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ABSTRACT

Nowdays, the increasing frequency of extreme and rapid floods caused by winter

storms, glacial lake outburst flods or tsunamis, makes necessary to quantify associated

hydrodynamic variables, such as water depth and velocity, in order to evaluate its conse-

quences and to be able to elaborate appropriate action plans. This kind of events can be

modeled through the shallow water equations, which have been commonly used to describe

the dynamic of open flows, such as rivers, lakes and near-shore flow. The aim of this thesis

is to obtain a robust tool capable of representing extreme and rapid flooding over com-

plex geometries. An extended version in curvilinear coordinates of the SURF WB model

(Marche et al., 2007) is developed including bed-slope and friction source terms. The

numerical model has shock-capturing ability, it correctly manages the wetting and drying

processes, and preserves steady states at rest. Several validation tests have been simu-

lated, involving complex geometries, strongly variable topography and moving shoreline

problems. Excellent agreement is found when compared with analytical, experimental and

other numerical data. Also, laboratory dam-break experiences were performed over a 1:60

scaled physical model of a river, in order to prove the abilities of the new model when

simulating an extreme event over realistic topography.

This document presents the complete development of the numerical model and its vali-

dation with different benchmark cases. The details of the dam-break laboratory experience

and the results of its simulation with the new numerical model are also presented. The nu-

merical results show that the new model is capable of reproducing flooding processes and

improvement is found when using a boundary-fitted discretization of the domain.

Keywords: Shallow water equations, finite volume schemes, well-balanced, shock

capturing, boundary-fitted coordinates, floods.
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RESUMEN

Actualmente, el aumento en la frecuencia de crecidas rápidas y extremas causadas por

lluvias invernales, vaciamiento de lagos o tsunamis, hace necesario el cuantificar las vari-

ables hidrodinámicas asociadas, como altura de aguas y velocidad, con el objeto de evaluar

sus consecuencias y poder elaborar planes de acción adecuados. Este tipo de eventos puede

ser modelado utilizando las ecuaciones de aguas someras, las que son comúnmente usadas

para describir la dinámica de escurrimientos abiertos, como rı́os, lagos o el flujo en zonas

cercanas a la lı́nea de costa. El objetivo de esta tesis es obtener una herramienta robusta

capaz de representar crecidas rápidas y extremas sobre topografı́as complejas. Se ha desar-

rollado una versión extendida en coordenadas curvilı́neas del modelo SURF WB (Marche

et al., 2007), inluyendo términos fuente asociados a pendiente y a fricción de fondo. El

modelo numérico tiene la habilidad de capturar shocks, manejar la interface seco-mojada

y preservar los estados estacionarios. Varios casos de validación han sido simulados,

incluyendo geometrı́as compejas, topografı́a fuertmente variable y lı́nea de costa móvil,

econtrándose excelentes resultados al comparar con soluciones analı́ticas, de laboratorio y

otras soluciones numéricas. Además, se llevaron a cabo experiencias de vaciamiento de

estanque en laboratorio, sobre un modelo fı́sico de rı́o a escala 1:60 para probar las habili-

dades del nuevo modelo al simular un evento extremo sobre topografı́a real.

Este documento presenta el desarrollo compelto del modelo numérico y los casos de

validación aplicados. Los detalles de la experiencia de laboratorio y los resultados de la

simulación hecha con el modelo son también mostrados. Los resultados obtenidos mues-

tran que el modelo es una herramienta robusta capaz de representar los procesos de in-

undación y mejoras son obtenidas al utilizar una discretización ajustada a la forma del

dominio de estudio.

Palabras Claves: Ecuaciones de Aguas Someras, volúmenes Finitos, esquemas bien-

balanceados, captura de shocks, coordenadas curvilı́neas general-

izadas, inundaciones.
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1. INTRODUCTION

Numerical modeling plays an important role in all engineering disciplines owing to

its rapid development, mostly due to the improvement of numerical methods and compu-

tational capabilities. In hydraulic engineering, numerical simulation of free surface flows

covers a wide variety of applications, such as the design of river and coastal structures,

environmental and hydrological studies, ocean circulation, etc.

Nowdays, there is an increasing need to predict the hydrodynamics of natural free sur-

face flows, such as winter flooding, tsunamis, Glacial Lake Outburst Flood (GLOF), dam-

breaks, wave propagation under extreme conditions, among many others. Mayor events,

such as the Malpasset dam-break in 1959 in the south of France, the current winter floods

in the areas of the Three Gorges dam in China, the recent GLOFs in the Aysén region in

southern Chile or the February 27, 2010, tsunami along the Chilean coast, demonstrate the

important consequences of these extreme events on both, economics and social costs.

These costs could be diminished if better predictions of the behaviour of the flow and

its main variables (maximum water height, run-up and velocities) were available. Indeed, a

good estimation of the flow features can lead to: better design of associated structures and

hydraulic facilities, definition of risk zones, mitigation and evacuation plans in urbanized

zones that could be at risk.

Most of the examples listed above can be classified as shallow inertial flows (Hogg &

Pritchard, 2004), since inertial forces are more important than gravitational. To model those

flows, advanced mathematical and numerical techniques are needed, since in its develop-

ment a large number of discontinuities may appear (hydraulic jumps, breaking, wetting-

drying).

When the typical wavelength of the flow is much bigger than the typical water depth,

the Nonlinear Shallow Water Equations (NSWE), which describe the hydrodynamics in

terms of water height variations and depth-averaged velocities, can be employed. These

equations express the conservation of mass and momentum assuming that the fluid is ho-

mogeneous, incompressible and inviscid; and the long wave hypothesis implies that there

1



is a hydrostatic pressure profile in the water column (Cunge, 1991; Stoker, 1992; Toro,

2001). The NSWE are a time-dependant hyperbolic system of partial differential equations

and are traditionally written, in a two dimensional Cartesian frame, as:

Qt + F (Q)x + G(Q)y = S (1.1)

where the subscripts denote partial derivatives with respect to t, x and y, Q is a vector

containing the flow variables Q = [h, hu, hv] (water depth h, and discharge per unit area

hu and hv, where u and v are the horizontal depth-averaged velocities in each Cartesian

direction). F and G account for the mass and conservation fluxes and S, is a source term

that should be included to describe bottom variations and friction. In Fig. 1.1 a schematic

drawing of the flow variables and geometric configuration of the flow is shown.

The NSWE can be written in a non-conservative form as,

Qt + A(Q)Qx + B(Q)Qy = S (1.2)

where A(Q) and B(Q) are known as the Jacobian matrices corresponding to the fluxes

F (Q) and G(Q) (Toro, 2001). Due to the hyperbolic character of this set of conservation

laws, the Jacobian matrices, A and B, are both diagonalizable and have real eigenvalues

and a corresponding set of linearly independent eigenvectors (Leveque, 2002). The corre-

sponding eigenvalues λi of A, or B, represent the wave speed at which a wave propagates

in a given direction. An unique linear combination of the eigenvectors provides an unique

solution to the NSWE, which consist in a linear combination of ”waves” traveling at the

characteristic speed λi (Leveque, 2002).

Although the NSWE seem to be adequate to model shallow inertial flows, analytical

solutions exist only for highly simplified cases. The latter implies that for more realistic

applications the equations must be solved numerically. Numerical solutions to the NSWE

are not trivially found, thus an appropriate numerical scheme that can naturally capture all

the complex features must be considered.

2



FIGURE 1.1. Flow variables

Finite volume methods, which are based in the integral form of conservation laws, con-

sist in discretizing the physical domain into grid cells, average the total integral of Q over

each cell, and then modify its value at each time step by computing the mass and momen-

tum fluxes through the cell faces. The key issue is to accurately compute the flux functions

at the boundaries of each cell using approximate cell averages. The flux functions can,

for instance, be calculated by solving a Riemann Problem at the cell interfaces (Leveque,

2002). A Riemann Problem (RP) is basically defined by a hyperbolic homogeneous equa-

tion system plus a piecewise initial condition with a single jump discontinuity, Eq. (1.4).

In Fig. 1.2 a schematic representation of a RP is shown.

