gated recur-

rent unit (GRU) cell (Chung, Gülçehre, Cho, & Bengio, 2014).

The LSTM cell was the first architecture to successfully alleviate the “vanishing gra-

dient” issue, where standard RNNs could not keep track of arbitrarily long-termed depen-

dencies in the input. This is because of the limited precision of numbers computed during

the backpropagation process, so the derivative would end up being null as an approxima-

tion error, thus effectively not modifying the network weights during training. This, along

with the similar “exploding gradient” issue, are serious problems that jeopardize an RNNs

capability to effectively learn patterns from the data. The LSTM solved these issues by

introducing a new arrangement inside the recurrent cell based on three “gates”: the input,

output and forget gates. With this, an LSTM could now hold states for arbitrarily long

steps throughout a sequence.

The Gated Recurrent Unit (GRU) architecture, in turn, is a popular alternative to the

LSTM cell, modifying the gate arrangement to omit the output gate, thus decreasing the

number of trainable weights required for a similar if not equal performance under most

tasks. A bidirectional variant that we use in our work, colloquially called “biGRU”, is a

8



simple modification where the sequence is reasoned over both temporal directions by con-

catenating the output of two different GRU cells, where each one reads the input sequence

in a different time direction.

2.2. Sequence-to-sequence architectures

Sequence-to-sequence architectures are a family of neural networks typically used for

tasks like neural machine translation, image captioning, conversational models and text

summarizing tasks. Their basic structure is based on a pair of RNNs: an encoder and a

decoder (Sutskever et al., 2014).

The idea is to take the input sequence, which can be one-hot encodings1 of each

word or pre-trained word embeddings2, and encode the sequence as a whole into a high-

dimensional space using the encoder hidden state to capture meaning using the entire

series of information. After this, said representation is decoded to generate tokens, one at

a time, that will correspond to the output sequence. This model can handle variable input

length as the encoder sequentially reads all tokens to compute the final descriptor. The

decoder is given this last hidden state as the only information it has to generate the result

from a special starting token [START]. It will sequentially output tokens until it emits a

[STOP] token.

The fact that the decoder can only use the final encoded representation to reason about

the entire input sequence is a pitfall of the first sequence-to-sequence architectures. It took

the advent of attention mechanisms to infuse the models with an improved learning ability,

thus promoting the widespread use of this architecture in the previously mentioned tasks.

1A vector filled with as many zeros as words in the vocabulary, except for a one in the index of the actual
word it represents.
2Learned representations with rich semantic meaning. Variants include Word2Vec (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013) and GloVe (Pennington, Socher, & Manning, 2014), among others.
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2.3. Attention mechanisms

Attention mechanisms are mathematical constructs that can be seen as layers inside a

neural network architecture. Their primary purpose is to selectively correlate one sequence

of information with another by establishing relationships between the elements of each

sequence.

In the context of deep learning, some of these mechanisms build an attention tensor

by reasoning over a memory that the layer can access (Zhang et al., 2020). Following the

terminology of (Vaswani et al., 2017), this memory can be encoded as a series of key-value

pairs, and the general idea is to calculate the similarity between the keys and a query. With

this, we construct the context tensor from the memory values, where the ones whose key

has higher affinity to the query will have a greater contribution to the final tensor value.

Formally, let dk, dv, dq denote dimensions of the key, value and query descriptors, and

a memory m = {(k1, v1), ..., (kn, vn)}, with ki ∈ Rdk , vi ∈ Rdv . An attention layer takes

a query q ∈ Rdq and gives back an output o ∈ Rdv as follows. First, we compute the

similarity scores ai, ..., an with a similarity function α as ai = α(q, ki). These scores are

squished into a probability distribution with a softmax operation s(ai) = exp(ai)∑
j exp(aj)

which

will then provide the weight coefficients to build a final vector:

o =
n∑

i=1

s(ai)vi (2.2)

As the softmax function yields a probability distribution, this attention variant (Bahdanau,

Cho, & Bengio, 2015) can be classified as “soft”. Among other types of attention that ex-

ist, “hard” attention is the use of similarity scores to select a single contributor to the output

vector, effectively opting for an argmax operation in lieu of softmax. “Self attention” is

when all key, query and value vectors are equal, taking as input each timestep of the initial
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sequence, and it is useful for discovering how each individual item of an input sequence

relates to the rest of them.

In soft-attending sequence-to-sequence architectures, the decoder can attend over all

encoder hidden states (one per each timestep of the input). This is important for long se-

quences and for tasks that may have additional difficulties, such as the problem considered

in this work.

It is proposed in (Henderson, 2020) that attention mechanisms confer additional learn-

ing capabilities in sequence-to-sequence models because they fundamentally change what

kind of generalizations can be made by introducing variable binding to these language

models (i.e. the capacity of robustly learning sub-concepts that at first might be entangled

in the training data).

2.3.1. Multi-head attention

The multi-head attention (MHA) mechanism consists of h parallel attention layers,

called heads. The output of all heads is aggregated with some function f , which normally

concatenates or averages them. The layer has to learn three different transformation ma-

trices for the key, query and value tensors per head: W (i)
q ,W

(i)
k ,W

(i)
v . With this, the MHA

layer computes per each head:

o(i) = attention(W (i)
q q,W

(i)
k k,W (i)

v v) (2.3)

where attention() is the soft mechanism from the previous section. The final operation

aggregates the output from each head: o = f(Wo(o
(1), ..., o(h))), where Wo is an output

linear transformation.
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2.4. Graph neural networks

Graph neural networks (GNN) are a family of neural networks that operate directly

over data represented in graph format.

A graph is a widely used concept in discrete mathematics. It is a structure G formed

by two sets: a node set V , and an edge set E where E ⊆ V × V . Each node represents

an entity or object, and each edge represents a link or relation between two nodes. In our

case, nodes are indoor places and edges are high-level behaviors that the robot can execute

to go from one place to the other.

