
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

SEMANTICS AND COMPLEXITY OF

BITCOIN SCRIPT

THOMAS REISENEGGER BUTRÓN

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisors:

JUAN REUTTER

MARCELO ARENAS

Santiago de Chile, May 2021

c� MMXXI, THOMAS REISENEGGER BUTRÓN

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

SEMANTICS AND COMPLEXITY OF

BITCOIN SCRIPT

THOMAS REISENEGGER BUTRÓN

Members of the Committee:

JUAN REUTTER

MARCELO ARENAS

DOMAGOJ VRGOČ

MIGUEL ROMERO

JORGE GIRONÁS

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, May 2021

c� MMXXI, THOMAS REISENEGGER BUTRÓN

que

Gratefully to my family and my

girlfriend.

ACKNOWLEDGEMENTS

I would like to start by thanking my advisors, Juan Reutter and Marcelo Arenas. Not

only did they help me focus on the task at hand and guide me through this process, but they

were also always available to answer any questions I had and to discuss any hurdle I came

across when developing the results displayed in this work. They gave me the freedom

to choose how to approach this undertaking and provided me with the tools I needed to

succeed on each step of the way.

I would also like to thank Domagoj Vrgoč. He repeatedly provided insight into the

research because of his vast knowledge on the subject and was always happy to answer

any questions that arose during the study.

I would like to thank my parents, who put up with me during this process and allowed

me to decide what I wanted to do in life. They have supported me this whole time and I

am very grateful for that.

Finally, I would like to thank my girlfriend, Nicole, who was always there for me.

She was always eager to help in whichever way she could and made the negative aspects

bearable. I am very lucky to be able to rely on her.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

ABSTRACT ix

RESUMEN x

1. INTRODUCTION 1

2. HOW SCRIPT WORKS 4

3. FORMALIZING SCRIPT 9

3.1. The stacks in Script . 9

3.2. Script operators . 10

3.2.1. Basic operators in Script . 11

3.2.2. Operators for executing cryptographic primitives 13

3.2.3. Operators for flow control . 15

4. COMPLEXITY OF SCRIPT 22

4.1. Evaluating Script . 22

4.2. Unlockability of Script is hard . 24

4.3. NP-membership . 30

5. PROVING NP-MEMBERSHIP 31

5.1. An alternative representation . 31

5.2. Script evaluation . 36

5.3. Limiting the number of elements accessed by a script 57

5.4. Limiting the size of stack elements . 67

5.5. Putting everything together . 96
v

6. CONCLUSIONS 101

REFERENCES 103

APPENDIX 104

A. Integer linear programming script unlockability reduction 105

B. Operator semantics with anonymous elements 107

C. Equivalence of unlocking script and unlocking stack 120

D. Constraining operator properties . 123

E. Execution time of operators . 132

F. Standard script evaluation . 135

G. Construction of the system of equations to prove polynomiality 138

vi

LIST OF FIGURES

2.1 Input to one transaction is the output of a previous transaction. Here Bob

confirms with his digital signature that he is the owner of the private key

corresponding to the public key used when specifying the recipient of the funds

in the previous transaction. Transactions reference each other via their hash

(i.e. 0xffaa in this case). 4

2.2 Interaction between the locking and unlocking scripts. 5

vii

LIST OF TABLES

3.1 Semantics of Script commands. We assume that '
M

= A
0

·A
1

· . . . ·A
k

whenever |'
M

| > 0. The condition column states the requirement that needs

to be met for each operator not to return an error. Formally, if the condition

for operator f is not met by ('
M

,'
A

), then f('
M

,'
A

) = ⇤. The function

hash corresponds to using SHA-256 and RIPEMD-160 hashing algorithms in

succession. The function chksig corresponds to the verification algorithm of

the ECDSA protocol for the string comprised of the transaction information,

the first input as the public key and the second input as the signature. 12

viii

ABSTRACT

With the increased popularity of Bitcoin, there is a growing need to understand the

functionality, security and performance of various mechanisms that comprise its protocol.

Bitcoin’s scripting language, Script, is one of the main building blocks of Bitcoin transac-

tions. It was purposefully designed to not be Turing complete, such that it would not be

possible to program never-ending executions. However, there has not been much research

done into studying the properties and limitations of the language. Moreover, there does

not exist a formal framework by which to analyze these characteristics. In this work we

aim to provide a formal framework to study Script and to analyze certain problems related

to the language. Concretely, we formally define the semantics of Script, and study the

problem of determining whether a user-defined script is well-formed; that is, whether it

can be unlocked, or whether it contains errors that would prevent this from happening.

Specifically, we prove that this problem is NP-hard by providing a reduction from integer

linear programming and that for the most relevant set of operators, if we establish certain

reasonable assumptions on the usage of the language, the problem lies in NP.

Keywords: Bitcoin, Script, static analysis, unlockability.
ix

RESUMEN

Con la creciente popularidad de Bitcoin ha surgido la necesidad de entender las fun-

cionalidades, la seguridad y el rendimiento de los distintos mecanismos que componen su

protocolo. El lenguaje de programación asociado a Bitcoin, Script, es uno de los prin-

cipales componentes de las transacciones de Bitcoin. Este fue diseñado deliberadamente

para no ser Turing completo, de forma que no fuera posible crear ejecuciones sin fin.

Sin embargo, no existen muchos estudios dedicados a analizar las propiedades y limita-

ciones del lenguaje. Es más, no existe un marco de referencia formal que permita analizar

estas caracterı́sticas. En este trabajo buscamos proveer este marco de referencia, que per-

mita estudiar Script y analizar ciertos problemas relacionados al lenguaje. Concretamente,

definiremos formalmente la semántica de Script y estudiaremos el problema de determinar

si un programa definido por un usuario está bien formado, es decir, si puede ser desblo-

queado o presenta errores que impiden que esto ocurra. Especı́ficamente, demostraremos

que este problema es NP-duro, proveyendo una reducción desde programación lineal en-

tera, y que, para el conjunto más relevante de operadores, si establecemos ciertas suposi-

ciones razonables sobre el uso del lenguaje, el problema se encuentra en NP.

Palabras Claves: Bitcoin, Script, análisis estático, desbloqueabilidad.
x

1. INTRODUCTION

Bitcoin (Nakamoto, 2008) is a cryptocurrency system proposed in 2008 by a person

or a group of people under the pseudonym Satoshi Nakamoto. Simply put, Bitcoin is a

decentralized protocol that relies on a technology called blockchain to maintain a public

ledger that stores the information of all of the transactions of Bitcoins, the currency asso-

ciated with the system. The blockchain ensures that there is consensus between the agents

in the network regarding which transactions have been successful and prohibits malicious

agents from creating fraudulent transactions by using several cryptographic processes,

such as digital signatures and cryptographic hashing functions.

Bitcoin solves the problem of creating a trustworthy system that does not depend on

any country or institution, through which individuals are able to transfer digital currency

to one another. In doing so, Bitcoin is intended to provide several advantages over a simple

system that only supports transactions. The subject of this thesis is one of these features

called smart contracts. However, in order to comprehend what smart contracts are, one first

needs to understand some of the differences that exist between a common bank transaction

and a Bitcoin transaction.

Firstly, in the Bitcoin protocol there does not exist the concept of accounts. If person

A wants to transfer X amount of money to person B, instead of having an account with a

balance that determines how much money they can transfer, person A must point to one

or more transactions of which they are the recipient that add up to at least amount X.

Evidently, the system must handle the problem of determining which transaction outputs

have been spent and which have not. Instead of inspecting the whole ledger to determine

whether certain transaction output has been spent, the nodes in the network keep a record

of all of the UTXOs or unspent transaction outputs.

The second main difference between bank and Bitcoin transactions is that the Bitcoin

protocol was designed in order to allow for more complex transaction spending require-

ments. In other words, instead of just indicating a recipient for a transaction, the sender

1

states certain requirements that need to be met by the recipient in order to spend the trans-

ferred money. For example, one could wish to forbid the money from being spent before

certain date or to require multiple people to agree to spend the money. The tool that is

used to establish these requirements is Script, which is a non-Turing-complete scripting

language designed specifically for this purpose.

Script was designed to disallow infinite loops from being created, such that the nodes

in the network could not be tricked into executing a never-ending program. However, the

requirements that can be represented through it can be decently complex. A smart contract

is essentially a non-trivial set of requirements.

In practice, the protocol for establishing spending requirements for transaction outputs

consists of associating each transaction output with a locking script that corresponds to a

sequence of Script operators. Afterwards, when creating a new transaction, in addition to

pointing to an unspent transaction output, the sender must provide an unlocking script that

fulfills the requirements established through the output’s locking script.

Specifically, to determine if the unlocking script is valid, the nodes that receive these

transactions append the locking script to the unlocking script, execute the resulting con-

struction and determine whether the execution was successful. An execution is deemed

successful if it did not raise any errors and resulted in a structure that represents a boolean

value of true.

This system provides enough freedom that it is possible to create a locking script for

which there does not exist any valid unlocking script. This can be done in purpose and

there even is a specific operator that automatically flags the locking script as invalid. In

practice this is used to store information in the blockchain, such that there is verifiable

proof that said information was available to the sender on certain date. However, locking

scripts that can not be unlocked can also be created by mistake.

This causes issues at an individual and a collective level. On the one hand, a person

that locked a transaction behind a locking script that can not be unlocked simply loses that

2

money. There is no possible way of accessing funds that have been locked in this manner.

On the other hand, these unspent transactions accumulate in the pool of UTXOs, taking up

memory on all the nodes that have received it. Given that these outputs can not be spent,

this memory can not be freed.

This thesis’ purpose is twofold. We first propose a formalization of Script in order to

standardize the study into the different problems associated with the language and then

analyze the problem of determining whether an output is unspendable by examining its

associated locking script. Specifically, we study if it is feasible to construct an efficient

algorithm for detecting unspendable transaction outputs that could be deployed both in

electronic wallets, that could warn users when they are locking funds behind malformed

scripts, and in the nodes of the network, that could free up some of their memory by

deleting unspendable transaction outputs from their pool of UTXOs.

3

2. HOW SCRIPT WORKS

At the core of Bitcoin we have transactions. Simply put, Bitcoin transactions specify

which coins are spent and to whom they are transferred. On a technological level, each

Bitcoin transaction can have multiple inputs, each of which is an output of a previous

transaction. Conceptually, in order for a transaction to be accepted, each input that is used

requires a digital signature that corresponds to the public key specified by the transaction

where this input was generated. We depict this dependence graphically in Figure 2.1.

Additionally, the list of all transactions (grouped into blocks) is kept by a peer-to-peer

network “running” Bitcoin, so that we are able to check if the transaction inputs have

already been spent. The only transactions that differ from this template are the coinbase

transactions in which new “coins” are minted, and that have no inputs. These appear once

per block, and only specify who can spend the newly created “coins”.

Inputs (Previous unspent outputs)

Outputs Spending transaction

Previous transaction (indexed as 0xffaa)

num hash Nr_output Confirm Owner

0 0xffcd 4 ALICE Signature

num value Send To

0 3.1 ALICE PubKey

1 5.5 BOB PubKey

Inputs (Previous unspent outputs)

Outputs

num hash Nr_output Confirm Owner

0 0xffaa 1 BOB Signature

num value Send To

0 3.1 ALICE PubKey

1 2.2 CHARLIE PubKey

Figure 2.1. Input to one transaction is the output of a previous transaction.
Here Bob confirms with his digital signature that he is the owner of the pri-
vate key corresponding to the public key used when specifying the recipient
of the funds in the previous transaction. Transactions reference each other
via their hash (i.e. 0xffaa in this case).

4

Inputs (Previous unspent outputs)

Outputs Spending transaction

Previous transaction (indexed as 0xffaa)

num hash Nr_output Confirm Owner

0 0xffcd 4 012123…

num value Send To

0 3.1 OP_DUP OP_HASH...

1 5.5 OP_DUP OP_HASH...

Inputs (Previous unspent outputs)

Outputs

num hash Nr_output Confirm Owner

0 0xffaa 1 732123…

num value Send To

732123… OP_DUP OP_HASH...

Execute the concatenated scripts

0 3.1 OP_DUP OP_HASH...

1 2.2 OP_DUP OP_HASH...

Figure 2.2. Interaction between the locking and unlocking scripts.

In reality, the process of signing a transaction input is somewhat more complicated and

depends on Bitcoin’s scripting language, Script. More precisely, each transaction output

specifies a part of a script written in this language, called the locking script. In order to

spend this output, the transaction using it as an input must provide another sequence of

Script commands, called the unlocking script, such that the script obtained by concatenat-

ing the two executes correctly. Given that stack-based languages operate “in-reverse”, the

two scripts are also concatenated in this order, namely, the locking script is appended to

the unlocking script spending it. We depict this process graphically in Figure 2.2.

When Script was conceived, the process of executing the combination of both scripts

was done by literally concatenating them together and executing the resulting Script. How-

ever, for safety concerns this procedure has been modified since then, such that the execu-

tion of the concatenation is performed by first executing the unlocking script while check-

ing that it was properly constructed, and second executing the locking script with the final

state of the execution of the unlocking script as its initial state (Script implementation:

security improvements, 2010). This distinction is irrelevant in the analysis of the most

5

commonly used locking scripts, however, it will become important in the later sections of

this document when laying out proofs about the inner workings of Script.

Script (Script specification, 2021) is a simple stack-based language which allows to

push elements to a stack, and manipulate its content using basic arithmetic, logical opera-

tions, if-else statements, and cryptographic primitives such as hashing and signature ver-

ification. Script is designed to be loop-free and is therefore not Turing-complete, which

allows it to be more secure, and can be efficiently implemented. Despite of this, Script

still allows to express an array of complicated conditions, giving rise to what is known as

“smart contracts”, which are nothing more than non trivial Script programs that specify

how an output of a previous transaction can be unlocked.

In what follows, we briefly recap the main commands of Script, and explain the prob-

lems we study in this setting.

At the core of Script is the use of a stack. Simply put, the stack is used in order to store

some elements, perform simple operations on them, and later compare them for equality.

Instructions of Script can be grouped as follows:

• Data (256 bit numbers), which are pushed onto the stack when encountered.

• Stack operations (push, pop, . . .).

• Logical operations (and, or, . . .).

• Arithmetical operations on numbers.

• Cryptographic primitives (hashing and signature verification).

We show basic Script commands by illustrating how a basic transaction for transferring

funds from one address to another works. This is called pay to public-key hash (or P2PKH

for short) script, and is one of the simplest meaningful scripts that can be expressed1. As

stated previously, each input to a transaction has an associated locking script. In the case

1We use this for simplicity. Pay to script hash is by far the currently most used type of script, often encap-
sulating P2PKH.

6

of P2PKH this locking script has the form

OP DUP OP HASH160 pubKeyData OP EQUALVERIFY OP CHECKSIG

To unlock this output, we need to provide a set of Script commands, which, when

executed prior to executing the locking script, result in a non empty stack with a nonzero

element at the top. A correct unlocking script in this case would be

signature pubKeyData

Intuitively, the unlocking script provides us the signature signature and the public

key pubKeyData corresponding to this signature, and then the locking script checks its

validity. Namely, the locking script will duplicate the top item on the stack (via OP DUP),

hash this element (with a combination of ripeMD160 and SHA-256 hash functions), push

an item onto the stack, push the public key data onto the stack, check that the provided

public key and the one specified in the script match, and finally verify the signature.

This example already shows how locking scripts can specify complex conditions.

While it is easy to construct the unlocking script for the locking script above, provided

we have the required private key needed to produce the signature, this is not always the

case. For instance, the locking script:

OP DUP OP ADD 7 OP EQUALVERIFY

can never be unlocked since it is asking for a natural number n such that 2n = 7. This can

of course be very problematic if a lot of funds are locked behind such a locking script. A

good Bitcoin wallet should prohibit such transactions, or at least warn the user that their

outputs will become unspendable due to the locking script condition being proposed. This

is known as the unlockability problem, and is the main problem we study in this paper.

Formally, the unlockability problem for Script can be defined as follows:

7

PROBLEM: UNLOCKABILITY OF SCRIPT

INPUT: A locking script l.

QUESTION: Is there an unlocking script u such that when l is

executed after executing u (starting with an empty stack)

we throw no errors and end with a non zero element

on top of the stack?

In this paper we study this problem from an efficiency perspective. More precisely, we

are asking whether there is an algorithm for answering this question that a wallet could

deploy once a locking script has been provided by the user.

8

3. FORMALIZING SCRIPT

In this section, we develop a formalization for Script that allows us to study the com-

putational complexity of some problems related to the evaluation or unlocking of scripts.

Besides, this formalization enables us to fix the notation used throughout the paper.

Given that Script is a stack-based language, we begin with a formal definition of the

stacks that are used by this language. We then focus on the operators of Script, defining

their semantics in terms of stack operations.

3.1. The stacks in Script

For an arbitrary nonempty set M , we denote the concatenation of two elements A,B 2

M as A · B, and naturally extend this notion to any finite number of elements. By M⇤

we denote all finite concatenations of elements of M , including the empty string ", and

with M+ we denote M⇤ without ". A stack over M is any element A
0

·A
1

· . . . ·A
k

2 M⇤.

Intuitively, this string over M represents a stack containing A
0

as the top element, A
1

as

the element below the top one, etc. Notice that we allow the empty stack, which is denoted

by the empty string ".

Script has two stacks at its disposal: the main stack, denoted by '
M

, and an alternate

stack, denoted by '
A

, that can be accessed by a few of the operators. Hence, the stacks of

Script shall be denoted as the pair ('
M

,'
A

). To manipulate these stacks, we use functions

top and tail, defined as follows: top : M+ ! M is used to return the top of the stack, that

is top(A
0

·A
1

· . . . ·A
k

) = A
0

, while tail : M+ ! M⇤ is used to return the stack below the

first element, that is, tail(A
0

·A
1

· . . . ·A
k

) = A
1

· . . . ·A
k

. Notice that the result of tail can

be the empty stack ".

9

3.2. Script operators

For simplicity, we assume that data items in Script come from the set Z.1 This is

a natural generalization when studying the complexity of the unlockability problem for

Script; in fact, it will allow us to establish a tight connection between this problem and

integer linear programming (Schrijver, 1998).

Script has a precisely defined set of allowed operations (Script specification, 2021),

which can be thought of as transforming the two stacks, or giving an error that terminates

the execution. We denote the set of Script operators with O. Formally, every Script com-

mand f , apart from those used for flow control (see Section 3.2.3), can be understood as a

function which takes the main and the alternate stack as its inputs, and transforms them in

some way, or produces an error (denoted by ⇤):

f : (Z⇤ ⇥ Z⇤
) [{⇤} ! (Z⇤ ⇥ Z⇤

) [{⇤}. (3.1)

Thus, scripts–as functions–can be composed, which naturally allows us to define the se-

mantics of a sequence of operators. In particular, to handle errors, we impose the restric-

tion that all of Script operators return an error when the input is an error itself, that is,

f(⇤) = ⇤.

With this notation at hand, we define how each operator f 2 O works. We start by

introducing in Section 3.2.1 a group of basic operators, and defining how a sequence of

them is executed. Then we describe in Section 3.2.2 how the operators associated with

cryptographic primitives work. Finally, we introduce in Section 3.2.3 the flow control

operators and the control stack, which determine when an operator should or should not

be executed. A summary of the operators used in this paper, without including the control

flow operators, is given in Table 3.1.

1In other words, we assume that each binary string encodes an integer.

10

3.2.1. Basic operators in Script

The most basic operation in Script is pushing data onto the (main) stack, which is

achieved using a multitude of different operators (see e.g. the section on “Constants” in

(Script specification, 2021)). In order to simplify this process, we combine all of these

methods of pushing data through the OP PUSH
C

operator, which pushes the value C

onto the main stack. In terms of our generic description of Script commands (3.1), the

semantics of this operation is defined as follows:

OP PUSH
C

('
M

,'
A

) = (C · '
M

,'
A

).

That is, if the operator receives as input a pair of valid stacks '
M

and '
A

, then it puts C

on top of '
M

. Moreover, as already mentioned, we assume that OP PUSH
C

(⇤) = ⇤.

Similarly, to pop the top of the stack, we can use OP DROP, and to duplicate the top

element of the stack, OP DUP. Both of these operators require that the main stack '
M

contains at least one element (i.e. |'
M

| � 1), otherwise they return an error. In the case of

a nonempty stack, their behaviour is defined as:

OP DROP('
M

,'
A

) = (tail('
M

),'
A

)

OP DUP('
M

,'
A

) = (top('
M

) · '
M

,'
A

)

The alternate stack in Bitcoin can be accessed in a very limited number of ways: we

can only move the top element from the main stack onto it by means of the operator

OP TOALTSTACK, and move the top element of the alternate stack onto the main stack

by means of the operator OP FROMALTSTACK. Formally,

OP TOALTSTACK('
M

,'
A

) = (tail('
M

), top('
M

) · '
A

) if |'
M

| � 1

OP FROMALTSTACK('
M

,'
A

) = (top('
A

) · '
M

, tail('
A

)) if |'
A

| � 1

11

Table 3.1. Semantics of Script commands. We assume that '
M

=

A
0

·A
1

· . . . ·A
k

whenever |'
M

| > 0. The condition column states the re-
quirement that needs to be met for each operator not to return an error.
Formally, if the condition for operator f is not met by ('

M

,'
A

), then
f('

M

,'
A

) = ⇤. The function hash corresponds to using SHA-256 and
RIPEMD-160 hashing algorithms in succession. The function chksig cor-
responds to the verification algorithm of the ECDSA protocol for the string
comprised of the transaction information, the first input as the public key
and the second input as the signature.

Operator Condition Semantics

OP PUSH
C

none OP PUSH
C

('
M

,'
A

) = (C · '
M

,'
A

)

OP DROP |'
M

| � 1 OP DROP('
M

,'
A

) = (tail('
M

),'
A

)

OP DUP |'
M

| � 1 OP DUP('
M

,'
A

) = (top('
M

) · '
M

,'
A

)

OP VERIFY |'
M

| � 1 ^ top('
M

) 6= 0 OP VERIFY('
M

,'
A

) = (tail('
M

),'
A

)

OP IFDUP |'
M

| � 1 OP IFDUP('
M

,'
A

) =

8
<

:
('

M

,'
A

) if top('
M

) = 0

(top('
M

) · '
M

,'
A

) if top('
M

) 6= 0

OP NIP |'
M

| � 2 OP NIP('
M

,'
A

) = (A
0

·A
2

· . . . ·A
k

,'
A

)

OP OVER |'
M

| � 2 OP OVER('
M

,'
A

) = (A
1

· '
M

,'
A

)

OP ROT |'
M

| � 3 OP ROT('
M

,'
A

) = (A
2

·A
0

·A
1

·A
3

· . . . ·A
k

,'
A

)

OP SWAP |'
M

| � 2 OP SWAP('
M

,'
A

) = (A
1

·A
0

·A
2

· . . . ·A
k

,'
A

)

OP TUCK |'
M

| � 2 OP TUCK('
M

,'
A

) = (A
0

·A
1

·A
0

·A
2

· . . . ·A
k

,'
A

)

OP 2DROP |'
M

| � 2 OP 2DROP('
M

,'
A

) = (tail(tail('
M

)),'
A

)

OP 2DUP |'
M

| � 2 OP 2DUP('
M

,'
A

) = (A
0

· A
1

· '
M

,'
A

)

OP 3DUP |'
M

| � 3 OP 2DUP('
M

,'
A

) = (A
0

· A
1

· A
2

· '
M

,'
A

)

OP 2OVER |'
M

| � 4 OP 2OVER('
M

,'
A

) = (A
2

· A
3

· '
M

,'
A

)

OP 2ROT |'
M

| � 6 OP 2ROT('
M

,'
A

) = (A
4

·A
5

·A
0

·A
1

·A
2

·A
3

·A
6

· . . . ·A
k

,'
A

)

OP 2SWAP |'
M

| � 4 OP 2SWAP('
M

,'
A

) = (A
2

·A
3

·A
0

·A
1

·A
4

· . . . ·A
k

,'
A

)

OP ADD |'
M

| � 2 OP ADD('
M

,'
A

) = ((A
0

+ A
1

) · A
2

· · ·A
k

,'
A

)

OP SUB |'
M

| � 2 OP SUB('
M

,'
A

) = ((A
1

� A
0

) · A
2

· · ·A
k

,'
A

)

OP EQUAL |'
M

| � 2 OP EQUAL('
M

,'
A

) =

8
<

:
(1·A

2

· . . . ·A
k

,'
A

) if A
0

= A
1

(0·A
2

· . . . ·A
k

,'
A

) if A
0

6= A
1

OP EQUALVERIFY |'
M

| � 2 ^ A
0

= A
1

OP EQUALVERIFY('
M

,'
A

) = (A
2

· . . . ·A
k

,'
A

)

OP PICK |'
M

| � 1 ^ A
0

� 0 ^ |'
M

| � A
0

+ 2 OP PICK('
M

,'
A

) = (A
A0+1

·A
1

· . . . ·A
k

,'
A

)

OP ROLL |'
M

| � 1 ^ A
0

� 0 ^ |'
M

| � A
0

+ 2 OP ROLL('
M

,'
A

) = (A
A0+1

·A
1

· . . . ·A
A0 ·AA0+2

· . . . ·A
k

,'
A

)

OP DEPTH none OP DEPTH('
M

,'
A

) = (|'
M

| · '
M

,'
A

)

OP HASH160 |'
M

| � 1 OP HASH160('
M

,'
A

) = (hash(A
0

) · tail('
M

),'
A

)

OP CHECKSIG |'
M

| � 2 OP CHECKSIG('
M

,'
A

) = (chksig(A
0

, A
1

)·A
2

· . . . ·A
k

,'
A

)

OP CHECKSIGVERIFY |'
M

| � 2 ^ chksig(A
0

, A
1

) = 1 OP CHECKSIGVERIFY('
M

,'
A

) = (A
2

· . . . ·A
k

,'
A

)

In Table 3.1, we provide the list of remaning basic operators and their semantics (except

for the last three rows of this table that include the operators defined in the following

section).