FIGURE 1.2. Illustration of a Riemann problem

qt + f(q)x = 0 (1.3)

q(x, 0) =





qL si x < 0

qR si x > 0

In a finite volume grid, the fluxes through the interface of the i − 1 and i cells can

be obtained by solving the RP with Qi−1 = qL and Qi = qR, where the subindices L &

3



R indicate the left and right states of the cell interface. Finite volumes schemes seeking

the exact solution to the RP to calculate the flux function through the cell interface are

know as Godunov type methods (Leveque, 2002). Due to the high computational cost of

the exact solution of the Riemann problem, a wide range of approximate Riemann solvers

have been developed (Toro, 1997, 2001; Leveque, 2002). Approximate Riemann solvers

can be classified in two classes (Toro, 2001): i.) Solvers that compute an approximate

solution of the RP, then the numerical flux is obtained by evaluating the exact flux function

at this approximate state (Roe type schemes; ii.) Solvers that obtain an approximation of

the flux directly. For a complete description of these classes of methods see Toro (1997).

FIGURE 1.3. Illustration of a finite volume method for updating the cell-averaged
value Qi

The NSWE admit solutions that include discontinuities such as shocks (or bores), shear

waves and vortices and wet/dry fronts (Toro, 2001). This discontinuous solutions represent

the biggest challenge for numerical methods. If the numerical method does not correctly

represent, these features the numerical predictions cannot be trustable. For example, nu-

merical shock waves may have incorrect lengths and propagation speeds, thus the arrival

time and the wave hydrodynamics will not be well computed. Also, spurious or unphys-

ical oscillations may appear around numerical solutions, which can lead to instabilities,

contaminating the solution (Toro, 2001). High resolution finite volume methods based on

Riemann solvers can automatically deal with these discontinuities; they appear as a part of

the complete solution, without adding any special mathematical technique. These schemes

are known as Shock-capturing methods (Toro, 2001).
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An additional problem that must be addressed when computing shallow water flows

is the preservation of steady states at rest. Most of the geophysical flows develop from

perturbations of the equilibrium state or converge to it. Thus, the numerical methods must

be able to preserve this state in absence of external forces or disbalances. Well-balanced

schemes are known for their ability to correctly manage the steady states at rest, they are

based in the idea that the equilibrium described by the equations, considering momentum

source terms, must be preserved in the numerical scheme that solve the equations. Well-

balanced schemes rely in the balance between numerical fluxes and the bed-slope source

term in order to accomplish the hydrostatic balance for flow at rest.

Several models have been developed using the techniques mentioned above in a Carte-

sian coordinate frame (“Greenberg”, n.d.; Gallouet et al., 2003b, 2003a; Audusse et al.,

2004; Marche, 2005; Q. Liang & Marche, 2009).

Similarly, the numerical model should also be able to handle complex geometries,

since natural shallow inertial flows often occur over rapidly varying topographies with ir-

regular boundaries. Mountain rivers on steep slopes, or irregular shaped shorelines are

good examples of these complexities. A rectangular representation of irregular boundaries

requires approximations that can introduce large errors in the development of the flow,

which can result in numerical instabilities (Shi et al., 2001; Baghlani et al., 2008). To solve

those problems, finite volume methods with unstructured meshes or curvilinear meshes are

best suited. Unstructured grids are more flexible than structured grids to fit complicated

boundaries and deal with very complex geometries. However, structured curvilinear grids

have the superiority of the programming simplicity and thus are widely used in Computa-

tional Fluid Dynamics (Shi et al., 2001; Baghlani et al., 2008).

The basis of the generalized boundary-fitted curvilinear coordinates method is to use

a set of curvilinear grid points in which the boundaries of the domain follow a coordinate

line. The mesh lines can be curved and their intersection is not necessarily orthogonal.

This approach leads to a better representation of the domain boundaries. A better resolu-

tion can be considered in regimes of interest, resulting in a efficient discretization of the
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flow domain. The curvilinear coordinate system is defined such that the curvilinear non-

orthogonal mesh in the Cartesian plane is converted to a uniform and regular mesh in the

transformed domain (Fig. 1.4). In order to use this kind of griding, the governing equa-

tions, which are written for Cartesian variables, must be transformed to the new coordinate

system. The equations written under the new set of coordinates can be discretized in a

regular and uniform mesh using a suitable finite volume method, at the expense of solving

a more complicated set of equations due to the transformation.

FIGURE 1.4. Real domain (x, y) and transformed computational domain (ξ, η)

The main objective of this thesis is to implement a robust tool capable of representing

extreme and rapid flooding over complex geometries. In order to accomplish this objective,

a numerical model to solve the shallow water equations under a curvilinear coordinate

system will be developed, implemented, and validated.

1.1. Methodology

The numerical model developed in this thesis is a finite volume, shock-capturing, well-

balance scheme to solve the NSWE written in a curvilinear coordinate system. The follow-

ing methodology was used to implement and test the numerical model.

1.1.1. Governing Equations

First, the NSWE equations were transformed into the generalized boundary fitted

curvilinear coordinate system presented in Bradford and Sanders (2002); Lackey and Sotiropou-

los (2005); Loose et al. (2005). The coordinate transformation is partial, as the main flow

variables, water depth and Cartesian velocities remain after the change of coordinates. The
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transformation was done using the chain rule to expand the derivatives in terms of the new

set of coordinates; the new set of equations is shown in Chapter 2 of this thesis and the

details of the transformation can be found in Appendix B. The NSWE solved considered

only friction and bed-slope source terms.

1.1.2. Numerical Method

The numerical model to be implemented in the NSWE is an extension of the SURF WB

model developed by Marche (2005). SURF WB model is a Godunov-type finite volume

scheme for the two-dimensional NSWE written in Cartesian coordinates with a bed-slope

source term. It was first intended to simulate wave transformation over strongly varying to-

pography. The model relies in the hydrostatic reconstruction method proposed by Audusse

et al. (2004) to treat the bed-slope source term, and in the VFRoe-ncv approximate Rie-

mann solver (Gallouet et al., 2003b). This high-resolution numerical scheme is second

order accuracy in space and fourth order in time. It has shock-capturing ability, is able

to handle strong topography variations, preserves steady states at rest and can also deal

with wet/dry fronts. It has been validated against several analytical solutions, involving

varying topography, time dependant moving shorelines and convergence towards steady

state (Marche et al., 2007). The friction source term was included in the numerical solu-

tions using the splitting implicit recently proposed by Q. Liang and Marche (2009). The

numerical algorithm was then computationally implemented and written in FORTRAN 90

programming language.

Several validation tests were carried out using regular and uniform grids as well as

boundary-fitted grids. The studied cases include: steady state problems over a 2D varying

topography, 1D classical dam-break problems, 2D partial dam-break, Cylindrical dam-

break, 1D oscillating water column over a frictional basin, 2D nonlinear oscillations over a

parabolic basin and Supercritical flow over a converging channel.
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1.1.3. Application

Laboratory dam-break experiences were carried out to obtain high-resolution data to

test the developed numerical model. Two laboratory campaigns were performed in the Hy-

draulic Engineering Laboratory of the Pontificia Universidad Católica de Chile to study the

sudden emptying of a reservoir over a scaled physical model of a river reach. Measurement

instruments and technical support was provided by the Instituto Nacional de Hidráulica

(INH).

The experience consisted in rapidly open a reservoir gate in order to release the holded

volume of water, which generates a shock-wave that propagates downstream, producing

fast free surface variations that were recorded for 60 seconds. Then, the experience was

simulated using the new numerical model and the results were compared with the recorded

data.

This experience is a demanding test to any numerical model, since all the flow fea-

tures that the numerical model is seeking to capture are present in the experience. Good

estimation of the flow variables were obtained.

1.2. Thesis Outline

The following two chapters correspond to two articles which are devoted to detail the

development of the curvilinear NSWE model and the laboratory experiences.

In the first article, the new model SURF WBUC is described and validated. The article

focuses on the governing equations transformation and on the application of model to solve

the equations. Some of the validation tests involving frictional topographies and the use

of a curvilinear discretization of the domain are presented. This article part allows us to

demonstrate that the numerical method developed possess the seeked shock-capturing and

well-balancing abilities. The latter let us to hypothesize that it can be an effective tool

to represent extreme flooding over complicated topographies, such as dam-breaks, GLOF,

tsunamis or river overflows.
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More realistic applications are considered in the second part. We focus on the abilities

of the numerical model to represent the hydrodynamics of extreme flood waves produced

over a scaled physical model of a river reach. A complete description of the experimental

set-up and the post-processing of the data, that allow us to build the numerical application,

are presented. Excellent numerical results are obtained in terms of amplitudes of the prop-

agating waves, arrival times and the recession curves. The latter further demonstrates that

the developed numerical model is a robust tool able to accurately represent the hydrody-

namics of extreme floods in the framework of intertia-dominated flow.