Undirected graphs have no notion of orientation in their links: (u, v) ∈ E ⇐⇒

(v, u) ∈ E . In this thesis, however, we work with graphs that have directed edges be-

cause high-level behaviors need not be symmetric with respect to the nodes they connect

(e.g. if a is an office and b is not, then [a, “exit the office”, b] is a valid behavior, but

[b, “exit the office”, a] is not).

According to (Wu et al., 2019), GNNs can be classified as recurrent, convolutional,

graph autoencoders, or spatial-temporal. For this thesis, it is specially relevant to introduce

convolutional GNNs (“ConvGNNs”) in greater detail.

The family of ConvGNNs generalize the convolutional operator from a grid pattern

(such as an image) to an arbitrary graph topology, where each node has its own feature. In

essence, a convolution is a mathematical operation where, given two input functions f, g,

it outputs a new function as follows:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (2.4)

The resulting convolution expresses how f changes with respect to g, as the operator

reverses and then shifts g through the domain (time, for example), and for each new shift
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displacement it computes the product between both f and g. The values are registered as

a mapping that constitutes the output function.

There are two sub-families of ConvGNNs: spectral-based, and spatial-based. For this

work, we consider spatial-based ConvGNNs. Their objective is to generate a modified

node embedding v′ for each original node v ∈ V in the graph G = {V , E} by aggre-

gating its own feature in conjunction with a local neighborhood as defined by the edges

from which information is propagated, similar to a standard convolutional NN. This neigh-

borhood can be immediately adjacent or further out, by considering more than one edge

“hop”. We can generate high-level node features that take into consideration increasingly

larger local neighborhoods by using more than one ConvGNN layer.

One key distinction between ConvGNN architectures is whether they are capable of

handling transductive or inductive tasks. Transductive tasks have a fixed graph node set,

so the same nodes are used for both training and inference, like in (Kipf & Welling, 2017).

Inductive tasks are those where the graph can have a variable topology, like in (Hamilton,

Ying, & Leskovec, 2017).

2.4.1. Graph attention networks

In particular, Graph Attention Networks (GATs) are used in this thesis, as first pro-

posed in (Velickovic et al., 2018). They are a type of inductive spatial-based ConvGNN,

characterized by their ability to selectively attend to a variable number of neighbors. This

is important because, in practice, it means that a trained GAT can operate in never-before-

seen graphs, independently of their topology. For the purposes of our problem, this is a

desirable feature as it lets us train over multiple environments as context to learn transla-

tions of instructions, and then at inference time we can handle environments that are new

and unseen to the robotic agent in a robust way. Note that the GAT architecture internally

uses the multi-headed attention mechanism.
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Formally, a GAT expects as input a set of node features h = {~h1,~h2, ...,~hN} and

produces a modified set of node features h′ = {~h′1, ~h′2, ..., ~h′N}, with N the number of

nodes. Each original node feature is F dimensional: ~hi ∈ RF . The new features could

have any dimensionality, i.e. ~h′i ∈ RF ′ , which requires a shared linear transformation as a

first step,W ∈ RF ′×F . Next, a self-attentional mechanism a : RF ′×RF ′ → R determines

how important each node feature is to every other node, considering the topology with a

mask that computes the attention coefficients only between neighboring nodes (for the ith

node, we seek eij where j ∈ Ni is the neighbor set of nodes). Normalized coefficients are

obtained with the softmax function s(·):

αij = sj(eij) = sj(a(W~hi,W~hj)) (2.5)

For the mechanism a, we follow the original implementation and use a single-layered

feed-forward neural network with the LeakyReLU nonlinearity. Finally, a linear combina-

tion that uses the attention coefficients produces the modified node features:

~h′i =
∑
j∈Ni

αijW~hj (2.6)

To stabilize the learning process, GAT uses MHA by defining K different attention

heads, which means K independent mechanisms arrive at different representations as de-

scribed by the previous equation, and the last step is to aggregate them with some function

f . We take the average as f , which means the final representation is:

~h′i =
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k~hj (2.7)

Note that it is possible to attend over increasingly bigger neighborhoods for each node,

either by modifying the definition of Ni to include nodes that are p “hops” or behaviors

away, or by applying the GAT forward pass more than once to a set of descriptors (for

instance, ~h′i = GAT (GAT (~hi)) for p = 2). In this work, we consider p = 1.

14



3. RELATED WORK

There has been fast progress in the task of robotic interpretation of natural language

during the last few years, in no small measure thanks to the deep learning revolution

(LeCun et al., 2015), which has enabled researchers to enhance their toolboxes with tech-

niques such as the ones presented in the last section. In particular, visual perception is

now more advanced than ever thanks to convolutional neural networks, and big strides

have also been made in sequence processing and understanding, thanks to recurrent neural

networks (Lan et al., 2020).

A robotic navigational plan can be described through human language. Correctly in-

terpreting and executing it requires the agent to understand and use information from the

environment and other entities that move through it, while exhibiting socially acceptable

behavior (Kosaraju et al., 2019). In this area, current datasets propose challenging tasks,

some of which include a visual component built in various ways, for instance using point

cloud technology as in Matterport3D (Chang et al., 2017).

The problem where the robot is given 1) a direction to navigate through an indoor

environment following a (potentially implicit) path and 2) visual input after executing an

action, is known as the Visual Language Navigation (VLN) task. Some datasets for VLN

include R2R (Anderson et al., 2018), R4R (Jain et al., 2019), and ALFRED (Shridhar et

al., 2020).