12

As Script operators are understood as functions, the semantics of a script f
1

·f
2

· . . . ·f
n

consisting of a sequence of operators is defined as the composition of these functions.

Moreover, a script is executed successfully over a stack ' if upon executing all of its com-

mands with ' as the initial main stack, we are left with a nonempty main stack containing

a nonzero element at the top. Formally, a script f
1

·f
2

· . . . ·f
n

is executed successfully over

a stack ' if (f
n

� . . . � f
2

� f
1

)(', ") = ('
M

,'
A

) with '
M

6= " and top('
M

) 6= 0. It is

important to notice that the possibility of starting with a nonempty main stack is included

because of the way in which the unlocking and the locking script are executed in suc-

cession, which does not exactly match the execution of the concatenation of both scripts.

More formally, when we have a locking script l, and an unlocking script u, we require

that: (i) u(", ") = ('u

M

,'
A

) (with no errors thrown in between); and (ii) l('u

M

, ") executes

successfully.

EXAMPLE 3.1. Consider the script

OP PUSH
5

·OP PUSH�3

·OP ADD

We execute this script starting with empty main and alternate stacks. We first push number

5 onto the main stack, and then push �3 at the top of the main stack. The last operator is

OP ADD, which according to the semantics defined in Table 3.1 generates a main stack

containing only the number 2 = �3 + 5. Hence, this script is executed successfully, since

upon its completion, we have a nonempty main stack with a nonzero top element. ⌅

3.2.2. Operators for executing cryptographic primitives

An important part of Script resides in the execution of cryptographic primitives, since

in most of the popular locking scripts these functions are used to verify the identity of

the recipient of a transaction. While there are several cryptographic operators in Script,

we only consider the most prevalent of them: OP HASH160, which hashes an input,

and OP CHECKSIG and OP CHECKSIGVERIFY, which are used to check a digital
13

signature. The analysis for all the other cryptographic primitives is identical to these

cases. Let us first describe the primitives hash and chksig underlying these operators.

The operator hash : Z ! Z is a function whose value is the result of hashing the input

by using SHA-256 and then RIPEMD-160. Moreover, chksig is defined as follows. In

a digital signature protocol, the signature verification function receives as input a public

key, a string and a signature. Then such a function determines whether the signature was

obtained by executing the signing function over the string and the private key correspond-

ing to the public key. However, the signature verification operators in Script only receive

as input a public key and a signature. This is because the purpose of these operators is just

to determine if the recipient has access to a certain private key. Therefore, the string that

is signed is a predetermined construction that is obtained by executing certain transfor-

mations over a combination of the transaction’s inputs, outputs and locking scripts. Thus,

given that for the purposes of each script the document that is signed is a constant, we will

disregard this element in our analysis, and we define chksig : Z⇥ Z ! {0, 1} as a func-

tion that takes only two inputs: a string representing a public key and a string representing

a digital signature. The value of chksig(n
1

, n
2

) is defined as 1 if n
2

is a valid signature

for the document constructed from the transaction (as described previously) and the pub-

lic key n
1

, and the value of chksig(n
1

, n
2

) is 0 otherwise. The digital signature protocol

that is used to generate and verify signatures is ECSDA with the secp256k1 elliptic curve

(Script specification, 2021).

Finally, we provide the formal definitions of the hashing and signature checking op-

erators. For the hashing operator, the main stack '
M

is required to contain at least one

element (i.e. |'
M

| � 1), whereas both signature checking operators require the main stack

to have at least two elements (i.e. |'
M

| � 2). If these conditions are not satisfied, then

14

these operators return an error ⇤. In the definition, we assume that '
M

= A
0

·A
1

· . . . ·A
k

:

OP HASH160('
M

,'
A

) = (hash(A
0

) · tail('
M

),'
A

)

OP CHECKSIG('
M

,'
A

) = (chksig(A
0

, A
1

)·A
2

· . . . ·A
k

,'
A

)

OP CHECKSIGVERIFY('
M

,'
A

) =

8
><

>:

(A
2

· . . . ·A
k

,'
A

) if chksig(A
0

, A
1

) = 1

⇤ if chksig(A
0

, A
1

) = 0

3.2.3. Operators for flow control

The final piece we need to add are the flow control operators of the form if-then-else.

While conceptually simple, formalizing this concept needs an extra piece of notation, since

in a block of the form

if <some commands> else <some other commands> end if,

we need to determine the correct block of commands to be executed while reading the

script from left to right. We achieve this by including an extra stack, called the control

stack, which is denoted by '
I

. Intuitively, the control stack allows us to decide whether an

operator is outside an if-then-else block, in which case it is executed as usual, or whether

it belongs to some of the commands within this if-then-else block, in which case we need

to make sure that only the operators from the appropriate block are being executed.

The control stack '
I

consist of zeros and ones exclusively, that is, '
I

2 {0, 1}⇤. A

control stack '
I

is said to represent an execution state if '
I

2 {1}⇤, which indicates that

the command we are seeing has to be executed. In this case, either the control stack will

consist of just 1s and the command will be within the if-then-else block, or the control

stack will be empty, which indicates that we are outside the if-then-else portion of the

script. Formally, the semantics of all the commands defined in the previous sections are

extended so that these operators are executed only when the control stack is in an execution

state. That is, for every Script operator f 2 O, Equation (3.1) should be replaced by the

15

following:

f : (Z⇤ ⇥ Z⇤ ⇥ {0, 1}⇤) [{⇤} ! (Z⇤ ⇥ Z⇤ ⇥ {0, 1}⇤) [{⇤}. (3.2)

Hence, each operator takes as input three stacks: the main stack, the alternate stack

and the control stack. The semantics of commands from Table 3.1 is then redefined

so that there is a third input, '
I

, which is also the third output ('
I

is not changed by

the operators in Table 3.1). Besides, the condition column in Table 3.1 is modified to

include the fact that '
I

represents an execution state (that is, '
I

2 {1}⇤). In particu-

lar, for each operator f in Table 3.1, if '
I

is not an execution state, then we have that

f('
M

,'
A

,'
I

) = ('
M

,'
A

,'
I

); namely, the command is not executed. For example,

consider again the operation OP PUSH
C

with C 2 Z. Its semantics, taking now into

consideration the control stack, is defined as follows:

OP PUSH
C

('
M

,'
A

,'
I

) = (C · '
M

,'
A

,'
I

),

whenever '
I

is an execution state. When '
I

is not an execution state, the semantics of this

operator is defined as:

OP PUSH
C

('
M

,'
A

,'
I

) = ('
M

,'
A

,'
I

).

The flow control operators OP IF,OP ELSE,OP ENDIF are the only ones that can mod-

ify the control stack. Next we explain how they interact with the main and alternate stacks,

and also how they modify the control stack. In essence, these three commands come in

tandem, and take the form:

OP IF <commands1> OP ELSE <commands2> OP ENDIF.

Both commands1 and commands2 are sequences of Script commands, which can again

contain if-then-else blocks. The objective of the control stack is to signal whether the

operators commands1 or commands2 are to be executed, depending on whether the

top value of the main stack upon reaching the OP IF is true or false. This is achieved

by pushing/popping the appropriate value to/from the control stack when either OP IF or

16

OP ELSE is reached, as to signal which block of commands will be executed. Recall that

only a control stack in an execution state allows for a command to be executed, so we will

use this property accordingly.

Intuitively, when reaching an OP IF statement, we will store the truth value of the

top of the main stack onto the control stack. If this was true (or nonzero in our notation),

we will push 1 onto the control stack, thus making it be in an execution state. Then,

upon reaching its corresponding OP ELSE, we will replace the 1 at the top of the control

stack with 0, making it not be in an execution state. This will allow us to skip all the

commands until reaching the accompanying OP ENDIF, which simply pops the top of

the control stack. A similar process occurs when the top value of the main stack upon

reaching OP IF is false. Notice that if-then-else statements can be nested. However, in a

syntactically correct script this is not an issue, as the control stack is populated and cleared

as expected. Formally, the semantics of OP IF is defined as follows:

OP IF('
M

,'
A

,'
I

) =

8
>>>><

>>>>:

(tail('
M

),'
A

, 1 · '
I

) if |'
M

| � 1 ^ top('
M

) 6= 0 ^ '
I

2 {1}⇤

(tail('
M

),'
A

, 0 · '
I

) if |'
M

| � 1 ^ top('
M

) = 0 ^ '
I

2 {1}⇤

('
M

,'
A

, 0 · '
I

) if |'
I

| � 1 ^ '
I

/2 {1}⇤

Morover, in any other case, OP IF('
M

,'
A

,'
I

) = ⇤. For example, an error is re-

turned if '
M

is an empty stack, as there is no stack element to ascertain the truth value.

Thus, the definition of OP IF states that three outcomes are possible upon reaching this

operator, under the appropriate conditions not to produce an error: (1) If the top element

of the main stack is different from 0 and we are in an execution state, then 1 is pushed

onto the control stack, in order to signal that the IF part of the if-then-else block is to be

executed. Besides, the main stack is popped. (2) If the top of the main stack is 0, and

we are in an execution state, we push 0 onto the control stack (i.e. we do not execute the

commands in the IF block, but rather in the ELSE block), and the main stack is popped.

17

(3) Finally, if we are not in an execution state, we push the value 0 to the control stack (in

order to handle nested if-then-else blocks which should not be executed).

On the other hand, the OP ELSE operator simply has to signal whether the commands

that follow it are to be executed or not, which is done by changing the top element of the

control stack as follows:

OP ELSE('
M

,'
A

,'
I

) =

8
><

>:

('
M

,'
A

, 1·tail('
I

)) if |'
I

| � 1 ^ top('
I

) = 0

('
M

,'
A

, 0·tail('
I

)) if |'
I

| � 1 ^ top('
I

) = 1

Moreover, if '
I

is empty, then the operator OP ELSE returns an error, which is for-

malized as OP ELSE('
M

,'
A

,'
I

) = ⇤. Notice that, same as in the case of OP IF,

we also push 1 or 0 to the control stack, in order to handle further nesting of if-then-

else commands. Finally, each if-then-else block is required to be correctly closed via the

OP ENDIF operator. To ensure this, we simply pop the top element of the control stack

upon reaching this command:

OP ENDIF('
M

,'
A

,'
I

) = ('
M

,'
A

, tail('
I

))

Notice that as for the case of OP ELSE, if '
I

is empty, then the operator OP ENDIF

returns the error symbol ⇤.

It is important to notice that in adding these flow control operators to Script, we in-

troduce more nuance into the definition of a sucessful execution. More specifically, we

now say that a script is executed successfully over a stack ' if upon executing all of

its operators with ' as our initial main stack, we are left not only with a nonempty

main stack which contains a nonzero element at the top, but also with an empty con-

trol stack. Formally, a script f
1

·f
2

· . . . ·f
n

is executed successfully over a stack ' if

(f
n

� · · · � f
2

� f
1

)(', ", ") = ('
M

,'
A

,'
I

) with '
M

6= ", top('
M

) 6= 0 and '
I

= ".

Conceptually, this new condition requires flow control blocks to be properly structured in

Script. In particular, a script that ends with a nonempty control stack has an unfinished

if-then-else block, which indicates that it is not well constructed.

18

As we have explained previously, when executing a pair of an unlocking and a locking

script, the process consists of executing the unlocking script over a trio of empty stacks,

and then executing the locking script over the final main stack of the previous execution

and a pair of empty stacks. However, if after the first execution we are left with a nonempty

control stack signaling unfinished if-then-else blocks, then the locking script is simply

given an error and the combined execution ends unsuccessfully (see next section for a

formal definition of the unlockability of Script problem). Therefore, when executing a pair

of an unlocking and a locking script, both executions have to contain properly structured

if-then-else blocks.

EXAMPLE 3.2. To illustrate how flow control operators work, consider the following

script:

OP PUSH
0

OP IF

OP DUP

OP ELSE

OP PUSH
3

OP IF

OP PUSH
7

OP ELSE

OP DUP

OP ENDIF

OP ENDIF

Recall that a script consists of a concatenation of operators, but we have represented this

vertically and indented to better illustrate how flow control blocks are nested. When exe-

cuting this script, value 0 is pushed onto the main stack first (notice that at the beginning
19

the control stack is empty, and we are thus in an execution state), so we have that:

('
M

,'
A

,'
I

) = (0, ", ")

Following this, an OP IF statement is encountered, and the control stack is updated ac-

cordingly. In this case, given that we have value 0 on top of the main stack, 0 is pushed

onto the control stack, and the main stack is emptied:

('
M

,'
A

,'
I

) = (", ", 0)

Since we are not in an execution state, the OP DUP command is ignored, and we continue

with the OP ELSE operator. Given that the top of the control stack is equal to 0, we

replace this value with 1, signaling that the next block of commands is to be executed:

('
M

,'
A

,'
I

) = (", ", 1)

The operator OP PUSH
3

is then executed, so the value 3 is pushed onto the main stack:

('
M

,'
A

,'
I

) = (3, ", 1)

Afterwards, another OP IF operator is reached. Since we are in an execution state and

value 3 is different from 0, value 3 is popped from the main stack, and 1 is pushed onto

the control stack:

('
M

,'
A

,'
I

) = (", ", 1·1)

This means that in the next step we push value 7 onto the main stack, when executing the

operator OP PUSH
7

:

('
M

,'
A

,'
I

) = (7, ", 1·1)

The next operator is OP ELSE, which switches the value 1 on top of the control stack to

0, which in turn means that we are no longer in an execution state:

('
M

,'
A

,'
I

) = (7, ", 0·1)

20

Thus, we need to ignore the following OP DUP operator, and we need to continue with

the OP ENDIF command. Here the top of the control stack is popped:

('
M

,'
A

,'
I

) = (7, ", 1)

Finally, the last command OP ENDIF is executed, leaving the control stack empty, and

finishing with value 7 on the main stack:

('
M

,'
A

,'
I

) = (7, ", ")

Thus, the script results in a successful execution. ⌅

21

4. COMPLEXITY OF SCRIPT

In this section we will focus on analyzing the computational cost of working with

Script. In order to draw a complete picture, we start by formally proving the well-known

fact that simply running a pair of unlocking and locking script can be done in polynomial

time. We then move on to study the unlockability problem. First, in Subsection 4.2 we

show that the problem of determining whether a locking script can be successfully un-

locked is NP-hard. Next, in Subsection 4.3 we discuss what is the main technical result

of this thesis, i.e. the fact that the unlockability problem can be solved in NP. We remark

that these results hold both in the case when we have all the necessary private keys and

hash pre-images used in the locking script, and when they are not available. We discuss

the possible implication of these results further below.

4.1. Evaluating Script

While the main objective of this thesis is studying unlockability of Script, we will start

by proving the folklore result saying that any pair of scripts can be evaluated in polynomial

time. We do this for two reasons: (i) because this result will be needed to prove that

unlockability is solvable in time NP; and (ii) in order to show that our formalization of

Script conforms with the intuitive understanding of the language. Formally, the evaluation

problem for Script can be defined as follows:

22

PROBLEM: EVALUATION OF SCRIPT

INPUT: A locking script l and an unlocking script u.

QUESTION: Are the following two executions successful:

(i) u(", ", ") = ('u

M

,'u

A

, "); and

(ii) l('u

M

, ", ")?

As explained in Section 2, the unlocking script u, and the locking script l are executed

separately in order to strengthen the security of Script. That is, we first run the unlocking

script with a triple of empty stacks. Provided that this execution is successful, the content

of the main stack at the end of this execution, denoted 'u

M

, is transferred to the locking

script, whose execution starts with an empty alternate stack and an empty control stack.

As per the current specification (Script specification, 2021), and implementation (Script

implementation: security improvements, 2010) of Script, the alternate stack content is

erased when starting the execution of the locking script. Recall from Section 3 the fact

that a successful execution also requires the script to start and finish with an empty control

stack in order to validate that flow control commands are properly nested and completed

within both locking and unlocking script.

We can now prove the following:

THEOREM 4.1. The problem EVALUATION OF SCRIPT can be solved in PTIME.

It is straightforward to prove this result. In Subsection 5.2 we will prove a slight

generalization of this result from which Theorem 4.1 readily follows.
23

4.2. Unlockability of Script is hard

In this section we turn to the unlockability problem for Script, and show a lower bound

on its complexity, namely, that the problem is NP-hard. We remind the reader that in the

unlockability problem, as defined in Section 2, we receive a locking script l as an input,

and need to determine whether there exists an unlocking script u, such that l and u, when

given as inputs to the EVALUATION OF SCRIPT problem as defined in subsection 4.1 result

in a positive answer. In the remainder of this thesis we will say that the pair of scripts u

and l executes successfully, whenever this is the case. We can now state the following

theorem:

THEOREM 4.2. The unlockability problem for Script is NP-hard.

PROOF. In order to show this, we present a reduction from integer linear program-

ming, which is one of the classical NP-complete problems (Garey & Johnson, 1979). In

other words, for an arbitrary system of equations with integer coefficients and solution,

we will show how to construct a script that will be unlockable if and only if the system of

equations is solvable.

Let A~x =

~b be an arbitrary system of equations, with

A =

2

66666664

a
00

· · · a
0n

...

a
m0

· · · a
mn

3

77777775

~x =

2

66666664

x
0

...

x
n

3

77777775

~b =

2

66666664

b
0

...

b
m

3

77777775

Conceptually, we aim to construct a locking script l that checks that each of the equa-

tions are fulfilled sequentially. If there exists a solution ~c = (c
0

, . . . , c
n

) for the system,

such that A~c =

~b, then our locking script will be unlocked by an unlocking script that

constructs a stack ', with
24

' = c
0

· . . . ·c
n

If we assume that the locking script l receives a stack ' = d
0

·d
1

· . . . ·d
p

, the process

that it will follow will be:

(i) For each coefficient a
ij

in the ith row of the matrix construct a
ij

d
j

.

(ii) Gradually add these terms into one value.

(iii) Compare the final value with b
i

.

(iv) Repeat for the following row.

Now, in practice we will need to be strategic to represent this process in polynomial

time as a script. We will start off with an empty script

S = "

We will begin with row 0. For each coefficient a
0j

in row 0 we will add the following

operators to the script

(i) In order to retrieve the correct value in the stack we will add the following oper-

ators

S :=

8
>>><

>>>:

S·OP PUSH
j

·OP PICK if j = 0

S·OP PUSH
j+1

·OP PICK if j > 0

This difference stems from the fact that if j > 0 we will already have a partial

result on top of the stack and will have to retrieve the value from further down

in the stack.

25

(ii) We have to construct a
0j

d
j

next, which we will have to accomplish by adding d
j

with itself in a smart way. If we represent |a
0j

| as a binary number we will read

it from right to left and for each bit b add the following operators to the script.

S :=

8
>>><

>>>:

S·OP DUP·OP DUP·OP ADD if b = 1

S·OP DUP·OP ADD if b = 0

The reasoning behind this is that it would be too inefficient to add d
j

|a
0j

| times

with itself. Therefore what we do instead is gradually constructing elements that

correspond to d
j

multiplied by increasing powers of two. The binary represen-

tation of |a
0j

| shows us the composition of the coefficient in terms of powers of

two. For each of this powers 2

y that is present in the composition of |a
0j

| we

leave 2

yd
j

on the stack. If we add all of these values together we will end up

with |a
0j

|d
j

, which brings us to the next step.

(iii) We need to add together all of the elements left on top of the stack by the previ-

ous step. Let a be the amount of 1s in the binary representation of |a
0j

|, we will

add a� 1 ‘add’ operators to the script as follows

S := S·OP ADD

If this is the first coefficient in the row we will move on to the next coefficient

after this step. However, if we are analyzing any coefficient after the first, we

need to add our result with the partial value that was already on top of the stack.

(iv) As previously stated, if the current coefficient is not the first, we need to add our

result with the partial value that was already on top of the stack. To do so we

will add the following operators to the script

S :=

8
>>><

>>>:

S·OP ADD if a
0j

� 0

S·OP SUB if a
0j

< 0

26

This distinction is made because we have constructed |a
0j

|d
j

and in case the

coefficient is negative we must subtract it from the partial result, not add them

together.

After all of the coefficients in the first row have been considered, we need to compare

the result with b
0

to check if the values in the stack fulfill the first equation. To accomplish

this we add the following operators to the script

S := S·OP PUSH
b0 ·OP EQUALVERIFY

This process will be repeated for each row, to make sure that all of the equations are

fulfilled. From this construction it is pretty evident that S will be unlockable if and only

if the system A,~b is solvable, considering that the script simply adds the terms in each

equation and compares the result to the right hand side of the equation.

Now, we just need to make sure that the transformation is polynomial in size. Cru-

cially, there are no complex operations being executed, which means that both time and

space complexity will go hand in hand. For this analysis we will assess each of the de-

scribed steps individually. We will use the terms S
1

, S
2

, S
3

, S
4

to refer to the sections of

the script that each step contributes and the function kSk to refer to the total size of a

script.

(i) The first step will be executed once per coefficient. Given that it adds a push

operator for the index of the coefficient and a pick operator, the size of this

section’s script will be constrained by

kS
1

k  p
1

(log

2

(m+ 1)),

for some polynomial p
1

.

27

(ii) The second step will be executed once per bit of the coefficient and will add at

most three operators to the script each time. Therefore, the size of this section’s

script will be constrained by

kS
2

k  p
2

(log

2

(|a
max

|+ 1)),

where p
2

is some polynomial and a
max

is the coefficient of maximum absolute

value between the matrix and the vector in the system of equations.

(iii) The third step will be executed less than once for each bit in the coefficient and

will add one operator to the script each time. Therefore, the size of this section’s

script will be constrained by

kS
3

k  p
3

(log

2

(|a
max

|+ 1)),

where p
3

is some polynomial and a
max

is the coefficient of maximum absolute

value between the matrix and the vector in the system of equations.

(iv) The fourth and final step will be executed once per coefficient and will add

one operator to the script. Therefore, the size of this section’s script will be

constrained by

kS
4

k  C
1

,

for some constant C
1

.