Finally, conclusions and future perspectives are discussed. In the appendices, de-

tailed information concerning the transformation of the governing equations, the numerical

scheme, boundary conditions and complementary benchmark cases, are presented.
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2. A CURVILINEAR FINITE VOLUME MODEL FOR INERTIA-DOMINATED

SHALLOW WATER FLOWS INCLUDING BATHYMETRIC VARIATIONS,

BOTTOM FRICTION AND RUN-UP

2.1. Abstract

Natural shallow flows take place over rough and varying topographies with arbitrary

boundaries, and in many cases they are unsteady or characterized by important changes

of velocity and water depth due to shock waves or wet-dry interfaces. Numerical models

using conventional Cartesian discretizations, however, might not represent correctly the hy-

drodynamics of these complex flows since they cannot reproduce the geometrical details of

natural domains. In order to predict efficiently and accurately the dynamics of shallow in-

ertial flows, we develop a well-balanced and robust numerical model to solve the nonlinear

shallow water equations (NSWE) in non-orthogonal boundary-fitted curvilinear coordinate

systems. Curvilinear NSWE are solved with a shock-capturing finite-volume scheme that

directly incorporates the effects of friction and bed-slope source terms in the momentum

equations. The friction source term is accounted for through a semi-implicit fractional-step

approach, while the bed-slope is discretized with a well-balanced hydrostatic reconstruc-

tion method in conjunction with the robust VFRoe-ncv approximate Riemann solver and a

second order MUSCL approach (Gallouet et al., 2003b; Q. Liang & Marche, 2009). The

resulting numerical scheme for curvilinear NSWE is second-order accurate in space and

fourth-order in time. Together with shock-capturing ability, this method can compute flows

over highly variable topography and preserve the positivity of the water depth, leading to

accurate simulations of wetting and drying processes, and preserving motionless steady

states. This new numerical method is validated against several benchmark cases that con-

sider the use of a boundary-fitted discretization of the domain, and shows to be a robust

tool to predict rapid and extreme flood processes such as dam-breaks, tsunamis, or river

overflows.
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2.2. Introduction

In hydraulic engineering and geophysics a wide variety of shallow flows, such as rivers,

lakes or estuaries, can be modeled by the Nonlinear Shallow Water Equations (NSWE),

which describe the dynamics of fairly long waves of homogeneous, incompressible, and

non-viscous fluids. The system is obtained by vertically averaging the three-dimensional

Navier-Stokes equations assuming a hydrostatic pressure distribution, resulting in a set of

horizontal two-dimensional hyperbolic conservation laws that describe the evolution of the

water depth and depth-averaged velocities (Cunge et al., 1980; Stoker, 1992; Toro, 2001).

Shallow inertial flows often occur over highly varying topography giving rise to com-

plex unsteady free-surface dynamics where discontinuities may arise. An accurate nu-

merical representation of those features remains as a challenging task to common finite-

difference or finite-volume methods (Toro, 2001), since numerical strategies for solving the

NSWE in shallow intertial flows should be able to deal with arbitrary geometries and cap-

ture their complex dynamics. Similarly, the discretization of the boundaries of the physical

domain may have a strong influence in the development of the hydrodynamics, introduc-

ing large errors or numerical instability if not carefully performed (Baghlani et al., 2008).

The use of boundary-fitted grids can address these problems (Shi et al., 2001), by improv-

ing the accuracy of the numerical solutions. They rely in partial transformation of the

governing equations in generalized curvilinear coordinates, in order to maintain the flow

variables referenced to the Cartesian frame. The resulting system can be discretized and

solved by finite-difference methods (Molls & Chaudry, 1995; Molls & Zhao, 2000), finite-

element methods (Berger & Stockstill, 1995; Tucciarelli & Termini, 2000), or standard

finite-volume methods (Valiani et al., 2002; Zhou et al., 2004; Loose et al., 2005).

In the framework of finite volume methods, Godunov-type formulations have become

very useful to solve the NSWE, since they can reproduce complex discontinuities such as

shock-waves or wet-dry interfaces by solving a Riemann problem at each cell interface

of the discretized domain (Toro, 2001; Leveque, 2002). These methods have been imple-

mented to solve the curvilinear NSWE, having the advantage of grid adaptability to the
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geometry of the problem, and the ability to produce quantitatively accurate results near

the boundaries (Alcrudo & Garcı́a-Navarro, 1993; Mingham & Causon, 1998; Causon &

Mingham, 1999; Fujihara & Borthwick, 2000; D. Liang et al., 2007).

Another important issue that arises when discretizing NSWE over varying topogra-

phies is the preservation of the steady state, since most geophysical flows come from, or

converge to this regime. Well-balanced schemes are specifically conceived to preserve the

steady state, including the important class of motionless states, which need local and global

mass conservation to machine accuracy. To achieve this requirement, it is necessary to dis-

cretize carefully the bed-slope source term as shown in previous investigations (Greenberg

& Leroux, 1996; LeVeque, 1998; Gallouet et al., 2003b; Audusse et al., 2004; Q. Liang &

Marche, 2009).

In this work, we develop an extended version of the NSWE model recently presented

by Marche et al. (2007) in a non-orthogonal generalized curvilinear coordinate framework.

We develop a finite volume well-balanced approach, based on a robust VFRoe Riemann

solver (Gallouet et al., 2003b) to calculate mass and momentum fluxes at cell interfaces and

the hydrostatic reconstruction method proposed by Audusse et al. (2004). The source term

that accounts for friction effects is treated with the semi-implicit fractional-step approach

of Q. Liang and Marche (2009). The model is validated through several benchmark tests

chosen to assess its ability to deal with wet and dry interfaces, complex geometries, shocks,

friction and bathymetry source terms.

The paper is organized as follows. In section 2.3 we present the non-dimensional gov-

erning equations and the partial transformation to generalized non-orthogonal curvilinear

coordinates that are employed in the model. The proposed numerical scheme and the steps

of the method to handle the integration of the NSWE is described in section 2.4. Validation

tests and comparisons of numerical simulations with analytical solutions and experimental

data are presented in section 2.5. Finally, conclusions and future perspectives of this work

are presented in section 2.6.
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2.3. Governing Equations

The two-dimensional NSWE are a system of nonlinear partial differential equations

representing mass and momentum conservation laws (Toro, 2001). The main assumptions

behind this model are incompressible and homogeneous fluid and hydrostatic pressure dis-

tribution, which correspond to the shallow water or long-wave hypothesis, implying neg-

ligible vertical velocities and depth-uniform horizontal velocities. The NSWE are often

applied to river or nearshore flows where the characteristic horizontal wavelength is much

longer that the characteristic water depth (see (Cunge et al., 1980) for more details).

In what follows, we will work on a non-dimensionalized set of NSWE by choosing

characteristic horizontal and vertical length-scales and a velocity scale (H, L, and U re-

spectively), noting that the shallow-water assumptions require different scaling between

the horizontal and vertical scales. The non-dimensional form of the governing equations

simplifies the magnitude of the flow variables for the computation and gives an indication

of the relative magnitude of the water-depth and flow velocities. By defining the length

and velocity scales of the flow the time-scale is also fixed such that T = L/U , and the

dimensionless Froude number, Fr = U/
√

gH, quantifies the relative importance of iner-

tial effects over gravity (g). The dimensional variables, noted with a hat (̂), are therefore

defined as x̂ = Lx, ŷ = Ly, ẑ = Hz, ĥ = Hh, û = Uu, v̂ = Uv, and t̂ = Tt. Where x̂

and ŷ represent the Cartesian directions, ẑ defines the bed elevation, ĥ is the water depth, û

and v̂ are the depth-averaged flow velocities in each Cartesian direction, and t̂ is the time.

In Fig. 2.1, a schematic drawing of the main variables of the flow and the characteristic

dimensional scales are shown.

Considering only bed-slope and friction source terms, the non-dimensional NSWE can

be written in Cartesian coordinates in the following conservation form,

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
= S(Q) (2.1)
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FIGURE 2.1. Schematic drawing of hydrodynamic variables and characteristic scales

where Q is the vector of hydrodynamic variables, F and G are respectively the flux vectors

in each Cartesian direction, and S is the source term vector. These vectors are given by the

following expressions,

Q =




h

hu

hv


 , F (Q) =




hu

hu2 + 1
2Fr2 h

2

huv


 , G(Q) =




hv

huv

hv2 + 1
2Fr2 h

2


 (2.2)

S(Q) =




0

− h
Fr2

∂z
∂x

− Sfx

− h
Fr2

∂z
∂y

− Sfy




where zx and zy define the bed-slope in each coordinate direction, and Sf represents the

friction source term.

