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Contribution of environmental pollutants to male infertily: A working 
model of germ cell apoptosis induced by plasticizers
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ABSTRACT

Bisphenol A [2,2-bis(4-hydroxyphenyl)propane] (BPA), 4-nonylphenol (NP) and di(2-ethylhexyl)phthalate (DEHP), and its metabolite 
mono-2-ethylhexyl phthalate (MEHP) are chemicals found in plastics, which act as endocrine disruptors (EDs) in animals, including human. 
EDs act like hormones in the endocrine system, and disrupt the physiologic function of endogenous hormones. Most people are exposed 
to different endocrine disruptors and concern has been raised about their true effect on reproductive organs. In the testis, they seem to 
preferentially attack developing testis during puberty rather than adult organs. However, the lack of information about the molecular 
mechanism, and the apparently controversial effect observed in different models has hampered the understanding of their effects on 
mammalian spermatogenesis. In this review, we critically discuss the available information regarding the effect of BPA, NP and DEHP/
MEHP upon mammalian spermatogenesis, a major target of EDs. Germ cell sloughing, disruption of the blood-testis-barrier and germ cell 
apoptosis are the most common effects reported in the available literature. We propose a model at the molecular level to explain the effects 
at the cellular level, mainly focused on germ cell apoptosis.
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INTRODUCTION

Low sperm count (oligospermia), absence of spermatozoa in 
the semen (azoospermia) and morphological abnormalities 
are among the primary factors contributing to male infertility 
(WHO, 2010). The molecular and cellular bases of these 
pathologies are still not fully understood, but several studies 
suggest that increased germ cell death (apoptosis) during 
spermatogenesis may explain decreased sperm production 
in patients with oligo- and azoospermia. Spermatogenesis is 
highly infl uenced by external stimuli, such as drugs, radiation, 
reproductive and somatic pathologies, seasonal breeding, 
temperature and environmental pollutants, which increase the 
constitutive levels of apoptosis in germ cells (Tripathi et al., 
2009).

Endocrine disruptors (EDs) involve a great number of 
molecules capable of inducing estrogenic or antiandrogenic 
responses in animals, including humans. Phenols and 
phthalates are among the EDs that can cause male infertility 
and other pathologies associated with developmental 
abnormalities. Bisphenol A [2,2-bis(4-hydroxyphenyl)propane] 
(BPA), 4-nonylphenol (NP) and di(2-ethylhexyl)phthalate 
(DEHP) and its major metabolite mono(2-ethylhexyl)phthalate 
(MEHP) are found mainly in polycarbonate plastics, toys, 
dentist devices, food packaging, blood bags, cosmetics and 
currency paper (Guenther et al., 2002; ter Veld et al., 2006; 
EC-SCF, 2007; Liao and Kannan, 2011). Unfortunately they 
can leach from the lining of plastic packages, cans and baby 
bottles, and pipe walls. In this way, the human body is exposed 
to concentrations of 10µg/day of BPA, 7.5µg/day of NP and 
30µg/day of DEHP, and they have been detected in human 

body samples, such as serum, urine, amniotic fl uid of pregnant 
women, breast milk and even in semen (Guenther et al., 2002; 
Inoue et al., 2002; Calafat et al., 2005; Carlsen et al., 2005; 
Main et al., 2006; EC-SCF, 2007; Phillips and Tanphaichitr, 
2008; Han et al., 2009; Huang et al., 2009; Zhang et al., 2009). 
Thus, experimental evidence clearly shows that humans are 
exposed to EDs, which may threaten normal physiology during 
development and adult life.

Even though these compounds are considered to mimic the 
effect of estrogen and other steroid hormones, deregulating 
the control of several hormone-dependent developmental 
processes (Phillips and Tanphaichitr, 2008; Roy et al., 2009), in 
vitro assays have shown that the potency of each ED (BPA, NP 
and DEHP, among others) is much lower than that of estrogen 
(~10,000 fold lower than estradiol, E2) (ter Veld et al., 2006). 
Therefore, it is plausible to propose that these molecules also 
act through a non-classical estrogenic pathway and probably 
bind and activate a wide range of proteins, activating different 
intracellular pathways. This would explain the multiple effects 
described at the cellular and physiological levels. Particularly 
relevant are the surviving and dead pathways that are 
disrupted and/or activated by these molecules, because by 
inducing germ cell apoptosis they could contribute to lower 
sperm production in the human testis.

