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1 Department of Physics, Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile
2 Center of Subatomic Studies and Scientific-Technological Center of Valparaiso, Chile
3 Department of Physics, Universität Bielefeld, 33501 Bielefeld, Germany
4 Department of Physics, Pontificia Universidad Católica de Chile, Santiago 22, Chile
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Abstract
We construct models of analytic QCD (i.e. with the running coupling parameter
free of Landau singularities) which address several problems encountered
in previous analytic QCD models, among them their incompatibility with
the ITEP-OPE philosophy (due to UV power terms) and too low values of
the semihadronic τ decay ratio. The starting point of the approach is the
construction of appropriate nonperturbative beta functions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the perturbative QCD (pQCD), the running coupling apt(Q
2) ≡ αs(Q

2)pt/π , as a function
of Q2 ≡ −q2 (q being a typical four-momentum transfer of the considered physical process),
has the so-called Landau singularities at 0 < Q2 � �2 (�2 ∼ 10−1 GeV2), thus not reflecting
the analyticity of the space-like observables D(Q2) for all Q2 ∈ C\(−∞, 0] dictated by the
causality of quantum field theories. As a consequence, the evaluated expressions of such
observables in pQCD have wrong analyticity properties and become unreliable at low |Q2|.
In order to overcome this fundamental problem of pQCD, several attempts have been made to
restore the correct analytic (i.e. holomorphic) properties of both the coupling parameter a(Q2)

and the related evaluated expressions of observables, which all go under the generic name of
analytic QCD (anQCD).

Various models of anQCD found in the literature (some of them [1–7]; for reviews and
further references see [8–10]), among them the most popular minimal analytic (MA) model of
Shirkov and Solovtsov [1], have faced criticism based mainly on one or both of the following
points, one being theoretical and the other phenomenological.
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(1) The analytic running coupling parameter a(Q2) differs at large Q2 from the ordinary pQCD
coupling apt(Q

2) ≡ αs(Q
2)/π by power terms ∼ (�2/Q2)n or ∼ (�2/Q2)n lnm(�2/Q2)

(in MA: by terms ∼ (�2/Q2)1). However, these then lead in (inclusive) physical
observables to the corresponding power corrections which, nota bene, come from the
ultraviolet (UV) regime [11]. If such observables are calculated within the operator
product expansion (OPE) mechanism, it is readily seen that such power terms are in
conceptual contradiction with the general OPE philosophy which has been vigorously
advocated in particular by the ITEP group [12] (see also, e.g., [13]) and whose validity
is strongly indicated by the success of the related QCD sum rules. This philosophy rests
on the assumption that OPE is true in general (not only in the perturbative approach) and
that it allows us to separate short-range contributions from the long-range ones. And it
is only the long-range contributions which should lead to power corrections, reflecting
the nonperturbative physics. Thus, there is no space for UV-generated power corrections
within the ITEP-OPE philosophy.

(2) In the widely used MA model, the prediction for one of the best-measured low-energy
QCD observables, namely the strangeless rτ , the decay branching ratio of the τ lepton into
nonstrange hadrons, lies in the region rτ ≈ 0.14 [14], significantly below the experimental
value rτ = 0.202 ± 0.004. It appears that anQCD models in general tend to give too low
values of rτ [15].

Point (2) (the rτ problem) can be addressed by introducing additional parameters [7, 16];
in MA, these parameters (the quark masses) have to be chosen unusually large [16]. On the
other hand, point (1) (ITEP-OPE) has not been addressed in a more systematic way in the
literature hitherto5. Within this paper we try to develop a version of analytic QCD which
addresses both problems mentioned above. We base our approach on the assumption that the
singularity structure of a(Q2) reflects the singularity structure of space-like observablesD(Q2)

in a ‘minimal’ way, i.e., dictated by physical principles (causality and unitarity) which means
that a(Q2) is analytic in the complex Q2-plane with the exception of a cut along the negative
semiaxis starting at Q2 = −M2

thr < 0 (there are no massless hadrons). Specifically, we expect
a(Q2) to be analytic at Q2 = 0. The method of identifying such an analytic coupling consists
in starting with an appropriate ansatz for the related beta function and reconstructing from it
the coupling a(Q2) by solving the renormalization group equation (RGE)6. Such an approach
(cf [19]) is natural because the ITEP-OPE condition can be implemented in this approach in a
very simple way, by requiring that beta function β(a) as a function of the coupling a be analytic
in point a = 0, and have there the pQCD Taylor expansion β(a) = −β0a

2(1 + c1a + O(a2))

where β0 and c1 = β1/β0 are universal. However, having the ITEP-OPE condition easily
implemented in this way, it turns out to be very difficult to find a beta function which gives
simultaneously an analytic coupling a(Q2) (i.e. analytic in the complex Q2-plane with the
exception of the negative semiaxis) and which gives a high enough value rτ ≈ 0.20 (i.e.
compatible with the experimental measurements). In order to obtain analyticity of a(Q2), we
are led to restrict ourselves to certain classes of beta functions. However, the obtained values
of rτ turn out to be significantly too low unless the beta functions are further modified in a
peculiar, perhaps intriguing, manner.

In section 2 of this paper, we motivate the first class of beta functions which lead to
the analyticity of a(Q2) while respecting the ITEP-OPE condition. In section 3 we modify

5 In [3] the problem is addressed in an approximate way, by requiring the aforementioned power index n to be large
(n = 4). In [11] it was explored whether an analytic coupling respecting ITEP-OPE can be constructed directly; it
turned out to be difficult, and several parameters had to be introduced.
6 In another context, an all-order beta function for non-supersymmetric Yang–Mills theories was proposed in [17],
inspired by the Novikov–Shifman–Vainshtein–Zakharov beta function of N = 1 supersymmetric gauge theories [18].
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these beta functions in such a way as to obtain the correct value of rτ while maintaining the
analyticity and the ITEP-OPE condition. Section 4 summarizes our results and outlines the
prospects of further phenomenological applications of the obtained models.