This means that for each coefficient, the size of the script that will be constructed will

be constrained by

kS
1

·S
2

·S
3

·S
4

k  p
c

(log

2

(m+ 1), log
2

(|a
max

|+ 1)),

where p
c

is some polynomial and a
max

is the coefficient of maximum absolute value

between the matrix and the vector in the system of equations. Now, the script constructed

28

for each equation corresponds to the concatenation of all of the scripts constructed for the

coefficients in the equation and a final pair of operators that push an element corresponding

to the vector to the stack and checks that the results are equal. Let S
eq

be the script

constructed for an arbitrary equation,

kS
eq

k  (n+ 1)p
c

(log

2

(m+ 1), log
2

(|a
max

|+ 1)) + log

2

(|a
max

|+ 1) + C
2

 p
eq

(log

2

(m+ 1), log
2

(|a
max

|+ 1), n),

where p
eq

is some polynomial, C
2

is some constant and a
max

is the coefficient of

maximum absolute value between the matrix and the vector in the system of equations.

The complete script just corresponds to the scripts constructed for each equation. Thus,

kSk  mp
eq

(log

2

(m+ 1), log
2

(|a
max

|+ 1), n)

 p
S

(m,n, log
2

(|a
max

|+ 1)),

for some polynomial p
S

, which is evidently polynomial in the size of the system of

equations. The complete algorithm that performs the described transformation can be

found in appendix A. The rigurous formalization helps to explain how the edge cases are

handled. For example, it shows how to construct the script when the first coefficient in an

equation is negative and how to handle coefficients equal to zero. ⌅

We would first like to remark that simpler reductions are possible, for instance, from

the 3SAT problem. We have opted for a reduction from integer linear programming, since

we will also use this problem when showing NP-membership of unlockability, thus further

illustrating how the two problems are closely linked.
29

4.3. NP-membership

Although the NP-hardness from the previous subsection might seem to suggest that

unlockability is not a practically feasible problem, recent advancements in the area of

SAT solvers actually tell us that for scripts of reasonable size, we can solve the problem

efficiently, provided that we can also show it belongs to the class NP1. That is precisely

the objective of this section.

In what is the main technical contribution of our work, we can establish the following:

THEOREM 4.3. The unlockability problem for Script is in NP.

The proof for this result will consist in showing that for each unlockable script there

exists a certificate that is polynomially-sized compared to the script and that we can evalu-

ate the pair of locking script and certificate in polynomial time. We will also need to prove

that a script is unlockable if and only if there exists a certificate for which the evaluation

of script and certificate is succesful.

More specifically, we will start by showing why we can not use an unlocking script

as our certificate for unlockability. We will move on to propose another structure that

will act as our certificate and prove that a script is unlockable if and only if it has a valid

certificate. We will then prove that evaluating a locking script over a certificate can be

done in polynomial time compared to the size of the pair. Lastly, we will prove that under

reasonable restrictions there exists a valid certificate of polynomial size compared to the

script for each unlockable locking script.

1This is, of course, under the assumption that we have at our disposal the required private keys, and the hash
pre-images. We are not actually suggesting that breaking public key cryptography is feasible, although in
the sense of complexity analysis it makes no difference. Our claim is that, should we know the required
cryptographic data, the analysis of the validity of the locking script itself can be done with a SAT solver.

30

5. PROVING NP-MEMBERSHIP

Proving that the problem of unlockability is in NP would ideally just consist of show-

ing that script evaluation is in PTIME and that any unlockable locking script has at least

one valid solution of polynomial size. If this was the case, one possible non-deterministic

algorithm that solves the problem would consist of guessing a script and checking whether

it was capable of unlocking our locking script. However, it is pretty easy to construct an

unlockable locking script for which any valid solution is exponential in the size of the

script. Take the following example

S = OP PUSH
x

· OP PICK · OP PUSH
1

(5.1)

If x � 0 it is evident that for a script to be able to unlock S it just needs to construct

a stack with at least x + 1 elements. Considering that the size of this script is kSk =

dlog
2

(x + 1)e + C for some constant C 2 Z, any stack with x or more elements will

be exponential in the size of S. In addition, given that each operator pushes at most 3

elements to the stack, to construct a stack of exponential size compared to kSk we would

need a script with an exponential amount of operators.

5.1. An alternative representation

We propose an alternative representation of stacks that allows us to describe only the

relevant elements in the stack (i.e. the elements that are utilized by any operator in the

script). We add an additional symbol ? that represents anonymous elements. These are

non-explicit elements whose values are not relevant for the execution of the analyzed

locking script. In addition, we will group anonymous elements in blocks and only detail

how many elements are in each of these blocks. We will denote the set containing the

integers and the anonymous element as Z? = Z[{?}. The following is a stack described

in this manner.

31

' = ?h0 · A
0

·?h1 · A
1

· . . . · A
k�1

·?hk

In this example A
0

, . . . , A
k�1

2 Z and h
0

, . . . , h
k

2 N. Note that for consistency we

demand the existence of an anonymous block between each pair of integers, even if its

size is 0. Let us come back to the example in equation 5.1. With this new representation

we can describe a valid unlocking stack '
M

2 Z⇤
? much more succintly, as

'
M

= ?x · 1 ·?0

Next we extend the definitions of the functions over stacks top, tail to work over this

representation of stacks with anonymous elements, in the natural way. Namely, let ' =

?h0 ·A
0

·?h1 · . . . ·A
k�1

·?hk 2 Z⇤
?, then

top?(') =

8
>>><

>>>:

? if h
0

� 1

A
0

if h
0

= 0

tail?(') =

8
>>><

>>>:

?h0�1·A
0

· . . . ·A
k�1

·?hk if h
0

� 1

?h1 ·A
1

· . . . ·A
k�1

·?hk if h
0

= 0

As can be easily seen, we introduce the notation top?, tail? to explicitly state if the

functions are being applied to a stack with natural or compressed notation.

By utilizing the concept of anonymous elements we can prove that unlockability is in

NP as described at the beginning of this section. The process consists of the following

three steps:

(i) Prove that a locking script is unlockable if and only if there exists a valid un-

locking stack with anonymous elements for it,

32

(ii) show that evaluating the execution of a script with a starting stack with anony-

mous elements is in PTIME and

(iii) prove that any unlockable locking script has at least one valid unlocking stack

with anonymous elements of polynomial size in this representation.

The first step requires just a simple analysis and the second step is a slight generaliza-

tion of Theorem 4.1. However, the third step is the most technical. For our bounds we

rely on bounds for the solution of integer linear programming (Papadimitriou, 1981), but

in order to invoke this result we need to develop several intermediate results.

While Script operators remain the same, their semantics must be extended to account

for stacks with anonymous elements. This is straightforward in most cases, but in some

cases we need to impose certain conditions on the stacks to make sure that the operators do

not manipulate anonymous elements. If the stacks do not fulfill these requirements, then

they always evaluate to the error ⇤. The treatment is analogous for all script operators, so

we defer the formal semantics to appendix B.

As an example, let us consider OP ADD. We originally defined this operator’s value

as OP ADD('
M

,'
A

) = ((A
0

+ A
1

) · A
2

· · ·A
k

,'
A

), where '
M

= A
0

· . . . ·A
k

. We

also required the main stack to have at least two elements for the operator to execute

successfully because otherwise we could not add the top elements together.

Now, we will incorporate the condition that the two first elements need to be integers.

Evidently, if one or both of these elements was anonymous, the result of adding them

together would be uncertain. Formally, let '
A

2 Z⇤ and '
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk 2

Z⇤
?, the conditions that we impose for the operator to not output an error are

33

|'
M

| � 2

h
0

= 0

h
1

= 0

Additionally, we slightly modified the definition of the operator to show how it works

over the compact representation of stacks with anonymous elements. This is shown in the

following equation

OP ADD('
M

,'
A

) = (?0·(A
0

+ A
1

)·?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

)

Before moving on to the aforementioned proofs we will define several auxiliary func-

tions that will be helpful in formalizing certain properties over the execution of scripts.

These functions will represent the maximum element in a pair of stacks, the size of the

biggest block of anonymous elements in a stack, the amount of integer elements in a stack

and the maximum element pushed to the stack by a script, and will be denoted by the

following names:

maxelem : Z⇤
? ⇥ Z⇤ ! N

maxgap : Z⇤
? ! N

elemnr : Z⇤
? ! N

maxpush : O⇤ ! N

Let S = f
0

· . . . ·f
n

2 O⇤, ' = ?h0 ·A
0

· . . . ·A
k�1

·?hk 2 Z⇤ and = B
0

· . . . ·B
`

2 Z⇤.

We define the values of these functions as the following expressions.

34

maxelem(',) = max

A2{A0,...,Ak�1}[{B0,...,B`}
|A|

maxgap(') = max{h
0

, . . . , h
k

}

elemnr(') = k

maxpush(S) = max{|C| | OP PUSH
C

2 {f
0

, . . . , f
n

}}

As we can see, for both maxelem and maxpush there is an edge case for which they

are not defined. Let S 0
= g

0

· . . . ·g
m

2 O⇤, such that {g
0

, . . . , g
m

} \ {OP PUSH
C

| C 2

Z} = ;, we define their values in these edge cases as

maxelem(?0, ") = 0

maxpush(S 0
) = 0

Next, we will perform the first step of our process for proving that unlockability is in

NP. Specifically, we will prove that a locking script is unlockable if and only if there exists

a valid unlocking stack with anonymous elements for it. This sentiment is expressed in

the following Lemma.

LEMMA 5.1. Let S = f
0

· . . . ·f
n

2 O⇤ be an arbitrary script. S is unlockable if and

only if there exists a stack ' 2 Z⇤
?, such that

(f
n

� . . . � f
0

)(', ", ") = ('
M

,'
A

, "),

where

|'
M

| � 1

top?('M

) /2 {0,?}

35

The proof for this Lemma is explained in appendix C. Considering this equivalence,

from this point onwards we will exclusively consider unlocking stacks instead of unlock-

ing scripts. With this new development in mind we can reformulate the problem of script

unlockability as follows.

PROBLEM: STACK UNLOCKABILITY OF SCRIPT

INPUT: A locking script l.

QUESTION: Is there an unlocking stack ' such that the following

execution is successful: l(', ", ")?

As previously stated, in what follows we will prove that this problem is in NP.

5.2. Script evaluation

This section focuses on proving that determining whether the evaluation of an un-

locking script with a starting stack with anonymous elements is successful is in PTIME.

Formally,

PROBLEM: STACK EVALUATION OF SCRIPT

INPUT: A locking script l and an unlocking stack '.

QUESTION: Is the execution following execution successful:

l(', ", ")?

36

In order to set an upper bound on the complexity of this problem we will begin by

constraining the value of the auxiliary functions introduced in section 5.1. Firstly, we will

constrain these values for individual operators.

LEMMA 5.2. Let f 2 O, '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤, with f('
M

,'
A

,'
I

) =

('0
M

,'0
A

,'0
I

). Then,

maxgap('0
M

)  2 · maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 3

Additionally, let f /2 {OP DEPTH,OP HASH160}[{OP PUSH
C

| C 2 Z}. Then

we have

maxelem('0
M

,'0
A

)  2 · maxelem('
M

,'
A

) + 1

PROOF. These bounds are proved case by case in appendix D. ⌅

Based on these results we will also set upper bounds on the values of these functions

over the execution of complete scripts. These bounds must take into account the size of

the stacks, but in order to talk about the size of stacks, we need to settle on the way these

stacks are encoded. For our complexity results we assume that they are always represented

as arrays of elements: the main stack is an array of alternating sizes of anonymous blocks

and integer elements and the alt stack is an array of integer elements. Then, assuming the

elements in the stacks and the size of the blocks of anonymous elements are represented

in binary notation and that we use one extra bit to represent the sign of each number, we

then define the size k'k of a stack ' as follows:
37

Let ' = ?h0 ·A
0

· . . . ·A
k�1

·hk 2 Z⇤
?. Then the size k'k used to represent ' is as

follows:

k'k =

k�1X

i=0

⇣
log

2

(h
i

+ 1) + log

2

(|A
i

|+ 1) + C
1

⌘
+ log

2

(h
k

+ 1) + C
2

,

where C
1

and C
2

are constants that do not depend on '1. Note that we can also derive the

following bounds directly from the definition.

log

2

(maxgap(') + 1)  k'k (5.2)

log

2

(maxelem(', ") + 1)  k'k (5.3)

2elemnr(') + 1  k'k (5.4)

These bounds will help us relate several results that make use of the auxiliary functions

with the size of the representation of the stack. This is because we will be interested in

establishing a relation between the runtime of executing a script with an initial stack and

the sizes of the inputs.

As we previously stated, we will now set upper bounds on the value of the auxiliary

functions defined in section 5.1. We will start by proving that the value of maxgap over

the execution of a script S = f
0

· . . . ·f
n

with an initial stack ' is polynomial in 2

n and

maxgap(').

LEMMA 5.3. Let S = f
0

· . . . ·f
n

2 O⇤ and '
M

2 Z⇤
?. The biggest block of anony-

mous elements that can appear in the main stack after any partial execution (f
i

� . . . �

f
0

)('
M

, ", ") is bounded by

2

n+1maxgap('
M

)

1The constants depend on lower level details depending on specifics of the encoding used, but are not
important in our analysis, since they do not depend on the stacks.

38

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

= " 2 Z⇤ and '
I

= " 2 {0, 1}⇤.

Additionally, let (f
i�1

� . . . � f
0

)('
M

,'
A

,'
I

) = ('i

M

,'i

A

,'i

I

) for all i 2 {1, . . . , n + 1}

and ('
M

,'
A

,'
I

) = ('0

M

,'0

A

,'0

I

). Formally, what we want to prove is that

max

i2{0,...,n+1}
{maxgap('i

M

)}  2

n+1maxgap('
M

)

In order to do this, we will prove by induction that for all i 2 {0, . . . , n+ 1}

maxgap('i

M

)  2

imaxgap('
M

)

Base case.

maxgap('0

M

) = maxgap('
M

)

= 2

0maxgap('
M

)

Inductive step. Let’s assume that for an arbitrary i 2 {0, . . . , n}

maxgap('i

M

)  2

imaxgap('
M

)

Then,

maxgap('i+1

M

)  2maxgap('i

M

)

 2 · 2imaxgap('
M

)

= 2

i+1maxgap('
M

)

Moreover, for all i 2 {0, . . . , n+ 1}

39

maxgap('i

M

)  2

imaxgap('
M

)

 2

n+1maxgap('
M

)

Thus, we have that

max

i2{0,...,n+1}
{maxgap('i

M

)}  2

n+1maxgap('
M

)

⌅

Next, we will constrain the value of elemnr. The value of this function over the

execution of a script with an initial stack will be polynomial in the amount of operators in

the script and the amount of elements in the initial stack as stated in the following Lemma.

LEMMA 5.4. Let S = f
0

· . . . ·f
n

2 O⇤ and '
M

2 Z⇤
?. The amount of integer elements

that can appear in the main stack after any partial execution (f
i

� . . . � f
0

)('
M

, ", ") is

bounded by

elemnr('
M

) + 3(n+ 1)

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

= " 2 Z⇤ and '
I

= " 2 {0, 1}⇤.

Additionally, let (f
i�1

� . . . � f
0

)('
M

,'
A

,'
I

) = ('i

M

,'i

A

,'i

I

) for all i 2 {1, . . . , n + 1}

and ('
M

,'
A

,'
I

) = ('0

M

,'0

A

,'0

I

). Formally, what we want to prove is that

max

i2{0,...,n+1}
{elemnr('i

M

)}  elemnr('
M

) + 3(n+ 1)

In order to do this, we will prove by induction that for all i 2 {0, . . . , n+ 1}

elemnr('i

M

)  elemnr('
M

) + 3i

40

Base case.

elemnr('0

M

) = elemnr('
M

)

= elemnr('
M

) + 3 · 0

Inductive step. Let’s assume that for an arbitrary i 2 {0, . . . , n}

elemnr('i

M

)  elemnr('
M

) + 3i

Then,

elemnr('i+1

M

)  elemnr('i

M

) + 3

 elemnr('
M

) + 3i+ 3

= elemnr('
M

) + 3(i+ 1)

Moreover, for all i 2 {0, . . . , n+ 1}

elemnr('i

M

)  elemnr('
M

) + 3i

 elemnr('
M

) + 3(n+ 1)

Thus, we have that

max

i2{0,...,n+1}
{elemnr('i

M

)}  elemnr('
M

) + 3(n+ 1)

⌅

41

By using Lemmas 5.3 and 5.4 we will also be able to set an upper bound on the depth

of the stack over an execution of a script with an initial stack. Specifically, if we execute

a script S = f
0

· . . . ·f
n

over an initial stack, the size of the stack throughout the execution

is constrained by a polynomial in 2

n, the biggest gap in the initial stack and the number of

integer elements in the initial stack.

LEMMA 5.5. Let S = f
0

· . . . ·f
n

2 O⇤ and '
M

2 Z⇤
?. The depth of the main stack

after any partial execution (f
i

� . . . � f
0

)('
M

, ", ") is bounded by

elemnr('
M

) + 3(n+ 1) + 2

n+1maxgap('
M

)(elemnr('
M

) + 3(n+ 1) + 1)

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

= " 2 Z⇤ and '
I

= " 2 {0, 1}⇤.

Additionally, let (f
i�1

� . . . � f
0

)('
M

,'
A

,'
I

) = ('i

M

,'i

A

,'i

I

) for all i 2 {1, . . . , n + 1}

and ('
M

,'
A

,'
I

) = ('0

M

,'0

A

,'0

I

). Formally, what we want to prove is that

max

i2{0,...,n+1}
{|'i

M

|} 

elemnr('
M

) + 3(n+ 1) + 2

n+1maxgap('
M

)(elemnr('
M

) + 3(n+ 1) + 1)

Now, for an arbitrary step i 2 {0, . . . , n+ 1}, we have that

|'i

M

|  elemnr('i

M

) + maxgap('i

M

)(elemnr('i

M

) + 1)

 max

j2{0,...,n+1}
{elemnr('j

M

) + maxgap('j

M

)(elemnr('j

M

) + 1)}

 max

j2{0,...,n+1}
{elemnr('j

M

)}+

max

j2{0,...,n+1}
{maxgap('j

M

)}
✓

max

j2{0,...,n+1}
{elemnr('j

M

)}+ 1

◆

 elemnr('
M

) + 3(n+ 1)+

2

n+1maxgap('
M

)(elemnr('
M

) + 3(n+ 1) + 1)

Note that some of the transformations are performed by applying the results in lemmas

5.3 and 5.4. ⌅
42

By utilizing the result of Lemma 5.5 we will be able to set an upper bound on max-

elem over the execution of a script. Specifically, we will show that if we execute a script

S = f
0

· . . . ·f
n

with an initial stack ', the element with a maximum absolute value in the

pair of stacks can be constrained by a polynomial over 2n, 2k'k and maxpush(S). For this

purpose, we will use maxhash = max

C2Z{|hash(C)|} to denote the maximum absolute

value of any hash. This value is clearly a constant.

LEMMA 5.6. Let S = f
0

· . . . ·f
n

2 O⇤ and '
M

2 Z⇤
?. The biggest element that can

appear in either stack after any partial execution (f
i

� . . . � f
0

)('
M

, ", ") is bounded by

pmaxelem

⇣
2

n, 2k'Mk,maxpush(S)
⌘
,

for some fixed polynomial pmaxelem, independent of S and '
M

.

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

= " 2 Z⇤ and '
I

= " 2 {0, 1}⇤.

Additionally, let (f
i�1

� . . . � f
0

)('
M

,'
A

,'
I

) = ('i

M

,'i

A

,'i

I

) for all i 2 {1, . . . , n + 1}

and ('
M

,'
A

,'
I

) = ('0

M

,'0

A

,'0

I

). Formally, we wish to prove that

max

i2{0,...,n+1}
{maxelem('i

M

,'i

A

)}  pmaxelem

⇣
2

n, 2k'Mk,maxpush(S)
⌘
,

for some polynomial pmaxelem. In order to do this, we will begin by simplifying the

result of Lemma 5.5 to make it easier to work with. As we know from equations (5.2) and

(5.4),

log

2

(maxgap('
M

) + 1)  k'
M

k

2elemnr('
M

) + 1  k'
M

k

Therefore, we have that
43

max

i2{0,...,n+1}
{|'i

M

|}  elemnr('
M

) + 3(n+ 1)+

2

n+1maxgap('
M

)(elemnr('
M

) + 3(n+ 1) + 1)

 k'
M

k+ 3(n+ 1)+

2

n+1

2

k'Mk
(k'

M

k+ 3(n+ 1) + 1)

 p
depth

⇣
2

n, 2k'Mk
⌘
,

for some polynomial p
depth

. With this established, we will move on to prove by induc-

tion that for all i 2 {0, . . . , n+ 1}

maxelem('i

M

,'i

A

) 

2

i

max{maxelem('
M

,'
A

),maxpush(S),maxhash, p
depth

(2

n, 2k'Mk
)}+ i

Base case.

maxelem('0

M

,'0

A

) = maxelem('
M

,'
A

)

 max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}

= 2

0

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ 0

Inductive step. Let’s assume that for an arbitrary i 2 {0, . . . , n}

maxelem('i

M

,'i

A

) 

2

i

max{maxelem('
M

,'
A

),maxpush(S),maxhash, p
depth

(2

n, 2k'Mk
)}+ i

44

Given that the element with maximum absolute value behaves differently depending

on the operator that is executed on step i, we will carry out the analysis differentiating

between the different possible cases.

• Case 1: f
i

= OP PUSH
C

maxelem('i+1

M

,'i+1

A

)  max{maxelem('i

M

,'i

A

), |C|}

 max{2i max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i, |C|}

= 2

i

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i

 2

i+1

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i+ 1

• Case 2: f
i

= OP HASH160

maxelem('i+1

M

,'i+1

A

)  max{maxelem('i

M

,'i

A

),maxhash}

 max{2i max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i,maxhash}

= 2

i

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i

 2

i+1

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i+ 1

• Case 3: f
i

= OP DEPTH

45

By applying the simplified result of Lemma 5.5,

maxelem('i+1

M

,'i+1

A

)  max{maxelem('i

M

,'i

A

), |'i

M

|}

 max{2i max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i, |'i

M

|}

= 2

i

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i

 2

i+1

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i+ 1

• Case 4: f
i

/2 {OP HASH160,OP DEPTH} [{OP PUSH
C

| C 2 Z}

maxelem('i+1

M

,'i+1

A

)  2 · maxelem('i

M

,'i

A

) + 1

 2 · (2i max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i) + 1

= 2

i+1

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i+ 1

Moreover, for all i 2 {0, . . . , n+ 1}

maxelem('i

M

,'i

A

)  2

i

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ i

 2

n+1

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ n+ 1

46

Thus, given that we know from equation (5.3) that log
2

(maxelem('
M

, ") + 1)  k'
M

k,

for some polynomial pmaxelem,

max

i2{0,...,n+1}
{maxelem('i

M

,'i

A

)}  2

n+1

max{maxelem('
M

,'
A

),maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ n+ 1

 2

n+1

max{2k'Mk,maxpush(S),

maxhash, p
depth

(2

n, 2k'Mk
)}+ n+ 1

 pmaxelem

⇣
2

n, 2k'Mk,maxpush(S)
⌘

As a point of notice, the definition of pmaxelem is not dependent on the analyzed instance. In

other words, the same polynomial is used as a bound for any execution, only interchanging

its variables. ⌅

The bounds found through Lemmas 5.3, 5.4, 5.5 and 5.6 will become useful, insofar as

they prove that the sizes of the main stack and the biggest element in both stacks through-

out the execution are polynomial in the size of the inputs. This sentiment is expressed in

the following lemma.

LEMMA 5.7. Let S = f
0

· . . . ·f
n

2 O⇤ and '
M

2 Z⇤
?. The size of the representation

of the main stack after any partial execution (f
i

� . . . � f
0

)('
M

, ", ") is bounded by

p
size

(n, k'
M

k, log
2

(maxpush(S) + 1)),

for some fixed polynomial p
size

, independent of S and '
M

.