First, we will briefl y review the mechanism of apoptosis 
and the process of spermatogenesis. Then, we will critically 
discuss the available information linking plasticizers such 
as BPA, NP and DEHP/MEHP to alteration in normal 
spermatogenesis. Finally, we propose a molecular pathway in 
order to explain the deleterious effects of these molecules in 
spermatogenesis.
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THE MECHANISM OF APOPTOSIS

Apoptosis is characterized by several hallmarks, such as: 
internucleosomal DNA fragmentation, caspase activation and 
externalization of phophatidyl serine (Degterev and Yuan, 
2008; Fadeel et al., 2008; Youle and Strasser, 2008). Caspases 
are serine-proteases that are synthesized as inactive zymogens 
and become active upon death stimuli. The extrinsic pathway 
is initiated by activation of death receptors, such as Fas 
(CD95/Apo-1) or tumor necrosis factor receptor 1 (TNFR1). 
Trimerization of death receptors in response to ligand biding 
induces the formation of a multimeric complex termed 
death inducing signaling complex (DISC), which activates 
procaspase-8 in mice and capasase-10 in humans (Scaffi di et al., 
1998; Scaffi di et al., 1999; Salvesen, 2002; Henkler et al., 2005). 
Caspase-8 and/or 10 proteolytically process caspase-3, -6 and 
-7. Among them, caspase-3 is the main executioner caspase 
involved in dismantling the Golgi apparatus, nuclear lamina 
fragmentation, DNA fragmentation (due in part to proteolysis 
of a DNAse inhibitor) and the decrease in mitochondrial 
membrane potential (Sato et al., 2004; Kuribayashi et al., 2006).

The intrinsic pathway of apoptosis could be activated 
by different stimuli, such as radiation, DNA fragmentation, 
starvation, oxidative stress and autophagy (Degterev and 
Yuan, 2008). This pathway is characterized by a decrease in 
mitochondria membrane potential and release of cytochrome C 
from the mitochondria, which along with dATP, the cytosolic 
protein Apaf-1 and procaspase-9 assemble a complex termed 
apoptosome. Within this complex, procaspase-9 becomes 
active and then activates caspase-3, connecting the intrinsic 
and extrinsic pathways (Shi, 2002; Shi, 2006). Mitochondria 
membrane stability is preserved by anti-apoptotic protein of 
the the B-cell lymphoma-2 (BCL-2) family. BCL-2, BCL-x and 
BCL-w are three anti-apoptotic proteins that interact with and 
repress the activity of pro-apoptotic proteins. Two general 
classes of pro-apoptotic family proteins exist: (1) those that 
share three homology regions (BH1, BH2 and BH3), and that 
are termed multidomain proteins; and (2) those that share little 
sequence homology, except for the conserved BH3 domain, 
also termed “BH3-only” proteins (Chen et al., 2005; Zhai et 
al., 2008; Ku et al., 2010; Young et al., 2010). Among the “BH3-
only” group we fi nd Bcl-2 antagonist of cell death (BAD) and 
p53 upstream modulator (PUMA) (Villunger et al., 2003). It 
appears that the multidomain pro-apoptotic proteins BAX and 
BAK are crucial for outer mitochondrial membrane (OMM) 
permeabilization and the subsequent release of apoptogenic 
molecules, such as cytochrome-c and DIABLO (also known 
as SMAC), which leads to caspase-9 activation (Riedl and 
Shi, 2004; Westphal et al., 2010). Thus, apoptosis is a complex 
process involving activation of several independent, but 
convergent pathways in order to induce cell death avoiding an 
infl ammatory response.