Although agents are increasingly able to handle more challenging scenarios, VLN

tasks are still far from being solved: state-of-the-art approaches execute paths longer than

most humans would deem acceptable (Majumdar et al., 2020), and for the most demanding

datasets, such as Reverie (Qi et al., 2020) or RXR (Ku, Anderson, Patel, Ie, & Baldridge,

2020), the best success rates are barely a quarter than that of humans.
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There is work that, instead of relying explicitly on the visual sensing of the robot,

regards localization inside a metric map as in (Matuszek et al., 2010), or as a high-level

construct by considering the indoor environment topology as a graph, where places are

connected through the execution of high-level behaviors (Sepulveda et al., 2018). This

makes sense, as most of the time humans intuitively know the semantics of each place,

and make use of this information when navigating by following an instruction, sometimes

even ignoring visual cues until a change is detected in the functionality or purpose of the

current room.

The first work to propose this behavioral navigation approach by means of using deep

neural networks is the aforementioned (Sepulveda et al., 2018), where several neural net-

work modules are trained to learn from the visual input of the robotic agent to robustly

execute high-level behaviors, such as “exit office”, “follow corridor”, etc. The immediate

benefit of such an approach is twofold: on the one hand, robust behavior execution implies

the robot can handle dynamic environments where objects or people can move about in

unforeseen ways. On the other hand, planning paths for navigation in such a framework is

simplified, as we just need to sequentially execute the appropriate high-level behaviors to

navigate our way through the indoor environments.

In (Zang, Vázquez, Niebles, Soto, & Savarese, 2018) a proof-of-concept language

model is successfully introduced to show the feasibility of this approach, and furthermore

in the follow-up work (Zang, Pokle, et al., 2018) a dataset for high-level behavioral robotic

navigation is introduced, along with a novel language model that is the starting point for

our work.

Lastly, there is work done by (Shrestha, Pugdeethosapol, Fang, & Qiu, 2020) that

closely resembles our problem definition, but crucially their translation model explicitly

knows the destination room as additional information that our agent does not have. This
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important difference in the task formulation complicates a straightforward result compar-

ison to both (Zang, Pokle, et al., 2018) and our work.
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4. METHODOLOGY

4.1. Problem formulation

We consider instructing a robot how to move through an indoor environment using

unconstrained natural language. The robot can execute a pre-defined set of high-level

behaviors, such as “follow the corridor” or “cross the hall”, in a robust way (i.e. able to

cope with localization errors, sensor noise, etc.) as proposed by (Sepulveda et al., 2018).

The task is to correctly translate any given instruction to a sequence of high-level

behaviors that, when executed, make the robot navigate as it was asked. Following (Zang,

Pokle, et al., 2018), we frame this as a supervised learning problem.

As additional information, we have m = ( V, E ) the topology graph of the indoor

environment, where vertices v ∈ V represent places, and edges e ∈ E represent con-

nectivity between two distinct places by executing a specific behavior. Supplementary

landmark information is encoded in each edge, representing specific objects the robot can

see when executing a behavior (e.g. bookshelves, flowerpots, water coolers, etc). The

graph is represented by a set of “triplets”, where each triplet (n1, b [attr], n2) associates

two nodes n1, n2 ∈ V through the execution of a behavior b ∈ E , observing attributes

[attr] along the way.

Formally, the inputs to the translation model are (1) a navigation graph m, (2) the

starting node s of the robot in m, and (3) a set of free-form navigation instructions I in

natural language, as seen in Figure 4.1. The instructions describe a path in the graph to

reach from s to a destination node g, where both nodes might not be explicitly referenced.

Table 4.1 includes a sample of instructions. The objective is to predict a suitable sequence

of robot behaviors b1, ..., bT to navigate from s to g according to I . The goal is to estimate:

argmax
b1,...,bT

P (b1, ..., bT |m, s, I) (4.1)
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"Exit	the
room,	turn	left
and	continue
until..."s

g

Translation Model

Figure 4.1. Problem definition. The translation model receives (m, s, I) as input.

The dataset consists of N input-target pairs (xi, yi) | 0 ≤ i ≤ N , with xi = (m, s, I)

and yi = (b1, ..., bT ). The sequential execution of the behaviors b1, ..., bT should replicate

the route intended by the instructions I . To train the model in a supervised manner, we

define the loss function as the cross entropy over the output token set with respect to the

ground truth sequence.

Table 4.1. Sampled instruction-plan pairs from the training dataset. Note
that origin and destination rooms are not always explicitly referenced in the
instruction.

Instruction Plan
Go directly across the hall to room 0. [oio]

Exit right. Enter the only door
on your right after the turn. [oor, rt, cf, ior]

Go out, turn right. Turn right just before
you reach the locker to enter office-0. [oor, cf, cf, cf, ior]

Leave Office-9 and take a right. Walk down the
hallway and enter the second door on your right. [oor, cf, cf, ior]

Exit room, turn right and walk to end of hall. At end
of hall, turn right and enter second room on left. [oor, cf, rt, cf, iol]
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4.2. Baseline architectures

We consider two baseline models to compare against our work. The first one does not

use neural networks in its formulation, but the second one does use neural networks and is

the starting point for the variants that we propose.

The non-neural model we consider is proposed in (Shimizu & Haas, 2009), and es-

tablishes a baseline for minimum viable performance. Broadly speaking, the translation

is done in two stages using classical machine learning techniques. First, a path candidate

is generated from the natural language instruction with a standard hidden Markov model.

Second, a path verification is done to ensure the path is compliant with the indoor envi-

ronment, by using a depth-first search. If the route is found to be invalid, then the model

might change up to three behavior tokens in the predicted sequence to turn it into a valid

path.

On the other hand, the neural baseline against which we compare our results is the

architecture proposed in (Zang, Pokle, et al., 2018), which constitutes a strong baseline

compared to (Shimizu & Haas, 2009), particularly over environments that were seen at

training time.

A summary of this model can be seen in Figure 4.2. In general terms, the architecture is

a sequence-to-sequence neural network with soft attention that aligns the natural language

instruction with the map topology to decode the translation, one token at a time.