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

= " 2 Z⇤ and '
I

= " 2 {0, 1}⇤.

Additionally, let (f
i�1

� . . . � f
0

)('
M

,'
A

,'
I

) = ('i

M

,'i

A

,'i

I

) for all i 2 {1, . . . , n + 1}

and ('
M

,'
A

,'
I

) = ('0

M

,'0

A

,'0

I

). Formally, we want to prove that
47

max

i2{0,...,n+1}
{k'i

M

k}  p
size

(n, k'
M

k, log
2

(maxpush(S) + 1)),

for some polynomial p
size

. In order to do this, we will begin by simplifying the results

of Lemmas 5.3 and 5.4 to make them easier to work with. As we know from equations

(5.2) and (5.4),

log

2

(maxgap('
M

) + 1)  k'
M

k

2elemnr('
M

) + 1  k'
M

k

Therefore, we have that

max

i2{0,...,n+1}
{maxgap('i

M

)}  2

n+1maxgap('
M

)

 2

n+1

2

k'Mk

 pmaxgap

⇣
2

n, 2k'Mk
⌘

for some fixed polynomial pmaxgap, independent of S and '
M

. In addition, we have

max

i2{0,...,n+1}
{elemnr('i

M

)}  elemnr('
M

) + 3(n+ 1)

 k'
M

k+ 3(n+ 1)

 pelemnr(k'M

k, n),

for some fixed polynomial pelemnr, independent of S and '
M

. Now, let i 2 {0, . . . , n+

1} be an arbitrary step, '
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk and 'i

M

= ?q0 ·B
0

· . . . ·B
r�1

·?qr .

We know that

48

k'i

M

k =

r�1X

j=0

⇣
log

2

(q
j

+ 1) + log

2

(|B
j

|+ 1) + C
1

⌘
+ log

2

(q
r

+ 1) + C
2

,

for some constants C
1

and C
2

. We also know from the simplification of Lemma 5.3

that for all j 2 {0, . . . , r},

q
j

 pmaxgap

⇣
2

n, 2k'Mk
⌘

Thus,

log

2

(q
j

+ 1)  log

2

⇣
pmaxgap

⇣
2

n, 2k'Mk
⌘
+ 1

⌘

 p
1

(n, k'
M

k),

for some polynomial p
1

. From Lemma 5.6 we know that for all j 2 {0, . . . , r � 1},

|B
j

|  pmaxelem

⇣
2

n, 2k'Mk,maxpush(S)
⌘

Thus,

log

2

(|B
j

|+ 1)  log

2

⇣
pmaxelem

⇣
2

n, 2k'Mk,maxpush(S)
⌘
+ 1

⌘

 p
2

⇣
n, k'

M

k, log
2

(maxpush(S) + 1)

⌘
,

for some polynomial p
2

. In addition, from the simplification of Lemma 5.4 we know

that

49

r  pelemnr(k'M

k, n)

If we combine these results, we have that

k'i

M

k 
r�1X

j=0

⇣
p
1

(n, k'
M

k) + p
2

⇣
n, k'

M

k, log
2

(maxpush(S) + 1)

⌘
+ C

1

⌘

+ p
1

(n, k'
M

k) + C
2

= r
⇣
p
1

(n, k'
M

k) + p
2

⇣
n, k'

M

k, log
2

(maxpush(S) + 1)

⌘
+ C

1

⌘

+ p
1

(n, k'
M

k) + C
2

 pelemnr(k'M

k, n)
⇣
p
1

(n, k'
M

k) + p
2

⇣
n, k'

M

k, log
2

(maxpush(S) + 1)

⌘

+ C
1

⌘
+ p

1

(n, k'
M

k) + C
2

 p
size

(n, k'
M

k, log
2

(maxpush(S) + 1)),

for some polynomial p
size

. It is important to note that this polynomial is independent

of the analyzed script and initial stack. This means that the same polynomial will be a valid

upper bound for the size of the representation of the stack throughout the execution of any

pair of script and stack, only needing to interchange the variables of the polynomial. ⌅

Now we can move on to prove an upper bound on the execution time of script evalu-

ation. We will consider a naı̈ve algorithm that receives a script S = f
0

· . . . ·f
n

2 O⇤ and

a stack with anonymous elements ' 2 Z⇤
?, executes each operator in succession over the

stack and determines whether the execution did not raise any errors and finished with a

nonzero and non-anonymous element on top of the stack. We will use T to denote the ex-

ecution time of the algorithm that executes a series of operators over either a trio of stacks

or an error, with
50

T : O⇤ ⇥ ((Z⇤
? ⇥ Z⇤ ⇥ {0, 1}⇤) [{⇤}) ! N

LEMMA 5.8. Let S = f
0

· . . . ·f
n

2 O⇤ and ' 2 Z⇤
?,

T (S,', ", ")  p
T

(n, k'k, log
2

(maxpush(S) + 1))

T (S,⇤)  p
T

(n, k'k, log
2

(maxpush(S) + 1)),

for some fixed polynomial p
T

, independent of S and '.

PROOF. By analizing the definition of the operators in Script provided in appendix B

we can ascertain that all of them can be executed in polynomial time in the size of the

representation of the main stack, the depth of the control stack, the size of the top of the

alt stack and, in the case of OP PUSH
C

, in the size of the pushed element. We include

a more detailed explanation for this observation along with some illustrative examples in

appendix E.

Formally, let f 2 O� {OP PUSH
C

| C 2 Z}, '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤,

we have that

T (f,'
M

,'
A

,'
I

)  p
1

(k'
M

k, |'
I

|, log
2

(top('
A

) + 1)),

for some polynomial p
1

. Now, let f = OP PUSH
C

, we have that

T (f,'
M

,'
A

,'
I

)  p
2

(k'
M

k, |'
I

|, log
2

(|top('
A

)|+ 1), log
2

(|C|+ 1)),

for some polynomial p
2

.
51

Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

= " 2 Z⇤ and '
I

= " 2 {0, 1}⇤. Addi-

tionally, let (f
i�1

� . . . � f
0

)('
M

,'
A

,'
I

) = ('i

M

,'i

A

,'i

I

) for all i 2 {1, . . . , n + 1} and

('
M

,'
A

,'
I

) = ('0

M

,'0

A

,'0

I

). It is clear that

T (S,'
M

,'
A

,'
I

) 
nX

i=0

T (f
i

,'i

M

,'i

A

,'i

I

)

Now, let i 2 {0, . . . , n} be an arbitrary step. If f
i

= OP PUSH
C

for some C 2 Z,

then

T (f
i

,'i

M

,'i

A

,'i

I

)  p
2

(k'i

M

k, |'i

I

|, log
2

(|top('i

A

)|+ 1), log
2

(|C|+ 1)).

Otherwise, we have that

T (f
i

,'i

M

,'i

A

,'i

I

)  p
1

(k'i

M

k, |'i

I

|, log
2

(|top('i

A

)|+ 1)).

Thus, there must exist some polynomial p
3

, such that

T (f
i

,'i

M

,'i

A

,'i

I

)  p
3

(k'i

M

k, |'i

I

|, log
2

(|top('i

A

)|+ 1), log
2

(maxpush(S) + 1)).

This bound will be helpful, but is not readily usable, as it does not relate the execution

time of an operator directly to the sizes of the script and the initial stack. Thus, we will

perform two simplifications based on the previous Lemmas. Specifically, using the results

in Lemma 5.6 we know that

|top('i

A

)|  pmaxelem

⇣
2

n, 2k'Mk,maxpush(S)
⌘

52

Thus, there must exist a polynomial p
4

, such that

log

2

(|top('i

A

)|+ 1)  p
4

(n, k'
M

k, log
2

(maxpush(S) + 1))

Additionally, from Lemma 5.7 we learned that

k'i

M

k  p
size

(n, k'
M

k, log
2

(maxpush(S) + 1))

Finally, we have not talked extensively about the way in which the control stack be-

haves through the execution of a script. However, it is evident that the only operator that

can push elements to this stack (OP IF) can do so only one at a time. Thus, we can set an

upper bound on the depth of the control stack as follows

|'i

I

|  n+ 1

There must then exist a polynomial p
5

, such that

T (f
i

,'i

M

,'i

A

,'i

I

)  p
5

(n, k'
M

k, log
2

(maxpush(S) + 1))

If we combine these results we can easily see that there must exist a polynomial p
T

,

such that

T (S,'
M

, ", ") 
nX

i=0

T (f
i

,'i

M

,'i

A

,'i

I

)

 (n+ 1)p
5

(n, k'
M

k, log
2

(maxpush(S) + 1))

 p
T

(n, k'
M

k, log
2

(maxpush(S) + 1))

53

It is important to note that this polynomial is independent of the analyzed script and

initial stack. This means that the same polynomial will be a valid upper bound for the exe-

cution time of the algorithm with any pair of script and stack, only needing to interchange

the variables of the polynomial. It is also evident that if for any step i 2 {0, . . . , n} the

result of applying the i-th operator over the trio of stacks is an error

f
i

('i

M

,'i

A

,'i

I

) = ⇤,

then the execution from this point forward will just consist of carrying over the error

and will therefore be even shorter than it would have been when executing all of the oper-

ators. Similarly, if we start off with an error as our input, we will not need to execute any

operator in the script. In other words,

T (S,⇤)  C

 p
T

(n, k'
M

k, log
2

(maxpush(S) + 1)),

for some constant C. ⌅

Now, if we consider the complete execution of the evaluation algorithm, it not only

needs to execute the operators over the initial stack, but it also must assess if the final

stacks are valid. We will use T
comp

to denote the execution time of the complete algorithm

that executes a series of operators over either a trio of stacks or an error and determines

whether the finishing stacks fulfill the conditions for a successful execution, with

T
comp

: O⇤ ⇥ ((Z⇤
? ⇥ Z⇤ ⇥ {0, 1}⇤) [{⇤}) ! N (5.5)

We will use the following Lemma to set an upper bound on the value of this function.

54

LEMMA 5.9. Let S = f
0

· . . . ·f
n

2 O⇤ and ' 2 Z⇤
?,

T
comp

(S,', ", ")  p
comp

(n, k'k, log
2

(maxpush(S) + 1))

T
comp

(S,⇤)  p
comp

(n, k'k, log
2

(maxpush(S) + 1)),

for some fixed polynomial p
comp

, independent of S and '.

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤ and ' 2 Z⇤
?.

• Case 1: (f
n

� . . . � f
0

)(', ", ") = ⇤
Given that the execution raises an error, we do not need to perform additional

operations to determine whether the execution is successful. Therefore,

T
comp

(S,', ", ") = T (S,', ", ")

 p
T

(n, k'k, log
2

(maxpush(S) + 1))

• Case 2: (f
n

� . . . � f
0

)(', ", ") = ('
M

,'
A

,'
I

)

In this case, after executing the operators over the initial stack, we must also

compare the top of the final main stack with 0 to determine if it represents a

boolean value of true and check if the final control stack is empty. These opera-

tions are clearly polynomial in the size of the final main stack. We will use p to

represent this polynomial, such that

T
comp

(S,', ", ") = T (S,', ", ") + p(k'
M

k)

However, Lemma 5.7 states that

k'
M

k  p
size

(n, k'k, log
2

(maxpush(S) + 1))

55

and Lemma 5.8, that

T (S,', ", ")  p
T

(n, k'k, log
2

(maxpush(S) + 1))

Thus, for some pair of polynomials p
2

and p
3

,

T
comp

(S,', ", ") = T (S,', ", ") + p(k'
M

k)

 p
T

(n, k'k, log
2

(maxpush(S) + 1))+

p
2

(n, k'k, log
2

(maxpush(S) + 1))

 p
3

(n, k'k, log
2

(maxpush(S) + 1))

Now that we have successfully set a polynomial upper bound for both cases, trivially

there must exist a polynomial p
comp

, such that

T
comp

(S,', ", ")  p
comp

(n, k'k, log
2

(maxpush(S) + 1))

Additionally, the case where the execution begins with an error is analogous to the first

analyzed case. In this situation we do not need to execute any operator in the script and

we also do not need to perform any additional operations after the script execution. Thus,

T
comp

(S,⇤) = T (S,⇤)

 p
T

(n, k'k, log
2

(maxpush(S) + 1))

 p
comp

(n, k'k, log
2

(maxpush(S) + 1))

⌅

As we can see, Lemma 5.9 ultimately proves that the problem of Script evaluation

presented at the beginning of this section is in PTIME. This can be concluded by noticing
56

that the representation of a script is clearly linear in the amount of operators it has and the

maximum element that it pushes to the stack.

Lemma 5.9 also allows us to easily prove that the simpler problem of script evaluation

presented in section 4.1 is in PTIME. This extension of the provided result is discussed in

appendix F.

5.3. Limiting the number of elements accessed by a script

With the introduction of anonymous elements we can start to think about the amount

of elements in an unlocking stack that are actually necessary for the execution of a certain

script. Our objective is to compress a stack as far as possible. In other words, when con-

sidering a stack that is able to unlock certain script, we want to anonymize every possible

integer element, such that the resulting stack is still able to unlock the script.

Ideally, identifying these relevant elements would just consist of taking every operator

in a given script and marking the elements that it accesses. However, this process is

not as straightforward as it seems because the elements can be moved around during the

execution, causing them to be in a different position when they get used than the one in

which they started. Additionally, some operators’ executions depend on the values of the

stack elements and would therefore demand to be analyzed in runtime. Thus, we propose

determining which elements are relevant in an execution by establishing which of them

can not be anonymized for the execution to end successfully.

In order to capture this notion we define a new function accessed which represents

the amount of elements in a stack that cannot be anonymized in order for the execution

of a certain operator over said stack to not result in an error. As such, we describe the

structure of accessed as

accessed : O ⇥ Z⇤
? ⇥ Z⇤ ⇥ {0, 1}⇤ ! N

57

In order to define the value of accessed, let f 2 O, '
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk 2

Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤, such that f('
M

,'
A

,'
I

) 6= ⇤. We start by defining a

subset H ✓ {0, . . . , k � 1} that contains the indices of integer elements in the main stack

that can not be anonymized for the execution to be successful. Formally, for any element

i 2 H ,

f(?h0 ·A
0

· . . . ·A
i�1

·?hi+1+hi+1 ·A
i+1

· . . . ·A
k�1

·?hk ,'
A

,'
I

) = ⇤

Similarly, for any element i 2 {0, . . . , k � 1}�H ,

f(?h0 ·A
0

· . . . ·A
i�1

·?hi+1+hi+1 ·A
i+1

· . . . ·A
k�1

·?hk ,'
A

,'
I

) 6= ⇤

In other words, H represents the set of integer elements of '
M

, such that if we

anonymize any integer in the set, the execution will output an error, and if we anonymize

any integer outside of the set, the execution will still be successful. Having defined H we

can establish the value of accessed simply as

accessed(f,'
M

,'
A

,'
I

) = |H|.

Based on this definition we can move on to establish an upper bound on the value of

accessed, which is presented in the following Lemma.

LEMMA 5.10. Let f 2 O, '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤, such that

f('
M

,'
A

,'
I

) 6= ⇤. Then,

accessed(f,'
M

,'
A

,'
I

)  3

PROOF. We prove this case by case in appendix D. ⌅
58

Next, we will expand the domain of the accessed function to encompass whole

scripts instead of individual operators. This will allow us to capture the notion of rel-

evant stack elements for the execution of a script. The domain of the function will be

extended naturally as follows

accessed : O⇤ ⇥ Z⇤
? ⇥ Z⇤ ⇥ {0, 1}⇤ ! N

Now, let S = f
0

· . . . ·f
n

2 O⇤, '
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk 2 Z⇤
?, '

A

2 Z⇤ and

'
I

2 {0, 1}⇤, such that (f
n

� . . . � f
0

)('
M

,'
A

,'
I

) 6= ⇤. Once again, we define a subset

H ✓ {0, . . . , k�1} that contains the indices of integer elements in the main stack that can

not be anonymized for the execution to be successful. Formally, for any element i 2 H ,

(f
n

� . . . � f
0

)(?h0 ·A
0

· . . . ·A
i�1

·?hi+1+hi+1 ·A
i+1

· . . . ·A
k�1

·?hk ,'
A

,'
I

) = ⇤

Similarly, for any element i 2 {0, . . . , k � 1}�H ,

(f
n

� . . . � f
0

)(?h0 ·A
0

· . . . ·A
i�1

·?hi+1+hi+1 ·A
i+1

· . . . ·A
k�1

·?hk ,'
A

,'
I

) 6= ⇤

Just as in the previous case, H represents the set of integer elements of '
M

, such that

if we anonymize any integer in the set, the execution will output an error, whereas if we

anonymize any integer outside of the set, the execution will still be successful. Again, we

can establish the value of accessed simply as

accessed(S,'
M

,'
A

,'
I

) = |H|.

Once again we want to establish an upper bound on the value of accessed. However,

before doing so we need to enunciate an intermediate result that will aid us in proving said

59

bound. Namely, that because of the way in which the operators are defined, anonymous

elements are neither created nor deleted.

Consequently, each anonymous element can be traced from start to finish of the exe-

cution in the main stack. In addition, if we replace any anonymous element by an integer,

it will remain untouched in the stack through the execution. We formalize this concept

through the following Lemma.

LEMMA 5.11. Let f 2 O, '
M

= ↵
0

· . . . ·↵
m

,'0
M

= �
0

· . . . ·�
n

2 Z⇤
?, '

A

,'0
A

2 Z⇤

and '
I

,'0
I

2 {0, 1}⇤, such that

f('
M

,'
A

,'
I

) = ('0
M

,'0
A

,'0
I

)

For every subindex p 2 {0, . . . , n} with �
p

= ? there exists a subindex q 2 {0, . . . ,m}

with ↵
q

= ?, such that for all � 2 Z, the execution of the operator will fulfill

f(↵
0

· . . . ·↵
q�1

·�·↵
q+1

· . . . ·↵
m

,'
A

,'
I

) = (�
0

· . . . ·�
p�1

·�·�
p+1

· . . . ·�
n

,'0
A

,'0
I

)

PROOF. This result is evident from the definition of the operators in appendix B. ⌅

Now we will define an auxiliary function that will also help us prove the bound on

accessed. This function will be denoted by deanon and what it does is receive a stack

with anonymous elements and a subset of the indices of the integer elements of said stack,

and outputs the stack obtained by anonymizing every integer that is not contained in the

set. Formally, let = ?p0 ·q
0

· . . . ·q
r�1

·?pr 2 Z⇤
? and J = {i

0

, . . . , i
s

} ✓ {0, . . . , r � 1},

where i
0

< . . . < i
s

, we define

deanon(, J) = ?p0+...+pi0+i0 ·q
i0 ·?pi0+1+...+pi1+i1�i0�1· . . . ·q

is ·?pis+1+...+qr+r�is�1

60

By utilizing the result enunciated in Lemma 5.11 and the auxiliary function deanon

we can move on to establish an upper bound on the value of the accessed function over

a script instead of individual operators. This bound will consist of the sum of the values

of the accessed function over each of the individual operators in the script.

Intuitively, given that anonymous elements are not created nor deleted in the execution

of the script, if the execution of one of the operators in the script results in an error after

anonymizing a certain amount of integer elements of the stack, we should not need to

deanonymize more elements than the value of the accessed function for said operator

for the execution to be successful. Evidently, if we start off with a completely anonymous

stack and apply this argument for each of the operators we arrive at the aformentioned

bound.

LEMMA 5.12. Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤, such

that (f
n

�. . .�f
0

)('
M

,'
A

,'
I

) = ('0
M

,'0
A

,'0
I

). If we define ('
M

,'
A

,'
I

) = ('0

M

,'0

A

,'0

I

)

and (f
`�1

� . . . � f
0

)('
M

,'
A

,'
I

) = ('`

M

,'`

A

,'`

I

) for all ` 2 {1, . . . , n+1}, we have that

accessed(S,'
M

,'
A

,'
I

) 
nX

i=0

accessed(f
i

,'i

M

,'i

A

,'i

I

)

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤, such that

(f
n

�. . .�f
0

)('
M

,'
A

,'
I

) = ('0
M

,'0
A

,'0
I

). We will say that ('
M

,'
A

,'
I

) = ('0

M

,'0

A

,'0

I

)

and that (f
`�1

� . . . � f
0

)('
M

,'
A

,'
I

) = ('`

M

,'`

A

,'`

I

) for all ` 2 {1, . . . , n+ 1}. We will

prove by induction that for all j 2 {0, . . . , n}

accessed(f
j

� . . . � f
0

,'
M

,'
A

,'
I

) 
jX

i=0

accessed(f
i

,'i

M

,'i

A

,'i

I

)

Base Case. It is evident that
61

accessed(f
0

,'
M

,'
A

,'
I

) 
0X

i=0

accessed(f
i

,'i

M

,'i

A

,'i

I

)

= accessed(f
0

,'
M

,'
A

,'
I

)

Inductive Step. We will assume that for some j 2 {0, . . . , n� 1}

accessed(f
j

� . . . � f
0

,'
M

,'
A

,'
I

) 
jX

i=0

accessed(f
i

,'i

M

,'i

A

,'i

I

)

Now, we will define 'j+1

M

= ?⌘0 ·↵
0

· . . . ·↵
�1

·?⌘ and H ✓ {0, . . . , � 1} with

|H| = accessed(f
j+1

,'j+1

M

,'j+1

A

,'j+1

I

), such that

f
j+1

(deanon('j+1

M

, H),'j+1

A

,'j+1

I

) 6= ⇤

Additionally, let '
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk , J ✓ {0, . . . , k � 1}, with |J | =

accessed(f
j

� . . . � f
0

,'
M

,'
A

,'
I

), and K ✓ {0, . . . ,� 1}, such that

(f
j

� . . . � f
0

)(deanon('
M

, J),'
A

,'
I

) = (deanon('j+1

M

, K),'j+1

A

,'j+1

I

)

Let t 2 H �K be an arbitrary subindex. From Lemma 5.11 we know that there must

exist a subindex v 2 {0, . . . , k � 1}� J , such that

(f
j

� . . . � f
0

)(deanon('
M

, J [{v}),'
A

,'
I

) = (deanon('j+1

M

, K [{t}),'j+1

A

,'j+1

I

)

Note that we can repeat this procedure for every subindex in H � K. Intuitively, if

we execute the first j + 1 operators over a stack with only the required integer elements

62

for these operators to work, any element that is required in order to execute operator f
j+1

and is anonymous after the described partial execution can be traced back to an integer

element that was anonymized in the initial stack.

As such, we can deanonymize each of these again in order for the execution of f
j+1

to

not output an error. This means that there will exist a set L ✓ {0, . . . , k � 1}� J , where

|L| = |H �K|, such that

(f
j

� . . . � f
0

)(deanon('
M

, J [L),'
A

,'
I

) = (deanon('j+1

M

, K [H),'j+1

A

,'j+1

I

)

Consequently,

(f
j+1

� . . . � f
0

)(deanon('
M

, J [L),'
A

,'
I

) 6= ⇤

This is because after the partial execution of f
0

· . . . ·f
i

over deanon('
M

, J [L), the

main stack will have the elements that correspond to H deanonymized. As such, from the

definition of H , we know that the execution of f
i+1

will be successful. Furthermore, we

can see that

elemnr(deanon('
M

, J [L)) = |J |+ |H �K|,

from which we can conclude that

63

accessed(f
j+1

� . . . � f
0

,'
M

,'
A

,'
I

)  |J |+ |H �K|

 |J |+ |H|

= accessed(f
j

� . . . � f
0

,'
M

,'
A

,'
I

)

+ accessed(f
j+1

,'j+1

M

,'j+1

A

,'j+1

I

)


jX

i=0

accessed(f
i

,'i

M

,'i

A

,'i

I

)

+ accessed(f
j+1

,'j+1

M

,'j+1

A

,'j+1

I

)

=

j+1X

i=0

accessed(f
i

,'i

M

,'i

A

,'i

I

)

⌅

By putting together Lemmas 5.10 and 5.12 we can establish a more concrete bound on

the value of accessed over a script. This will help us prove that for any unlockable script

there exists a stack that is polynomial in its size and is able to unlock it.

