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ELLIPSES, NEAR ELLIPSES,
AND HARMONIC MÖBIUS TRANSFORMATIONS

MARTIN CHUAQUI, PETER DUREN, AND BRAD OSGOOD

(Communicated by Juha M. Heinonen)

Abstract. It is shown that an analytic function taking circles to ellipses must
be a Möbius transformation. It then follows that a harmonic mapping taking
circles to ellipses is a harmonic Möbius transformation.

Analytic Möbius transformations take circles to circles. This is their most basic,
most celebrated geometric property. We add the adjective ‘analytic’ because in a
previous paper [1] we introduced harmonic Möbius transformations as a general-
ization of Möbius transformations to harmonic mappings. Their basic geometric
property, the only one we know so far, is that they take circles to ellipses. In this
paper we consider the converse question. We shall show that a harmonic mapping
that takes circles to ellipses must be a harmonic Möbius transformation. We also
have some comments on the situation for analytic functions; in fact, we need a
similar result for analytic functions to deal with the harmonic case.

1. Harmonic mappings and harmonic Möbius transformations

We begin with a very brief review of the definition and properties of harmonic
mappings and harmonic Möbius transformations, followed by a statement of our
main result. A harmonic, complex-valued function f defined on a simply connected
domain can be written in the form f = h+g, where h and g are analytic. When f is
locally univalent and sense-preserving one has h′(z) �= 0 and the analytic function
ω = g′/h′, called the (second) complex dilatation of f , satisfies |ω(z)| < 1. In this
paper we will always assume that a harmonic function f is locally univalent and
sense-preserving, and we refer to f as a harmonic mapping.

On any neighborhood where ω is not zero or has zeros of even order, f lifts to
a mapping whose image is a minimal surface in R3. The metric of the surface has
the form ρ|dz| where ρ = |h′| + |g′| and the curvature is

K = − |ω′|2
|h′||g′|(1 + |ω|2) .

We refer to [2] for further background.
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We need a few facts on the curvature and the dilatation; see [1] for the details.
First, the curvature is constant if and only if it is zero. This in turn is equivalent
to the dilatation being constant (not necessarily zero), and then to f being of the
form f = h + αh for some analytic, locally univalent function h and a constant α,
|α| < 1.

In [1] we introduced the Schwarzian derivative of a harmonic mapping by the
formula

S(f) = 2[(log ρ)zz − ((log ρ)z)2]

and developed several properties analogous to those of the Schwarzian of an ana-
lytic function. In particular, S(f) = 0 if and only if f is of the form f = h + αh
where α is a complex constant with |α| < 1 and h is an (analytic) Möbius trans-
formation. Pursuing the analogy, we defined a harmonic Möbius transformation to
be a harmonic mapping of this form. Since such a map is the composition of an
analytic Möbius transformation with the linear map z �→ z + αz, it follows that
harmonic Möbius transformations take circles to ellipses. (We also see that a har-
monic Möbius transformation is univalent and has a univalent extension to C.) Our
purpose here is to close the loop of equivalences.

Theorem. For a harmonic mapping f the following are equivalent:
(i) The Schwarzian derivative S(f) = 0.
(ii) f = h+αh for some (analytic) Möbius transformation h and some complex

constant α with |α| < 1.
(iii) f takes circles to ellipses.

We note that the Radó-Kneser-Choquet theorem (see [2]) implies that there
are harmonic mappings of the disk onto a domain bounded by an ellipse, with
prescribed boundary correspondence. Because of this flexibility at the boundary
such a mapping need not be a harmonic Möbius transformation, and thus one
certainly needs more than one circle going to one ellipse to characterize Möbius
transformations, harmonic or analytic. The theorem is stated in terms of all circles
going to ellipses, and though our proof uses this it may be that one can do with
less; see the remarks after the proof of Proposition 1, below.

2. Analytic functions taking circles to ellipses

The first step in proving the theorem is a result for analytic functions.

Proposition 1. An analytic function f on a domain Ω taking circles to ellipses is
a Möbius transformation.

So, it turns out, the mapping is univalent and the image ellipses are actually
circles. This result would not surprise anyone, but the proof might. Afterward we
discuss an example that was suggested by an alternate argument.