We now briefly describe each of the five layers this model contemplates. The ini-

tial embedding layer takes the environment triplets and one-hot encodes them according

to which behavior and nodes compose each triplet: every zero-filled vector of length1

|2V| + |E| has 1 as value on the indexes that correspond to each triplet component. On

1With |V| and |E| the number of nodes and edges in the environment graph.
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the other hand, instructions are embedded per each word by means of a pre-trained 100-

dimensional GLoVE mapping (Pennington et al., 2014). After this, an encoding layer

takes both representations and encodes them by using two separate bi-directional GRU

cell arrays to capture patterns in the time dimension for the instructions, and the triplet set

span for the map. Further, an attention layer refines the descriptors by fusing information

from the graph to the instructions, aligning both sources for the rest of the translation pro-

cess. A fully connected layer then reduces the dimensionality of the tensors. Finally, a

decoding layer takes as input the initial robot place, the FC layer output as context, and its

own hidden state to emit translated behavior outputs using a GRU cell, until a [STOP]

token is emitted. A mask is used to penalize the scores of behaviors that would not comply

with the topology of each map, if executed.

To combat overfitting, dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhut-

dinov, 2014) is applied on the weights of both GRU encoders and the FC layer with prob-

ability p = 0.5.

Figure 4.2. Neural baseline architecture. Figure from (Zang, Pokle, et al., 2018).
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4.3. Proposed architectures

In this section, novel neural variants are introduced as alternative translators that aim

to improve the neural baseline performance for our problem formulation.

4.3.1. Multi-head attention

The first modification we propose is an incremental change with respect to the neural

baseline architecture. The standard attentional mechanism that blends the two source in-

formation modalities is replaced by a multi-headed attention mechanism, inspired by the

success of the technique introduced in (Vaswani et al., 2017), as seen in Figure 4.3. In

what remains of this document, we refer to this proposal as the “MHA” model variant.

The main intuition for this change is that with multiple heads, the blending process

can specialize each head in attending to different patterns that might be more difficult to

capture with just one single head, and thus even after aggregating the different attentional

distributions, the embedding would provide better information in further layers.

Following the notation used in the neural baseline work, matrices Ī ∈ RT×2H and Ḡ ∈

RL×2H generated by the encoding layer are fused using K distinct attentional matrices

W1, ...,WK ∈ R2H×2H , where T is the number of words in the instruction I , H the size

of each GRU hidden state and L the number of triplets in the graph m. We compute the

attentional distribution ai for each encoded node Ḡi by aggregating all K alignments as

follows:

ai = softmax((
K∐
k=0

eki ) ·Wo) (4.2)

eki = [ḠiWkĪ
ᵀ
1 , ..., ḠiWkĪ

ᵀ
T ] (4.3)

with
∐

the tensor concatenation operator, and Wo a learned matrix linear transform.
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Figure 4.3. Multi-head attention architecture.

Attention vectorsRi ∈ R2H are then defined asRi =
∑T

j=1 aijIj and passed as input to

the fully connected layer downstream as in the neural baseline architecture, concatenated

with the original node encodings Ḡ.

4.3.2. Graph attention networks

An alternative modification consists of using a graph attention network (GAT), which

modifies the map descriptors by attending the environment topology with a module that

was designed for this purpose in (Velickovic et al., 2018). Figure 4.4 illustrates the archi-

tecture of the network. In what remains of this document, we refer to this proposal as the

“GAT” model variant.
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Exit	the	room,	turn	right,
follow	the	corridor	until	you
pass	a	vase,	and	enter	the
next	room	on	you	left.

Bi-GRU Bi-GRU

Attention Layer

GRU

oo-right	→	cf	→		..

Office-13

Natural	Language	InstructionBehavioral	Graph	Triplets

Start

Behavior	Sequence

Lab-0 C-2

Office-13

Node encodings Pre-trained GloVe

GAT
Module

FC Layer

Figure 4.4. Graph attention network architecture.

The first important change with respect to the neural baseline is that the graph must

be represented not as a list of triplets, but rather as a node set with an adjacency matrix.

This implies that descriptors now work at node level, instead of triplet level. The one-hot

encoding is similar to the previous one, with the difference that the size is modified from

(|2V| + |E|) to (|V| + |E|) per each node, encoding the adjacency vector along with the

node index.

In practice, the GAT layer receives the output from the graph biGRU encoding layer

as a context matrix C ∈ RH×L, and it generates a new node descriptor matrix C ′ ∈ RH′×L

by fusing its own representation with its immediate neighbor descriptors2.
2H ′ need not be equal to H , although our experiments show performance is better when this is the case.
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Representations are blended through a weighted product learned by an internal MHA

layer that handles a dynamic amount of neighbors, which means the GAT layer can process

never-before-seen topologies.

4.3.3. Hybrid model

In our ablation analysis, we test a hybrid architecture that uses a GAT and a MHA

module at the same time to understand the impact of both components working together.

For a visual description, see Figure 4.5. In what remains of this document, we refer to this

proposal as the “GAT-MHA” model variant.

Exit	the	room,	turn	right,
follow	the	corridor	until	you
pass	a	vase,	and	enter	the
next	room	on	you	left.

Bi-GRU Bi-GRU

MHA Layer

GRU

oo-right	→	cf	→		..

Office-13

Natural	Language	InstructionBehavioral	Graph	Triplets

Start

Behavior	Sequence

Lab-0 C-2

Office-13

Node encodings Pre-trained GloVe

GAT
Module

FC Layer

Figure 4.5. Graph attention network with multi-head attention architecture.
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5. EXPERIMENTS AND DISCUSSION

5.1. Dataset

The dataset used for this work is the one introduced in (Zang, Pokle, et al., 2018),

which consists of approximately ten thousand instructions in natural language along with

the environment and path they correspond to. We now detail the data gathering process

and other relevant aspects of the dataset, as described in the appendix of (Zang, Pokle, et

al., 2018).

5.1.1. Data generation

One of the main contributions of (Zang, Pokle, et al., 2018) is the generation of a

dataset for the problem, by crowd sourcing annotations using the Amazon Mechanical

Turk platform (Crowston, 2012).