COROLLARY 5.12.1. Let S = f
0

· . . . ·f
n

2 O⇤. For all '
M

2 Z⇤
?, '

A

2 Z⇤ and

'
I

2 {0, 1}⇤ such that (f
n

� . . . � f
0

)('
M

,'
A

,'
I

) 6= ⇤. Then,

accessed(S,'
M

,'
A

,'
I

)  3n+ 3

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤, '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤ such

that (f
n

� . . . � f
0

)('
M

,'
A

,'
I

) 6= ⇤. For convenience we will say that ('
M

,'
A

,'
I

) =

('0

M

,'0

A

,'0

I

) and that (f
`�1

� . . .�f
0

)('
M

,'
A

,'
I

) = ('`

M

,'`

A

,'`

I

) for all ` 2 {1, . . . , n+

1}.
64

accessed(S,'
M

,'
A

,'
I

) 
nX

i=0

accessed(f
i

,'i

M

,'i

A

,'i

I

)


nX

i=0

3

= 3n+ 3

⌅

Finally, we can use the result of Corollary 5.12.1 to prove the main result of this

section, which is that the maximum amount of accessed elements is linear in the amount

of operators in the script. Moreover, this proves that any unlockable script has at least one

valid unlocking stack that only has a linear amount of integer elements. This concept is

formalized in the following Lemma.

LEMMA 5.13. Let S = f
0

· . . . ·f
n

2 O⇤ be an unlockable script. There exists a stack

'
M

2 Z⇤
?, such that elemnr('

M

)  3n+ 4 and

(f
n

� . . . � f
0

)('
M

, ", ") = ('F

M

,'F

A

, "),

where |'F

M

| � 1 and top?('
F

M

) /2 {?, 0}.

PROOF. To prove this Lemma we will reutilize the deanon auxiliary function used in

the proof for Lemma 5.12. Let S = f
0

· . . . ·f
n

2 O⇤ be an unlockable script. There must

exist a stack '
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk 2 Z⇤
?, such that

(f
n

� . . . � f
0

)('
M

, ", ") = ('F

M

,'F

A

, "),

65

where |'F

M

| � 1 and top?('
F

M

) /2 {?, 0}. From Corollary 5.12.1 we know that

accessed(S,'
M

, ", ")  3n + 3. This means that there exists a set of subindices J ✓

{0, . . . , k � 1}, where |J |  3n+ 3, such that

(f
n

� . . . � f
0

)(deanon('
M

, J), ", ") = (F

M

, F

A

, ")

Case 1: top?(
F

M

) 6= ?

If this is the case, the way in which operators over anonymous elements are constructed

ensures that

top?(
F

M

) = top?('
F

M

) /2 {?, 0}

Consequently,
M

is a valid unlocking stack for S. Moreover,

elemnr(
M

) = |J |

 3n+ 3

< 3n+ 4

Case 2: top?(
F

M

) = ?

We will use both representations of stacks for convenience, depending on the context.

Let

deanon('
M

, J) = B
0

· . . . ·B
`

 F

M

= C
0

· . . . ·C
m

66

We know that C
0

= ?. From Lemma 5.11 it is clear that there must exist a subindex

i 2 {0, . . . , k � 1}� J , such that if we define p =

P
i

j=0

(h
j

+ 1)� 1, then

B
p

= ?

and

(f
n

� . . . � f
0

)(B
0

· . . . ·B
p�1

·A
i

·B
p+1

· . . . ·B
`

, ", ") = (A
i

·C
1

· . . . ·C
m

, F

A

, ")

It is clear that A
i

= top?('
F

M

). Therefore, we can assert that

top(A
i

·C
1

· . . . ·C
m

) = top?('
F

M

) /2 {?, 0}

Consequently, B
0

· . . . ·B
p�1

·A
i

·B
p+1

· . . . ·B
`

= deanon('
M

, J [{i}) is a valid un-

locking stack for S. Furthermore,

elemnr(deanon('
M

, J [{i})) = |J [{i}|

 |J |+ 1

 3n+ 4

⌅

5.4. Limiting the size of stack elements

In this section we aim to prove that for any unlockable locking script there exists

a stack that is able to unlock it that only has elements of polynomial size in the size

of the script. However, to prove this we will restrict the usage of the cryptographic

67

functions. Specifically, we will assume that the cryptographic operators OP HASH160,

OP CHECKSIG and OP CHECKSIGVERIFY only work over relatively small stack el-

ements. Concretely, we will add another condition to the execution of these operators.

Let S = f
0

· . . . ·f
n

2 O⇤, '
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk 2 Z⇤
? and '

A

2 Z⇤,

for OP HASH160 to be executed over ('
M

,'
A

), we will require that the stacks fulfill

A
0

 p
crypto

(2

n,maxpush(S)) for some polynomial p
crypto

. Similarly, in the cases of

OP CHECKSIG and OP CHECKSIGVERIFY we will require that they fulfill A
0



p
crypto

(2

n,maxpush(S)) and that A
1

 p
crypto

(2

n,maxpush(S)). These conditions are

additions to the ones established in appendix B.

The reason for adding these restrictions is that we speculate that without them the

problem would climb significantly in the complexity hierarchy, possibly becoming unde-

cidable. To further illustrate this point we turn to the following example of a system of

equations easily reproduceable by utilizing script

x = y + 1

hash(x) = hash(y)

This sort of problems in which we combine arithmetic and hash functions might be

solvable but there is no guarantee that the size of their solutions is bounded by any poly-

nomial. Therefore, although it might be possible to determine whether they have a solution

without constructing it, it is not likely the case and it would probably depend on the con-

struction of the utilized hash functions.

Furthermore, we propose that all of the common uses for scripts abide by these restric-

tions. In particular, scripts tend to use OP HASH160 for hashing public keys, whereas

they make use of OP CHECKSIG and OP CHECKSIGVERIFY exclusively to deter-

mine whether a signature is valid for certain public key. Both cryptographic keys and

68

signatures are of constant size, which means that requiring the inputs for these operators

to be of polynomial size wouldn’t hinder the utilization of common scripts.

Systems of linear equations. Our upper bound relies on a classic bound established for in-

teger solutions of systems of linear equations developed by Papadimitriou (Papadimitriou,

1981). Hence, to invoke this result we need a correspondence between finding unlocking

scripts and solving linear equations. We were not able to find a simple, direct reduction

between these two problems. Instead, we proceed as follows. Assume that a given locking

script has an arbitrary (possibly big) solution, in the form of an unlocking stack. With

this solution at hand, we construct a system of equations that, in a sense, expresses the

essential properties that the stack must fulfill when executing the locking script over the

unlocking stack. Afterwards, we will show that the constructed system of equations must

have a polynomially-sized solution, which in turn ensures the existence of a solution for

the script which is also polynomially-sized.

It is important to note that this strategy only allows us to prove that if the script is

unlockable, it must have a polynomially-sized solution. The system of equations that we

will construct through the proof does not fully represent the locking script, in that there

might exist solutions to the script that do not translate into solutions to the system of

equations. Now we can enunciate the main result that we will prove in this section.

THEOREM 5.14. Let S = f
0

· . . . ·f
n

2 O⇤ be an unlockable script. In addition, let

'
M

2 Z⇤
?, such that

(f
n

� . . . � f
0

)('
M

, ", ") = ('F

M

,'F

A

, "),

where 'F

M

is a valid final main stack. There exists a system of equations �~x =

~b that

has at least one solution with

~x = (x̄, ḡ, v̄, w̄)T ,

69

where x̄ and ḡ have k and k + 1 elements, respectively, with k = elemnr('
M

), and

where v̄ and w̄ both have n+ 2 elements each, constrained by ḡ, v̄ � 0, such that

|a
max

|  p
coef

(2

n, elemnr('
M

),maxpush(S)), (5.6)

where a
max

is the biggest element between � and~b and p
coef

is some polynomial, and

from any valid solution to the system

~c = (

¯C, ¯E, ¯F , ¯G)

T ,

where ¯C = (C
0

, . . . , C
k�1

) and ¯E = (E
0

, . . . , E
k

), we can construct a valid unlocking

stack
M

for S as follows

M

= ?E0 ·C
0

· . . . ·C
k�1

·?Ek

PROOF. We will prove this by constructing the system of equations that fulfills the

aforementioned properties. Conceptually, we want to take a valid solution to the locking

script and express what allows it to unlock the script through a system of equations. To

accomplish this we will go through the execution of the script over the existing solution

and capture, for each operator, the conditions that the stack needs to fulfill for the execution

not to end in an error, and for any other stack to take the same execution branch as the

existing solution.

For this purpose we will utilize an auxiliary pair of stacks with variables. We will start

by establishing a pair of starting variable stacks and then detailing how they change based

on the operators in the script. Additionally, we will establish how the system of equations

is constructed based on these operators and show a basic solution for it.

Let S = f
0

· . . . ·f
n

2 O⇤ be an unlockable script. In addition, let '
M

2 Z⇤
?, such that

70

(f
n

� . . . � f
0

)('
M

, ", ") = ('F

M

,'F

A

, "),

where 'F

M

is a valid final main stack. For convenience we will define ('i

M

,'i

A

,'i

I

) =

(f
i�1

� . . . � f
0

)('
M

, ", ") for each i 2 {1, . . . , n+1} and ('0

M

,'0

A

,'0

I

) = ('
M

, ", "). Let

~x = (x̄, ḡ, v̄, w̄)T ,

be the vector of variables for our eventual system of equations. Our initial system of

equations will be

�

0

~x =

~b
0

,

where

�

0

= []

~b
0

= []

are a matrix and a vector, both with 0 rows. Let x̄ = (x
0

, . . . , x
k�1

) and ḡ =

(g
0

, . . . , g
k

), with k = elemnr('
M

). The starting variable stacks will be

�0

M

= ?g0 ·x
0

· . . . ·x
k�1

·?gk

�0

A

= "

Now, let i 2 {1, . . . , n} be an arbitrary number with

71

�i

M

= ?d0 ·z
0

· . . . ·z
k

0�1

·?dk0

�i

A

= p
0

· . . . ·p
`

0

'i

M

= ?P0 ·M
0

· . . . ·M
k

0�1

·?Pk0

'i

A

= N
0

· . . . ·N
`

0

We will establish the value of (�i+1

M

,�i+1

A

) based on (�i

M

,�i

A

) and f
i

. It’s important to

note that in case 'i

I

doesn’t represent an execution state, then

(�i+1

M

,�i+1

A

) = (�i

M

,�i

A

)

We will also detail the equations that are added to the system depending on the value

of the variable stacks and the operator in each step. We will use the notation

C =

2

6664

A

B

3

7775

to denote the vertical concatenation of matrices. Let ⌦
i

and ~a
i

be the matrix and the

vector that represent the equations we would add to the system on step i. We define

�

i

=

2

6664

�

i�1

⌦

i

3

7775
~b
i

=

2

6664

~b
i�1

~a
i

3

7775

72

as the matrix and the vector that represent the whole system up until step i (i.e. in each

step we add equations to the system). Once again, if 'i

I

doesn’t represent an execution

state, then

⌦

i

= []

~a
i

= []

Next, we will establish the value of �i+1

M

,�i+1

A

,⌦
i+1

,~a
i+1

based on the values of

�i

M

,�i

A

,'i

M

,'i

A

. However, the additional equations will be detailed as equations and

not in matrix form for convenience. Additionally, we establish an upper bound on the

coefficients of the added equations by operator to prove the upper bound on the size of the

coefficients of our system. We use a
max

to refer to the biggest element between ⌦

i

and ~a
i

.

To construct a basic solution for the system we will just need to assign x
i

= A
i

for

all i 2 {0, . . . , k � 1} and g
i

= h
i

for all i 2 {0, . . . , k} and calculate the necessary

values for the rest of the variables based on these. It will be easy to see that for each new

equation there will be at most one unassigned variable, which will make the construction

of the solution trivial. Also, the equations that only consist of already assigned variables

will be satisfied automatically because otherwise the execution over the unlocking stack

would end in an error, which is evidently not the case.

Firstly, we will show the way in which the pair of variable stacks will be modified

depending on the i-th operator in the locking script and the equations that get added to

the system. We will also gradually prove that the coefficients in those equations fulfill the

bound described in equation (5.6).

The complete examination that describes these three points of analysis for each of the

operators is displayed in appendix G. However, in what follows we will show the analysis

for some of the operators, as a way to exemplify the process. As a reminder, the bound that

73

we will be proving for the coefficients in the system of equations, which was introduced

in equation (5.6) is

|a
max

|  p
coef

(2

n, elemnr('
M

),maxpush(S)).

We will start by analyzing the case where f
i

= OP PUSH
C

, as it is the simplest. The

modification in the variable stacks will be determined by

(�i+1

M

,�i+1

A

) = (?wnull ·w
i

·�i

M

,�i

A

) (5.7)

The equations that will be added to the system in this case are the following:

w
null

= 0

w
i

= C

In this case it is easy to see that the maximum coefficient present in these new equations

is

|a
max

|  max{1, |C|}

 maxpush(S) + 1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

for some polynomial p
coef

. Next, we analyze the case where f
i

= OP IFDUP, which

is more complex. The modification in the variable stacks will be determined by

74

(�i+1

M

,�i+1

A

) =

8
>>><

>>>:

(�i

M

,�i

A

) if top('i

M

) = 0

(?wnull ·z
0

·�i

M

,�i

A

) if top('i

M

) 6= 0

(5.8)

The basic equations that will be added to the system in this case are the following:

d
0

= 0

w
null

= 0

However, in this case we will add additional equations depending on the value of

top?('
i

M

). Specifically,

(i) If top('i

M

) > 0, then we will add the equation z
0

= v
i

+ 1

(ii) If top('i

M

) < 0, then we will add the equation z
0

= �v
i

� 1

(iii) If top('i

M

) = 0, then we will add the equation z
0

= 0

In any case we can see that the maximum coefficient in these new equations is bounded

by

|a
max

|  2

 p
coef

(2

n, elemnr('
M

),maxpush(S))

for some polynomial p
coef

. Now, we aim to prove that the sequence of variable stacks

accurately represents the evolution that a pair of stacks constructed from a solution to

the system of equations would go through when subjected to the execution of the script.

This will be proved through the next Claim, but we need to define some elements before

introducing the formalization of this notion. Let i 2 {0, . . . , n + 1} be an arbitrary step

75

and ~c a solution to the system of equations on step i, such that

�

i

~c = ~b
i

,

where

~c = (

¯C, ¯E, ¯F , ¯G)

T ,

with ¯C = (C
0

, . . . , C
k�1

) and ¯E = (E
0

, . . . , E
k

). We define

(0

M

, 0

A

, 0

I

) = (?E0 ·C
0

· . . . ·C
k�1

·?Ek , ", ")

and for all i 2 {1, . . . , n+ 1}

(i

M

, i

A

, i

I

) = (f
i�1

� . . . � f
0

)(0

M

, 0

A

, 0

I

)

CLAIM 5.14.1. For all i 2 {0, . . . , n+ 1}, if we assign ~x = ~c, then

(�i

M

,�i

A

,'i

I

) = (i

M

, i

A

, i

I

)

PROOF OF CLAIM. We will prove this statement by induction.

Base Case. Let ~c be an instance for the variable vector ~x, with

~c = (

¯C, ¯E, ¯F , ¯G)

T

¯C = (C
0

, . . . , C
k�1

)

¯E = (E
0

, . . . , E
k

),

from which we define the pair of stacks

 0

M

= ?E0 ·C
0

· . . . ·C
k�1

·?Ek

 0

A

= ",

such that

�

0

~c = ~b
0

76

It is clear that if we assign ~x = ~c, then

(�0

M

,�0

A

,'0

I

) = (?g0 ·x
0

· . . . ·x
k�1

·?gk , ", ")

= (?E0 ·C
0

· . . . ·C
k�1

·?Ek , ", ")

= (0

M

, 0

A

, 0

I

)

Inductive Step. Let i 2 {0, . . . , n} be an arbitrary step. We will assume that the

following holds for all solutions to the system of equations on step i. Let ~c be a solution

to the system on step i, such that �
i

~c = ~b
i

, where

~c = (

¯C, ¯E, ¯F , ¯G)

T ,

with ¯C = (C
0

, . . . , C
k�1

) and ¯E = (E
0

, . . . , E
k

). In addition, let (0

M

, 0

A

, 0

I

) =

(?E0 ·C
0

· . . . ·C
k�1

·?Ek , ", ") and for all i 2 {1, . . . , n+ 1}

(i

M

, i

A

, i

I

) = (f
i�1

� . . . � f
0

)(0

M

, 0

A

, 0

I

)

Then, if we assign ~x = ~c, we will assume that

(�i

M

,�i

A

,'i

I

) = (i

M

, i

A

, i

I

)

We will prove that the same property is fulfilled for step i + 1. It is important to note

that if '
I

does not represent an execution state, then the variable stacks, the integer stacks

and the system of equations are not modified. Therefore, the equivalence of the main and

the alt stacks will be evident. If f
i

/2 {OP IF,OP ELSE,OP ENDIF}, the control stacks

will also be evidently equal.

77

Furthermore, given that

�

i+1

=

2

6664

�

i

⌦

i+1

3

7775

~b
i+1

=

2

6664

~b
i

~a
i+1

3

7775

If an arbitrary vector ~d fulfills

�

i+1

~d =

~b
i+1

,

then it also fulfills

�

i

~d =

~b
i

Let

~c = (

¯C, ¯E, ¯F , ¯G)

T ,

where the partial vectors are expanded as ¯C = (C
0

, . . . , C
k�1

), ¯E = (E
0

, . . . , E
k

),
¯F = (F

0

, . . . , F
n+1

) and ¯G = (G
0

, . . . , G
n

, G
null

), be a solution to the system of equations

on step i+ 1, such that

�

i+1

~c = ~b
i+1

78

For convenience we will say that

(0

M

, 0

A

, 0

I

) = (?E0 ·C
0

· . . . ·C
k�1

·?Ek , ", ")

and that for all j 2 {1, . . . , i+ 1},

(j

M

, j

A

, j

I

) = (f
j�1

� . . . � f
0

)(0

M

, 0

A

, 0

I

)

Now, let

�i

M

= ?d0 ·z
0

· . . . ·z
k

0�1

·?dk0

�i

A

= p
0

· . . . ·p
`

0

 i

M

= ?L0 ·J
0

· . . . ·J
k

0�1

·?Lk0

 i

A

= K
0

· . . . ·K
`

0

'i

M

= ?P0 ·M
0

· . . . ·M
k

0�1

·?Pk0

'i

A

= N
0

· . . . ·N
`

0

First we will analyze what happens with the control stacks in case 'i

I

and i

I

do not

represent execution states and f
i

2 {OP IF,OP ELSE,OP ENDIF}.

• Let f
i

= OP IF. Then,

'i+1

I

= 0·'i

I

= 0· i

I

= i+1

I

79

• Let f
i

= OP ELSE. If top('i

I

) = 0, then

'i+1

I

= 1·tail('i

I

)

= 1·tail(i

I

)

= i+1

I

If top('i

I

) = 1, then

'i+1

I

= 0·tail('i

I

)

= 0·tail(i

I

)

= i+1

I

• Let f
i

= OP ENDIF. Then,

'i+1

I

= tail('i

I

)

= tail(i

I

)

= i+1

I

Now we will analyze what happens with the trio of stacks in case 'i

I

and i

I

do rep-

resent execution states. We will describe the same two cases as before (OP PUSH
C

and OP IFDUP) but the full analysis of all the operators will be detailed in appendix G.

Let f
i

= OP PUSH
C

. We know from the construction of the system of equations that

G
null

= 0 and that G
i

= C. Therefore, if we assign ~x = ~c, we have that

80

�i+1

M

= ?wnull ·w
i

·�i

M

= ?Gnull ·G
i

· i

M

= ?0·C· i

M

= i+1

M

�i+1

A

= �i

A

= i

A

= i+1

A

'i+1

I

= 'i

I

= i

I

= i+1

I

Similarly, let f
i

= OP IFDUP. If top?('
i

M

) > 0, then

J
0

= F
i

+ 1

� 1

> 0

We also know that L
0

= 0 and that G
null

= 0. Thus, if we assign ~x = ~c, we have that

�i+1

M

= ?wnull ·z
0

·�i

M

= ?Gnull ·J
0

· i

M

= ?0·J
0

· i

M

= i+1

M

Conversely, if top?('
i

M

) < 0, then

81

J
0

= �F
i

� 1

 �1

< 0

Once again, we know that L
0

= 0 and that G
null

= 0. Thus, if we assign ~x = ~c, we

have that

�i+1

M

= ?wnull ·z
0

·�i

M

= ?Gnull ·J
0

· i

M

= ?0·J
0

· i

M

= i+1

M

Finally, if top?('
i

M

) = 0, then

J
0

= 0

Once more, we know that L
0

= 0 and that G
null

= 0. Thus, if we assign ~x = ~c, we

have that

�i+1

M

= �i

M

= i

M

= i+1

M

82

In any case the value of the alt variable stack and the control stacks does not change.

Consequently,

�i+1

A

= �i

A

= i

A

= i+1

A

'i+1

I

= 'i

I

= i

I

= i+1

I

As previously stated the full analysis for the complete set of operators is detailed in

appendix G. ⌅

From Claim 5.14.1 we can conclude that there exists a system of equations �
n+1

,~b
n+1

,

such that for any arbitrary solution

~c = (

¯C, ¯E, ¯F , ¯G)

T

with ¯C = (C
0

, . . . , C
k�1

) and ¯E = (E
0

, . . . , E
k

), such that

�

n+1

~c = ~b
n+1

If we assign

(n+1

M

, n+1

A

, n+1

I

) = (f
n

� . . . � f
0

)(?E0 ·C
0

· . . . ·C
k�1

·?Ek , ", ")

~x = ~c,

then

(�n+1

M

,�n+1

A

, ") = (n+1

M

, n+1

A

, n+1

I

)

83

This means that any solution to the system of equations can result in a stack that

follows the same execution branch of the original valid unlocking stack. However, we

also need to ensure that our final stack is valid, which translates concretely into making

sure that the top of the final stack is a nonzero integer. In order to accomplish this, we will

need to incorporate a few additional equations to the system. We will assign

�n+1

M

= ?d0 ·z
0

· . . . ·z
k

0�1

·?dk0

�n+1

A

= p
0

· . . . ·p
`

0

Based on these values we will add a final set of equations to the system represented

by ⌦

n+2

,~a
n+2

. Once again we will detail these as equations, as opposed to a matrix and

a vector, for convenience, and we will establish an upper bound on the biggest element

between ⌦

n+2

and ~a
n+2

. We use a
max

to refer to this element. The basic equation that we

will add is

d
0

= 0

However, if top?('
n+1

M

) > 0, then we also add

z
0

= v
n+1

+ 1

Conversely, if top?('
n+1

M

) < 0, then we add

z
0

= �v
n+1

� 1

We can easily note that in all of these equations the maximum coefficient fulfills

84

|a
max

|  2

 p
coef

(2

n, elemnr('
M

),maxpush(S)),

for some polynomial p
coef

. Let’s note that if top?('
n+1

M

) > 0, then

z
0

= v
i

+ 1

� 1

> 0

and that if top?('
n+1

M

) < 0, then

z
0

= �v
i

� 1

 �1

< 0

Let us now finish by showing how this relates to the enunciated result. Let

~c = (

¯C, ¯E, ¯F , ¯G)

T

with ¯C = (C
0

, . . . , C
k�1

) and ¯E = (E
0

, . . . , E
k

) be a solution to the final system, repre-

sented by

�

n+2

=

2

6664

�

n+1

⌦

n+2

3

7775
~b
n+2

=

2

6664

~b
n+1

~a
n+2

3

7775

In addition, let

(n+1

M

, n+1

A

, ") = (f
n

� . . . � f
0

)(?E0 ·C
0

· . . . ·C
k�1

·?Ek , ", ")

= (?L0 ·J
0

· . . . ·J
k

0�1

·?Lk0 , K
0

· . . . ·K
`

0 , ")

85

We know from the previous analysis that if we assign ~x = ~c, we will have that

(�n+1

M

,�n+1

A

) = (n+1

M

, n+1

A

)

Given that ~c fulfills the last equations we added, we can assert that L
0

= 0 and that

J
0

6= 0. Thus,

 n+1

M

= ?L0 ·J
0

· . . . ·J
k

0�1

·?Lk0

is a valid final stack. ⌅

EXAMPLE 5.15. To better illustrate how the construction of the aforementioned sys-

tem of equations works, we will show a simple example of a script for which we have a

basic solution. Let

S = OP 2DUP·OP PICK·OP ADD·OP ROT·

OP PICK·OP ROT·OP ADD·OP EQUAL

First, we will show that it is an unlockable script by presenting an unlocking stack and

showing that its execution is valid. Let

'0

M

= ?0·5·?0·8·?2·6·?3·9·?0

Given that no operator in the script modifies the alt stack, it will not change throughout

the execution of the script. Likewise, no operator in the script modifies the control stack,

so it will not change either. Let
86

('i

M

, ", ") = (f
i�1

� . . . � f
0

)('0

M

, ", ")

for all i 2 {1, . . . , n+1}, we will show the value of the main stack on each step of the

execution.