MAMMALIAN SPERMATOGENESIS

The making of mammalian spermatozoa starts with 
engagement in a differentiation pathway of a diploid cell 
termed spermatogonium, which establishes itself at the basal 
lamina of seminiferous tubules (de Rooij and Russell, 2000; 
Oatley and Brinster, 2008). Through several mitotic divisions, 
type A spermatogonial stem cells either renew themselves 
or differentiate into later-stage spermatogonia to eventually 

initiate meiosis (Oatley and Brinster, 2008). Germ cells in 
meiosis, spermatocytes, will undergo two successive divisions, 
without a S phase, and will become haploid round spermatids, 
which eventually transform into mature spermatozoa (Hermo 
et al., 2010). Mingled among germ cells are the Sertoli cells, 
which are the somatic component of seminiferous epithelium 
that provide mechanical and nutritional support to germ 
cells (Figure 1). Germ cells in adult rat testes are grouped 
into 14 cell association or stages (numbered I-XIV) and six 
in humans (I-VI) (Moreno and Alvarado, 2006). Adjacent 
Sertoli cells bind to each other through tight junctions (TJs) 
constituting the blood–testis barrier (BTB) between 10 and 
16 days of age in mice, and 20-25 days in rats, providing a 
protected environment for germ cell development termed the 
adluminal compartment (Dym and Fawcett, 1970; Sharpe et 
al., 2003; Yan et al., 2008). The TJs, which are the only known 
examples of occluding junctions, consist of three classes of 
integral membrane proteins, namely occludin, claudin and 
junctional adhesion molecules (Mruk and Cheng, 2004). In this 
way only spermatogonia and pre-leptotene spermatocytes are 
attached to the basal lamina and outside from the adluminal 
compartment (Fig 1).

Numerous studies indicate that Sertoli cells are involved 
in the progression of spermatogenesis through a variety of 
paracrine signals regulating gene expression and metabolism 
of germ cells (Skinner, 2005). Sertoli cells regulate survival 
of germ cells via paracrine secretion of trophic factors such 
as insulin growth factor (IGF), nerve growth factor (NGF), 
growth factor derived from glia (GDNF) and stem cell factor 
(SCF). Moreover, it has been shown that apoptosis of germ 
cells is somehow controlled by hormonal levels including 
testosterone, estrogen and FSH (Shetty et al., 1996; Yan et al., 
2000b; Tesarik et al., 2002). Testosterone is essential for meiosis 
and subsequent differentiation of spermatids (De Gendt et al., 
2004). Testosterone exerts its action through the Sertoli cell, 
which expresses the androgen receptor, and stimulates the 
synthesis of various proteins and trophic factors in specifi c 
periods of spermatogenesis (Wang et al., 2009). Therefore, 
germ cell development is a complex differentiation process 
controlled by juxta/paracine, and endocrine interactions.

APOPTOSIS DURING MAMMALIAN SPERMATOGENESIS

Sperm production relies on physiological and environmental 
factors, which may attenuate or even totally suppress 
testicular function. Germ cell apoptosis has been shown to 
play an important role in controlling sperm output in many 
species and has been linked to infertility in humans (Feng 
et al., 1999; Weikert et al., 2004; Ji et al., 2009). Germ cells 
undergoing meiosis (spermatocytes) are highly sensitive to 
heat shock, ionizing radiation, growth factor deprivation, and 
chemotherapeutic agents (Russell, 2004; Bieber et al., 2006; 
Lizama et al., 2009; Silva et al., 2011). Many studies have 
shown the relevance of apoptosis in regulating spermatozoa 
output and eliminating damaged germ cells (Knudson et 
al., 1995; Beumer et al., 1998; Yin et al., 1998; Allemand et 
al., 1999; Feng et al., 1999; Honarpour et al., 2000; Yan et al., 
2000a; Russell et al., 2002; Moreno et al., 2006). To this end, it 
has been reported that massive germ cell death occurs under 
physiological conditions (constitutive apoptosis) during the 
first round of spermatogenesis (Oakberg, 1956; Rodriguez 
et al., 1997; Moreno et al., 2006). Different experimental 
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Figure 1: Major targets of BPA, NP and MEHP in a mammalian testis. Bisphenol A (BPA), 4-nonylphenol (NP) and di(2-ethylhexyl)
phthalate (DEHP) disrupt spermatogenesis at different levels. They lower intratesticular and plasma testosterone (T) by affecting Leydig 
cells, resulting in decreased spermatogenesis. In addition, in vitro and in vivo studies show that Sertoli cells (SC) are primary targets 
of these compounds, affecting their metabolism, protein expression and morphology. BPA induces spermatogonium (SP), pachytene 
spermatocyte (PC) and preleptotene spermatocyte (PlC) apoptosis by affecting SC. The blood-testis barrier (BTB), which separates the 
adluminal compartment from the basal compartment within seminiferous tubules, ectoplasmic specializations (ES), which maintain 
attached elongated spermatids (S) to SC, and gap junctions (GJ) are disrupted by EDs, producing sloughing and apoptosis of germ cells.