First, 100 distinct layouts of indoor environments were generated, with each room,

hall, or corridor being correctly labeled. Each map has between 6 and 65 rooms. The types

of rooms considered for the environments are: bathroom, office, kitchen, hall, corridor,

laboratory, and room. There are 12 distinct behaviors to move between places, listed in

Table 5.1.

Table 5.1. Navigation behaviors. Directions (dir) can be either left or right.

Symbol Description
oo (dir) Go out of the current place and turn (dir)
io (dir) Turn (dir) and enter a new place
oio Cross the corridor and enter the opposite room
(dir) t Turn (dir)
sp Enter a new place
cf Follow the corridor
ch (dir) Cross the hall and turn (dir)
chs Cross the hall and keep straight
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Landmarks were added to the map as additional information that the robot might use

for navigation. The set of considered environmental landmarks is: chair, table, vase, clock,

lamp, printer, computer, fridge, window, sofa, dustbin, bed, shoes, television, shelf, bike,

bookshelf, sink, photo, and locker.

Second, pairs of start-goal points are generated and then connected to each other us-

ing standard planning techniques offered by the OMPL library (Sucan, Moll, & Kavraki,

2012). A random route subset was selected for humans to generate appropriate natural

language instructions.

Figure 5.1. Amazon mechanical turk interface for dataset generation. Fig-
ure from Appendix A in (Zang, Pokle, et al., 2018).

Third, the directions in free-form unconstrained natural language are collected through

the Amazon Mechanical Turk crowd sourcing platform, in which random human “work-

ers” are exposed to an interface that shows the 2D map and a plan, and are subsequently

asked to 1) identify the origin and destination of the route, and 2) describe free-form di-

rections to another imaginary person, in sufficient detail to complete the path as needed.
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A total of 822 workers generated route descriptions. A picture of the interface presented

to workers can be seen in Figure 5.1, and sample map-route pairs are shown in Figure 5.2.

Finally, to ensure the quality of the gathered data, a protocol was implemented to verify

the generated instructions. Two additional workers would be shown a route and instruction

pair, and would confirm whether the origin-destination pair was correct and whether the

provided instruction was unambiguous and if it matches the route. Mismatch reporting

was performed to detect incorrect instructions, correct them and re-integrate them into the

final dataset, which would only happen when the two workers verified and approved the

route description.

Figure 5.2. From left to right, examples of small (≤ 20 rooms), medium
(20 < rooms ≤ 40 rooms) and big (> 40 rooms) indoor environments,
along with a sample route drawn in blue. Figure from Appendix A in (Zang,
Pokle, et al., 2018).

5.1.2. Dataset split

The dataset is partitioned into three subsets for training, validation, and testing pur-

poses. In particular, two distinct test sets are generated: the first one, Test-Repeated,

consists of directions to be executed in indoor environments that the robotic agent has pre-

viously seen during training. On the other hand, Test-New considers directions only on

maps that the agent has never seen before, which in theory constitutes a bigger challenge
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for the generalization capabilities of the model. This is consistent with the results pre-

sented in (Zang, Pokle, et al., 2018), and further establishes diminishing the performance

hit over novel maps as one of the main objectives of this work.

5.1.3. Dataset characteristics

Table 5.2 shows the main statistics of the dataset. We can see that graphs vary in size

as measured by the triplet quantity in each set, ranging from 27 to 379. As the neural

network requires a fixed tensor size, we set the maximum triplet set size to 300, truncating

the few instances that exceed this limit1. Instructions are also diverse in the number of

words, with concise examples of less than 10 words and long cases with upwards of 200

words, as well as the quantity of behaviors they describe. For the same reason as before,

we set the maximum amount of instruction words to 150.

Table 5.2. Dataset statistics - summary of distribution of the number of
triplets in graph, number of words in instructions, and number of behaviors
in the predicted routes for training and testing (Test-New) dataset.

Data No. of Graph No. of Graph Instruction Instruction Behavior Behavior
Statistics Triplets Triplets Length Length Number Number

(Train) (Test-New) (Train) (Test-New) (Train) (Test-New)
Min 27 51 2 7 1 1
Max 379 379 239 145 22 19
Mean 176.5 209.32 33.71 30.99 7.15 7.07

Std Dev 72.02 104.5 17.95 16.94 3.67 3.67

The route length histogram is presented in Figure 5.3. The shortest paths have a sin-

gle behavior executed, and the longest consists of 22 behaviors sequentially executed to

navigate as the instruction requests. This, along with an average length of 7.1 ± 3.7 be-

haviors, implies the routes are not trivial to correctly interpret from potentially long route

descriptions. However, short behavior sequences are available for the agent to use during

the initial learning process.

1Only 6.4% and 5.4% of the maps exceed the limit in the training and validation set, respectively.
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Figure 5.3. Distribution of route length in a) training set, b) testing set
(both “new” and “repeated” splits). Figure from Appendix A in (Zang,
Pokle, et al., 2018).

5.2. Evaluation metrics

To measure the performance of different approaches towards solving the problem, we

consider six metrics: F1 score, edit distance, match at 0, 1 and 2 moves away from ground

truth, and goal match. We explain each of these metrics below. The input to the evaluation

metrics are 1) a ground truth token sequence gt = [b1, ..., bn] with bi the i-th behavior to

be executed by an oracle agent that perfectly interprets the directions, and 2) the predicted

token sequence pt = [b′1, ..., b
′
k], with b′i the i-th behavior to be executed by the agent we

are evaluating. Note the possibility of cases where the robot would arrive to the desired

destination even when gt 6= pt or k 6= n.