'0

M

= ?0·5·?0·8·?2·6·?3·9·?0

'1

M

= ?0·5·?0·8·?0·5·?0·8·?2·6·?3·9·?0

'2

M

= ?0·6·?0·8·?0·5·?0·8·?2·6·?3·9·?0

'3

M

= ?0·14·?0·5·?0·8·?2·6·?3·9·?0

'4

M

= ?0·8·?0·14·?0·5·?2·6·?3·9·?0

'5

M

= ?0·9·?0·14·?0·5·?2·6·?3·9·?0

'6

M

= ?0·5·?0·9·?0·14·?2·6·?3·9·?0

'7

M

= ?0·14·?0·14·?2·6·?3·9·?0

'8

M

= ?0·1·?2·6·?3·9·?0

As we can see, top?('
8

M

) /2 {0,?} and therefore it is a valid final main stack. Now,

based on the execution over this stack we will construct the aforementioned sequence of

variable stacks and its corresponding system of equations. It is important to note that we

will only show each equation once (i.e. any repeated equations will be left out because

they do not add additional conditions). Once again, we will disregard the variable alt stack,

for it will not change.

• Initial stack.

�0

M

= ?g0 ·x
0

·?g1 ·x
1

·?g2 ·x
2

·?g3 ·x
3

·?g4

87

• f
0

= OP 2DUP

Variable stack.

�1

M

= ?wnull ·x
0

·?wnull ·x
1

·?g0 ·x
0

·?g1 ·x
1

·?g2 ·x
2

·?g3 ·x
3

·?g4

Equations.

g
0

= 0

g
1

= 0

w
null

= 0

• f
1

= OP PICK

Variable stack.

�2

M

= ?wnull ·x
2

·?wnull ·x
1

·?g0 ·x
0

·?g1 ·x
1

·?g2 ·x
2

·?g3 ·x
3

·?g4

Equations.

x
0

� g
0

� g
1

� g
2

� w
null

= 3

• f
2

= OP ADD

Variable stack.

�3

M

= ?wnull ·w
2

·?g0 ·x
0

·?g1 ·x
1

·?g2 ·x
2

·?g3 ·x
3

·?g4

Equations.

x
1

+ x
2

� w
2

= 0

• f
3

= OP ROT

Variable stack.

88

�4

M

= ?wnull ·x
1

·?wnull ·w
2

·?g0 ·x
0

·?v3 ·x
2

·?g3 ·x
3

·?g4

Equations.

g
0

+ g
1

+ w
null

= 0

g
1

+ g
2

� v
3

= 0

• f
4

= OP PICK

Variable stack.

�5

M

= ?wnull ·x
3

·?wnull ·w
2

·?g0 ·x
0

·?v3 ·x
2

·?g3 ·x
3

·?g4

Equations.

x
1

� g
0

� g
3

� v
3

� w
null

= 3

• f
5

= OP ROT

Variable stack.

�6

M

= ?wnull ·x
0

·?wnull ·x
3

?wnull ·w
2

·?v5 ·x
2

·?g3 ·x
3

·?g4

Equations.

g
0

+ 2w
null

= 0

g
0

+ v
3

� v
5

= 0

• f
6

= OP ADD

Variable stack.

�7

M

= ?wnull ·w
6

·?wnull ·w
2

·?v5 ·x
2

·?g3 ·x
3

·?g4

89

Equations.

x
0

+ x
3

� w
6

= 0

• f
7

= OP EQUAL

Variable stack.

�8

M

= ?wnull ·w
7

·?v5 ·x
2

·?g3 ·x
3

·?g4

Equations.

w
2

� w
6

= 0

w
7

= 1

• Final equations.

v
8

� w
7

= �1

Now, let’s analyze the execution of the script by using the following solution to the system

of equations:

x
0

= 10 x
1

= 15 x
2

= 2 x
3

= 7

g
0

= 0 g
1

= 0 g
2

= 7 g
3

= 5

g
4

= 0 v
0

= 0 v
1

= 0 v
2

= 0

v
3

= 7 v
4

= 0 v
5

= 7 v
6

= 0

v
7

= 0 v
8

= 0 w
0

= 0 w
1

= 0

w
2

= 17 w
3

= 0 w
4

= 0 w
5

= 0

w
6

= 17 w
7

= 1 w
null

= 0

Let

 0

M

= ?0·10·?0·15·?7·2·?5·7·?0

90

Once again, given that no operator in the script modifies the alt stack, it will not change

throughout the execution of the script. Likewise, no operator in the script modifies the

control stack, so it will not change either. Let

(i

M

, ", ") = (f
i�1

� . . . � f
0

)(0

M

, ", ")

for all i 2 {1, . . . , n+1}, we will show the value of the main stack on each step of the

execution.

 0

M

= ?0·10·?0·15·?7·2·?5·7·?0

 1

M

= ?0·10·?0·15·?0·10·?0·15·?7·2·?5·7·?0

 2

M

= ?0·2·?0·15·?0·10·?0·15·?7·2·?5·7·?0

 3

M

= ?0·17·?0·10·?0·15·?7·2·?5·7·?0

 4

M

= ?0·15·?0·17·?0·10·?7·2·?5·7·?0

 5

M

= ?0·7·?0·17·?0·10·?7·2·?5·7·?0

 6

M

= ?0·10·?0·7·?0·17·?7·2·?5·7·?0

 7

M

= ?0·17·?0·17·?7·2·?5·7·?0

 8

M

= ?0·1·?7·2·?5·7·?0

As we can see, top?(
8

M

) /2 {0,?} and therefore it is a valid final main stack. Thus,

the proposed solution to the system of equations results in a pair of valid unlocking stacks

for S. ⌅

Polynomial solution for the system. Now that we know that for each unlockable script we

can construct a solvable system of equations from whose solutions we can construct valid

stacks to unlock the script, we aim to use the classic results for integer linear programming
91

to set an upper bound on the smallest solutions to these systems of equations. However,

the fact that we only restrict the domains of some of the used variables prohibits us from

using these results directly. Consequently, we will need to prove that these results are still

applicable in this situation.

LEMMA 5.16. Let A = [a
ij

]

m⇥n

and ~b = [b
i

]

m⇥1

, with a
ij

, b
i

2 Z for all (i, j) 2

{1, . . . ,m}⇥ {1, . . . , n}. Let us consider the system of equations defined by A and~b,

A~x =

~b, ~x integer

Let ~c = (c
1

, . . . , c
n

)

T be a valid solution for said system. There exists a vector ~d =

(d
1

, . . . , d
n

)

T , with |d
j

|  (an)p(m), where p is a polynomial and a is the maximum element

in the system of equations, a = max

(i,j)2{1,...,m}⇥{1,...,n}{|aij|, |bi|}, such that A~d =

~b and

for all j 2 {1, . . . , n}

d
j

� 0 if c
j

� 0

d
j

 0 if c
j

< 0

PROOF. Let A = [a
ij

]

m⇥n

and ~b = [b
i

]

m⇥1

be an arbitrary system of equations, with

a
ij

, b
j

2 Z for all (i, j) 2 {1, . . . ,m}⇥ {1, . . . , n}. In addition, let ~c = (c
1

, . . . , c
n

)

T be a

valid solution for the system

A~x =

~b, ~x integer

Let {j
1

, . . . , j
k

} ✓ {1, . . . , n} with j
i

< j
i+1

for each i 2 {1, . . . , k � 1}, be the

set of subindices for which c
ji < 0 for each i 2 {1, . . . , k} and c

j

� 0 for each j 2

{1, . . . , n} � {j
1

, . . . , j
k

}. We can now analyze what would happen if we modified A to

create A�j

, such that
92

A�i

=

2

66666666666666664

a
11

· · · a
1(j�1)

�a
1j

a
1(j+1)

· · · a
1n

...
...

...

a
i1

· · · a
i(j�1)

�a
ij

a
i(j+1)

· · · a
in

...
...

...

a
m1

· · · a
m(j�1)

�a
mj

a
m(j+1)

· · · a
mn

3

77777777777777775

It is clear that ~c�j

will be a valid solution for the new system A�j

~x =

~b, where

~c�j

=

2

6666666666666666666666664

c
1

...

c
j�1

�c
j

c
j+1

...

c
n

3

7777777777777777777777775

This is because if we conduct the multiplication, we have

93

A�j

~c�j

=

2

66666664

a
11

c
1

+ · · ·+ (�a
1j

)(�c
j

) + · · ·+ a
1n

c
n

...

a
m1

c
1

+ · · ·+ (�a
mj

)(�c
j

) + · · ·+ a
mn

c
n

3

77777775

=

2

66666664

a
11

c
1

+ · · ·+ a
1j

c
j

+ · · ·+ a
1n

c
n

...

a
m1

c
1

+ · · ·+ a
mj

c
j

+ · · ·+ a
mn

c
n

3

77777775

= A~c

=

~b

If we now carry out the transformation for each of the subindices that we singled out

previously, we will end up with the system

A�(j1,...,jk)
~x =

~b (5.9)

For this system we know that ~c�(j1,...,jk)
will be a valid solution. Given that we per-

formed the modification for each negative element, we can describe this vector as

~c�(j1,...,jk)
=

2

66666664

|c
1

|

...

|c
n

|

3

77777775

This means that the system of equations

94

A�(j1,...,jk)
~x =

~b, ~x � 0, integer

has at least one solution. Consequently, from (Papadimitriou, 1981) we can conclude

that there must exist a second vector ~d = (d
1

, . . . , d
n

)

T , with ~d � 0 and |d
i

|  (an)p(m) for

all i 2 {1, . . . , n}, where p is a polynomial and a = max

(i,j)2{1,...,m}⇥{1,...,n}{|aij|, |bi|},

such that A�(j1,...,jk)
~d =

~b. By inverting the previous transformation to the system we

can find a vector that fulfills the properties described in the lemma. Specifically, if we

construct ~d�(j1,...,jk)
as

~d�(j1,...,jk)
=

2

664

d
1

...

d
j1�1

�d
j1

d
j1+1

...

d
jk�1

�d
jk

d
jk+1

...

d
n

3

775

we can prove that this vector satisfies the requirements. First of all, it is evident that

95

A~d�(j1,...,jk)
= A�(j1,...,jk)

~d

=

~b

Moreover, as we know, the only elements that are negative in ~c are the ones indicated

by the subindices {j
1

, . . . , j
k

}. If we denote ~d�(j1,...,jk)
= (d0

1

, . . . , d0
n

), given that ~d � 0,

it is evident that for all j 2 {1, . . . , n}

d0
j

� 0 if c
j

� 0

d0
j

 0 if c
j

< 0

which means that this new vector satisfies the sign condition. Lastly, it is clear that for

all j 2 {1, . . . , n}

|d0
j

| = |d
j

|  (an)p(m)

⌅

5.5. Putting everything together

In this section we will combine the previous results in order to set an upper bound on

the size of the smallest solution for an arbitrary unlockable script.

THEOREM 5.17. Let S = f
0

· . . . ·f
n

2 O⇤ be an arbitrary unlockable script with

the stricter definitions for the cryptographic operators OP HASH160, OP CHECKSIG,

OP CHECKSIGVERIFY presented at the beginning of section 5.4. There exists a stack

' 2 Z⇤
?, such that

(f
n

� . . . � f
0

)(', ", ") = ('
M

,'
A

, "),

96

where

|'
M

| � 1

top?('M

) /2 {0,?}

k'k  p
fin

(n, log
2

(maxpush(S) + 1)),

for some fixed polynomial p
fin

, independent of S.

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤ be an arbitrary unlockable script with the stricter

definitions for the three cryptographic operators OP HASH160, OP CHECKSIG and

OP CHECKSIGVERIFY. Let ' 2 Z⇤
?, such that

(f
n

� . . . � f
0

)(', ", ") = ('
M

,'
A

, "),

where

|'
M

| � 1

top?('M

) /2 {0,?}

From Lemma 5.13 we know that there must exist a stack '
2

, with elemnr('
2

) 

3n+ 4, such that

(f
n

� . . . � f
0

)('
2

, ", ") = ('2

M

,'2

A

, "),

where

|'2

M

| � 1

top?('
2

M

) /2 {0,?}

97

Let '
2

= ?h0 ·A
0

· . . . ·A
k�1

·?hk . From Theorem 5.14 we know that there must exist a

solvable system of equations �~x =

~b, with

~x = (x̄, ḡ, v̄, w̄)T ,

where x̄ and ḡ have k and k + 1 elements, respectively, and where v̄ and w̄ both have

n+ 2 elements each, constrained by ḡ, v̄ � 0, such that

|a
max

|  p
coef

(2

n, elemnr('
2

),maxpush(S)),

where a
max

is the element of maximum absolute value between � and ~b and p
coef

is

some polynomial, and from any arbitrary solution we can construct a valid solution.

Let � be a matrix of dimensions m ⇥ ⌘. From Lemma 5.16 we can gather that there

must exist a solution to the system

~c = (

¯C, ¯E, ¯F , ¯G)

T ,

such that for every element C in ¯C, E in ¯E, F in ¯F and G in ¯G,

|C|, |E|, |F |, |G|  (|a
max

|⌘)p(m)

for some polynomial p. Let ¯C = (C
0

, . . . , C
k�1

) and ¯E = (E
0

, . . . , E
k

). We will

define

'
3

= ?E0 ·C
0

· . . . ·C
k�1

·?Ek .

Let us now bound the size of '
3

. It is clear that

98

(f
n

� . . . � f
0

)('
3

, ", ") = ('3

M

,'3

A

, "),

where

|'3

M

| � 1

top?('
3

M

) /2 {0,?}

In addition, we can set an upper bound on the size of this stack as follows:

k'
3

k  (2k + 1) log

2

((|a
max

|⌘)p(m)

+ 1)

Nevertheless, this bound on '
3

is not readily usable, as it does not directly relate the

size of the stack with the size of the script. Thus, we will need to simplify this expression

by utilizing certain upper bounds on the different terms in it. Namely,

k = elemnr('
2

)  3n+ 4

|a
max

|  p
coef

(2

n, elemnr('
2

),maxpush(S))

⌘  2k + 1 + 2(n+ 2)  8n+ 13

m  6(n+ 1) + 2

Most of these transformations stem from the Lemmas referenced above. However, we

also added an upper bound m  6(n+1)+2 on the maximum amount of equations in the

system, which is obtained from the construction of the system of equations. Specifically,

for each operator in the script there are at most 6 equations added to the system and at the

99

end there are 2 additional equations that are incorporated. Now, we can establish a more

useful bound on the size of '
3

.

k'
3

k  (2k + 1) log

2

�
(|a

max

|⌘)p(m)

+ 1

�

 (6n+ 9) log

2

⇣�
p
coef

(2

n, elemnr('
2

),maxpush(S))(8n+ 13)

�
p1(n)

+ 1

⌘

 (6n+ 9) log

2

⇣
p
2

(2

n,maxpush(S))p1(n) + 1

⌘

 (6n+ 9)p
3

�
n, log

2

(maxpush(S) + 1)

�

 p
fin

�
n, log

2

(maxpush(S) + 1)

�
,

for some polynomials p
1

, p
2

, p
3

, p
fin

. ⌅

100

6. CONCLUSIONS

In this work we established a mathematical formalization for Script, allowing us to

establish a standardized way of studying the language. Currently, Script is almost exclu-

sively used for establishing the most basic unlocking conditions. One of the main reasons

for this is that the nodes in the network tend to favor standard locking scripts because

they guarantee that their executions will be short and efficient. Our work provides a more

extensive understanding of the language, promoting further developement of efficient al-

gorithms for dealing with general scripts. We expect that this developement will help and

promote users to write non-trivial spending conditions, ultimately making the usage of

non-standard scripts a widespread practice.

We have also defined the problem of script unlockability. Being able to solve this prob-

lem efficiently would help prevent users from locking funds in unspendable transactions

and free up memory space from the nodes’ executions by discarding unspendable transac-

tions. We also proved that the problem of unlockability, when setting harsher restrictions

for the use of cryptographic operators, is NP complete.

This means that there does not exist an efficient algorithm that can determine for all

possible locking scripts which are unlockable. However, SAT solvers have advanced to the

point that it is feasible to determine whether a formula is satisfiable for reasonable inputs.

Therefore, moving forward we plan to search for a transformation that would convert a

script into a formula that is satisfiable if and only if the script is unlockable. This will

allow us to use a SAT solver to determine script unlockability. Such a result will set the

foundation for developing an algorithm to be implemented in electronic wallets and in the

nodes of the Bitcoin network for the purposes detailed previously.

In the future, we would also like to study different subsections of Script in search of

tractable fragments, for which unlockability could be efficiently determined. We would

also like to determine the complexity of Script in case we considered the unrestricted

101

versions of the cryptographic commands. It would be interesting to determine how much

the problem would scale in the complexity hierarchy under these circumstances.

102

REFERENCES

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the

theory of np-completeness. W. H. Freeman.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system (Tech. Rep.).

Manubot.

Papadimitriou, C. H. (1981, October). On the complexity of inte-

ger programming. Journal of the Association for Computing Machinery,

28(4), 765-768. Retrieved from https://lara.epfl.ch/w/ media/

papadimitriou81complexityintegerprogramming.pdf

Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.

Script implementation: security improvements. (2010,

July). https://github.com/bitcoin/bitcoin/commit/

6ff5f718b6a67797b2b3bab8905d607ad216ee21.

Script specification. (2021, February). https://en.bitcoin.it/wiki/Script.

103

APPENDIX

104

A. INTEGER LINEAR PROGRAMMING SCRIPT UNLOCKABILITY REDUC-

TION

The following is an algorithm that constructs a script S from a system of equations

A,~b, such that S is unlockable if and only if A,~b is solvable. We assume that each equation

has at least one nonzero coefficient. This algorithm serves as proof that script unlockability

is NP hard. For an explanation as to how the algorithm works, see section 4.2.

1: procedure ILPTOSCRIPT(A
(n+1)⇥(n+1)

,~b
(n+1)⇥1

)

2: S := "

3: for i = 0..n do

4: first := True

5: for j = 0..n do

6: a := |a
ij

|

7: if a > 0 then

8: powers := 0

9: if first then

10: S := S·OP PUSH
j

·OP PICK

11: else

12: S := S·OP PUSH
j+1

·OP PICK

13: end if

14: while a > 0 do

15: if a mod 2 = 1 then

16: S := S·OP DUP·OP DUP·OP ADD

17: powers++

18: else

19: S := S·OP DUP·OP ADD

20: end if

105

21: a >> 1

22: end while

23: S := S·OP DROP

24: for k = 2..powers do

25: S := S·OP ADD

26: end for

27: if first then

28: if a
ij

< 0 then

29: S := S·OP PUSH
0

·OP SWAP·OP SUB

30: end if

31: first := False

32: else

33: if a
ij

� 0 then

34: S := S·OP ADD

35: else

36: S := S·OP SUB

37: end if

38: end if

39: end if

40: end for

41: S := S·OP PUSH
bj ·OP EQUALVERIFY

42: end for

43: S := S·OP PUSH
1

44: return S

45: end procedure

106

B. OPERATOR SEMANTICS WITH ANONYMOUS ELEMENTS

In this section we will formalize the definition of the Script operators over a stack with

anonymous elements. For each operator we will describe the conditions that need to be

fulfilled for the operator to execute succesfully. In other words, let f 2 O, '
M

2 Z⇤
? and

'
A

2 Z⇤. If ('
M

,'
A

) does not fulfill the conditions associated with f , then

f('
M

,'
A

) = ⇤

It is also important to note that we will not include the control stack in the analysis

of the basic operators (i.e. the operators that do not correspond to flow control). Let

f 2 O � {OP IF,OP ELSE,OP ENDIF}, '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤. If '
I

does not represent an execution state, then

f('
M

,'
A

,'
I

) = ('
M

,'
A

,'
I

)

Therefore, we will assume that the control stack represents an execution state. Now,

let

'
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk 2 Z⇤
?

'
A

= B
0

· . . . ·B
`

2 Z⇤

• OP PUSH
C

Conditions

None

Value

OP PUSH
C

('
M

,'
A

) = (?0·C·'
M

,'
A

)

107

• OP VERIFY

Conditions

|'
M

| � 1

top?('M

) /2 {0,?}

Value

OP VERIFY('
M

,'
A

) = (tail?('M

),'
A

)

• OP TOALTSTACK

Conditions

|'
M

| � 1

top?('M

) 6= ?

Value

OP TOALTSTACK('
M

,'
A

) = (tail?('M

), top?('M

) · '
A

)

• OP FROMALTSTACK

Conditions

|'
A

| � 1

Value

OP FROMALTSTACK?('M

,'
A

) = (?0·top('
A

) · '
M

, tail('
A

))

• OP IFDUP

Conditions

|'
M

| � 1

top?('M

) 6= ?

108

Value

OP IFDUP('
M

,'
A

) =

8
>>><

>>>:

('
M

,'
A

) if top?('M

) = 0

(?0·top?('M

) · '
M

,'
A

) if top?('M

) 6= 0

• OP DROP

Conditions

|'
M

| � 1

top?('M

) 6= ?

Value

OP DROP('
M

,'
A

) = (tail?('M

),'
A

)

• OP DUP

Conditions

|'
M

| � 1

top?('M

) 6= ?