Figure 2: Model of the effects of EDs on Sertoli-germ cell interaction and germ cell apoptosis and sloughing. Depiction of a model 
of para/juxtacrine signaling events between germ cells (GC) and Sertoli cells during apoptosis induced by endocrine disruptors. Dotted 
lines indicate an unknown mechanism.
Triangles represent EDs molecules.
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approaches have pointed out that spermatocytes are the main 
cell type undergoing apoptosis, with a smaller fraction of 
spermatogonia also undergoing the process (Jahnukainen et al., 
2004; Moreno et al., 2006).

During spermatogenesis, about 75% of germ cell die 
in every round of spermatogenesis (Huckins, 1978). One 
possibility for this massive germ cell death is that the Sertoli 
cells provide an appropriate environment only to a certain 
amount of germ cells, so that apoptosis would serve as 
a mechanism to remove excess of germ cells that cannot 
be supported by Sertoli cells. Another hypothesis is that 
apoptosis is used to eliminate germ cells that do not pass the 
control points of the cell cycle. In several mammalian species, 
apoptosis occurs simultaneously with the mitotic divisions 
of the spermatogonia and with the beginning of meiosis of 
spermatocytes (Blanco-Rodriguez, 2002; Blanco-Rodriguez et 
al., 2003). This suggests that the checkpoints could be helping 
to correct the number of germ cells in relation to the number 
of Sertoli cells, acting specifi cally on cells with problems of 
chromosomal rearrangements during meiosis or damaged cells 
unable to repair the breaks in their DNA (Salazar et al., 2003; 
Salazar et al., 2005).

The importance of apoptosis in spermatogenesis is evident 
when pro-apoptotic genes are deleted (BAX, Bim or Bik) or 
anti-apoptotic genes are overexpressed (such as BCL-2). Both 
conditions are associated with infertility due to the arrest of 
spermatogenesis at the onset of meiosis (Knudson et al., 1995; 
Feng et al., 1999; Yamamoto et al., 2001; Russell et al., 2002; 
Yan et al., 2003; Coultas et al., 2005). Furthermore, inhibiting 
the engulfment of apoptotic bodies by Sertoli cells decreases 
sperm production and mice become sub-fertile (Maeda et al., 
2002; Elliott et al., 2010). Results from our laboratory indicate 
an increase in the levels of the Fas receptor, the transcription 
factor p53 and the activation of caspases 8, 9, 3 2 and 6 in 
apoptotic germ cells (Lizama et al., 2007; Codelia et al., 2008). 
Interestingly, anti-cancer drugs, such as etoposide, which 
promotes DNA breaks by inhibiting topoisomerase II, induce 
apoptosis in spermatocytes (Ortiz et al., 2009; Codelia et al., 
2010; Lizama et al., 2011; Lizama et al., 2012) by activating 
p73 and caspases. Thus, it seems that some elements of the 
mechanism involving constitutive (physiological) pathways are 
shared with externally induced apoptosis.

ADVERSE EFFECTS OF ENDOCRINE DISRUPTORS ON HUMAN 
FERTILITY

Clinical studies suggest that EDs could affect reproductive 
tract development because DEHP exposure during pregnancy 
correlates with low birth weight (Zhang et al., 2009) and 
a decrease in the anogenital distance (AGD) in females. In 
males, a reduced AGD accompanied by incomplete testicular 
descent has been observed in boys prenatally exposed 
to phthalates (Swan et al., 2005). Additionally, several 
abnormalities regarding secondary sexual characteristics 
have been observed in boys and girls when EDs are 
present, for example, girls exposed in utero to high doses of 
polybrominated biphenyls (PBB), >7 parts per billion (ppb) 
show an early menarche (at least one year earlier) than those 
who were not exposed to this ED (Blanck et al., 2000), while 
boys exposed in utero to pesticides show a signifi cant decrease 
in penis length at the age of 3 months, along with a low 
testicular volume and decreased T levels (Andersen et al., 