5.2.1. F1 score

The F1 score is the harmonic average between the precision p and the recall r of

the model with respect to the predicted tokens pt and the ground truth tokens gt of the

translated sequence. Let c = pt ∩ gt be the tokens present on both sequences. We can

define p = |c|
|pt| and r = |c|

|gt| . Then, the F1 score is:

F1 =
2 · p · r
p+ r

(5.1)
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5.2.2. Edit distance

The edit distance (ED) is the number of atomic actions that the predicted sequence

is away from becoming the ground truth sequence. An atomic action can be (1) delet-

ing a single token, (2) adding a single token or (3) swapping a given token with another

one. This is known as the Levenshtein distance in the linguistics and natural language

processing literature (Levenshtein, 1966).

5.2.3. Match at k

The match at k metric, with k ∈ {0, 1, 2}, represents whether or not the edit distance

is equal to or under k moves away for a prediction-truth sequence pair. If k = 0, we talk

about an exact match. Ideally, we want the model to be able to exactly translate as many

problem instances as possible.

5.2.4. Goal match

This metric indicates whether the predicted sequence arrives at the target node destina-

tion or not, even if the translated plan might not exactly match what the instructor meant.

Failing an exact match, a goal match (GM) indicates that the translation model at least

knows where it needs to go.

5.3. Setup and implementation details

All experiments were performed on a machine with a six-core 2.8 Ghz Intel Core i5-

8400 CPU, 32 GB of RAM, and a Nvidia Geforce GTX1070 GPU with 8GB VRAM.

The code was written using the PyCharm IDE, with git version control integration, on the

Ubuntu 16.04 operating system.
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All neural network models were implemented using the PyTorch 1.4 deep learning

framework (Paszke et al., 2019). This includes a re-implementation of the neural base-

line –originally written in TensorFlow 1.4– for reproducibility analysis2. The DGL 0.4.2

library was used to handle graph data structures (Wang et al., 2019). Agile development

and faster prototyping was achieved by using the aforementioned stack of tools, which

emphasized a “define-by-run” philosophy.

Define-by-run means a deep neural network backpropagation graph is defined just in

time, and not on a previous compilation step as in TensorFlow (Abadi et al., 2015), for

instance. Adhering to this philosophy results in shorter code and simpler forward passes

when defining a model architecture.

Table 5.3 shows a comparison of the number of trainable parameters for each model.

As for the hyperparameters, ADAM (Kingma & Ba, 2015) optimizer with a learning rate

of 1e− 3 is used for all models, with a batch size of 256, four heads for the MHA mecha-

nisms, hidden size of 128 for RNNs, and pre-trained GloVe word vectors of size 100.

Table 5.3. Millions of trainable parameters for each model.

Architecture Trainable parameters
(millions)

Zang Baseline (Ours) 0.785
MHA Model 1.011
GAT Model 0.975

GAT-MHA Model 1.266

All models were trained for 300 epochs. Normally, an early stopping mechanism

would be used to avoid overfitting, meaning that once every n epochs we check the per-

formance metrics on the validation dataset and stop training if the exact match metric

diminishes with respect to the last checkpoint. To better understand the training dynamics

of every variant we opt to train for the fixed amount of epochs, and at testing time we

2Special thanks to Gabriel Sepúlveda.
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select the best performer as indicated by the validation exact match rate that is checked

every n = 10 epochs.

We include a teacher forcing (Bengio, Vinyals, Jaitly, & Shazeer, 2015) scheme in the

training loop for improved stability, where we replace a fraction f of the translation tokens

emitted by the model with ground truth token at training time. We initially set f = 0.5

with a linear decrease until f = 0 is reached at 100 epochs.

Both baseline performance metrics are considered as reported in their respective doc-

uments. We also provide and report our own implementation of the (Zang, Pokle, et al.,

2018) baseline for reproducibility purposes: ideally, the same performance would be ob-

served.

5.4. Main results

The main results of this work are presented in Tables 5.4 and 5.5, where all proposed

methods are compared against the baselines in both test datasets.

Table 5.4. Main results for Test-Repeated dataset. The symbol ↑ indicates
that higher results are better in the corresponding column; ↓ indicates that
lower results are better.

Architecture Metric (Test Repeated)
↑ F1 ↑M@0 ↑M@1 ↑M@2 ↑ GM ↓ ED

Shimizu Baseline 79.83 25.30 - - 26.28 2.53
Zang Baseline 93.54 61.17 83.30 92.19 61.36 0.75

Zang Baseline (Ours) 91.67 44.43 76.93 89.16 44.43 1.01
MHA Model 93.07 55.96 81.31 90.16 55.96 0.84
GAT Model 91.87 48.41 78.53 89.66 48.41 0.94

GAT-MHA Model 90.67 42.45 72.46 86.58 42.45 1.14

In the Test-Repeated dataset, the best performer –as determined by the exact match

rate– is the neural baseline introduced in (Zang, Pokle, et al., 2018), although it should

be noted that our own implementation of the model is not able to reproduce the reported
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performance in this set, as seen in the second and third rows of Table 5.4. The MHA

model is able to improve upon the latter, and beats all other proposed variants. The GAT

module also helps for the task when compared to our implementation of the neural base-

line, although by a smaller margin than MHA. Surprisingly, the hybrid GAT-MHA variant

exhibits a performance inferior to the the simpler alternatives.

Table 5.5. Main results for Test-New dataset. The symbol ↑ indicates that
higher results are better in the corresponding column; ↓ indicates that lower
results are better.

Architecture Metric (Test New)
↑ F1 ↑M@0 ↑M@1 ↑M@2 ↑ GM ↓ ED

Shimizu Baseline 81.38 25.44 - - 25.44 2.39
Zang Baseline 90.22 41.71 69.82 82.08 41.81 1.22

Zang Baseline (Ours) 90.89 43.41 72.64 87.25 43.41 1.09
MHA Model 92.57 51.40 79.06 89.43 51.40 0.91
GAT Model 91.77 47.36 77.51 90.26 47.36 0.96

GAT-MHA Model 90.43 42.28 72.95 85.08 42.28 1.18

In the Test-New split, we can observe that the best performer for unseen environments

is the newly introduced MHA model, outperforming (Zang, Pokle, et al., 2018) and thus

obtaining state of the art performance (Cerda-Mardini, Araujo, & Soto, 2020). Note that

in this case our own implementation does match (and even slightly improve upon) the

reported results, which stands in contrast with the test-repeated results. The GAT module

presents a similar behavior as in test-repeated: it does contribute to the model learning

capacity, but not as much as the MHA mechanism. Once again, the hybrid model fails to

perform at an acceptable level when compared to the rest of the neural architectures.