Value

OP DUP('
M

,'
A

) = (?0·top?('M

) · '
M

,'
A

)

• OP NIP

Conditions

|'
M

| � 2

9i 2 {0, 1}.
iX

j=0

(h
j

+ 1) = 2

Value

Let i 2 {0, 1}, such that
P

i

j=0

(h
j

+ 1) = 2,

OP NIP('
M

,'
A

) = (?h0 ·A
0

· . . . ·A
i�1

·?hi+hi+1 ·A
i+1

· . . . A
k�1

·?hk ,'
A

)

109

• OP OVER

Conditions

|'
M

| � 2

9i 2 {0, 1}.
iX

j=0

(h
j

+ 1) = 2

Value

Let i 2 {0, 1}, such that
P

i

j=0

(h
j

+ 1) = 2,

OP OVER('
M

,'
A

) = (?0·A
i

· '
M

,'
A

)

• OP ROT

Conditions

|'
M

| � 3

9i 2 {0, 1, 2}.
iX

j=0

(h
j

+ 1) = 3

Value

Let i 2 {0, 1, 2}, such that
P

i

j=0

(h
j

+ 1) = 3,

OP ROT('
M

,'
A

) = (?0·A
i

·?h0 ·A
0

· . . . ·A
i�1

·?hi+hi+1 ·A
i+1

· . . . A
k�1

·?hk ,'
A

)

• OP SWAP

Conditions

|'
M

| � 2

9i 2 {0, 1}.
iX

j=0

(h
j

+ 1) = 2

Value

Let i 2 {0, 1}, such that
P

i

j=0

(h
j

+ 1) = 2,

OP SWAP('
M

,'
A

) = (?0·A
i

·?h0 ·A
0

· . . . ·A
i�1

·?hi+hi+1 ·A
i+1

· . . . A
k�1

·?hk ,'
A

)

110

• OP TUCK

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

Value

OP TUCK('
M

,'
A

) = (?0·A
0

·?0·A
1

·?0·A
0

·?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

)

• OP 2DROP

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

Value

OP 2DROP('
M

,'
A

) = (?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

)

• OP 2DUP

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

Value

OP 2DUP('
M

,'
A

) = (?0·A
0

·?0·A
1

· '
M

,'
A

)

111

• OP 3DUP

Conditions

|'
M

| � 3

h
0

= 0

h
1

= 0

h
2

= 0

Value

OP 3DUP('
M

,'
A

) = (?0·A
0

·?0·A
1

·?0·A
2

· '
M

,'
A

)

• OP 2OVER

Conditions

|'
M

| � 4

9i 2 {0, 1, 2}.
iX

j=0

(h
j

+ 1) = 3 ^ h
i+1

= 0

Value

Let i 2 {0, 1, 2}, such that
P

i

j=0

(h
j

+ 1) = 3,

OP 2OVER('
M

,'
A

) = (?0·A
i

·?0·A
i+1

· '
M

,'
A

)

• OP 2ROT

Conditions

|'
M

| � 6

9i 2 {0, 1, 2, 3, 4}.
iX

j=0

(h
j

+ 1) = 5 ^ h
i+1

= 0

Value

112

Let i 2 {0, 1, 2, 3, 4}, such that
P

i

j=0

(h
j

+ 1) = 5,

OP 2ROT('
M

,'
A

) =

(?0·A
i

·?0·A
i+1

·?h0 ·A
0

· . . . ·A
i�1

·?hi+hi+2 ·A
i+2

· . . . A
k�1

·?hk ,'
A

)

• OP 2SWAP

Conditions

|'
M

| � 4

9i 2 {0, 1, 2}.
iX

j=0

(h
j

+ 1) = 3 ^ h
i+1

= 0

Value

Let i 2 {0, 1, 2}, such that
P

i

j=0

(h
j

+ 1) = 3,

OP 2SWAP('
M

,'
A

) =

(?0·A
i

·?0·A
i+1

·?h0 ·A
0

· . . . ·A
i�1

·?hi+hi+2 ·A
i+2

· . . . A
k�1

·?hk ,'
A

)

• OP PICK

Conditions

|'
M

| � 1

top?('M

) 6= ?

0  top?('M

)  |tail?('M

)|� 1

9i 2 {1, . . . , k � 1}.top?('M

) = i� 1 +

iX

j=1

h
j

Value

Let i 2 {0, . . . , k � 1}, such that top?('M

) = i� 1 +

P
i

j=1

h
j

,

OP PICK('
M

,'
A

) = (?0·A
i

·?h1 ·A
1

· . . . ·A
k�1

·?hk ,'
A

)

• OP ROLL
113

Conditions

|'
M

| � 1

top?('M

) 6= ?

0  top?('M

)  |tail?('M

)|� 1

9i 2 {1, . . . , k � 1}.top?('M

) = i� 1 +

iX

j=1

h
j

Value

Let i 2 {0, . . . , k � 1}, such that top?('M

) = i� 1 +

P
i

j=1

h
j

,

OP ROLL('
M

,'
A

) = (?0·A
i

·?h1 · . . . ·A
i�1

·?hi+hi+1 ·A
i+1

· . . . ·A
k�1

·?hk ,'
A

)

• OP EQUAL

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

Value

OP EQUAL('
M

,'
A

) =

8
>>><

>>>:

(?0·1·?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

) if A
0

= A
1

(?0·0·?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

) if A
0

6= A
1

• OP EQUALVERIFY

114

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

A
0

= A
1

Value

OP EQUALVERIFY('
M

,'
A

) = (?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

)

• OP ADD

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

Value

OP ADD('
M

,'
A

) = (?0·(A
0

+ A
1

)·?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

)

• OP SUB

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

Value

OP SUB('
M

,'
A

) = (?0·(A
1

� A
0

)·?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

)

115

• OP DEPTH

Conditions

None

Value

OP DEPTH('
M

,'
A

) = (?0·|'
M

|·'
M

,'
A

)

• OP HASH160

Conditions

|'
M

| � 1

h
0

= 0

Value

As a reminder, the function hash corresponds to applying the SHA-256 and

RIPEMD-160 hashing algorithms in succession over the input.

OP HASH160('
M

,'
A

) = (?0·hash(A
0

)·?h1 ·A
1

· . . . ·A
k�1

·?hk ,'
A

)

• OP CHECKSIG

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

Value

As a reminder, the function chksig is defined as 1 if its second input is a valid

signature for the transaction and the public key that is supplied as its first input,

and 0 otherwise.

OP CHECKSIG('
M

,'
A

) = (?0·chksig(A
0

, A
1

)·?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

)

116

• OP CHECKSIGVERIFY

Conditions

|'
M

| � 2

h
0

= 0

h
1

= 0

chksig(A
0

, A
1

) = 1

Value

As a reminder, the function chksig is defined as 1 if its second input is a valid

signature for the transaction and the public key that is supplied as its first input,

and 0 otherwise.

OP CHECKSIGVERIFY('
M

,'
A

) = (?h2 ·A
2

· . . . ·A
k�1

·?hk ,'
A

)

Now, we will define the flow control operators. It is evident that to accomplish this we

will need to consider the control stack, as opposed to the previous case. Once again, we

will describe the conditions that need to be fulfilled for an operator to execute succesfully.

In other words, let f 2 {OP IF,OP ELSE,OP ENDIF}, '
M

2 Z⇤
?, '

A

2 Z⇤ and

'
I

2 {0, 1}⇤. If ('
M

,'
A

,'
I

) does not fulfill the conditions associated with f , then

f('
M

,'
A

,'
I

) = ⇤

Now, let

'
M

= ?h0 ·A
0

· . . . ·A
k�1

·?hk 2 Z⇤
?

'
A

= B
0

· . . . ·B
`

2 Z⇤

'
I

= I
0

· . . . ·I
p

2 {0, 1}⇤

117

• OP IF

Conditions

None

Value

OP IF('
M

,'
A

,'
I

) =

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

⇤ if
�
|'

M

| = 0 _ (|'
M

| � 1 ^

top?('M

) = ?)
�
^ '

I

2 {1}⇤

(tail?('M

),'
A

, 1 · '
I

) if |'
M

| � 1 ^ top?('M

) /2 {0,?} ^

'
I

2 {1}⇤

(tail?('M

),'
A

, 0 · '
I

) if |'
M

| � 1 ^ top?('M

) = 0 ^

'
I

2 {1}⇤

('
M

,'
A

, 0 · '
I

) if '
I

/2 {1}⇤

• OP ELSE

Conditions

|'
I

| � 1

Value

OP ELSE('
M

,'
A

,'
I

) =

8
>>><

>>>:

('
M

,'
A

, 1 · tail('
I

)) if top('
I

) = 0

('
M

,'
A

, 0 · tail('
I

)) if top('
I

) = 1

• OP ENDIF

Conditions

|'
I

| � 1

118

Value

OP ENDIF('
M

,'
A

,'
I

) = ('
M

,'
A

, tail('
I

))

119

C. EQUIVALENCE OF UNLOCKING SCRIPT AND UNLOCKING STACK

This section is dedicated towards proving Lemma 5.1 shown in section 5.1.

PROOF. We will prove both directions of the assertion. Let S = f
0

· . . . ·f
n

2 O⇤.

• (!) We will first assume that S is unlockable. This means that there exists a

script S
U

= g
0

· . . . ·g
m

2 O⇤, such that

(g
m

� . . . ·g
0

)(", ", ") = ('
M

,'
A

, "),

where '
M

fulfills

(f
n

� . . . � f
0

)('
M

, ", ") = ('0
M

,'0
A

, "),

with

|'0
M

| � 1

top('0
M

) 6= 0

Thus, if we represent '
M

as a stack with anonymous elements ('
M

2 Z⇤
?), it

still satisfies the conditions.

(f
n

� . . . � f
0

)('
M

, ", ") = ('0
M

,'0
A

, "),

with

|'0
M

| � 1

top?('
0
M

) /2 {0,?}

• () We will now assume that there exists a stack ' 2 Z⇤
?, such that

120

(f
n

� . . . � f
0

)(', ", ") = ('
M

,'
A

, "),

where

|'0
M

| � 1

top?('
0
M

) /2 {0,?}

We can now deanonymize every anonymous element in ' by transforming it into

a 0. Thus, let ' = A
0

·A
1

· . . . ·A
k

2 Z⇤
? be the stack in normal representation,

we can construct = B
0

· . . . ·B
k

2 Z⇤ that fulfills

B
i

=

8
>>><

>>>:

A
i

if A
i

2 Z

0 if A
i

/2 Z

It is evident that fulfills

(f
n

� . . . � f
0

)(, ", ") = (
M

,
A

, "),

where

|
M

| � 1

top(
M

) 6= 0

Now, it is easy to construct a valid unlocking script S
U

in the following manner

S
U

= OP PUSH
Bk
·OP PUSH

Bk�1
· . . . ·OP PUSH

B0

If we execute S
U

over (", ", "),

(OP PUSH
B0 � . . . �OP PUSH

Bk
)(", ", ") = (, ", ")

121

Thus, it is evident that S
U

unlocks S.

⌅

122

D. CONSTRAINING OPERATOR PROPERTIES

In this section we will prove several properties regarding the execution of a single

operator over a trio of stacks. Specifically, we will constrain the value of several func-

tions over these elements. Let f 2 O, '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤, such

that ('0
M

,'0
A

,'0
I

) = f('
M

,'
A

,'
I

), the constrains for each individual function are the

following

accessed(f,'
M

,'
A

,'
I

)  3

maxelem('0
M

,'0
A

)  2maxelem('
M

,'
A

) + 1

maxgap('0
M

)  2maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 3

All of these constrains are universal except for the one regarding maxelem, that does

not apply for f 2 {OP HASH160,OP DEPTH} [{OP PUSH
C

| C 2 Z}. To prove

these constrains we will analyze how each operator works case by case.

• f = OP PUSH
C

accessed(OP PUSH
C

,'
M

,'
A

,'
I

) = 0

maxelem('0
M

,'0
A

)  max{maxelem('
M

,'
A

), |C|}

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 1

123

• f = OP VERIFY

accessed(OP VERIFY,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP TOALTSTACK

accessed(OP TOALTSTACK,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP FROMALTSTACK

accessed(OP FROMALTSTACK,'
M

,'
A

,'
I

) = 0

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 1

• f = OP IFDUP

accessed(OP IFDUP,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 1

124

• f = OP DROP

accessed(OP DROP,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP DUP

accessed(OP DUP,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 1

• f = OP NIP

accessed(OP NIP,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

)  2maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP OVER

accessed(OP OVER,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 1

125

• f = OP ROT

accessed(OP ROT,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

)  2maxgap('
M

)

elemnr('0
M

) = elemnr('
M

)

• f = OP SWAP

accessed(OP SWAP,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

)  2maxgap('
M

)

elemnr('0
M

) = elemnr('
M

)

• f = OP TUCK

accessed(OP TUCK,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 1

• f = OP 2DROP

accessed(OP 2DROP,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

126

• f = OP 2DUP

accessed(OP 2DUP,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 2

• f = OP 3DUP

accessed(OP 3DUP,'
M

,'
A

,'
I

)  3

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 3

• f = OP 2OVER

accessed(OP 2OVER,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 2

• f = OP 2ROT

accessed(OP 2ROT,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

)  2maxgap('
M

)

elemnr('0
M

) = elemnr('
M

)

127

• f = OP 2SWAP

accessed(OP 2SWAP,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

)  2maxgap('
M

)

elemnr('0
M

) = elemnr('
M

)

• f = OP EQUAL

accessed(OP EQUAL,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

) + 1

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP EQUALVERIFY

accessed(OP EQUALVERIFY,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP ADD

accessed(OP ADD,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  2maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

128

• f = OP SUB

accessed(OP SUB,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  2maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP ROLL

accessed(OP ROLL,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

)  2maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP PICK

accessed(OP PICK,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

)  maxgap('
M

)

elemnr('0
M

) = elemnr('
M

)

• f = OP DEPTH

accessed(OP DEPTH,'
M

,'
A

,'
I

) = 0

maxelem('0
M

,'0
A

)  max{|'
M

|,maxelem('
M

,'
A

)}

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

) + 1

129

• f = OP HASH160

accessed(OP HASH160,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

)  max{maxhash,maxelem('
M

,'
A

)}

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

) = elemnr('
M

)

• f = OP CHECKSIG

accessed(OP CHECKSIG,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

) + 1

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP CHECKSIGVERIFY

accessed(OP CHECKSIGVERIFY,'
M

,'
A

,'
I

)  2

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

• f = OP IF

accessed(OP IF,'
M

,'
A

,'
I

)  1

maxelem('0
M

,'0
A

)  maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

)  elemnr('
M

)

130

• f = OP ELSE

accessed(OP ELSE,'
M

,'
A

,'
I

) = 0

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

) = elemnr('
M

)

• f = OP ENDIF

accessed(OP ENDIF,'
M

,'
A

,'
I

) = 0

maxelem('0
M

,'0
A

) = maxelem('
M

,'
A

)

maxgap('0
M

) = maxgap('
M

)

elemnr('0
M

) = elemnr('
M

)

131

E. EXECUTION TIME OF OPERATORS

We devote this section to explaining why the execution time of each individual operator

is polynomial in the various parameters of the trio of stacks over which it is executed and

the pushed element if the operator is OP PUSH
C

. This result is used in the proof for

Lemma 5.8. It is easy to see from the definition of the operators in appendix B that the

operations required to execute any individual operator can be categorized in a few different

groups:

(i) Basic arithmetic operations (addition, subtraction, comparison)

(ii) Pushing stack elements

(iii) Reading, reorganizing, duplicating and dropping stack elements

(iv) Assessing execution status

(v) Pushing elements to or from the alt stack

(vi) Basic cryptographic functions (hash, signature verification)

In addition, each operator can only execute a constant amount of operations in any of

these groups. Each of these operations can be executed in polynomial time in the size of

the main and the control stacks, in the size of the top of the alt stack and in the case of

OP PUSH
C

in the size of the pushed element. Both of these statements in conjunction

mean that each operator can be executed in polynomial time in the size of the main and

the control stacks, in the size of the top of the alt stack and in the case of OP PUSH
C

in

the size of the pushed element.

We will not analyze each operator individually to prove this, but this is clear when

examining the previously referenced operator definitions. Remember that the function T

corresponds to the execution time of the algorithm that executes a sequence of operators

over a trio of stacks. As a way to exemplify this notion, we will go over the execution of

3 different operators:

• OP PUSH
C

132

When executing an OP PUSH
C

operator we must first determine whether the

current control stack is in an execution state. Checking this condition will take a

linear time in the size of the control stack. Afterwards, the operator will either do

nothing or push one element to the stack. In either case, let '
M

2 Z⇤
?, '

A

2 Z⇤

and '
I

2 {0, 1}⇤, it is clear that

T (OP PUSH
C

,'
M

,'
A

,'
I

)  p(|'
I

|, log
2

(|C|+ 1)),

for some polynomial p.

• OP FROMALTSTACK

When executing an OP FROMALTSTACK operator we must first determine if

the current control stack is in an execution state. Checking this condition will

take a linear time in the size of the control stack. Afterwards, the operator will

either do nothing or move one element from the alt to the main stack. In either

case, let '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤, it is clear that

T (OP FROMALTSTACK,'
M

,'
A

,'
I

)  p(|'
I

|, log
2

(top('
A

) + 1)),

for some polynomial p.

• OP IF

Once again, when executing an OP IF operator we must first determine whether

the current control stack is in an execution state. As we have previously stated,

checking this condition will take a linear time in the size of the control stack.

Afterwards, the operator will either just push a 0 to the control stack or compare

the first element in the main stack with a 0 to check whether it is true or false, in

which cases we will drop the first element in the main stack and push a 1 or a 0 to

the control stack, respectively. If the control stack represents an execution state

and the main stack does not contain integer elements, then we will just return an

133

error. In any case, let '
M

2 Z⇤
?, '

A

2 Z⇤ and '
I

2 {0, 1}⇤, it is clear that

T (OP IF,'
M

,'
A

,'
I

)  p(|'
I

|, k'
M

k),

for some polynomial p.

134

F. STANDARD SCRIPT EVALUATION

This section is dedicated to extending the result presented in Lemma 5.9 to the standard

script evaluation problem presented in section 4.1. As a reminder, this problem consisted

in determining whether the execution of a pair of scripts is successful. As a point of notice,

this process consists of executing the unlocking script over a trio of empty stacks, deter-

mining whether the control stack is empty after this first execution, and if it is, executing

the locking script over the final main stack and determining whether the final main stack

is valid and the final control stack is empty.

It is evident that the second part of the described process is identical to the algorithm

associated with the T
comp

function described in equation (5.5). However, in order to bound

the execution time of the first part of the process, we will need to define a function T
scomp

that represents the execution time of the algorithm that executes a script over a trio of

stacks and afterwards determines whether the final control stack is empty.

T
scomp

: O⇤ ⇥ Z⇤
? ⇥ Z⇤ ⇥ {0, 1}⇤ ! N

The difference between this algorithm and the one associated with T
comp

is that the

former does not need to check whether the top of the final main stack is true. We will first

show that this function has a polynomial upper bound.

LEMMA F.1. Let S = f
0

· . . . ·f
n

2 O⇤,

T
scomp

(S, ", ", ")  p
scomp

(n, log
2

(maxpush(S) + 1)),

for some fixed polynomial p
scomp

, independent of S.

PROOF. Let S = f
0

· . . . ·f
n

2 O⇤. From Lemma 5.9 we know that
135

T
scomp

(S, ", ", ")  T
comp

(S, ", ", ")

 p
comp

(n, k"k, log
2

(maxpush(S) + 1))

 p
scomp

(n, log
2

(maxpush(S) + 1),

for some polynomial p
scomp

. ⌅

Now we will prove that the evaluation of a pair of scripts is in PTIME. For this we

will recognize that we can construct an algorithm for evaluating a pair of an unlocking

script and a locking script by combining the algorithm associated with T
scomp

over the

unlocking script and a trio of empty stacks and the algorithm associated with T
comp

over

the final stack of the previous execution and two empty stacks. We will note that in case

after the execution of the first script the control stack is not empty, we will execute the

second script over ⇤.

LEMMA F.2. Let S
L

= f
0

· . . . ·f
n

2 O⇤ and S
U

= g
0

· . . . ·g
m

2 O⇤, such that

(g
m

� . . . � g
0

)(", ", ") = ,

where 2 (Z⇤
? ⇥ Z⇤ ⇥ {0, 1}⇤) [{⇤}. Then,

T
scomp

(S
U

, ", ", ") + T
comp

(S
L

,) 

p
emp

(n,m, log
2

(maxpush(S
L

) + 1), log
2

(maxpush(S
U

) + 1))

for some fixed polynomial p
emp

, independent of S
L

and S
U

.

PROOF. Let S
L

= f
0

· . . . ·f
n

2 O⇤ and S
U

= g
0

· . . . ·g
m

2 O⇤, such that

(g
m

� . . . � g
0

)(", ", ") = ,

136

where 2 (Z⇤
? ⇥ Z⇤ ⇥ {0, 1}⇤) [{⇤}. From Lemma F.1 we know that

T
scomp

(S
U

, ", ", ")  p
scomp

(n, log
2

(maxpush(S) + 1)),

for some polynomial p
scomp

. Now, we need to examine two different cases for the second

half of the execution:

• Case 1: = ('
M

,'
A

, ")

From Lemma 5.7 we know that

k'
M

k  p
size

(m, k"k, log
2

(maxpush(S
U

) + 1))

Thus, by utilizing Lemma 5.16,

T
comp

(S
L

,'
M

, ", ")  p
comp

(n, k'
M

k, log
2

(maxpush(S
L

) + 1))

 p
emp

�
n,m, log

2

(maxpush(S
L

) + 1),

log

2

(maxpush(S
U

) + 1)

�
,

for some polynomial p
emp

.

• Case 2: = ('
M

,'
A

,'
I

), with '
I

6= ", or = ⇤
Similarly to case 1,

T
comp

(S
L

,⇤)  p
comp

(n, k'
M

k, log
2

(maxpush(S
L

) + 1))

 p
emp

�
n,m, log

2

(maxpush(S
L

) + 1),

log

2

(maxpush(S
U

) + 1)

�
,

for some polynomial p
emp

.

⌅

137

G. CONSTRUCTION OF THE SYSTEM OF EQUATIONS TO PROVE POLYNO-

MIALITY

In this section we will show how to construct the system of equations to prove that

there must exist a solution with elements of polynomial size. We will also prove that the

coefficients in the system are constrained and that the variable stacks used in the proof for

theorem 5.14 represent the execution of a script over a stack constructed from a solution

to the system of equations.

Construction of the system of equations. Firstly, we show how to construct the system

of equations. Simultaneously, we will show that the new equations fulfill the constrain

enunciated in the proof for theorem 5.14 for the coefficients in the system.

Let S = f
0

· . . . ·f
n

2 O⇤ be the analyzed script. We denote the stacks as �i

M

=

?d0 ·z
0

· . . . ·z
k

0�1

·?dk0 , �i

A

= p
0

· . . . ·p
`

0 , 'i

M

= ?P0 ·M
0

· . . . ·M
k

0�1

·?Pk0 and finally 'i

A

=

N
0

· . . . ·N
`

0 . We will also use a
max

to denote the maximum element in the newly added

equations, disregarding its sign.

It is important to note that in order to be able to constrain the value of the coefficients

we will use a sideproduct obtained through the proof of lemma 5.4. Namely, we found

that

max

i2{0,...,n+1}
{elemnr('i

M

)}  elemnr('
M

) + 3(n+ 1)

 p
aux

(n, elemnr('
M

)),

for some polynomial p
aux

. As a reminder, any coefficient a in the system of equations

must fulfill the following condition

|a|  p
coef

(2

n, elemnr('
M

),maxpush(S)),

138

for some polynomial p
coef

. We will also note that in case 'i

I

does not represent an

execution state, then we will add no equations to the system on step i and

(�i+1

M

,�i+1

A

) = (�i

M

,�i

A

),

in which case we will evidently not need to prove the constrain for any coefficients.

We will use p
coef

to denote some polynomial that is able to serve as an upper bound for

all of the coefficients in the system of equations. It will be made clear how all of the

coefficients can be constrained polynomially and p
coef

will be a polynomial that acts as an

upper bound for all of the coefficients.