Proof. It must be that f is not constant; thus, as our arguments will be local, we
may assume that f ′ �= 0 on Ω and, by further restricting the domain, that f is
univalent. Normalize in the domain and range so that the closed unit disk lies in
Ω and so that f maps |z| = 1 onto the ellipse

u2

a2
+

v2

b2
= 1 with f(0) = 0 , f ′(0) = 1 .
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Then f is odd and real on the real axis. For r ≤ 1 the image of the circles
|z − r/2| = r/2 are ellipses symmetric in the real axis, and thus the curvatures at
f(0) and f(r) are equal. They are given, respectively, by

1
|f ′(0)|

(
2
r

+ Im
{
−i

f ′′(0)
f ′(0)

})
and

1
|f ′(r)|

(
2
r

+ Im
{

i
f ′′(r)
f ′(r)

})
,

so that
2
r

=
1

f ′(r)

(
2
r

+
f ′′(r)
f ′(r)

)
,

because of the normalizations.
A simple integration leads to

f ′(r) =
1

1 − cr2
, c ∈ R , 0 < r < 1;

hence
f ′(z) =

1
1 − cz2

for all z ∈ Ω. From here it would seem clear that we must have c = 0, whence
f(z) = z, but it requires some effort to show this. Here is one approach, a direct
one, that exhibits some unexpected cancelations.

Let f = u + iv. By assumption, the image of |z| = r under f is an ellipse for
any 0 < r ≤ 1, and the equation is

(1)
u(reiθ)2

f(r)2
+

v(reiθ)2

|f(ir)|2 = 1 .

Using

f(z) = z +
c

3
z3 +

c2

5
z5 + · · · ,

from the formula for f ′(z), we have

u(reiθ) = r
(
cos θ +

c

3
r2 cos 3θ +

c2

5
r4 cos 5θ + O(r6)

)
,

v(reiθ) = r
(
sin θ +

c

3
r2 sin 3θ +

c2

5
r4 sin 5θ + O(r6)

)
,

f(r) = r
(
1 +

c

3
r2 +

c2

5
r4 + O(r6)

)
,

|f(ir)| = r
(
1 − c

3
r2 +

c2

5
r4 + O(r6)

)
.

Substitute into (1) to obtain
(
1 − c

3
r2 +

c2

5
r4 + O(r6)

)2(
cos θ +

c

3
r2 cos 3θ +

c2

5
r4 cos 5θ + O(r6)

)2

+
(
1 +

c

3
r2 +

c2

5
r4 + O(r6)

)2(
sin θ +

c

3
r2 sin 3θ +

c2

5
r4 sin 5θ + O(r6)

)2

=
(
1 +

c

3
r2 +

c2

5
r4 + O(r6)

)2(
1 − c

3
r2 +

c2

5
r4 + O(r6)

)2

.

(2)

Now expand and collect terms. On the left-hand side the constant term is 1 and
the coefficient of r2 is

2c

3
(
cos θ cos 3θ − cos2 θ + sin θ sin 3θ + sin2 θ

)
,
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which collapses to 0. The coefficient of r4 is

c2

{(
1
9

+
2
5

)
(cos2 θ + sin2 θ) +

1
9
(cos2 3θ + sin2 3θ) +

4
9
(sin θ sin 3θ − cos θ cos 3θ)

+
2
5
(cos θ cos 5θ + sin θ sin 5θ)

}
,

which simplifies to

2c2

45
(14 − cos 4θ) ,

so the left-hand side of (2) in total is

1 +
2c2

45
(14 − cos 4θ)r4 + O(r6) .

On the other hand, the right-hand side of (2) is

1 +
26c2

45
r4 + O(r6) .

By comparison of the two results it follows that c = 0, as claimed. This proves
Proposition 1. �

Another approach to proving this proposition, which we will not present, led us
to consider functions of the form

f(z) = z + a3z
3 + a5z

5 + · · · , a3 �= 0 ,

which approximately map concentric circles |z| = r to concentric ellipses with as
small an error as possible. By rescaling f in the domain and range one can assume
that a3 = 1. We found that the function

f(z) = z + z3 + 2z5 + 5z7

satisfies the ellipse equation (1) with an error of size O(r8). (Of course, when r is
small the concentric ellipses are nearly concentric circles.) Furthermore, this is as
far as one can go; i.e., no additional term cz9 will make f satisfy (1) with an error
of order O(r10).