2008). Cultured human fetal testes treated with MEHP show 
an increase in apoptosis of germ cells and reduced expression 
of anti-Müllerian hormone mRNA, which may be linked 
to the feminization effect exerted in utero (Lambrot et al., 
2009). In this regard, it is worth mentioning that millions of 
women in the USA between the 1950s and 1970s were treated 
with diethilbestrol (DES), an artificial estrogen that was 
prescribed to pregnant women to avoid miscarriages. 31.5% 
of the male children of these women showed abnormalities 
in their reproductive tracts, including epididymal cyst and 
hyposplastic testes in adulthood, compared to only 7.8% of 
males who presented these abnormalities when their mothers 
did not take DES (Bibbo et al., 1977; Gill et al., 1979; Jensen 
et al., 1995; Toppari et al., 1996). These males also showed 
decreased ejaculated volume and sperm abnormalities (Bibbo 
et al., 1977), suggesting that in utero exposure to estrogen 
is a major factor in male genital abnormalities observed in 
adulthood. The transgenerational and long-term negative 
effects on male testes were evidenced by the grandsons 
of women who received DES showing a high risk for 
hypospadias (Klip et al., 2002; Brouwers et al., 2006).

During a breastfeeding study, several phthalate monoesters 
were transferred to newborns from contaminated breast 
milk and these babies show low free T levels along with an 
increase in the luteinizing hormone (LH)/T ratio, indicating a 
possible adverse effect on Leydig cells or the gonadal-pituitary 
axis (Main et al., 2006). Similar effects have been observed 
in infertile men with high DEHP levels in semen, who also 
show an increase in serum estradiol (E2) and prolactin (PRL) 
(Li et al., 2011b). In fertile men, no signifi cant associations 
were found among any semen parameters and urinary BPA 
concentrations (Mendiola et al., 2010). However, a signifi cant 
inverse association was detected among urinary BPA 
concentrations  free androgen index (FAI) levels and the FAI/
LH ratio, as well as a signifi cant positive association between 
BPA and sex hormone-binding globulin (SHBG). These results 
suggest that low BPA concentrations may be linked to subtle 
variations in sex hormones in fertile men.

The output and quality of sperm are useful tools 
to measure the effect  of  exogenous compounds on 
spermatogenesis. A high correlation has been observed 
between urine BPA levels and semen quality in Chinese 
men (including motility, viability, sperm count and sperm 
concentration), which also correlated with the educational level 
and longer employment history; men with better education 
and a long history of employment had lower levels of BPA 
since they were not in contact with EDs, unlike men who 
worked in factories (Li et al., 2011a). Urine BPA levels could 
also be associated with sperm abnormalities and sperm DNA 
fragmentation (suggesting apoptosis) in men from an infertility 
clinic (Meeker et al., 2010). However, direct application of 
BPA to human sperm samples does not produce any negative 
effects (Bennetts et al., 2008), suggesting that the observed 
negative effects could be induced during spermatogenesis 
and/or epididymal transit and not through a direct effect 
on spermatozoa. Regarding DEHP effects, it has been shown 
that infertile men in India who present DEHP levels of 
up to 0.77±1.2 µg/mL in semen have the following sperm 
abnormalities: reduced sperm count and motility, depolarized 
mitochondrial membrane, higher levels of reactive oxygen 
species (ROS) in semen and higher lipid peroxidation levels 
that correlate to the DEHP levels observed in these patients 
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(Pant et al., 2008). Similar effects have been observed in 
Chinese men where high urine BPA levels correlate with low 
sperm count, motility and concentration (Li et al., 2011a).

A recent study demonstrated that DEHP-contaminated air 
was associated with an increase in sperm DNA fragmentation 
and a decrease in sperm motility in polyvinyl chloride (PVC) 
factory workers (Huang et al., 2011). As in the case of DEHP-
exposed workers, air BPA-exposed workers also show reduced 
sexual desire, accompanied by erectile dysfunction and 
ejaculation diffi culties (Li et al., 2010). Diet and residential 
area (urban or rural) could be important factors related to the 
negative effects of EDs, since consumption of certain foods 
from contaminated areas could increase the levels of EDs in 
semen. In this regard, infertile men who live in urban areas 
and have a fish-based diet (probably from contaminated 
waters) have higher levels of polychlorinated biphenyls 
and phthalate esters than those of men who live in urban 
areas, but with a diet that does not include fi sh. These men 
showed reduced levels of progressive sperm motility, lower 
ejaculated volume and sperm vitality compared to fertile 
men (Rozati et al., 2002). It has been determined that high 
levels of organochlorine pesticides could be related to sperm 
abnormalities in greenhouse workers (Abell et al., 2000). These 
compounds have also been detected in young men (Carreno 
et al., 2007) who live near agricultural areas in southern 
Spain, suggesting possible risk factors of living and ingesting 
food from or near contaminated areas. The paucity of studies 
regarding the role of EDs in human reproductive functions 
limits the extent to which conclusions can be made. Despite 
that, the available data strongly suggest an adverse effect 
of BPA, NP and DEHP on sex hormone levels and semen 
parameters.