• f
i

= OP PUSH
C

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·w
i

·�i

M

,�i

A

)

Equations

w
null

= 0

w
i

= C

Coefficients

|a
max

|  max{1, C}

 maxpush(S) + 1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP VERIFY

Variable Stacks

(�i+1

M

,�i+1

A

) = (?d1 ·z
1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

139

Equations

d
0

= 0

z
0

= v
i

+ 1 if top?('
i

M

) > 0

z
0

= �v
i

� 1 if top?('
i

M

) < 0

Coefficients

|a
max

|  2

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP TOALTSTACK

Variable Stacks

(�i+1

M

,�i+1

A

) = (?d1 ·z
1

· . . . ·z
k

0�1

·?dk0 , z
0

·�i

A

)

Equations

d
0

= 0

Coefficients

|a
max

|  1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP FROMALTSTACK

Variable Stacks

(�i+1

M

,�i+1

A

) = (p
0

·�i

M

, p
1

· . . . ·p
`

0
)

Equations

None

Coefficients

Not applicable

140

• f
i

= OP IFDUP

Variable Stacks

(�i+1

M

,�i+1

A

) =

8
>>><

>>>:

(�i

M

,�i

A

) if top('i

M

) = 0

(?wnull ·z
0

·�i

M

,�i

A

) if top('i

M

) 6= 0

Equations

d
0

= 0

w
null

= 0

z
0

= v
i

+ 1 if top?('
i

M

) > 0

z
0

= �v
i

� 1 if top?('
i

M

) < 0

z
0

= 0 if top?('
i

M

) = 0

Coefficients

|a
max

|  2

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP DROP

Variable Stacks

(�i+1

M

,�i+1

A

) = (?d1 ·z
1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

Coefficients

|a
max

|  1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

141

• f
i

= OP DUP

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·z
0

·�i

M

,�i

A

)

Equations

d
0

= 0

w
null

= 0

Coefficients

|a
max

|  1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP NIP

Variable Stacks

Let m 2 {0, 1}, such that
P

m

j=0

(P
j

+ 1) = 2

(�i+1

M

,�i+1

A

) = (?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

+ . . .+ d
m

+m+ 1 = 2

d
m

+ d
m+1

= v
i

Coefficients

|a
max

|  3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP OVER

Variable Stacks

142

Let m 2 {0, 1}, such that
P

m

j=0

(P
j

+ 1) = 2

(�i+1

M

,�i+1

A

) = (?wnull ·z
m

·�i

M

,�i

A

)

Equations

d
0

+ . . .+ d
m

+m+ 1 = 2

w
null

= 0

Coefficients

|a
max

|  2

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP ROT

Variable Stacks

Let m 2 {0, 1, 2}, such that
P

m

j=0

(P
j

+ 1) = 3

(�i+1

M

,�i+1

A

) = (?wnull ·z
m

·?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

+ . . .+ d
m

+m+ 1 = 3

d
m

+ d
m+1

= v
i

w
null

= 0

Coefficients

|a
max

|  3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP SWAP

Variable Stacks

143

Let m 2 {0, 1}, such that
P

m

j=0

(P
j

+ 1) = 2

(�i+1

M

,�i+1

A

) = (?wnull ·z
m

·?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

+ . . .+ d
m

+m+ 1 = 2

d
m

+ d
m+1

= v
i

w
null

= 0

Coefficients

|a
max

|  3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP TUCK

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·z
0

·?wnull ·z
1

·?wnull ·z
0

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

d
1

= 0

w
null

= 0

Coefficients

|a
max

|  1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP 2DROP

144

Variable Stacks

(�i+1

M

,�i+1

A

) = (?d2 ·z
2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

d
1

= 0

Coefficients

|a
max

|  1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP 2DUP

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·z
0

·?wnull ·z
1

·�i

M

,�i

A

)

Equations

d
0

= 0

d
1

= 0

w
null

= 0

Coefficients

|a
max

|  1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP 3DUP

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·z
0

·?wnull ·z
1

·?wnull ·z
2

·�i

M

,�i

A

)

145

Equations

d
0

= 0

d
1

= 0

d
2

= 0

w
null

= 0

Coefficients

|a
max

|  1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP 2OVER

Variable Stacks

Let m 2 {0, 1, 2}, such that
P

m

j=0

(P
j

+ 1) = 3

(�i+1

M

,�i+1

A

) = (?wnull ·z
m

·?wnull ·z
m+1

·�i

M

,�i

A

)

Equations

d
0

+ . . .+ d
m

+m+ 1 = 3

d
m+1

= 0

w
null

= 0

Coefficients

|a
max

|  3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP 2ROT

Variable Stacks

146

Let m 2 {0, 1, 2, 3, 4}, such that
P

m

j=0

(P
j

+ 1) = 5

(�i+1

M

,�i+1

A

) =

(?wnull ·z
m

·?wnull ·z
m+1

·?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

+ . . .+ d
m

+m+ 1 = 5

d
m+1

= 0

d
m

+ d
m+2

= v
i

w
null

= 0

Coefficients

|a
max

|  5

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP 2SWAP

Variable Stacks

Let m 2 {0, 1, 2}, such that
P

m

j=0

(P
j

+ 1) = 3

(�i+1

M

,�i+1

A

) =

(?wnull ·z
m

·?wnull ·z
m+1

·?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

+ . . .+ d
m

+m+ 1 = 3

d
m+1

= 0

d
m

+ d
m+2

= v
i

w
null

= 0

147

Coefficients

|a
max

|  3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP PICK

Variable Stacks

Let m 2 {0, . . . , k0 � 1}, such that
P

m

j=1

(P
j

+ 1)� 1 = M
0

(�i+1

M

,�i+1

A

) = (?wnull ·z
m

·?d1 ·z
1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

d
1

+ . . .+ d
m

+m� 1 = z
0

w
null

= 0

Coefficients

|a
max

|  elemnr('i

M

)

 p
aux

(n, elemnr('
M

))

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP ROLL

Variable Stacks

Let m 2 {0, . . . , k0 � 1}, such that
P

m

j=1

(P
j

+ 1)� 1 = M
0

(�i+1

M

,�i+1

A

) = (?wnull ·z
m

·?d1 ·z
1

· . . . ·z
m�1

·?vi ·z
m+1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

148

Equations

d
0

= 0

d
1

+ . . .+ d
m

+m� 1 = z
0

d
m

+ d
m+1

= v
i

w
null

= 0

Coefficients

|a
max

|  max{elemnr('i

M

), 3}

 p
aux

(n, elemnr('
M

)) + 3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP EQUAL

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

d
1

= 0

z
1

+ v
i

+ 1 = z
0

if M
0

> M
1

z
1

� v
i

� 1 = z
0

if M
0

< M
1

z
1

= z
0

if M
0

= M
1

w
i

= 0 if M
0

> M
1

w
i

= 0 if M
0

< M
1

w
i

= 1 if M
0

= M
1

w
null

= 0

149

Coefficients

|a
max

|  3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP EQUALVERIFY

Variable Stacks

(�i+1

M

,�i+1

A

) = (?d2 ·z
2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

d
1

= 0

z
0

= z
1

Coefficients

|a
max

|  2

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP ADD

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

d
1

= 0

z
0

+ z
1

= w
i

w
null

= 0

150

Coefficients

|a
max

|  3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP SUB

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

d
1

= 0

z
1

� z
0

= w
i

w
null

= 0

Coefficients

|a
max

|  3

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP DEPTH

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·v
i

·�i

M

,�i

A

)

Equations

d
0

+ . . .+ d
k

0
+ k0 � 1 = v

i

w
null

= 0

151

Coefficients

|a
max

|  elemnr('i

M

) + 2

 p
aux

(n, elemnr('
M

)) + 2

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP IF

Variable Stacks

(�i+1

M

,�i+1

A

) = (?d1 ·z
1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

v
i

+ 1 = z
0

if top?('
i

M

) > 0

�v
i

� 1 = z
0

if top?('
i

M

) < 0

z
0

= 0 if top?('
i

M

) = 0

Coefficients

|a
max

|  2

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP ELSE

Variable Stacks

(�i+1

M

,�i+1

A

) = (�i

M

,�i

A

)

Equations

None

Coefficients

Not applicable

152

• f
i

= OP ENDIF

Variable Stacks

(�i+1

M

,�i+1

A

) = (�i

M

,�i

A

)

Equations

None

Coefficients

Not applicable

• f
i

= OP HASH160

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·w
i

·?d1 ·z
1

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

z
0

= M
0

w
i

= hash(M
0

)

w
null

= 0

Coefficients

|a
max

|  max{1,maxhash, p
crypto

(2

n,maxpush(S))}

 p
crypto

(2

n,maxpush(S)) + maxhash + 1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP CHECKSIG

Variable Stacks

(�i+1

M

,�i+1

A

) = (?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

153

Equations

d
0

= 0

d
1

= 0

z
0

= M
0

z
1

= M
1

w
i

= chksig(M
0

,M
1

)

w
null

= 0

Coefficients

|a
max

|  max{1, p
crypto

(2

n,maxpush(S))}

 p
crypto

(2

n,maxpush(S)) + 1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

• f
i

= OP CHECKSIGVERIFY

Variable Stacks

(�i+1

M

,�i+1

A

) = (?d2 ·z
2

· . . . ·z
k

0�1

·?dk0 ,�i

A

)

Equations

d
0

= 0

d
1

= 0

z
0

= M
0

z
1

= M
1

154

Coefficients

|a
max

|  max{1, p
crypto

(2

n,maxpush(S))}

 p
crypto

(2

n,maxpush(S)) + 1

 p
coef

(2

n, elemnr('
M

),maxpush(S))

Stack equivalence. Now, we will prove that if we construct a stack from a solution to

the system of equations constructed from a script as described in the previous section, the

execution of the script over this stack will be represented correctly by the sequence of

variable stacks. This section serves as part of the inductive step in the proof by induction

of Claim 5.14.1. The case in which the control stacks do not represent an execution state

is described in said proof. Therefore, we will just conduct the analysis for the opposite

case.

Firstly, we will analyze the execution of the basic operators (i.e. the operators not

associated with flow control). These do not modify the control stack, which is why it will

not be considered in this part of the analysis. For conciseness, we will also exclude the

alt stack operators from the initial analysis, for these are the only operators which modify

the alt stack. Thus, we will not consider the alt stack in the analysis of the basic operators

either. Let S = f
0

· . . . ·f
n

2 O⇤ be an arbitrary script and

~c = (

¯C, ¯E, ¯F , ¯G)

T ,

where the partial vectors are expanded as ¯C = (C
0

, . . . , C
k�1

), ¯E = (E
0

, . . . , E
k

),
¯F = (F

0

, . . . , F
n+1

) and ¯G = (G
0

, . . . , G
n

, G
null

), be a solution to the system of equations

corresponding to S on step i+ 1, such that

�

i+1

~c = ~b
i+1

155

For convenience we will say that

(0

M

, 0

A

, 0

I

) = (?E0 ·C
0

· . . . ·C
k�1

·?Ek , ", ")

and that for all j 2 {1, . . . , i+ 1},

(j

M

, j

A

, j

I

) = (f
j�1

� . . . � f
0

)(0

M

, 0

A

, 0

I

)

Now, let

�i

M

= ?d0 ·z
0

· . . . ·z
k

0�1

·?dk0

�i

A

= p
0

· . . . ·p
`

0

 i

M

= ?L0 ·J
0

· . . . ·J
k

0�1

·?Lk0

 i

A

= K
0

· . . . ·K
`

0

'i

M

= ?P0 ·M
0

· . . . ·M
k

0�1

·?Pk0

'i

A

= N
0

· . . . ·N
`

0

We want to show that if we assign ~x = ~c and then assume that (�i

M

,�i

A

,'i

I

) =

(i

M

, i

A

, i

I

), then

(�i+1

M

,�i+1

A

,'i+1

I

) = (i+1

M

, i+1

A

, i+1

I

)

• f
i

= OP PUSH
C

156

Observations

G
null

= 0

G
i

= C

Stacks values

�i+1

M

= ?wnull ·w
i

·�i

M

= ?Gnull ·G
i

· i

M

= ?0·C· i

M

= i+1

M

• f
i

= OP VERIFY

– Case 1: top?('
i

M

) > 0

Observations

J
0

= F
i

+ 1 � 1 > 0

L
0

= 0

Stacks values

�i+1

M

= ?d1 ·z
1

· . . . ·z
k

0�1

·?dk0

= ?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

– Case 2: top?('
i

M

) < 0

Observations

J
0

= �F
i

� 1  �1 < 0

L
0

= 0

157

Stacks values

�i+1

M

= ?d1 ·z
1

· . . . ·z
k

0�1

·?dk0

= ?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP IFDUP

– Case 1: top?('
i

M

) > 0

Observations

J
0

= F
i

+ 1 � 1 > 0

L
0

= 0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
0

·�i

M

= ?Gnull ·J
0

· i

M

= ?0·J
0

· i

M

= i+1

M

– Case 2: top?('
i

M

) < 0

Observations

J
0

= �F
i

� 1  �1 < 0

L
0

= 0

G
null

= 0

158

Stacks values

�i+1

M

= ?wnull ·z
0

·�i

M

= ?Gnull ·J
0

· i

M

= ?0·J
0

· i

M

= i+1

M

– Case 3: top?('
i

M

) = 0

Observations

J
0

= 0

L
0

= 0

Stacks values

�i+1

M

= �i

M

= i

M

= i+1

M

• f
i

= OP DROP

Observations

L
0

= 0

Stacks values

�i+1

M

= ?d1 ·z
1

· . . . ·z
k

0�1

·?dk0

= ?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP DUP

159

Observations

L
0

= 0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
0

·�i

M

= ?Gnull ·J
0

· i

M

= ?0·J
0

· i

M

= i+1

M

• f
i

= OP NIP

Let m 2 {0, 1} be such that
P

m

j=0

(P
j

+ 1) = 2

Observations

L
0

+ . . .+ L
m

+m+ 1 = 2

F
i

= L
m

+ L
m+1

Stacks values

�i+1

M

= ?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+1

· . . . ·z
k

0�1

·?dk0

= ?L0 ·J
0

· . . . ·J
m�1

·?Fi ·J
m+1

· . . . ·J
k

0�1

·?Lk0

= ?L0 ·J
0

· . . . ·J
m�1

·?Lm+Lm+1 ·J
m+1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP OVER

Let m 2 {0, 1} be such that
P

m

j=0

(P
j

+ 1) = 2

160

Observations

L
0

+ . . .+ L
m

+m+ 1 = 2

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
m

·�i

M

= ?Gnull ·J
m

· i

M

= ?0·J
m

· i

M

= i+1

M

• f
i

= OP ROT

Let m 2 {0, 1, 2} be such that
P

m

j=0

(P
j

+ 1) = 3

Observations

L
0

+ . . .+ L
m

+m+ 1 = 3

F
i

= L
m

+ L
m+1

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
m

·?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+1

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·J
m

·?L0 ·J
0

· . . . ·J
m�1

·?Fi ·J
m+1

· . . . ·J
k

0�1

·?Lk0

= ?0·J
m

·?L0 ·J
0

· . . . ·J
m�1

·?Lm+Lm+1 ·J
m+1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP SWAP

Let m 2 {0, 1} be such that
P

m

j=0

(P
j

+ 1) = 2

161

Observations

L
0

+ . . .+ L
m

+m+ 1 = 2

F
i

= L
m

+ L
m+1

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
m

·?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+1

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·J
m

·?L0 ·J
0

· . . . ·J
m�1

·?Fi ·J
m+1

· . . . ·J
k

0�1

·?Lk0

= ?0·J
m

·?L0 ·J
0

· . . . ·J
m�1

·?Lm+Lm+1 ·J
m+1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP TUCK

Observations

L
0

= 0

L
1

= 0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
0

·?wnull ·z
1

·?wnull ·z
0

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·J
0

·?Gnull ·J
1

·?Gnull ·J
0

·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= ?0·J
0

·?0·J
1

·?0·J
0

·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP 2DROP

162

Observations

L
0

= 0

L
1

= 0

Stacks values

�i+1

M

= ?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP 2DUP

Observations

L
0

= 0

L
1

= 0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
0

·?wnull ·z
1

·�i

M

= ?Gnull ·J
0

·?Gnull ·J
1

· i

M

= ?0·J
0

·?0·J
1

· i

M

= i+1

M

• f
i

= OP 3DUP

163

Observations

L
0

= 0

L
1

= 0

L
2

= 0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
0

·?wnull ·z
1

·?wnull ·z
2

·�i

M

= ?Gnull ·J
0

·?Gnull ·J
1

·?Gnull ·J
2

· i

M

= ?0·J
0

·?0·J
1

·?0·J
2

· i

M

= i+1

M

• f
i

= OP 2OVER

Let m 2 {0, 1, 2} be such that
P

m

j=0

(P
j

+ 1) = 3

Observations

L
0

+ . . .+ L
m

+m+ 1 = 3

L
m+1

= 0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
m

·?wnull ·z
m+1

·�i

M

= ?Gnull ·J
m

·?Gnull ·J
m+1

· i

M

= ?0·J
m

·?0·J
m+1

· i

M

= i+1

M

• f
i

= OP 2ROT

164

Let m 2 {0, 1, 2, 3, 4} be such that
P

m

j=0

(P
j

+ 1) = 5

Observations

L
0

+ . . .+ L
m

+m+ 1 = 5

L
m+1

= 0

F
i

= L
m

+ L
m+2

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
m

·?wnull ·z
m+1

·?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·J
m

·?Gnull ·J
m+1

·?L0 ·J
0

· . . . ·J
m�1

·?Fi ·J
m+2

· . . . ·J
k

0�1

·?Lk0

= ?0·J
m

·?0·J
m+1

·?L0 ·J
0

· . . . ·J
m�1

·?Lm+Lm+2 ·J
m+2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP 2SWAP

Let m 2 {0, 1, 2} be such that
P

m

j=0

(P
j

+ 1) = 3

Observations

L
0

+ . . .+ L
m

+m+ 1 = 3

L
m+1

= 0

F
i

= L
m

+ L
m+2

G
null

= 0

165

Stacks values

�i+1

M

= ?wnull ·z
m

·?wnull ·z
m+1

·?d0 ·z
0

· . . . ·z
m�1

·?vi ·z
m+2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·J
m

·?Gnull ·J
m+1

·?L0 ·J
0

· . . . ·J
m�1

·?Fi ·J
m+2

· . . . ·J
k

0�1

·?Lk0

= ?0·J
m

·?0·J
m+1

·?L0 ·J
0

· . . . ·J
m�1

·?Lm+Lm+2 ·J
m+2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP PICK

Let m 2 {0, . . . , k0 � 1} be such that
P

m

j=1

(P
j

+ 1)� 1 = M
0

Observations

L
0

= 0

L
1

+ . . .+ L
m

+m� 1 = J
0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·z
m

·?d1 ·z
1

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·J
m

·?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= ?0·J
m

·?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP ROLL

Let m 2 {0, . . . , k0 � 1} be such that
P

m

j=1

(P
j

+ 1)� 1 = M
0

Observations

L
0

= 0

L
1

+ . . .+ L
m

+m� 1 = J
0

F
i

= L
m

+ L
m+1

G
null

= 0

166

Stacks values

�i+1

M

= ?wnull ·z
m

·?d1 ·z
1

· . . . ·z
m�1

·?vi ·z
m+1

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·J
m

·?L1 ·J
1

· . . . ·J
m�1

·?Fi ·J
m+1

· . . . ·J
k

0�1

·?Lk0

= ?0·J
m

·?L1 ·J
1

· . . . ·J
m�1

·?Lm+Lm+1 ·J
m+1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP EQUAL

– Case 1: M
0

> M
1

Observations

J
0

= J
1

+ F
i

+ 1 � J
1

+ 1 > J
1

L
0

= 0

L
1

= 0

G
i

= 0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·G
i

·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= ?0·0·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

– Case 2: M
0

< M
1

167

Observations

J
0

= J
1

� F
i

� 1  J
1

� 1 < J
1

L
0

= 0

L
1

= 0

G
i

= 0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·G
i

·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= ?0·0·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

– Case 3: M
0

= M
1

Observations

J
0

= J
1

L
0

= 0

L
1

= 0

G
i

= 1

G
null

= 0

168

Stacks values

�i+1

M

= ?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·G
i

·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= ?0·1·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP EQUALVERIFY

Observations

L
0

= 0

L
1

= 0

J
0

= J
1

Stacks values

�i+1

M

= ?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP ADD

Observations

L
0

= 0

L
1

= 0

G
i

= J
0

+ J
1

G
null

= 0

169

Stacks values

�i+1

M

= ?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·G
i

·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= ?0·(J
0

+ J
1

)·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP SUB

Observations

L
0

= 0

L
1

= 0

G
i

= J
1

� J
0

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·G
i

·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= ?0·(J
1

� J
0

)·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP HASH160

Observations

L
0

= 0

J
0

= M
0

G
i

= hash(M
0

)

G
null

= 0

170

Stacks values

�i+1

M

= ?wnull ·w
i

·?d1 ·z
1

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·G
i

·?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= ?0·hash(M
0

)·?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= ?0·hash(J
0

)·?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP CHECKSIG

Observations

L
0

= 0

L
1

= 0

J
0

= M
0

J
1

= M
1

G
i

= chksig(M
0

,M
1

)

G
null

= 0

Stacks values

�i+1

M

= ?wnull ·w
i

·?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?Gnull ·G
i

·?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= ?0·chksig(M
0

,M
1

)·?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= ?0·chksig(J
0

, J
1

)·?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0

= i+1

M

• f
i

= OP CHECKSIGVERIFY

171

Observations

L
0

= 0

L
1

= 0

J
0

= M
0

J
1

= M
1

9
>>>=

>>>;
chksig(J

0

, J
1

) = 1

Stacks values

�i+1

M

= ?d2 ·z
2

· . . . ·z
k

0�1

·?dk0

= ?L2 ·J
2

· . . . ·J
k

0�1

·?Lk0

= i+1

M

Now we will move on to the analysis of the alt stack operators (i.e. OP TOALTSTACK

and OP FROMALTSTACK). Once again, these operators are unable to modify the control

stack. Thus, we will continue to ignore this stack in this part of the analysis.

• f
i

= OP TOALTSTACK

Observations

L
0

= 0

Stacks values

�i+1

M

= ?d1 ·z
1

· . . . ·z
k

0�1

·?dk0 �i+1

A

= z
0

·�i

A

= ?L1 ·J
1

· . . . ·J
k

0�1

·?Lk0
= J

0

· i

A

= i+1

M

= i+1

A

• f
i

= OP FROMALTSTACK

Observations

172

None

Stacks values

�i+1

M

= p
0

·�i

M

�i+1

A

= p
1

· . . . ·p
`

0

= K
0

· i

M

= K
1

· . . . ·K
`

0

= i+1

M

= i+1

A

Finally, we show the analysis of the flow control operators (i.e. OP IF, OP ELSE and

OP ENDIF). These operators are unable to modify the alt stack. Thus, we will ignore this

stack in this part of the analysis. It is important to note that the case in which the control

stack after step i does not represent an execution state is analyzed in the proof for Claim

5.14.1. Therefore, in this section we only analyze the opposite case.

• f
i

= OP IF

– Case 1: top?('
i

M

) > 0

Observations

J
0

= F
i

+ 1 � 1 > 0

L
0

= 0

Stacks values

�i+1

M

= ?d1 ·z
1

· . . . ·z
k

0�1

·?hk0 'i+1

I

= 1·'i

I

= ?L1 ·J
0

· . . . ·J
k

0�1

·?Lk0
= 1· i

I

= i+1

M

= i+1

I

– Case 2: top?('
i

M

) < 0

Observations

J
0

= �F
i

� 1  �1 < 0

L
0

= 0

173

Stacks values

�i+1

M

= ?d1 ·z
1

· . . . ·z
k

0�1

·?hk0 'i+1

I

= 1·'i

I

= ?L1 ·J
0

· . . . ·J
k

0�1

·?Lk0
= 1· i

I

= i+1

M

= i+1

I

– Case 3: top?('
i

M

) = 0

Observations

J
0

= 0

L
0

= 0

Stacks values

�i+1

M

= ?d1 ·z
1

· . . . ·z
k

0�1

·?hk0 'i+1

I

= 0·'i

I

= ?L1 ·J
0

· . . . ·J
k

0�1

·?Lk0
= 0· i

I

= i+1

M

= i+1

I

• f
i

= OP ELSE

– Case 1: top('i

I

) = 0

Observations

None

Stacks values

�i+1

M

= �i

M

'i+1

I

= 1·tail('i

I

)

= i

M

= 1·tail(i

I

)

= i+1

M

= i+1

I

– Case 2: top('i

I

) = 1

174

Observations

None

Stacks values

�i+1

M

= �i

M

'i+1

I

= 0·tail('i

I

)

= i

M

= 0·tail(i

I

)

= i+1

M

= i+1

I

• f
i

= OP ENDIF

Observations

None

Stacks values

�i+1

M

= �i

M

'i+1

I

= tail('i

I

)

= i

M

= tail(i

I

)

= i+1

M

= i+1

I

175