In order to have a correct representation of arbitrarily complex geometries, we intro-

duce a boundary-fitted curvilinear coordinate system in two dimensions denoted by the

coordinate system (ξ, η) shown in Fig. 1.4. Generalized curvilinear coordinates are cho-

sen to follow the boundaries of the domain, adapting the grid to the geometrical details

of the computational domain. In this framework the mesh lines can be curved and their

intersection is not necessarily orthogonal. This coordinate system is defined such that the

curvilinear discretization of the (x, y) domain is transformed into a rectangular and regular

mesh in the transformed space (ξ, η) as shown in Fig. 1.4. This approach allows to get
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a better resolution in zones of interest and an accurate representation of the boundaries,

resulting in a efficient discretization of the flow domain (Baghlani et al., 2008; D. Liang et

al., 2007; Lackey & Sotiropoulos, 2005).

The system of equations (2.1) can be partially transformed to this new coordinate sys-

tem maintaining the hydrodynamic variables referenced to the Cartesian frame. This proce-

dure is known as partial transformation and only modifies the mass and momentum fluxes

of the governing equations. The full transformation would change the variables in vector Q

to the velocity components in the ξ and η directions, so-called contravariant velocity com-

ponents, and the derivatives in the convective terms would yield the well-known Christoffel

symbols of the second kind (TranNgoc & Takashi, 2007). Therefore, the transformed set

of equations can be written as follows,

∂Q

∂t
+ J

∂F

∂ξ
+ J

∂G

∂η
= S(Q) (2.3)

where Q remains the same vector shown in Eqs. (2.1), but flux vectors are now expressed

in terms of the time t, and the new spatial coordinate system ξ and η. With the partial

coordinate transformation, the non-dimensional mass and momentum fluxes and source

term vectors are expressed as follows,

F =
1

J




hU 1

uhU 1 + 1
2Fr2 h

2ξx

vhU 1 + 1
2Fr2 h

2ξy


 , G =

1

J




hU 2

uhU 2 + 1
2Fr2 h

2ηx

vhU 2 + 1
2Fr2 h

2ηy


 , (2.4)

S =




0

− h
Fr2 (zξξx + zηηx) − Sfx

− h
Fr2 (zξξy + zηηy) − Sfy




where zξ and zη define the local bed slope with respect to the curvilinear coordinate system

(ξ, η). It is important to note that the friction source term is not affected by the coordinate

transformation, since the momentum equations are maintained in the cartesian system.
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The additional terms that appear in the fluxes, ξx, ξy, ηx, and ηy are the resulting

metrics associated to the coordinate change, and J = ξxηy − ξyηx is the Jacobian of the

transformation, which will remain constant for a fixed grid. U 1 and U 2 are the contravariant

velocity components, and are expressed as U j = uεx + vεy with (j, ε) ∈ (1, ξ), (2, η). As

shown in Fig. 1.4, the transformed system of equations are discretized on a rectangular

and uniform grid in the transformed space (ξ, η) using the finite volume method that is

described in the next section.

2.4. Numerical Scheme

The transformed curvilinear NSWE, given by Eqs. (2.3), are solved using a finite vol-

ume well-balanced scheme, which incorporates separately the friction and bed-slope in the

momentum source terms. The numerical procedure consists of an initial step in which the

friction source term in the momentum equations is incorporated employing a semi-implicit

method. In a second hyperbolic NSWE step, the variables are reconstructed at the cell in-

terfaces and the fluxes are found through the solution of the Riemann problem at the cell in-

terfaces using a non-conservative form of the governing equations. This methodology gives

the numerical model the well-balanced property by considering the bed-slope in the spatial

discretization schemes using a MUSCL type reconstruction method. The discretized form

of the governing equations is integrated in time using a multi-stage Runge-Kutta scheme.

In Fig. 2.2 a schematic flux diagram of the numerical scheme is shown, in order to explain

how the scheme works at every time-step.

In the following sections we describe in detail the different steps of the algorithm,

including the implementation of boundary conditions and the stability criterion of the nu-

merical solution.

2.4.1. Semi-Implicit Friction Step

The friction source term is incorporated using the splitting semi-implicit method pro-

posed in Q. Liang and Marche (2009), which is extended here for the two-dimensional
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FIGURE 2.2. Numerical Scheme: Flux Diagram for each time-step

curvilinear case. This method consists in solving the ordinary differential equation.

dQ

dt
= Sf (2.5)

where the friction term Sf can be written in the following manner,

Sf =




0

− τfx

ρ

− τfy

ρ


 (2.6)

The bed shear-stresses in the momentum equations are denoted as τfx and τfy for each

cartesian direction, and ρ is the water density. The magnitude of the bed shear stresses in

each direction can be calculated as follows,

τfx = ρ Cf u
√

u2 + v2 (2.7)

τfy = ρ Cf v
√

u2 + v2 (2.8)

where Cf is a non dimensional bed friction coefficient, which can be expressed using one

of the standard existing approaches developed for uniform flow such as Manning or Chézy

(Chow, 1959).
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In Eq. (2.5) the friction term has no effect on the water depth h through the continuity

equation, therefore we only solve the flow dynamics for a vector containing the variables

in momentum equations:
dq

dt
= Sf (2.9)

where q = [hu, hv]T , according to the momentum equation in each Cartesian coordinate

direction, and the friction source term Sf = [τx/ρ, τy/ρ]T . This equation is implicitly

discretized as follows,
qn+1 − qn

∆t
= Sn+1

f (2.10)

where n and n+1 denote the instant tn = t and tn+1 = t+∆t respectively. The Sn+1
f term

can be expressed using a second-order Taylor series expansion around ∆q = qn+1 − qn

such that,

Sn+1
f = Sn

f +

(
∂Sf

∂q

)
∆q + O(∆q2) (2.11)

Thus, retaining only first-order terms in Eq. (2.10), the following expression for the un-

known variables is found,

qn+1 = qn + ∆t f (2.12)

where the momentum flux is calculated as f =
(

Sn
f

Dn

)
, and Dn = 1 − ∆t (∂Sf/∂q)n

When solving the NSWE with friction this term may lead to a large friction force near

the wet/dry front and eventually reverse the flow. In order to prevent this inconsistency,

the friction force effect must be limited. At every time-step ∆t, the state variables are first

modified to take into account the bed roughness effects, and then this partial solution is

used as initial condition for the hyperbolic NSWE step. For a detailed description of this

method and the limiting-friction procedure, the reader is referred to the work of Q. Liang

and Marche (2009).
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2.4.2. Hyperbolic NSWE Step

The finite-volume numerical methodology consists on solving the NSWE without the

friction terms, combining the approximate well-balanced VFRoe Riemann solver devel-

oped by Gallouet et al. (2003b) for the homogeneous problem, with the hydrostatic recon-

struction method proposed by Audusse et al. (2004) to incorporate the bed-slope source

term.

The semi-discrete finite-volume formulation for the system of equations (2.3) in the

element (i, j) of the computational grid can be written as follows:

d

dt
Qi,j +

Ji,j

∆ξ
(F ∗

i+ 1

2
,j
− F ∗

i− 1

2
,j
) +

Ji,j

∆η
(G∗

i,j+ 1

2

− G∗
i,j− 1

2

) = Sij (2.13)

where Qi,j is the vector of cell-centered hydrodynamic variables, Ji,j is the cell-centered

Jacobian of the coordinate transformation, F ∗
i±1/2,j and G∗

i,j±1/2 correspond to the numer-

ical fluxes through the (i, j) cell interfaces, and Si,j to the centered discretization of the

bed-slope source term. A successful application of the scheme requires a convenient esti-

mation of the numerical fluxes and the Si,j source term. In Fig. 2.3 we depict a sketch of

the typical discretization cell and the fluxes. In this figure the subindices L and R denote

the left and right boundaries of the cell, while the − and + signs represent the left and right

sides of the cell interface. To find the discretized fluxes in Eq. (2.13), we solve the Riemann

problem at each cell interface using a non-conservative form of the governing equations.