EDS AFFECT SPERMATOGENESIS AND INDUCE GERM CELL 
APOPTOSIS IN ANIMAL MODELS

A reduction in Leydig cell numbers and T plasma levels 
have been observed in pubertal mice orally receiving 160 to 
960mg/kg of BPA for thirteen days (Li et al., 2009). However, 
treatment of adult mice and rats (Toyama et al., 2004) with 
20 to 200µg/kg of BPA for six days produced abnormalities 
in ectoplasmic specializations (ES) in elonged spermatids, 
without major changes in Sertoli or Leydig cells. ES are testis-
specifi c adherens junctions between elonged spermatids and 
Sertoli Cells, and their assembly and stability rely on T levels 
(Wong et al., 2005; Ruwanpura et al., 2010). E2 administration 
has also been shown to decrease ES stability by reducing 
T levels (Wong et al., 2005); therefore, it is possible that 
application of BPA mimics the effect of E2, thus affecting T 
levels and disrupting ES between elongated spermatids and 
Sertoli cells.

BPA increases Fas and FasL levels in germ and Sertoli 
cells, respectively, accompanied by activation of caspase-3 
in germ and Leydig cells when administered by gavage to 
pubertal mice (Li et al., 2009). Administration of 1.2 to 10µg/
day of BPA for fi ve days to neonatal male rats lowers sperm 
count and motility in adulthood, accompanied by a low 
mating rate and sloughing of germ cells, hence demonstrating 
the long-term effects of these compounds and suggesting 
that EDs accumulate in the body and/or metabolic pathways 
are permanently disrupted (Salian et al., 2009). Male mice 
whose mothers received an implant containing varying BPA 

concentrations from before mating until four weeks postnatal 
(weaning) show increased T plasma levels with low doses 
of BPA (1.2µg/day), but decreased levels with higher doses 
of BPA (60µg/day), along with a sloughing of germ cells 
and a reduction of seminiferous tubules with elongated 
spermatids (Okada and Kai, 2008). Similarly, prepubertal mice 
administered 50µg/mL of BPA in drinking water have been 
shown to have decreased T levels and multinucleated germ 
cells (Takao et al., 2003).

DEHP and its active metabolite MEHP might be one of 
the most environmentally abundant phthalates and have 
been shown to deplete gonocytes (future germ cells) in fetal 
rat testes and decrease T levels (Chauvigne et al., 2009). 
These effects have also been observed in human fetal testes, 
but without a T level decrease (Lambrot et al., 2009). Both 
studies show that Sertoli cells are unaffected and that Leydig 
cells remain active, but only in human fetal testes. When 
administered during the gestational period, DEHP (10mg/
kg) produces several negative effects on Leydig cells, such as a 
decrease in volume and number, and an increase in T plasma 
levels. On the contrary, higher doses of DEHP (750mg/
kg or 1g/Kg) decrease T plasma levels (Lin et al., 2008) and 
increases germ cell apoptosis compared to wild type mice 
(Lin et al., 2010). A single dose of 2g/kg of MEHP by gavage 
to prepubertal rats has been observed to disrupt vimentin 
fi laments in Sertoli cells and activates apoptosis only in germ 
cells, as evidenced only by TUNEL and DNA fragmentation 
assays  These effects were observed as early as 12 hours 
after MEHP administration (Richburg and Boekelheide, 
1996). Prepubertal mice treated with 1g/kg of MEHP show 
an upregulation of FasL and TNF-α 1.5 hours after exposure 
through activation of NFkB (Yao et al., 2007). The same study 
showed an increase in FasL (mRNA and protein levels) in 
primary Sertoli cell cultures and ASD17D cells (Sertoli cell 
line), which is akin to the effect of BPA on mice testes (Li et 
al., 2009). These results suggest that FasL increase in Sertoli 
cells could be a common pathway and a major player in 
BPA- and DEHP/MEHP-induced germ cell apoptosis (Figs 
1, 2). Studies in gld mice harboring an inactivating mutation 
in FasL have shown decreased apoptosis of germ cells after 
MEHP exposure, demonstrating the role of this protein in 
EDs-induced apoptosis (Richburg et al., 2000). On the other 
hand, mice lacking FasL (FasL-/-) show an increase in basal 
levels of germ cell apoptosis, and when exposed to 1g/kg 
of MEHP, they show a dramatic decrease in the high basal 
germ cell apoptosis (Lin et al., 2010). This could be because 
of a signifi cant increase in c-FILP levels, and endogenous 
caspase-8 inhibitor, after MEHP treatment only in FasL -/- ice. 
Even though increases in c-FLIP levels in FasL−/− mice after 
MEHP may account for the observed decreases in germ cell 
apoptosis, the mechanism underlying c-FLIP protein levels 
regulation in these mice after MEHP exposure is not readily 
apparent (Lin et al., 2010).