As mentioned at the beginning of the proof, Proposition 1 is really a local state-
ment, more accurately an infinitesimal statement — for the proof one needs a
shrinking sequence of circles mapping to ellipses. We do not know what a more
global statement might be. Obviously the Riemann mapping of the unit disk onto
the region bounded by an ellipse is not a Möbius transformation, so one circle can
map onto one ellipse without any further conclusions being drawn. (This mapping
is given in terms of elliptic functions, and, if by some chance you have wondered,
we now know for certain that it does not map concentric circles to concentric el-
lipses.) Though it is true that a multiply connected domain bounded by circles can
be mapped conformally onto one bounded by ellipses, we might conjecture that a
conformal mapping of a simply connected domain cannot take two circles onto two
ellipses.
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3. Harmonic mappings taking circles to ellipses

We return now to harmonic mappings, and corresponding to Proposition 1 we
have the following local property.

Proposition 2. A harmonic mapping f on a domain Ω taking circles to ellipses
has constant dilatation.

Proof. We will show that the dilatation is constant by showing that the curvature of
the minimal surface corresponding to f is zero; recall the remark on this in Section
1. Note that f has no lift only at the discrete set of points that are odd-order zeros
of the dilatation, and we may thus confine our analysis to an arbitrary (small)
simply connected domain V where the lift exists.

Write f = h + g and take any z0 ∈ V . By shifting we may assume for simplicity
that z0 = 0. We may assume also that h(0) = g(0) = 0 and that h′(0) = 1. In
terms of power series,

h(z) = z + a2z
2 + . . . , g(z) = αz + . . . ,

and |α| < 1 because f is sense-preserving. Now, perhaps on a smaller neighborhood
U of 0, consider the harmonic mapping

F (z) = f

(
z

1 + a2z

)
.

Note that F still maps circles to ellipses. Analytically, the effect is to make

F (z) = z + αz + b2z
2 + O(z3) ;

i.e., if we write F = H + G, then H ′′(0) = 0. Geometrically, w = z/(1 + a2z) is an
analytic reparametrization of part of the surface corresponding to f . In particular,
the curvature is invariant (this is also easy to check directly from the formula for
K), and since 0 maps to 0 we have, in obvious notation, Kf (0) = KF (0). We will
show that KF (0) = 0.

We claim first that b2 = 0. Suppose by way of contradiction that b2 �= 0 and
consider the image

1
r

F (reiθ) = eiθ + αe−iθ + b2re
−2iθ + O(r2)

of |z| = r for small r, and the curve

ϕr(θ) = eiθ + αe−iθ + b2re
−2iθ .

The linear part
ψ(θ) = eiθ + αe−iθ

parametrizes an ellipse. Simple considerations show that ϕr(θ) = ψ(θ) + b2re
−2iθ

has exactly 6 intersections with ψ(θ) and that the intersections are transverse. (ψ(θ)
goes around once counterclockwise while b2re

−2iθ goes around twice clockwise.
Incidentally, one can get quite interesting curves by this kind of perturbation of an
ellipse.) Adding a term of size O(r2) will not change the number of intersections;
that is, the ellipse (by assumption)

1
r

F (reiθ) = ϕr(θ) + O(r2)

intersects the ellipse ψ(θ) at 6 points. This cannot be, and we conclude that b2 = 0.
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Finally, the curvature of the surface corresponding to the lift of F (and of f) is

K = − |ω′|2
|H ′||G′|(1 + |ω|2) ,

where ω = G′/H ′. Here we may assume that G′ �= 0 on the neighborhood (or on
a smaller neighborhood), for if G′ vanishes identically, then G is constant and F ,
hence f , is analytic, and the dilatation is zero. The computations with power series
now easily imply that ω′(0) = 0, so that

K(z) = |z|2 + · · · ;

thus K actually vanishes to second order at 0. Since 0 represents an arbitrary
point z0 ∈ V , the curvature therefore vanishes identically and the dilatation of f is
therefore constant. �

4. Proof of the theorem

We remarked earlier that the statements (i) and (ii) are equivalent and that (ii)
implies (iii). We will complete the proof by showing that (iii) implies (ii).

If a harmonic mapping f takes circles to ellipses, then by Proposition 2 its
dilatation is constant. Therefore f = h + αh for some locally univalent analytic
function h and a constant α, |α| < 1. Then h must also map circles to ellipses and
by Proposition 1 it is an analytic Möbius transformation.
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