2. Beta function ansätze for ITEP-OPE and analyticity

The renormalization group equation (RGE)

Q2 da(Q2)

dQ2
= β(a(Q2)) (1)

determines the running coupling a(Q2) at (in general complex) Q2 once an initial condition
a
(
Q2

in

) = ain is imposed. We will impose the initial condition in the present anQCD versions
at the scale Q2

in of the 3 → 4 active quark flavor threshold; we choose Q2
in = (3mc)

2

(≈ 14.5 GeV2). The value of ain = a
(
Q2

in

)
is obtained as usual in perturbative QCD (pQCD).

The analytic coupling we get is valid for nf = 3 (the three active quarks u, d and s being
almost massless), and for higher energies the standard pQCD couplings can be used because
our versions of anQCD, at such high energies, practically merge with the pQCD due to the
ITEP-OPE condition:

|a(Q2) − apt(Q
2)| < (�2/Q2)n (2)

at Q2 � �2(∼ 0.1 GeV2) for all positive n.
More specifically, in the renormalization scheme (RSch) dictated by the expansion of

our beta function β(a) in powers of a (i.e. the parameters cn ≡ βn/β0, for n � 2), we will
require that our a(Q2) at Q = 3mc achieves such a value a((3mc)

2) = ain which leads to
the value a

(
M2

Z; MS
) = 0.119/π once we (exactly) change the RSch at Q = 3mc to MS

and run the coupling to Q = MZ with MS perturbative RGE. The latter running is performed
at the four-loop level, taking the RGE thresholds nf = 3 	→ nf = 4 at Q = 3mc and
nf = 4 	→ nf = 5 at Q = 3mb, using the procedure of [20] with three-loop threshold
matching conditions (for two-loop matching conditions, cf [21–23]). We note that the value
a
(
M2

Z; MS
) ≈ 0.119/π is obtained by application of pQCD evaluations to QCD observables

of higher energies (|Q2| � 10 GeV2).
With such a fixing of the initial condition, integration of RGE (1) in the complex Q2-plane

can be made more transparent by introducing the new complex variable z = ln
(
Q2

/
μ2

in

)
, with

μin being a fixed scale; we chose μin = 3mc. The entire complex Q2-plane (the first sheet) then
corresponds to the complex z stripe: −π � Im(z) < +π . The complex Q2-plane C\(−∞, 0]
where a(Q2) has to be analytic corresponds to the complex z stripe −π < Im(z) < +π , while
the Minkowskian semiaxis Q2 � 0 corresponds to Im z = −π ; the point Q2 = 0 corresponds
to z = −∞, and Q2 = (3mc)

2 to z = 0. Using the notation a(Q2) ≡ F(z), RGE (1) can be
rewritten in the form

dF(z)

dz
= β(F (z)), (3)

in the semi-open stripe −π � Im(z) < +π , and requiring for the analyticity of a(Q2) in the Q2

sector C\(−∞, 0] equivalently the analyticity of F(z) in the open z-stripe −π < Im(z) < +π

(⇒ ∂F/∂z = 0). If we write z = x + iy and F = u + iv, RGE (3) can be rewritten in terms
of real functions u, v and real variables x, y

∂u(x, y)

∂x
= Re β(u + iv),

∂v(x, y)

∂x
= Im β(u + iv), (4)

3
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∂u(x, y)

∂y
= −Im β(u + iv),

∂v(x, y)

∂y
= Re β(u + iv). (5)

If β(F ) in (3) is an analytic function of F at F = 0, then a(Q2) fulfills the ITEP-OPE
condition (2). This will be demonstrated in the following lines by assuming that the ITEP-OPE
condition is not fulfilled and showing that consequently β(F ) must be nonanalytic at F = 0.
If the ITEP-OPE condition (2) is not fulfilled, then there exists a positive n0 such that

δa(Q2) ≡ a(Q2) − apt(Q
2) ≈ κ(�2/Q2)n0 , (6)

when Q2 � �2. Due to asymptotic freedom at such large Q2, apt(Q
2) is

apt(Q
2) = 1

β0 ln(Q2/�2)
+ O(ln ln(Q2/�2)/ ln2(Q2/�2)), (7)

and the power term can be written as

(�2/Q2)n0 ≈ exp(−K/apt(Q
2)), (8)

where7 K = n0/β0. When we apply Q2 d/dQ2 to relation (6), and use expression (8), we
obtain

β(a(Q2)) − βpt(apt(Q
2)) ≈ n0κ exp(−K/apt(Q

2)). (9)

Now we can replace a(Q2) in the first beta function in equation (9) by apt(Q
2) +

κ exp(−K/apt(Q
2)), due to relations (6) and (8), and Taylor-expand the β-function around

apt(Q
2) ( �= 0). This then gives

β(apt) + κ exp(−K/apt)
dβ(a)

da

∣∣∣∣
a=apt

+ O(exp(−2K/apt)) = βpt(apt) + n0κ exp(−K/apt).

(10)

Since this relation is valid for small values of |apt|, the derivative dβ(a)/da at a = apt on the
LHS of equation (10) is very small (about −2β0apt) and can be neglected. This means that
equation (10) can be rewritten for small values of apt = F as

β(F ) ≈ βpt(F ) + n0κ exp(−K/F). (11)

While βpt(F ) is analytic at F = 0, the term exp(−K/F) is nonanalytic at F = 0. Therefore,
the non-fulfillment of the ITEP-OPE condition (2) implies nonanalyticity of β(F ) at F = 0,
and this concludes the demonstration.