In Figure 5.4, training procedures for the reported models are presented. In general,

models converged at around 100 epochs, which for our test environment happened after

6 hours of training time. In the case of GAT variants, batching the graph data structures

imposes an additional CPU load that increases training time by a factor of 2.1 (an average

of 109 versus 227 seconds per epoch).
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Figure 5.4. Metric evolution throughout the training process.

A noteworthy observation is that, in our experiments, the goal match metric always

equals the exact match metric, which indicates that our variants are averse to completing

a route by following a path other than the one intended in the instructions. It is not clear
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what could be the cause for this behavior, specially when compared to the baselines that

do present a slightly higher goal match rate than they do an exact match rate.

5.5. Discussion

In what follows, we will further analyze our results, and detail the behavior of each

model variant in more depth to gain insights as to what aspects of the problem each model

is able to solve.

5.5.1. Multi-head attention

As seen in the main results, the MHA model performs better than every other variant in

the test-new partition, setting the state of the art performance with a 23.23% improvement

over the neural baseline, although at the cost of a 8.52% decrease in the test-repeated

partition, and a 28.79% increase in the number of trainable parameters.

To get a better intuition as to how multiple heads can help to generate different atten-

tion alignments, Figures 5.5 and 5.6 show a case where each head is blending the multi-

modal information in a different relevant pattern for translating the instruction “Go out

of office 3 and turn left past the clock on the left. Enter

the kitchen on your left.” to the corresponding translation [ “O-3”, “ool”,

“cf”, “iol” ].

In Figure 5.5, it is shown that head #1 focuses on the relation between corridor C-1 and

kitchen K-2 (which is the correct triplet the robot needs to execute as the last behavior)

along with a relevant part of the instructions that precedes a kitchen mention, while head

#2 is not particularly useful in this case.

However, Figure 5.6 shows how heads #3 and #4 align very similar sub-segments of

the instruction in a different way. Head #3 aligns “past the clock on the left”
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Figure 5.5. Example attention maps of heads 1 & 2. Head 1 correctly at-
tends to nodes C-1 and K-2, while head 2 does not show a useful alignment.
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Figure 5.6. Example attention maps of heads 3 & 4. Similar parts of the
instruction show different alignments in each case, which would be less
likely to happen with a single headed scheme.
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with two triplets that describe the corridor C-1, where one of the visible attributes corre-

sponds to the clock referenced in the instruction. Head #4 reinforces alignment of “and

turn left past the clock” to these triplets, but also correlates this segment to

the “iol” and “ior” (turn and enter) behaviors originating from C-1, which is the correct

node where the robot would be at this point, highlighting the potential places where it

could wrongly enter when following the instructions. A visualization of relevant map

areas for heads #1, #3 and #4 is presented in figure 5.7.

Figure 5.7. Example visualization of most relevant map areas for heads
#1, #3 and #4. The model correctly translated the instructions to the path
marked by the blue line.

In Table 5.6, we present the results of an ablation test where we train MHA models

with 1, 2, 4 and 8 heads. The single-headed case corresponds to our implementation of the

neural baseline. There is a clear benefit from using more heads, but the limit on what this

mechanism can leverage out of the data happens with k = 4 heads, showing diminishing

returns after this.
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Table 5.6. Ablation analysis for number of attentional heads. Optimal per-
formance is achieved at k = 4.

# Test Repeated Test New
Heads F1 M@0 M@1 M@2 GM ED F1 M@0 M@1 M@2 GM ED

1 91.67 44.43 76.93 89.16 44.43 1.01 90.89 43.41 72.64 87.25 43.41 1.09
2 90.94 49.70 74.45 86.18 49.70 1.08 90.30 43.62 72.95 86.73 43.62 1.13
4 93.07 55.96 81.31 90.16 55.96 0.84 92.57 51.40 79.06 89.43 51.40 0.91
8 90.44 43.44 74.35 87.57 43.44 1.09 89.78 38.14 71.61 85.18 38.14 1.24

Summarizing, we can conclude that a more specialized blending of multi-modal infor-

mation is valuable for building a better translator, in particular, for unseen environments.

5.5.2. Graph attention networks

The GAT architecture performs slightly better than the neural baseline for new envi-

ronments, but still below what MHA achieves.

An ablation analysis in Table 5.7 shows results of the GAT layer working with graph

context representations at different stages of refinement: immediately after the encoding

layer (“GAT-Enc”, reported in main results as “GAT”), after the attention layer (“GAT-

Attn”), and after the dimensionality reduction FC layer (“GAT-FC”). In this case, results

indicate that the best performing descriptors are upstream, suggesting that topology infor-

mation is more valuable when added earlier into the graph representation.

Table 5.7. Ablation analysis for graph attention network layer positioning.

Test Repeated Test New
Model F1 M@0 M@1 M@2 GM ED F1 M@0 M@1 M@2 GM ED

GAT-Enc 91.86 48.41 78.53 89.66 48.41 0.94 91.77 47.36 77.51 90.26 47.36 0.96
GAT-Attn 90.94 43.04 75.15 87.38 43.04 1.11 91.78 44.15 73.37 88.08 44.15 1.06
GAT-FC 87.81 40.56 69.28 83.00 40.56 1.32 88.68 41.45 70.88 84.04 41.45 1.31

In Tables 5.4 and 5.5, an ablation test can be established between two variants: one

where the attention mechanism is a multi-headed one (GAT-MHA variant), and one where

the mechanism is as presented in the neural baseline (GAT variant). The results indicate
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that the GAT and MHA modules, as defined, are not able to jointly perform at an ac-

ceptable level, although the network as a whole seems to achieve a faster convergence, as

shown in Figure 5.4.