Oral administration of NP (1, 10 and 100µg/kg/day) to 
male rats decreased epididymis and testis weight, as well 
as epididymal sperm count. Interestingly, NP-treated male 
rats show greater ROS production and decreased antioxidant 
enzyme levels compared to controls (Chitra et al., 2002). 
Administration of NP (125, 250 and 300mg/kg/day) for 
sixty days to 20-day old rats elicits Fas and FasL mRNA 
upregulation in testes and increases TUNEL-positive cells 
compared to controls (Han et al., 2004), which is in agreement 
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with the effects produced by BPA and DEHP/MEHP described 
above. Activation of the extrinsic pathway seems to have a 
major role in germ cell apoptosis induced by BPA, DEHP and 
NP, which is similar to the physiological conditions (Moreno et 
al., 2006).

During spermatogenesis, germ and Sertoli cells are in close 
physical and functional contact through gap junctions (GJ), 
tight junctions (TJ) and adheren junctions (AJ). GJs mediate 
communication by forming intercellular pores by the docking 
of two hemichannels of adjacent cells. These hemichannels 
are composed of connexins (Cx), which are a protein family 
composed of about 20 members of transmembrane proteins 
(Decrock et al., 2009). TJs and AJs, along with intermediate 
filament-based desmosome junctions, are located near the 
basement membrane of the seminiferous tubule forming the 
blood-testis barrier (BTB), which allows the existence of a 
basal and adluminal compartment (Fig 1) to generate a specifi c 
microenvironment for germ cell development (Cheng and 
Mruk, 2002; Lee and Cheng, 2004). In vivo and in vitro studies 
show that TJs, AJs and GJs are targets of EDs that affect Sertoli-
Sertoli and Sertoli-germ cell interactions (Fig 1). In addition, 
disruption of vimentin fi laments by MEHP promotes germ cell 
detachment due to Sertoli cells shrinking. NP administration 
to pregnant rats during gestation, lactancy and 10 weeks after 
weaning (corresponding to a complete lifespan exposed to NP) 
have been shown to decrease epithelial thickness, probably due 
to Sertoli cells shrinking and an increase in germ cell apoptosis 
(de Jager et al., 1999; McClusky et al., 2007). ). In summary, 
all the evidence indicates that directly, or indirectly through 
the Sertoli cells, EDs sever the interaction between Sertoli and 
germ cells and thereby provoke detachment (sloughing) of 
germ cells.

5. A MOLECULAR MODEL OF EDS IN MAMMALIAN TESTES

The effect observed by EDs in testes may be mediated primarily 
by nuclear estrogen receptors (ER) alpha and beta (ERα and 
ERβ), which are expressed by Sertoli and germ cells (O’Donnell 
et al., 2001). ERs are activated by a large number of ligands 
(hormones, environmental pollutants and phytoestrogens, 
among others). In fact, BPA induces changes in the levels 
of ERα and ERβ in adult mice testes (Takao et al., 2003) and 
affects the recruitment of their coactivator (Routledge et al., 
2000). These receptors can generate two possible responses: 
a genomic response, which leads to gene expression, and a 
non-genomic response, a faster response involving kinase 
phosphorylation and ion channel regulation (Marino et al., 
2006; Fu and Simoncini, 2008). This non-classical membrane 
estrogen receptor (ncmER), which is a G-protein coupled 
receptor, produces a fast activation of voltage-gated channels, 
thus raising the intracellular Ca2+ (iCa2+) concentration in the 
target cell (Carmeci et al., 1997; Marino et al., 2006).