In addition, since at small F the beta function has to respect pQCD, the following condition
must be imposed on it:

β(F ) = −β0F
2[1 + c1F + c2F

2 + · · ·], (12)

where the parameters β0 and c1 = β1/β0 are universal; at nf = 3 we have β0 = 9/4 and
c1 = 16/9.

A high precision implementation of the numerical integration of RGE (4) and (5), e.g., with
Mathematica8, for various ansätze of the β(F ) function and respecting the pQCD condition
(12) and the ITEP-OPE condition (analyticity of β(F ) in F = 0) then indicates that it is in
general difficult to obtain a result F(z) analytic in the entire open stripe −π < Im(z) < +π .
In our approach we assume that the analytic coupling a(Q2) reflects all the major analyticity
aspects of the space-like observables D(Q2) (such as Adler function, Bjorken sum rules, etc).

7 If the terms O(ln ln(Q2/�2)/ ln2(Q2/�2)) in equation (7) are included, expression exp(−K/apt) gets replaced by

exp(−K/apt)(β0apt)
−n0β1/β2

0
(
1 + O(a ln2 a)

)
; this does not change the argument in the text.

8 Mathematica 7, Wolfram Co.
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This means that our a(Q2) is analytic even at the origin Q2 = 0 (⇔ z = −∞). This
condition, in general, implies

a(Q2) = a0 + a1(Q
2/�2) + O[(Q2/�2)2], (13)

where a0 = a(Q2 = 0) = F(z = −∞) < ∞. By applying to equation (13) the RGE
derivative Q2(d/dQ2), we can see that the beta function β(a) = β(F ) then has a Taylor
expansion around the point a0 with the first Taylor coefficient equal to unity

β(F ) = 1 × (F − a0) + O[(F − a0)
2], (14)

which can be equivalently expressed as

β ′(F )|F=a0 = +1. (15)

If assuming the analyticity of a(Q2) at Q2 = 0 in a more exceptional way, a(Q2) =
a0 + O[(Q2/�2)n] with n � 2, this implies the condition β ′(F )|F=a0 = n; it turns out
that in such cases the RGE solution F(z) has Landau singularities, at Im z = ±π/n; therefore,
we discard such a case.

The pQCD condition (12) for the universal parameters β0 and c1, the Q2 = 0 analyticity
condition (15) and the ITEP-OPE condition can then be summarized in the following form of
the beta functions:

β(F ) = −β0F
2(1 − Y )f (Y )|Y≡F/a0 , (16)

where the function f (Y ) is analytic at Y = 0 (ITEP-OPE) and at Y = 1 and fulfills the
conditions

f (Y ) = 1 + (1 + c1a0)Y + O(Y 2), (17)

a0β0f (1) = 1. (18)

Equation (17) is the pQCD condition (reproduction of the universal c1), and equation (18) is
the Q2 = 0 analyticity condition (15). Under such conditions and the aforementioned initial
condition at Q2 = (3mc)

2, it turns out that certain classes of functions f , upon RGE integration
(3), do lead to analytic coupling F(z). Even more so, the Q2 = 0 analyticity condition leads
in general to solutions F(z) = a(Q2) which have analyticity even on a certain segment of the
negative Q2-axis [↔ Im(z) = −π ]: −M2

thr < Q2 � 0 [↔ −∞ < Re (z) < xthr], Mthr being
a ‘threshold’ mass, i.e. the cut semiaxis in the complex Q2-plane is

(−∞,−M2
thr

]
.

For example, when f (Y ) is a polynomial or a rational (i.e. Padé, meromorphic) function,
then there exist certain regions of parameters of these f (Y ) functions for which F(z) is
analytic (↔ a(Q2) in the entire complex Q2-plane with the exception of the cut semiaxis
(−∞,−M2

thr]). This can also be checked and seen by analytical integration of RGE (3) in
such cases:

z = G(F), G(F (z)) =
∫ F(z)

ain

dF̃

β(F̃ )
. (19)

Namely, when f (Y ) is a polynomial or rational function, integral in equation (19) can be
performed explicitly (analytically). From such a solution one can see that a pole (F = ∞)
is attained on the negative Q2 semiaxis (at Q2 = −M2

thr < 0, i.e. at z = xthr − iπ ), and that
other poles and singularities would not appear at least for certain range of values of the free
parameters [24]. The Q2 = 0 analyticity condition (18) turns out to be crucial for such a
behavior.

However, in this approach we encounter a serious problem: virtually all the choices of the
f (Y ) functions which fulfill the aforementioned conditions (17) and (18) and whose numerical

5
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solution is, at the same time, an analytic function, lead to too low values of the semihadronic
τ decay ratio (with �S = 0): rτ < 0.16, while we need rτ ≈ 0.20. The ‘leading-β0’ (LB)
contribution is r(LB)

τ < 0.15 for various classes of beta functions that we tried; if it is possible
to adjust free parameters in the beta function ansätze in order to increase r(LB)

τ beyond values
0.15, Landau singularities of the obtained F(z) [= a(Q2)] appear. At first, for all the chosen
classes of beta functions, the corrections beyond LB (bLB) to rτ were very small (< 0.10), and
the value rτ ≈ 0.20 could not be achieved (some elements of the rτ calculation are outlined in
the appendix).

This problem is partly a reflection of the fact that when the analytization of the coupling
eliminates the offending nonphysical cut 0 < Q2 < �2 of apt(Q

2), the quantity rτ tends to
decrease because the aforementioned cut gave a positive contribution to rτ [15].