In the following subsections we describe the numerical procedure and explain in detail the

variable reconstruction to compute all the terms in Eq. (2.13).
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FIGURE 2.3. Discretization cell and numerical fluxes

2.4.2.1. The Non-conservative Solver

The numerical solution in the curvilinear system requires that the spatial discretization

captures the steep gradients or shock-waves in the flow and also to account for wetting

and drying variations in unsteady flows. In this model we employ the VRoe-ncv scheme

(Marche et al., 2007; Gallouet et al., 2003a), which solves exactly a linearized Riemann

problem in each cell interface. This scheme uses a non-conservative change of variables,

which ensures that intermediate states remain positive and preserve the non-negativity of

the water depth at least for the interface values. For all the details on the formalism of this

scheme and its applications the reader is referred to the work of Gallouet et al. (2003b),

and the recent modification presented by Marche (2007).

The VFRoe-ncv solver is used here for the homogeneous part of the shallow-water

equations to obtain the value of the state variables at the cell interfaces Q∗, which is later

used to calculate the associated numerical fluxes F ∗ and G∗ shown in Eq. (2.13). First we

perform a non-conservative change of variables to the system of equations (2.3) using the

vector W (Q) = (2C, u, v). In this formulation the first component of vector W contains

the non-dimensional wave celerity defined as C =
√

h/Fr2. To obtain a non-conservative

form of the NSWE and apply the VFRoe method the change of variables produces the

following system of equations using the chain rule of derivation,

Wt + B1(W )Wξ + B2(W )Wη = 0 (2.14)
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where the matrices B1 and B2 are the corresponding Jacobian matrices of the fluxes in the

transformed Eq. (2.3) with respect to the vector of hydrodynamic variables W (Q) (Toro,

2001). These matrices can be written as,

B1(W ) =




U1 Cξx Cξy

Cξx U1 0

Cξy 0 U1


 and B2(W ) =




U2 Cηx Cηy

Cηx U2 0

Cηy 0 U2


 (2.15)

To clarify the numerical procedure we explain in detail the application of the method

to the ξ direction to obtain the augmented Riemann Problem (RP). In this particular case

the variable extrapolation depends on the eigenvalues of the averaged Jacobian matrices,

which can be computed directly by diagonalizing the system of equations with the follow-

ing procedure. In the ξ direction, the set of equations can be written as:

Wt + B1(W )Wξ = 0 (2.16)

W (x, 0) =





WL if ξ < 0

WR if ξ > 0
(2.17)

where WL and WR are the interface left and right side states of vector W . The RP, Eq.

(2.16), is then linearized around the averaged state W̃ = WL+WR

2
. Therefore, the linearized

Jacobian matrix B1 for the ξ direction is defined as follows:

B1(W̃ ) =




Ũ1 C̃ξ̃x C̃ξ̃y

C̃ξ̃x Ũ1 0

C̃ξ̃y 0 Ũ1


 (2.18)

where the tilde (˜ ) represents the averaged values of the left and right sides of the cell

interface.

The eigenvalues and left and right eigenvectors matrices of the linearized Jacobian

matrix are thus written as,

λ̃1 = Ũ1 − C̃
√

(ξ̃2
x + ξ̃2

y), λ̃2 = Ũ1, λ̃3 = Ũ1 + C̃
√

(ξ̃2
x + ξ̃2

y) (2.19)
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R̃1 =




−
√

(ξ̃2
x + ξ̃2

y) 0
√

(ξ̃2
x + ξ̃2

y)

ξ̃x −ξ̃y ξ̃x

ξ̃y ξ̃x ξ̃y


 (2.20)

L̃1 =




−1

2
√

(ξ̃2
x+ξ̃2

y)

ξ̃x

2(ξ̃2
x+ξ̃2

y)

ξ̃y

2(ξ̃2
x+ξ̃2

y)

0 −ξ̃y

(ξ̃2
x+ξ̃2

y)

ξ̃x

(ξ̃2
x+ξ̃2

y)

1

2
√

(ξ̃2
x+ξ̃2

y)

ξ̃x

2(ξ̃2
x+ξ̃2

y)

ξ̃y

2(ξ̃2
x+ξ̃2

y)




(2.21)

According to Marche et al. (2007), the exact solution to the linearized RP at each

side of the interface is given by the sign of the eigenvalues λ̃i. From all the possible

combinations only two cases become relevant (Marche et al., 2007),

(i) If λ̃1 > 0 or λ̃3 < 0, then the flow is super-critical and the interface value is

defined as,

W ∗ =





WL if λ̃i > 0 ∀i

WR if λ̃i < 0 ∀i
(2.22)

(ii) If λ̃1 < 0 and λ̃3 > 0, then the flow is sub-critical and we are in the intermediate

region. According to Marche et al. (2007), the solution is defined depending on

the sign of λ̃2 as follows,

W ∗ =





WL + L̃T
1 [W ]RL R̃1 if λ̃2 > 0

WR − L̃T
3 [W ]RL R̃3 if λ̃2 < 0

(2.23)

where [W ]RL = WR − WL, and L̃i and R̃i are the left and right eigenvectors of

the linearized convection matrix associated to each eigenvalue λ̃i (Marche et al.,

2007). Ri vectors correspond to the columns of the R1 matrix and Li, to the lines

of the L1 matrix.

As an example we can show that for the (i + 1
2
) cell interface, the left state is L = i

and the right side state is R = i + 1. If the flow is sub-critical, i.e. λ̃1 > 0 and λ̃3 < 0, and
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λ̃2 > 0, the solution at the cell interface would be given by,

W ∗ = WL +

(
−1

2
√

(ξ2
x+ξ2

y)

ξx

2(ξ2
x+ξ2

y)

ξy

2(ξ2
x+ξ2

y)

)



2[C]RL

[u]RL

[v]RL







−
√

ξ2
x + ξ2

y

ξx

ξy


 (2.24)

Then the wave celerity and instantaneous flow velocities at the cell interface (i + 1
2
)

are computed using the following expressions:

2Ci+ 1

2
,j = 2CL −

√
ξ̃2
x + ξ̃2

y


− 2[C]RL

2
√

ξ̃2
x + ξ̃2

y

+
ξ̃x[u]RL

2(ξ̃2
x + ξ̃2

y)
+

ξ̃y[v]RL
2(ξ̃2

x + ξ̃2
y)


 (2.25)

ui+ 1

2
,j = uL + ξ̃x


− 2[C]RL

2
√

ξ̃2
x + ξ̃2

y

+
ξ̃x[u]RL

2(ξ̃2
x + ξ̃2

y)
+

ξ̃y[v]RL
2(ξ̃2

x + ξ̃2
y)


 (2.26)

vi+ 1

2
,j = vL + ξ̃y


− 2[C]RL

2
√

ξ̃2
x + ξ̃2

y

+
ξ̃x[u]RL

2(ξ̃2
x + ξ̃2

y)
+

ξ̃y[v]RL
2(ξ̃2

x + ξ̃2
y)


 (2.27)

Using this procedure the original conservative state variables at the cell interface in

vector Q are found using an inverse change of variables from the non-conservative vector

W , and then employed to calculate the numerical fluxes through the cell interfaces in Eq.

(2.13):

F ∗
i+ 1

2
,j

= F [Q∗(0, Qi,j , Qi+1,j)] (2.28)

The process is analogous for the η coordinate direction. The RP is defined along the

η coordinate considering the B2 convection matrix, and the (j + 1/2) cell interface. In the

following step we show how the reconstruction is performed to achieve the well-balanced

property of the numerical method in generalized non-orthogonal curvilinear coordinates.

2.4.2.2. The hydrostatic reconstruction

The bed-slope source term is discretized and incorporated in the numerical scheme

using the well-balanced method proposed in Audusse et al. (2004). This second-order
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accurate scheme satisfies the steady state static condition (global and local mass conserva-

tion), and also preserves the ability of the VFRoe-ncv solver to handle dry areas.

The hydrostatic reconstruction method is based in the MUSCL extrapolation (Mono-

tonic Upwind Scheme for Conservation Laws) introduced by van Leer (Van-Leer, 1979).

The method consists on calculating the numerical fluxes from limited reconstructed values

at each side of the interface rather than cell-centered values, taking into account bed vari-

ations and the hydrostatic balance for the steady states at rest (Audusse et al., 2004). The

method relies on the steps of the MUSCL extrapolation, such that the limited reconstructed

values are found in three steps: i.) prediction of the gradients in each cell; ii.) linear

extrapolation of the state variables to the cell interfaces; and iii.) slope limiting procedure.

In the ξ direction, considering the i cell, the linear reconstruction of QiR and QiL, at

i+1/2− and i−1/2+ interface (see Fig. 2.3) is calculated using a minmod limiter (Leveque,

2002). The free surface elevation H = h + z is also reconstructed, obtaining HiR and HiL.