It has been described that Sertoli cells in vitro exposed to 
a variety of EDs show an increase in iCa2+, which could be 
due to an external infl ux or a depletion in intracellular stores, 
by inhibiting the SERCA pump at the endoplasmic reticulum 
(Hughes et al., 2000; Gong et al., 2008) (Fig 2). However, we 
cannot exclude the possibility of a genomic participation of 
ERs in germ cell apoptosis and sloughing, since there is an 
increase in FasL expression by a genomic pathway in TM4 (a 
Sertoli-like cell line) cells treated with E2 (Catalano et al., 2007). 
In addition to an increase in iCa2+ in Sertoli cells exposed to 

NP, increased ROS production has also been observed (Gong 
and Han, 2006), demonstrating another mode of action of these 
compounds. It is possible that elevated ROS production is 
associated with mitochondrial and/or endoplasmic reticulum 
stress. This hypothesis is supported by the fi ndings that in 
primary Sertoli cell cultures, NP increases ROS levels and 
lipid peroxidation while decreasing mitochondrial membrane 
potential (Gong and Han, 2006), which are all characteristics 
of oxidative stress. In this regard, it has been shown that 
stress signals are related to an increase in ROS production, 
along with an activation of the p38MAPK pathway (Liu and 
Chang, 2009) that in turn upregulates the Fas/FasL system. 
However, EDs promote inactivation of p38MAPK and ERK1/2 
in isolated Sertoli cells and TM4 cells (Aravindakshan and 
Cyr, 2005; Bhattacharya et al., 2005), which has been related 
to the downregulation of TJ, AJ and GJ proteins and in this 
way induces sloughing and apoptosis of germ cells, showing 
that the mechanisms of ED affects spermatogenesis are still a 
subject of controversy.

Several lines of evidence shown here suggest the 
participation of the Fas-FasL system in the apoptosis of germ 
cells elicited by EDs. It has been demonstrated in MCF7 cells 
that FasL expression depends on peroxisome proliferator-
activated receptor-γ (PPARγ) through the binding of the SP1 
transcription factor (Bonofi glio et al., 2009), both of which are 
expressed in mammalian testes (Fig 2). However, there are no 
data available supporting this proposal.

It has recently been shown that matrix metalloproteinase 
2 (MMP2) is involved in the disruption of junction complexes 
between Sertoli-Sertoli and Sertoli-germ cells (Yao et al., 
2010). They also observed an early increase in ADAM10 and 
ADAM17 protein levels, which can participate in the MEHP 
response. Following treatment with a single dose of MEHP, the 
levels of the inhibitor of MMP2, TIMP2, decrease signifi cantly 
and as a consequence, the MMP2 activity increases (Yao 
et al., 2009). ADAM10 and ADAM17 belong to a family of 
extracellular proteases that are involved in the release of 
many protein ectodomains from the cell surface, including 
TNF-α, FasL, Notch, APP and TrkA, thus indicating a strong 
participation in autocrine, paracrine and juxta/paracrine 
signaling (Schlondorff and Blobel, 1999; White, 2003). They 
are widely distributed in the male reproductive tract, however 
the biological function of many of these proteases is still 
unknown (Moreno et al., 2011). It is possible that ADAM17 
may participate in TNF-α shedding from germ cell plasma 
membrane and exert paracrine signaling on Sertoli cells. In 
addition, ADAM17 can also shed the extracellular domain of 
JAM-A (Koenen et al., 2009), a well known protein of TJs (see 
above), hence destabilizing the BTB and leading to germ cell 
sloughing (Fig. 2).

Our model puts forward ADAM metalloproteases as 
novel elements in germ cell apoptosis following ED treatment. 
Interestingly, we have recently shown that the ADAM17-
mediated shedding of the c-kit extracellular domain is 
involved in germ cell apoptosis, suggesting that this could be 
a mechanism common to physiological and ED-induced germ 
cell apoptosis (Lizama et al., 2010).
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