3. R(tau)-problem: modification of beta function ansätze

Since LB contribution r(LB)
τ cannot be increased further, it appears that the only way to

increase the total calculated rτ is to increase the beyond-the-leading-β0 (bLB) contributions:
NLB, N2LB, etc. A choice of the beta function (16) in our approach fixes also the coefficients
c2, c3, etc that appear in the power expansion (12) of β(F ) in powers of F. On the other
hand, the coefficient T2 in the third term (N2LB) of the expansion of rτ beyond the LB (see
equations (A.14) and (A.17)) contains a term −c2; if c2 can be made significantly negative
(c2 � −1) by a suitable choice of beta function (16), then T2 and, consequently, theN2LB
term in expansion of rτ will become significantly positive, increasing thus the evaluated value
of rτ (note that the coefficient T1 of the second, NLB, term is accidentally small, T1 = 1/12,
and independent of the beta function). On the other hand, we do not want to reduce as
significantly the LB contribution when we increase T2; and the universal c1 coefficient must
remain unchanged during such a modification.

A modification which achieves the aforementioned effects is the following:

fold(Y ) 	→ fnew(Y ) = fold(Y )ffact(Y ), (20)

ffact(Y ) = (1 + BY 2)

(1 + (B + K)Y 2)
(1 � K � B). (21)

The modification factor ffact(Y ) is chosen in such a way (K � B) that, for most of the
values of Y, it is close to 1. Therefore, it does not change significantly the beta function
(16). This means that, if before the modification the LB part of rτ was reasonably large (say,
0.14–0.15), it will not be changed (reduced) very significantly now. The pQCD condition
(17) will not be modified by such ffact(Y ) because it modifies the expansion coefficients of
β(F ) only at order ∼ F 4 (i.e. c2) and higher. However, since 1 � K , the modification factor
ffact(Y ) can decrease the value of c2 significantly and thus increase significantly the third
term in the expansion of rτ . Numerical investigations indicate that this is really so, and that,
moreover, Landau singularities are not introduced by such a modification. The latter point
can be understood even by analytical (i.e. explicit) integration of the RGE in such a case when
f old is a polynomial or a rational function [24].

The solution, however, comes at a price. The aforementioned modification increases
very significantly the absolute values of the higher expansion coefficients cn (n � 4) of the
beta function. As a consequence, coefficients |Tn| [≈ cn/(n − 1)] in the expansion become
very large when n � 4. This means that the expansion series for rτ starts showing signs of
divergence after the first four terms. On the other hand, the behavior of the first four terms

6
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(including N3LB) indicates reasonable behavior (similar is the behavior of asymptotically
divergent perturbation series in pQCD).

The fact that the values of parameters |c2|, |c3|, etc are large does not mean that we are
working in a ‘wrong’ renormalization scheme (RSch). The specification of the RSch in terms
of coefficients cj = βj/β0 (j � 2) is apparently a perturbative concept, applicable in the
regime |Q2| � �2. It appears that our beta function β(F ) not just fixes a certain set of values
cj (j � 2), but it also reflects certain nonperturbative aspects via its set of zeros and poles
in the complex F-plane. For example, the finite value a0 = a(Q2 = 0) is a zero of the beta
function; the function fnew(Y ) (with Y = a(Q2)/a0 = F(z)/a0) has possibly some zeros
and/or poles on the real axis (but not in the interval Y ∈ (0, 1)), and it has two zeros and
poles on the imaginary axis close to the origin (at F = ±iB−1/2 and F = ±i(B + K)−1/2,
respectively). It appears that, while we might be able to go from one set of values of cj’s
to another in this framework, we cannot go to the ‘tame’ pQCD schemes such as MS or ’t
Hooft RSch. For example, the ’t Hooft RSch (c2 = c3 = · · · = 0), under the assumption of
the ITEP-OPE condition, gives us β(F ) = −β0F

2(1 + c1F) and the solution in such a case
violates analyticity (it has namely a Landau cut [25]). Thus, it cannot be physically equivalent
at Q2 � �2 to RSch’s of our beta functions. The same is true for MS RSch, at least in its
hitherto known truncated form. These considerations lead us to intriguing questions which
may be clarified in the future.

If we simply choose a polynomial for f ≡ fnew = foldffact in β-function (16) for the part
f old of equation (20), the LB-part of rτ remains low unless the polynomial degree is at least 3
(model ‘P30’):

P30 : fold(Y ) = (1 − w1Y )(1 − w2Y )(1 − w3Y ). (22)

For f old being a cubic polynomial, the number of free real parameters is 4 (two in the
polynomial, and B and K in f fact). This is so because initially we have six real parameters
(w1, w2, w3, B, K, a0 = a(0)); two of them, e.g. w3 and a0, are eliminated by the c1 condition
(17) and the Q2 = 0 analyticity condition (18). The two free parameters in the polynomial
(e.g. two of the three roots) can be adjusted in such a way as to get the highest possible values of
r(LB)
τ (≈ 0.13) with f old alone (i.e. when ffact 	→ 1) while still keeping the holomorphy of F(z).