Finally, the bed elevation z is obtained from the reconstructed values of water elevation and

free surface as follows,

ziL = HiL − hiL (2.29)

ziR = HiR − hiR (2.30)

The hydrostatic reconstruction of the water elevation at each side of the cell interface

is computed by ensuring the positivity preserving condition following the limits proposed

in Marche et al. (2007). Taking into account bottom variations this method reads,

h
i+ 1

2

− = max
[
0, hiR + ziR − zi+ 1

2

]
(2.31)

h
i+ 1

2

+ = max
[
0, hi+1L + zi+1L − zi+ 1

2

]
(2.32)

where the bed elevation at the cell interface, zi+ 1

2

, is calculated from,

zi+ 1

2

= max [ziR, zi+1L] (2.33)
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Finally, the state variables at the cell interface can be computed as,

Q
i+ 1

2

+ =




h
i+ 1

2

+

h
i+ 1

2

+u(i+1)L

h
i+ 1

2

+u(i+1)L


 , Q

i+ 1

2

− =




h
i+ 1

2

−

h
i+ 1

2

−uiR

h
i+ 1

2

−uiR


 (2.34)

This new reconstructed values are now used to solve the homogeneous system with

the VFRoe-ncv solver described in section 2.4.2.1 and find the state values at the interface.

Therefore, the numerical fluxes through the cell interfaces are calculated as,

F ∗
i+ 1

2

= F
[
Q∗

i+ 1

2

(0, Q
i+ 1

2

−

,j
, Q

i+ 1

2

+
,j
)
]

(2.35)

The bed-slope source term is also estimated through the new reconstructed values in-

stead of the cell-centered ones, and then distributed to the cell interfaces considering the

well-balanced requirement for static flows at rest (Audusse et al., 2004). At steady state,

h + z = const. and ∂
∂t

= 0, and at rest, u = v = 0. Then the first momentum equation of

the curvilinear NSWE becomes,

J

(
1

J

1

2Fr2
h2ξx

)

ξ

+ J

(
1

J

1

2Fr2
h2ηx

)

η

= − h

Fr2
(ξxzξ + ηxzη) (2.36)

The source term associated to each curvilinear coordinate direction, (ξ, η), is balanced

with the momentum flux in the same direction,

J

(
1

J

1

2Fr2
h2 ξx

)

ξ

≈ − h

Fr2
ξx zξ (2.37)

J

(
1

J

1

2Fr2
h2 ηx

)

η

≈ − h

Fr2
ηx zη (2.38)

This approach leads to the specific discretization of the source term, which for the ξ

direction is written as,

Sξ
i = S−

i+ 1

2

+ S+
i− 1

2

(2.39)
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S−
i+ 1

2

=




0

1
2Fr2

(
ξx

J

)
i+ 1

2

h2

i+ 1

2

− −
(

ξx

J

)
i
h2

iR

1
2Fr2

(
ξy

J

)
i+ 1

2

h2

i+ 1

2

− −
(

ξy

J

)
i
h2

iR




(2.40)

S+
i− 1

2

=




0

1
2Fr2

(
ξx

J

)
i+ 1

2

h2

i− 1

2

+ −
(

ξx

J

)
i
h2

iL

1
2Fr2

(
ξy

J

)
i+ 1

2

h2

i− 1

2

+ −
(

ξy

J

)
i
h2

iL




(2.41)

A centered source term Sci needs to be added to ensure consistency of the scheme and

preserve the well-balanced property of the numerical solution (Marche et al., 2007). For

the ξ direction this source term can be expressed as follows,

Scξ
i = − 1

Fr2




0

ξx i(
h2

iL+h2
iR

2
)( ziR−ziL

∆ξ
)

ξy i(
hiR+hiL

2
)( ziR−ziL

∆ξ
)


 (2.42)

The same procedure is performed for the fluxes and source term in the η direction.

The application of the new FV formulation can be summarized as follows,

dQi,j(t)

dt
+

Ji,j

∆ξ

(
F−

i+ 1

2
,j
− F+

i− 1

2
,j

)
+

Ji,j

∆η

(
G−

i,j+ 1

2

− G+
i,j− 1

2

)
= Sci,j (2.43)

where the matrices in Eq. (E.61) are expressed as:

F−
i+ 1

2
,j

= F (Q∗
i+ 1

2
,j
(0, Q

i+ 1

2

−

,j
, Q

i+ 1

2

+
,j
))

+
1

2Fr2




0
(

ξx

J

)
i,j

h2
iR,j −

(
ξx

J

)
i+ 1

2

−

,j
h2

i+ 1

2

−

,j(
ξy

J

)
i,j

h2
iR,j −

(
ξy

J

)
i+ 1

2

−

,j
h2

i+ 1

2

−

,j




(2.44)
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F+
i− 1

2
,j

= F (Q∗
i− 1

2
,j
(0, Q

i− 1

2

−

,j
, Q

i− 1

2

+
,j
))

+
1

2Fr2




0
(

ξx

J

)
i,j

h2
iL,j −

(
ξx

J

)
i− 1

2

+
,j

h2

i− 1

2

+
,j(

ξy

J

)
i,j

h2
iL,j −

(
ξy

J

)
i− 1

2

+
,j

h2

i− 1

2

+
,j




(2.45)

G−
i,j+ 1

2

= G(Q∗
i,j+ 1

2

(0, Q
i,j+ 1

2

− , Q
i,j+ 1

2

+))

+
1

2Fr2




0
(

ηx

J

)
i,j

h2
i,jR −

(
ηx

J

)
i,j+ 1

2

− h2

i,j+ 1

2

−

(ηy

J

)
i,j

h2
i,jR −

(ηy

J

)
i,j+ 1

2

− h2

i,j+ 1

2

−




(2.46)

G+
i,j− 1

2

= G(Q∗
i,j− 1

2

(0, Q
i,j− 1

2

− , Q
i,j− 1

2

+))

+
1

2Fr2




0
(

ηx

J

)
i,j

h2
i,jL −

(
ηx

J

)
i,j− 1

2

+ h2

i,j− 1

2

+

(ηy

J

)
i,j

h2
i,jL −

(ηy

J

)
i,j− 1

2

+ h2

i,j− 1

2

+




(2.47)

Sci,j = Scξ
i,j + Scη

i,j (2.48)

Finally, time integration of the curvilinear NSWE with arbitrary topography is per-

formed with a fourth-order Runge-Kutta scheme described in (Ferziger & Peric, 1996).

2.4.3. Boundary Conditions

To handle the boundary conditions in arbitrarily complex domains with second-order

accuracy, we employ two layers of ghost cells outside the computational domain in the

numerical model. With this methodology we can estimate the flow variables at the bound-

ary cells and introduce specific dynamic information to the computational domain. Three

types of boundary conditions have been implemented and tested in the model, which are
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used in the next validation tests: i.) Transmissive or open boundary, establishes a zero-

gradient between the boundary and ghost cells state variables, allowing the information to

freely leave the domain without propagating spurious information back to the domain; ii.)

Solid wall or close boundary, imposes that at the boundary the velocities and the water

elevation gradient are equal to zero (no discharge boundary condition); and iii.) Absorb-

ing/Generating boundary condition, which relies on the work of Cienfuegos et al. (Mignot

& Cienfuegos, 2009; Cienfuegos et al., 2007), allowing to introduce dynamic information

inside the domain from the boundary, such as waves or specific hydrographs, and evacuate

back-traveling waves. Information is imposed outside the domain and a Riemann problem

is solved at the boundary to find the value of flow variables and introduce this information

into the computational domain. In the numerical method presented in this research this

boundary condition has only been developed for normal incident flow.

2.4.4. Stability Criterion

The stability of the numerical model is controlled by the Courant-Friedrich-Lewy cri-

terion (CFL) (Courant et al., 1928). This principle states that the numerical method must be

able to propagate information at a physical speed determined by the eigenvalues of the flux

Jacobian matrices. For explicit numerical schemes in cartesian coordinates, it establishes

that the Courant number Cr = u ∆t/∆x must be less than 1 (Cr < 1) in order to obtain

a correct time step for discrete time integration, implying that information will propagate

less than one grid cell at a single time step (Leveque, 2002). The latter will ensure sta-

bility and convergence to the sought solution. In this case, the time-step is defined in the

two-dimensional curvilinear framework as follows:

∆t = Cr
min [∆ξ, ∆η]

max
[
max(U 1 + C

√
ξ2
x + ξ2

y)i,j, max(U 2 + C
√

η2
x + η2

y)i,j

] (2.49)

28



2.5. Validation of the Model

The numerical model presented herein is a non-orthogonal generalized curvilinear co-

ordinate version of the model described in Marche et al. (2007), with the additional incor-

poration of bed-friction. The original model has been validated against various benchmark

cases in Cartesian coordinates, involving shock-capturing and moving shoreline problems,

obtaining quantitatively accurate results in comparison with analytical solutions and labo-

ratory data (Marche et al., 2007). The following validation cases presented in this section

are intended to demonstrate the improvement obtained when a boundary-fitted curvilinear

discretization is used, and to prove the ability of the model to deal with bed-slope and

friction source terms.