To improve the low performance of the hybrid model, we test an additional variant

(“GAT-MHA FC”) where the GAT module operates after the FC layer, instead of operating

after the biGRU graph encoder. Results in Table 5.8 suggest that it is possible to further

optimize the hybrid approach architecture, although the performance is still inferior to that

of the MHA model.

Table 5.8. Graph attention network module position analysis for hybrid model.

Test Repeated Test New
Model F1 M@0 M@1 M@2 GM ED F1 M@0 M@1 M@2 GM ED
GAT 90.67 42.45 72.46 86.58 42.45 1.14 90.43 42.28 72.95 85.08 42.28 1.18
MHA
GAT 92.07 53.88 80.22 87.87 53.88 0.93 92.01 51.30 78.65 87.88 51.30 0.99

MHA FC

5.5.3. General remarks

We can think of the GAT and MHA variants as incremental changes with respect to

the neural baseline, each adding or replacing one single new component in the original

architecture. The GAT-MHA variant mixes both approaches into the same architecture.

By comparing the performance between them, our analysis suggests that:

(i) The MHA mechanism is highly useful for the task.

(ii) The GAT mechanism does help, but in a smaller measure.

(iii) Using both mechanisms in the same architecture does not translate into an im-

proved model. In fact, the standard hybrid model performs worse than both

simpler counterparts.
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Taking into consideration the positive impact that the MHA mechanism has, a good

question for motivating future work would be whether a transformer architecture (Vaswani

et al., 2017) could further increase performance.

Summarizing, our results show that multi-headed attention does lead to improved per-

formance in previously unseen environments. Graph attention networks also have a net

positive impact, but not as notorious. Our implementation of the neural baseline failed to

perform as reported in (Zang, Pokle, et al., 2018) for seen environments, which suggests

that the MHA variant would be superior for Test-Repeated instances as well, if used in the

original implementation.

Lastly, and rather disappointingly, the hybrid GAT-MHA model results indicate that

both techniques are not immediately compatible with each other, as shown by not being

able to surpass the neural baseline performance in new maps, even when the standalone

variants manage to do so on their own. Future efforts could explore alternative ways in

which to use both layers at the same time to obtain a performance increase, in the spirit of

the analysis presented in Table 5.8.
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6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

In this work we have introduced mechanisms to improve the performance of a deep

neural network that translates natural language directions to a high-level sequential lan-

guage understandable by a robotic agent.

Both mechanisms, multi-head attention and graph attention networks, aim to achieve

better translations by refining the alignment between the instruction and the knowledge

about the environment that the robot has to navigate.

Results show that our modifications are not equally well suited to contribute to the

problem. In particular, multi-head attention mechanisms can achieve state-of-the-art per-

formance for unseen environments, improving the generalization capabilities of the model.

On the other hand, graph attention networks do help but their impact is not as noticeable,

even when combined with a multi-head attention module.

The small impact of graph attention networks might be partially explained because

only immediate neighbors are considered for refining the descriptors of each node. As

the average path length is of approximately eight nodes, the GAT module would require a

span of seven hops for the start and goal nodes to affect the descriptor of each other.

In other words, one single hop might not provide enough topological information to

significantly improve the node descriptors before being aligned in the attentional layer. In

fact, considering the results of the GAT-MHA variant, a 1−hop GAT module is detrimental

to the MHA mechanism.

In a more general sense, the results in section 5.5.2 suggest that any node descriptor

refinement based on the map topology should be made after language alignment is done.
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This makes sense, as in a translation task the bulk of the information is in the source

sentence itself.

To answer the questions posed in our main hypothesis, we can say that:

(i) It is indeed possible to develop language models that perform better in this task

than previous efforts, even if only for the Test-New dataset partition. In fact,

we argue that Test-New is a more useful partition than Test-Repeated, because

a robotic agent that uses our translation model would probably be trained once

and then deployed into the real world, to navigate environments that are not the

same as those in the training dataset.

(ii) Yes, a multi-headed attention mechanism is able to produce better multi-modal

alignments than the single-headed equivalent layer, although at the cost of an

increased number of trainable parameters.

(iii) Indeed, graph attention networks can slightly improve the generalization capa-

bilities of the agent. Our results and analysis suggest that GAT modules should

refine node descriptors only after aligning them with the instruction.

Considering our findings, we conclude this work contributes towards the pursuit of

intelligent agents that are capable of interacting with humans by understanding natural

language directions to navigate through indoor environments.

6.2. Future work

There are various research lines that constitute promising avenues for future work in

this problem:

(i) Studying the effect of the neighborhood size (or, similarly, the number of hops),

in a GAT-MHA FC architecture. It is possible that further performance improve-

ments could be achieved this way, and it would confirm the hypothesis outlined
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in our conclusions as a cause for the disappointing performance of the GAT-

MHA model variant.

(ii) Using multi-head attention in the decoder that outputs instruction tokens while

attending to the context vector that merges both sources of information. In this

sense, a natural candidate is the decoder proposed in (Vaswani et al., 2017).

(iii) It could also prove interesting to try an end-to-end generic Transformer model

to contrast its performance against our architecture, which was designed specif-

ically for this task.

(iv) Using state-of-the-art pre-trained contextual word embeddings such as BERT

(Devlin, Chang, Lee, & Toutanova, 2019), which should help to cope with both

polysemy and ambiguity throughout the instructions. These improved descrip-

tors could, in turn, help the attentional layer to produce a better context vector

for the decoder.

(v) Lastly, a valuable extension to this work would be to implement the translator in

a physical robot, to understand the operational constraints and limitations of our

work in the real world.
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