Then the parameters B and K of f fact can be adjusted so that rτ ≈ 0.202, the experimentally
measured value9. These adjustments still leave us certain small freedom in fixing the four
parameters (respecting also the condition (21): 1 � K � B). However, the behavior of
F(z) changes only little when we vary the four parameters under such conditions. In table 1,
first line (model P30), we present some of the results of this model for a representative choice
of input parameters in this case: w1 = 1 + i0.45 (and w2 = 1 − i0.45; as a consequence,
w3 = −3.817; wj ’s being the tree inverse roots of f old); K = 43.2, B = 5000. In table 2,
first line, we present results for the first four terms of rτ expansion in the approach described
in the appendix (equations (A.12) and (A.14)) and their sum; in parentheses, the values of
the corresponding first four terms are given in the case that no large-β0 (LB) resummation
is performed. We can see that the series of rτ shows marginal convergence behavior
when the LB-terms are resummed and three additional correction terms are included (see
equation (A.14)). If LB terms are not resummed, the convergence behavior is worse.
Furthermore, the estimated value of the fifth term is ≈ −2.0, i.e. the series becomes divergent
starting with the fifth term.
9 The value of rτ with 
S = 0 and without mass contributions is rτ = 0.202 ± 0.004; for details we refer to
[24]; it is extracted from the ALEPH-measured [27–29] (V+A)-decay ratio Rτ (
S = 0) as in appendix E of [7], by
eliminating non-QCD contributions and the (small) quark mass effects. The result here differs slightly from the one of
appendix E of [7] (0.204 ± 0.005) because of the slightly updated value of Rτ (
S = 0) = 3.479 ± 0.011 [29] and
an updated value of |Vud | = 0.974 18 ± 0.000 27 [30].
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Table 1. Input parameter values of the three considered β-ansätze, and some resulting values of
other parameters: c2, c3 of expansion (12), and a(Q2) at Q = 3mc and Q = 0 (nf = 3 used).

f old Input f old Input f fact c2 c3 xthr a((3mc)
2) a(0)

P30 w1 = 1 + i0.45 K = 43.2, B = 5000 −243.6 −250.1 −12.00 0.0545 0.4596
P11 Ypole = −10. K = 7.0, B = 4000 −213.3 −293.9 −6.44 0.0577 0.1995
EE y1 = 0.1, k1 = 10., K = 5.27, B = 1000 −104.5 −322.7 −5.88 0.0613 0.2370

k2 = 11.

Table 2. The first four terms in expansion (A.14) of rτ and their sum, in the three considered models.
The corresponding results for expansion (A.19) are given in parentheses. The RScl parameter is
C = 0; nf = 3. The last column shows variations (δ) of the sums when the RScl-parameter C
increases from 0 to ln(2).

f old rτ : LB (LO) NLB (NLO) N2LB (N2LO) N3LB (N3LO) Sum (sum) δ

P30 0.1002 (0.0818) 0.0005 (0.0100) 0.0952 (0.1016) 0.0060 (0.0066) 0.2018 (0.2000) 2.5%(2.7%)

P11 0.1065 (0.0881) 0.0006 (0.0111) 0.0892 (0.0961) 0.0057 (0.0062) 0.2020 (0.2015) 1.5%(1.7%)

EE 0.1251 (0.0990) 0.0007 (0.0147) 0.0666 (0.0774) 0.0096 (0.0107) 0.2020 (0.2017) 2.4%(2.7%)

Table 3. Bjorken polarized sum rule (BjPSR) results dBj(Q
2) in the three considered models,

for the sum of the first four terms in expansion (A.22). The RScl parameter is C = 0; nf = 3.
The corresponding results for the first four terms of expansion (A.23) are given in parentheses.
The corresponding variations of the results under the RScl variation are given in brackets (see the
text for details). The experimentally measured values are [26]: 0.17 ± 0.07 for Q2 = 1 GeV2;
0.16 ± 0.11 for Q2 = 2 GeV2; 0.12 ± 0.05 for Q = 2.57 GeV.

f old dBj(Q
2) : Q = 1 GeV Q = √

2 GeV Q = 2.57 GeV

P30 0.248 (0.247) [4.8%(5.7%)] 0.201 (0.200) [4.5%(5.3%)] 0.145 (0.143) [3.6%(4.3%)]
P11 0.218 (0.224) [2.1%(2.5%)] 0.191 (0.194) [2.1%(2.4%)] 0.146 (0.146) [2.8%(3.3%)]
EE 0.215 (0.227) [3.1%(4.2%)] 0.188 (0.194) [2.3%(2.9%)] 0.141 (0.141) [2.8%(3.8%)]

In table 3, first line, we present the results of the calculation of the BjPSR dBj(Q
2) in this

P30 model for various values of the momentum transfer parameter Q2, taking into account
the first four terms and performing LB resummation (see equation (A.22)); in parentheses,
the corresponding summation of the first four terms without LB resummation is given (see
equation (A.23)). The predicted results are within the large experimental uncertainties for
dBj(Q

2), except in the case Q2 = 1 GeV2 where the model predicts by about one σ higher
value.

If we choose f old to be a meromorphic rational (i.e. Padé) function, it turns out that
already the simplest diagonal Padé P[1/1] (i.e. ratio of two linear functions of Y) can do the
job (model ‘P11’):

P11 : fold = (1 − Y/Y0)

(1 − Y/Ypole)
. (23)

In this case, we have at first five real parameters (Y0, Ypole, B, K and a0), but two of them,
e.g. Y0 and a0, are eliminated via the c1-condition and the Q2 = 0 analyticity condition,
equations (17) and (18). We can proceed in the same way as in the previous case in order to
(more or less) fix the three free real parameters Ypole, B, K. The results of a representative choice
of these input parameters are presented in the second line (model P11) of tables 1–3. The zero
of fold(Y ) turns out to be at Y0 = 0.6874. We see that the series for rτ shows reasonably good
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convergence behavior in the first four terms. Inclusion of the fifth term (≈−3.7) destroys the
convergence, as in the P30 case. Furthermore, BjPSR predictions now all lie within the one σ

uncertainties of experimental values.
It turns out that we can choose the function f old in certain more complicated ways and

fulfill all the imposed conditions. For example, we can choose it to be a product of the
exponential function of type (exp(−Y ) − 1)/Y and its inverse, both of them rescaled and
translated by specific parameters (model ‘EE’):

EE : fold(Y ) = (exp[−k1(Y − Y1)] − 1)