2.5.1. Radial Dam-Break

This test involves the hypothetical case of the breaking of a circular dam. The circular

wall containing a volume of water is instantly removed at time t = 0 s. Then a shock-wave

propagates outwards, radially and symmetrically over a horizontal and frictionless bottom,

while a rarefaction wave propagates inwards (Alcrudo & Garcı́a-Navarro, 1993). Due to

the symmetry of the problem, this is an interesting test to assess the improvement achieved

by using a boundary-fitted curvilinear coordinate discretization of the domain. In order to

compare both types of discretizations, Cartesian and Polar, we carry out two simulations

with these different discretizations. The Cartesian grid is formed with a regular and uniform

mesh of 50×50 cells, each one of dimensions of 1×1 m. On the other hand, the boundary-

fitted curvilinear grid has 50 × 25 cells constructed with polar coordinates; resulting in an

orthogonal grid with 50 cells in the tangential direction and 25 cells in the radial direction

of 1 m length. The two meshes employed in the calculation are shown in Fig. 2.4.

Fig. 2.5 shows instantaneous contour plots of the free surface at time t = 0.7 s using

both grids. The differences between them are clearly observed as the computed results ob-

tained with the Cartesian grid are not perfectly symmetric in the radial direction, and several

spurious variations of water depth are found between the shock and the rarefaction waves.
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The asymmetries can also be observed in the velocity field computed using the Cartesian

grid discretization shown in Fig. 2.6(a), where the direction of the shock-wave that is prop-

agated outwards is not perfectly radial. The inaccuracies are completely removed when

using a boundary-fitted curvilinear grid, where a perfect circular bore is successfully prop-

agated, and a symmetrical velocity field is obtained (see the contours in Figs. 2.5(b) and

2.6(b)). These results agree well with those of Alcrudo and Garcı́a-Navarro (1993) and

Mingham and Causon (1998). This simple case also illustrates the significant improvement

in the computed results when the domain is discretized using a coordinate system that can

adapt to the domain. It is important to note that in this case the coordinate system continues

to be orthogonal, which simplifies the computation of the metrics and Jacobian matrix of

the transformation in Eq. (2.3).

(a) (b)

FIGURE 2.4. Radial dam-break. Discretization grids: (a) Cartesian grid, (b) Curvi-
linear grid

2.5.2. Supercritical flow in a convergent channel

To demonstrate the full capabilities of the model in shallow inertial flows with non-

orthogonal discretizations, we test the numerical model in a flow with supercritical flow

and steep waves in a more complex channel geometry. In this case we perform numer-

ical simulations of the steady state supercritical flow through a curved transition, which

was first studied experimentally by Ippen and Dawson (Ippen & Dawson, 1951). In the
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(a) (b)

FIGURE 2.5. Radial dam-break. Contour plot of computed free surface at t=0.7 s,
(a) Using cartesian grid, (b) Using curvilinear grid

(a) (b)

FIGURE 2.6. Radial dam-break. Computed velocity field at t=0.7 s, (a) Using
cartesian grid, (b) Using curvilinear grid

channel, two rectangular sections are connected by a converging transition. According to

Causon and Mingham (1999), the dimensions of the contraction should be corrected from

those originally reported by Ippen and Dawson (1951), since two errors where found in

the dimensions quoted in Ippen and Dawson (1951) when Causon and Mingham (1999)

derived the describing equations for this channel configuration . The corrected contraction

length is 1.067 m and it consists in two equal, but opposite circular arcs with a central
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contact angle of 16.26◦ (Causon & Mingham, 1999). The simulation was carried out using

a non-uniform boundary-fitted mesh of 450 × 100 cells and the channel was assumed to

be flat and frictionless as in previous numerical investigations (D. Liang et al., 2007). The

geometry of the channel and the numerical mesh are shown in Figs. 2.7 and 2.8.

Inflow conditions in the channel consist on a water depth of 0.03 m and a flow velocity

of 2.7 m/s, which corresponds to a supercritical flow with a Froude number equal to Fr =

4.0. The same inflow conditions are introduced into the computational domain using the

Absorbing/Generating boundary condition (Mignot & Cienfuegos, 2009; Cienfuegos et al.,

2007). No-flow boundary condition was imposed at the sidewalls, and at the downstream

end of the channel an open boundary condition is applied to allow all the information

to exit the domain without propagating back and perturbing the numerical solution. The

simulations were carried out until reaching a steady state using a CFL number equal to 0.5

in order to ensure numerical stability during the computation.

0.610m

1.067m

0.305m

1.905m

4.268m1.067m

16,26°

FIGURE 2.7. Convergent channel. Geometry of the channel

All the features observed in the experiments are successfully captured in the numer-

ical simulation (see the comparisons in Figs. 2.9(c) and 2.9(d)). At the beginning of the

contraction, detached oblique shock-waves are formed at each sidewall and reflected to the

center of the section, where they cross to hit the opposite sidewall. The interaction of these

oblique shocks produces standing waves in the channel, increasing locally the water height.

The reflection and superposition of these waves repeat themselves towards the end of the

channel, forming the diamond wave-pattern shown in Fig. 2.9.
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FIGURE 2.8. Convergent channel. Boundary-fitted grid

(a) (b)

(c) (d)

FIGURE 2.9. Convergent channel. Steady state wave pattern. (a) & (b) Laboratory
Experiments of Ippen and Dawson (1951), (c) & (d) Computed free surface
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Computed water depths are in excellent agreement with experimental data for the first

shock wave at the middle and at the sidewalls of the channel. Nevertheless, as the flow pro-

gresses downstream the numerical model produces steeper fronts than observed in the ex-

periment, and increasing differences in amplitude and location of the wave crests are found

towards the outlet (Figs. 2.10(a) and 2.10(b)). Similar results were obtained by Causon and

Mingham (1999), where the shallow water equations were solved using a Godunov-type

upwind scheme, and by D. Liang et al. (2007), where curvilinear shallow water equations

are solved using the MacCormack scheme. These differences should be attributed to the

hydrostatic pressure assumption of the shallow-water equations, which might no longer be

valid near quasi-periodic shock waves. Improvements have been found when vertical veloc-

ity variations and non-hydrostatic pressure profiles are considered (Kruger & Rutschmann,

2006) and much better results where obtained when solving Navier-Stokes equations for

this problem (Aliabadi et al., 2002), which would indicate that viscosity might have an

important effect on the attenuation of the waves downstream of the channel. Despite the

differences found in the downstream flow pattern, the shallow-water equations can still do

a good job in predicting the first cross shock-wave where the maximum water depth occurs.

This feature is the most important value to be considered in investigations where overflow

needs to be prevented.
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FIGURE 2.10. Convergent channel. Measured and computed water depths at
steady state, (a) along the sidewall, (b) along the middle of the channel section
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2.5.3. 1D Oscillating water column over a parabolic basin with friction

An important characteristic of the model is its capability of handling frictional source

terms in the numerical solution of the NSWE, especially in situations where the flow is shal-

low or when the process of wave run-up/run-down is important. Here we test the numerical

model with the analytical solution of the oscillation inside a parabolic basin with friction

to assess the ability of the methodology developed in this research to deal with steep bed-

slopes and friction source terms. We also aim at demonstrating its success in managing the

wetting and drying process and to reach and preserve the steady states. The chosen bench-

mark test was also used in Q. Liang and Marche (2009) to validate the semi-implicit friction

step proposed to incorporate the additional source term in the momentum equations. Samp-

son et al. (2006) found an exact analytical solution to the shallow-water equations in 1D

for the flow above a parabolic topography with friction. This solution was derived from the

Thacker’s solutions for oscillations over a parabolic basin (Thacker, 1981), assuming that

velocity only depends on time and it is only in one direction (u = u(t), v = 0). The motion

decays over time as expected for flows with frictional damping (Sampson et al., 2006).