[k1(Y − Y1)]

[k2(Y − Y2)]

(exp[−k2(Y − Y2)] − 1)
× K(k1, Y1, k2, Y2),

(24)

where the constant K gives just the required normalization fold(Y = 0) = 1. At first we have
seven real parameters (Y1, k1, Y2, k2, B, K and a0); two of them, e.g. Y2 and a0, are eliminated by
conditions (17) and (18). We need 0 < k1 < k2 to get physically acceptable behavior. It turns
out that with the f function being that of equation (24) (when ffact ≡ 1, i.e. K = B = 0),
the value of r(LB)

τ can be increased maximally to about 0.15 while keeping F(z) analytic, if
parameter Y1 achieves the value Y1 ≈ 0.1. Increasing Y1 further tends to increase the value
of r(LB)

τ , but the analyticity of F(z) is destroyed through appearance of (Landau) singularities
within the stripe −π < Im z < +π . The values of k1 and k2 have to be comparatively large
and close to each other if r(LB)

τ is to be kept large. Parameters B and K of f fact can then be
adjusted so that rτ ≈ 0.202 is reproduced.

In the third line (model EE) of tables , we present the results in this case for a representative
choice of input parameters Y1, k1, k2 and B and K. We see that now the convergence behavior of
the series of the first four terms of rτ is quite good, even when the LB terms are not resummed.
Inclusion of the fifth term (≈−1) destroys the convergence, as in the previous two models.
Furthermore, the results of BjPSR agree well with the measured results.

In both tables 2 and 3 we use the renormalization scale (RScl) parameter C = 0 (cf
equations (A.14), (A.15), (A.19), (A.22) and (A.23)). If we vary C toward smaller values
[C = ln(1/2)], the results change insignificantly, except in the case of BjPSR at Q2 = 1 GeV2

in P11 and EE. If we increase C to ln(2), the results decrease, and the percentages of such
decrease of rτ are given in the last column (‘δ’) of table 2, and for BjPSR dBj(Q

2) are given in
table 3 in brackets. Only in the case of BjPSR at Q2 = 1 GeV2 in P11 and EE, these percentages
mean the variation (decrease) of the result when C goes down to ln(1/2). In parentheses, the
corresponding values are given when the LB terms are not resummed, cf equations (A.19) and
(A.23). If only three terms are included in our calculations, the variations of the results for rτ

and BjPSR under the aforementioned variations of RScl significantly increase, in general to
about 10%.

If we use as the basis of our calculations of rτ and dBj the truncated expansions in powers
an like equation (A.3), instead of the truncated expansions (A.4) in logarithmic derivatives ãn

(A.5), the results turn out to be significantly more unstable under the variation of RScl. For
example, the value δ in table 2 in the case P11 changes from 1.5%(1.7%) to 8.2%(9.9%),
and the value of rτ changes from 0.2020 ± 0.0031 (0.2015 ± 0.0034) to 0.2815 ± 0.0232
(0.2747 ± 0.0272).

All these results show that model EE is very similar to model P11, but significantly
different from model P30. Further, the threshold values xthr in models EE and P11 are similar
(see table 1): xthr ≈ −6.; this corresponds to the threshold mass Q2

thr = −M2
thr for the

discontinuity function ρ1(σ ) with values Mthr = (3mc) exp(xthr/2) ≈ 0.2 GeV. On the other
hand, in model P30, xthr is much more negative: xthr ≈ −12, corresponding to Mthr ≈ 0.01
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Figure 1. (a) Analytic coupling a(Q2) (full line) at positive 0 � Q2 < (3mc)
2, in model EE;

included are also higher order analytic couplings ã2(Q
2) (dashed line) and ã3(Q

2) (dot-dashed
line) (cf equations (A.5)), for better visibility scaled by factors 5 and 52, respectively; (b) same as
in (a) but at very low Q2 > 0.

Figure 2. Absolute value of β(F (z)) in model EE as a function of x and y (where z = x + iy). The
only pole is at zthr = xthr ± iπ . The physical sheet is −π � y < π .

GeV. For all these reasons, we will consider models EE and P11 as two viable models of
analytic QCD which fulfill the conditions imposed at the outset of this letter.

In figures 1(a) and (b), we present a(Q2) and the higher order couplings ãj (Q
2) (j = 2, 3)

(cf equation (A.5)), in model EE, as functions of Q2 at low positive Q2 � μ2
in. The figure

indicates strong hierarchy a(Q2) � ã2(Q
2) � ã3(Q

2) � · · · at all positive values of
Q2. In figure 2 we present the three-dimensional image of |β(F (x + iy))| as a function
of x and y; we can see that there are no singularities of this function inside the z-stripe
−π < y(= Im(z)) < +π ; the only singularity is at the threshold value zthr = −5.8754 − iπ
which corresponds to Q2 ≈ −(0.202)2 GeV2 on the negative Q2-axis. In figures 3(a) and
(b) we present the behavior of the imaginary and real part of the coupling F on the edge
z = x − iπ (i.e. on the negative Q2 axis: Q2 = −μ2

in exp(x)). We see the threshold-type
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(a) (b)

Figure 3. (a) Imaginary part Im F(z = x−iπ) = v(x, −π) of the analytic coupling F(z) = a(Q2)

in model EE, as a function of x. Here, v(x, −π) = Im a(Q2 = −σ − iε) = ρ1(σ ) is the
usual discontinuity function of the analytic coupling, where σ = μ2

in exp(x) (μin = 3mc , mc =
1.27 GeV). (b) Same for the real part Re F(z = x − iπ) = u(x, −π).

behavior at zthr = xthr − iπ = −5.8754 − iπ . The fact that these latter curves have no
(step-like) discontinuities at x �= xthr is an additional numerical indication that the function
F(z) has no singularities within the stripe −π < Im z < π , i.e. no Landau singularities.

4. Summary

We investigated whether it is possible to construct analytic versions of QCD which obey the
ITEP-OPE principle of no UV-contributions to power term corrections to pQCD (�2/Q2)n

and, at the same time, do not contradict the measured value of the semihadronic τ decay ratio
rτ (which is by far the most precisely measured low energy QCD quantity). We constructed
such models by choosing specific forms for the RGE beta-function, and found that the answer
is positive: such theories do exist. However, the obtained solutions came at a price, because
the obtained series for rτ show divergent behavior starting with the fifth term of the series. This
was so because we had to introduce poles and zeros of the beta function on the imaginary axis
relatively close to the origin (in the complex plane of the coupling), in order to increase the
value of rτ . One model contained a cubic polynomial, another a simple Padé P[1/1] function
and yet another model a combination of exponential functions of the type (exp(−Y ) − 1)/Y .
The last two models show better apparent convergence behavior of rτ (in the first four terms)
and agree well with the (less precisely) measured values of the Bjorken polarized sum rule at
low energies. The last two models appear to be numerically very similar to each other. We
intend to use these two models in the future evaluations of various physical quantities with
the OPE approach. This approach can be applied with the presented analytic QCD models
since the latter respect the ITEP-OPE philosophy. For example, higher-twist contributions to
the Bjorken polarized sum rule may be substantial. Such contributions were ignored in the
numerical analysis here, but should eventually be included.
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Appendix. Expansions and resummations of observables in analytic QCD

Here we refer to and summarize the approach described in our previous work [7]. The
massless strangeless (
S = 0) semihadronic τ decay ratio rτ can be expressed in terms of the
current–current correlation function �(Q2) (massless, V–V or A–A) as

rτ = 2

π

∫ m2
τ

0

ds

m2
τ

(
1 − s

m2
τ

)2 (
1 + 2

s

m2
τ

)
Im �(Q2 = −s). (A.1)

This integral can be transformed, via the use of the Cauchy theorem in the Q2-plane10 and the
subsequent integration by parts, to the contour integral [31, 32]:

rτ = 1

2π

∫ +π

−π

dφ (1 + eiφ)3(1 − eiφ) dAdl(Q
2 = m2

τ eiφ), (A.2)

where dAdl(Q
2) = −d�(Q2)/d ln Q2 is the (massless) Adler function whose perturbation

expansion is

dAdl.(Q
2) = a +

∞∑
n=1

dna
n+1 (A.3)

= a +
∞∑

n=1

d̃nãn+1. (A.4)

Here, the coupling parameter a = a(μ2; c2, c3, . . .) is at a chosen RScl μ2 and in a chosen
RSch (c2, c3, . . .) (cn ≡ βn/β0), as are the coefficients dn and d̃n: dn = dn(C; c2, . . . , cn−1),
d̃n = d̃n(C; c2, . . . , cn−1). Here, C is the dimensionless RScl parameter: C = ln(μ2/Q2).

The higher order couplings ãn+1 appearing in (A.4) are

ãn+1(μ
2) ≡ (−1)n

βn
0 n!

∂na(μ2)

∂(ln μ2)n
(n = 1, 2, 3, . . .). (A.5)

The two expansions in (A.3) and (A.4) are in principle equivalent (not equivalent in practice,
when truncation used), because of the relations

ã2 = a2 + c1a
3 + c2a

4 + O(a5) (A.6)

ã3 = a3 + (5/2)c1a
4 + O(a5), ã4 = a4 + O(a5), etc, (A.7)

and the consequent relations between dn and d̃m’s:

d̃1 = d1, d̃2 = d2 − c1d1, (A.8)

d̃3 = d3 − (5/2)c1d2 +
[
(5/2)c2

1 − c2
]
d1, etc. (A.9)

The leading-β0 contribution (LB, in [6, 7] named leading-skeleton LS) to the massless
nonstrange ratio rτ was given in [7] in appendix C, equations (C8)–(C11), using results of
[33, 34]. It is the contour integration (A.2) of the LB-part d(LB)

Adl of the Adler function expansion
(A.4). While the LB part was written in [6, 7] in terms of the Minkowskian coupling A1

r(LB)
τ =

∫ ∞

0

dt

t
FM

r (t) A1
(
t eCm2

τ

)
, (A.10)

10 In perturbative QCD (pQCD), this use of Cauchy to relation (A.1) is formally not allowed, due to the unphysical
(Landau) cut of �pt(Q

2) along the positive axis 0 < Q2 � �2; in pQCD, (A.1) and (A.2) are in principle two
different quantities, (A.2) being the preferred one.

12



J. Phys. G: Nucl. Part. Phys. 37 (2010) 075001 G Cvetič et al

where C = −5/3, the characteristic function FM
r (t) is given in equations (C10) and (C11)

there11, and the Minkowskian (time-like) coupling A1(σ ) is related to the discontinuity (cut)
function ρ1(σ ) of the coupling parameter a [ρ1(σ ) ≡ Im a(Q2 = −σ − iε)] in the following
way:

d

d ln σ
A1(σ ) = − 1

π
ρ1(σ ). (A.11)

Since the discontinuity function is ρ1(σ ) = Im F(z) for z = ln
(
σ/μ2

in

) − iπ , it is obtained
as a direct byproduct of the integration of RGE (3). Therefore, it is convenient to express LB
contribution (A.10) in terms of ρ1(σ ) instead of A1(σ ). This can be obtained from relation
(A.10) by integration by parts and using relation (A.11):

r(LB)
τ = 1

π

∫ ∞

0

dt

t
F̃r (t) ρ1

(
t eCm2

τ

)
, (A.12)

where

F̃r (t) =
∫ t

0

dt ′

t ′
FM

r (t ′). (A.13)

Since FM
r (t ′) consists of powers of t ′ and polylogarithmic functions of t ′ and 1/t ′, it turns out

that integration in (A.13) can be performed analytically. Explicit expression for F̃r (t) will be
given in [24]. Here we only mention that F̃r (t) → 1 when t → +∞, and that integration in
(A.12) starts at a positive tthr = (

M2
thr/m2

τ

)
exp(−C), due to the threshold behavior of ρ1(σ )

in our presented models.
A systematic expansion of rτ beyond the LB can then be written as r(LB)

τ plus contour
integrals of ãn+1’s (n � 1):

rτ = r(LB)
τ +

∞∑
n=1

TnI (̃an+1, C), (A.14)

where

I (̃an+1, C) = 1

2π

∫ +π

−π

dφ (1 + eiφ)3(1 − eiφ) ãn+1
(
eCm2

τ eiφ
)
, (A.15)

C is an (arbitrary) renormalization scale (RScl) parameter (|C| � 1) and the coefficients Tj are

T1 = T 1 = c
(1)
10 = 1

12 , (A.16)

T2 = T 2 + 2β0C c
(1)
10 − (c2 − c2), (A.17)

T3 = T 3 + 3β0 Cc
(1)
10

(
β0c

(2)
11 + c

(2)
10

)
+ 3 Cc

(1)
10

(
β2

0C − β1
)

+ (c2 − c2)
(
(5/2)c1 − 3c

(1)
10 − 3β0(c

(1)
11 + C)

) − (1/2)(c3 − c3). (A.18)

The overlines indicate the corresponding quantities which appear in the MS RSch with the RScl
parameter C = 0; coefficients c

(k)
ij are determined by the β0-expansions of the perturbation

coefficients of the massless Adler function d(Q2); for details see [7], particularly appendix A.12

11 A typo appears in the last line of equation (C11) of [7], in a parenthesis there instead of a term +3 should be written
+3t2; nonetheless, the correct expression was used in calculations there.
12 In [7], notation Ãn was used instead of ãn, and t̃n+1 instead of Tn. The power analogs An constructed in [6, 7]
reduce to powers an here because β(a) here is analytic in a = 0 (as a consequence of the ITEP-OPE condition).
In equation (A18) of [7] there is a typo, in the first line the last term there should be −δb213(c

(1)
11 + C) instead of

−δb213c
(1)
11 . The correct formula was used in the calculations there; for example, equations (89)–(92) in [7], which

follow from equation (A18) there, are correct.
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In particular, for nf = 3: c
(1)
10 = 1/12, c

(1)
11 = 0.691 772; c

(2)
10 = −278.673, c

(2)
11 = 59.2824.

The N3LB coefficients T 3 and T3 can now be calculated exactly because the N3LO perturbative
coefficient d3 of the massless Adler function is now known exactly [35]. In our case (nf = 3),
it turns out that T 2 = −12.2554 and T 3 = 1.552 91.

Equation (A.17) indicates that the N3LB coefficient T2 becomes large positive (and thus
the N3LB term in expansion (A.14) becomes significant positive) if the beta-coefficient c2

becomes negative: c2 � −1. Furthermore, if |c4| is large and dominant (as it is in our
models), equations (A.16)–(A.18) indicate that T4 ≈ −(1/3)c4 and thus |T4| is large.

If no LB-resummation is performed in rτ (⇔ in dAdl.), then rτ is obtained by performing
contour integration (A.2) term-by-term for the sum (A.4):

rτ = I (a, C) +
∞∑

n=1

d̃nI (̃an+1, C). (A.19)

In practice, we have to truncate sums (A.14) and (A.19) by including nmax = 3 because only
the first three coefficients dn (⇔ d̃n) are exactly known [35–37].

The Bjorken polarized sum rule (BjPSR) dBj(Q
2) is yet another QCD observable

with measured values (although much less precisely than rτ ) at low energies. It can be
calculated in a similar way. Its perturbation expansion can be organized in two ways, like in
equations (A.3) and (A.4) for the Adler function. LB-resummation,

dBj(Q
2)(LB) =

∫ ∞

0

dt

t
FBj(t)a(t eCQ2), (A.20)

can be performed with the characteristic function obtained in [6, 7]

FBj(τ ) =
{ 8

9τ
(
1 − 5

8τ
)

τ � 1
4

9τ

(
1 − 1

4τ

)
τ � 1

}
. (A.21)

Inclusion of terms beyond the LB gives

dBj(Q
2) = dBj(Q

2)(LB) +
∞∑

n=1

(TBj)nãn+1(e
CQ2), (A.22)

where coefficients (TBj)n are analogous to coefficients Tn of equations (A.16)–(A.18), but this
time based on the BjPSR perturbation coefficients (̃dBj)k (k = 1, . . . , n) instead of d̃k of the
Adler function. The perturbation coefficients (dBj)1 and (dBj)2 are exactly known [38], and
for (dBj)3 we use an estimate given in [39] for nf = 3: (dBj)3 ≈ 130.

If LB resummation is not performed, then the resulting expression is

dBj(Q
2) = a(eCQ2) +

∞∑
n=1

(̃dBj)nãn+1(e
CQ2), (A.23)

where the perturbation coefficients (̃dBj)n are evaluated at the chosen RScl μ2 = exp(C)Q2

and in the RSch (c2, c3, . . .) dictated by β-functions of our analytic QCD models.
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[10] Cvetič G and Valenzuela C 2008 Braz. J. Phys. 38 371 (arXiv:0804.0872 [hep-ph])
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