The parabolic topography is defined by,

z = h0(x/a)2 (2.50)

where h0 is the still water level and a is a constant. The origin for x is at the center of the

basin. The analytical solution for the free surface, denoted as ζ(x, t), and used to compare

the numerical predictions, is given by:

ζ(x, t) =h0 +
a2B2e−τt

8g2h0

[
−sτ sin(2st) +

(
τ 2

4
− s2

)
cos(2st)

]

− B2e−τt

4g
− e−τt/2

g

[
Bs cos(st) +

τB

2
sin(st)

]
x

(2.51)

where B is a constant and p is a hump amplitude parameter given by p =
√

8gh0/a2.

Friction is represented by the τ parameter, which is related to the bed friction coefficient

Cf such that Cf = hτ/|u|. Finally, the frequency s is defined through the relation given by
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s =
√

p2 − τ 2/2, where τ must be less than the hump amplitude p (Q. Liang & Marche,

2009).

The simulation is performed over a 10, 000 m length parabolic basin, discretized with

200 uniform cells. The chosen parameters for this case are a = 30.0 m, h0 = 10 m,

τ = 0.001 s−1 and B = 5 m/s. No boundary conditions are needed for this case as the

initial condition evolves until reaching a motionless state. Computations were carried out

for 10, 000 s in order to achieve steady state as shown in previous investigations (Q. Liang

& Marche, 2009).

Comparisons between analytical and numerical results at different instants in time are

depicted in Figs.(2.11) and (2.12). Excellent agreement is found in the amplitude of the free

surface oscillations, which correctly decays in time as a consequence of the friction force.

It reaches the rest level h0 after nearly 10, 000 s. Interaction between dry and wet cells is

also represented with high accuracy, and no numerical problems are observed. Therefore,

the robustness and stability of the friction scheme in conjunction with the well-balancing

properties of the solution of the hyperbolic system are validated.

2.6. Conclusions

In this investigation we have developed and validated a finite-volume numerical model

to simulate shallow inertial flows described by the NSWE using a non-orthogonal curvilin-

ear coordinate systems. The numerical scheme successfully reproduces the flow hydrody-

namics over rough and highly varying topographies, and it is capable to incorporate com-

plex boundary geometries to represent correctly wetting and drying processes over arbitrary

domains. The method is based on the methodology proposed by Marche et al. (2007) and

it is adapted here to solve the bed-slope source term and to incorporate the friction at the

bed by using the splitting semi-implicit scheme developed by Q. Liang and Marche (2009).

Three validation test cases are considered to illustrate the capabilities of the new model.

Test cases involve the use of boundary-fitted grids, frictional and varying bathymetry, su-

percritical flow, and shock-waves. The advantages of using boundary fitted grid is shown
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FIGURE 2.11. 1D Oscillating water column. Free surface at different times

for the case of the cylindrical dam-break (Alcrudo & Garcı́a-Navarro, 1993). The gen-

eralized curvilinear coordinate formulation is employed to discretize the domain in polar

coordinates, showing a significant improvement of the numerical solution compared to the
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results obtained with the Cartesian mesh. Supercritical flow and standing shock-wave pat-

terns observed in the experiments of Ippen and Dawson (1951) in a converging channel

discretized with a non-orthogonal grid are well reproduced. The computed water eleva-

tion shows an excellent agreement with experimental data at least for the first shock-wave,

while differences are found downstream in the channel due to the errors induced by the

hydrostatic and inviscid assumptions embedded in the NSWE. Wetting and drying process

over a frictional parabolic basin (Q. Liang & Marche, 2009) are correctly represented and

excellent agreement is also found compared to analytical solutions.

The results reported in this research confirm that the numerical method is a powerful

and effective tool that can be used to model extreme and rapid flood events over complex

bathymetry in cases such as dam-breaks (Valiani et al., 2002), glacial lake outburst floods

(GLOF) (Dussaillant et al., 2009) or tsunamis (Synolakis & Kong, 2006). We are currently

carrying out scaled laboratory experiments over realistic bathymetries to investigate the

propagation of flood waves generated by the rapid emptying of a reservoir over a river

reach. A numerical investigation using our model for the NSWE will be carried out to

predict the effects of the propagated flood wave (free surface elevation and inundation

zones), and to test the abilities of the model for conditions similar to reality. The results of

this study will be reported in a future publication.
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Future research using the same methodology developed in this investigation will focus

on the study of complex engineering and geophysical flows. This model will be employed

to investigate density-coupled flows, incorporating the transport of active and passive con-

taminants in rivers and estuaries (Loose et al., 2005). Also, advanced sediment transport

and morphodynamic models (Cao et al., 2004; Vasquez et al., 2008) will be added to the

basic equations of the flow to study erosion and sedimentation processes in fluvial and

coastal environments.
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3. PHYSICAL AND NUMERICAL MODELING OF INERTIA-DOMINATED

FLOOD WAVES

3.1. Abstract

Extreme flash floods have been more frequent in the last decades, probably due to

the global warming phenomena. These extreme events challenge the classic engineering

practice and call for new methods to quantify flow variables as well as their impacts with

the purpose of improving the design of infrastructure and to define risk zones, diminish-

ing the potential damage of the flood. In the Chilean South Patagonia, glacial lake out-

burst floods (GLOF), for example, have been unexpectedly recurrent over the last couple

of years(Chilean Cachet II lake has emptied 5 times since 2008, (Dussaillant et al., 2009)).

In the laboratory, this phenomenon can be modeled in a simplified manner as the instant

discharge of a water volume contained in a reservoir to a river reach, similar to a dam-

break. This paper presents the results of a laboratory experiment of this kind carried out

at the Hydraulic Engineering Laboratory at the Pontificia Universidad Católica de Chile.

Experimental data is then used to evaluate the abilities of the numerical model developed

in Chapter 2, which solves a set of curvilinear nonlinear shallow water equations. The nu-

merical model is a well-balanced and robust finite volume scheme that considers bed-slope

and friction in the source terms especially developed to predict the dynamics of shallow

inertial flows. It has shock-capturing ability and can handle flows over strongly variable

topography and complex geometries using a non-orthogonal boundary-fitted discretization

of the domain. Results show that the numerical model is able to qualitatively describe the

flooding process and good estimations of the peak amplitudes, arrival times and recession

curves are found through the river reach. This kind of experience is a demanding test for

any numerical model that could represent it.
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3.2. Introduction

In recent years the need of understanding and modeling the effects of natural extreme

events, such as floods, tsunamis or glacial lake outburst floods (GLOF), has grown. In-

deed, they have enormous consequences in terms of damage to infrastructure, human lives

and the environment. These events, which seem to be more frequent, challenge the classic

engineering practice and call for new methods in order to improve the protection of hu-

man settlements. It is paramount to have a good estimation of the relevant hydrodynamic

involved.

In Chile, several floods produced by GLOF in the Aysén region have occurred in the

last couple of years (Dussaillant et al., 2009). Indeed, in april and october 2008, two major

events occurred in the Colonia river, a tributary of the Baker river, as a consequence of

the Cachet-II lake outburst. In both events, an increase in the Baker river free surface,

above 4.5 m, and in its peak discharge, over 3000 m3/s, was generated after the confluence

with the Colonia river 1. Besides, in 2007, an 6.2 earthquake (USGS, 2007). produced an

important landslide over the sea in the Punta Cola zone near Puerto Chacabuco, generating

6 m waves that propagated through the fjords Finally, in February 2010, the 8.8 earthquake

(USGS, 2010), generated a tsunami that hit the Chilean coast from the V to the IX regions,

with waves up to 10 m in Constitución and a 2.7 m sea level rise in Talcahuano (Farias et

al., 2010)

Around the world more examples of extreme flooding can be found, such as the col-

lapse of the Malpasset dam in the south of France, which have been studied by several

researchers because maximum water elevation in surrounding areas is available (Hervouet,

2000; Valiani et al., 2002; D. Liang et al., 2007). Similarly, in northeastern China, took

place one of the worst flooding in more than a decade (BBC, 2010). According to public

reports almost 1000 people have died and 500 are missing. Indeed, a maximum flow rate of

70000 m3/s hit the Yangtze river, where a mayor amount of water has to be released from

1DGA Satellite monitoring station at Baker River
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the Three Gorges dam, since the floods raised the level of water in its reservoir up to 185

m (maximum is 175 m) (BBC, 2010).

These examples reaffirm the need to develop modeling tools that can accurately de-

scribe shallow inertial flows in detail and thus contribute to the design of infrastructure,

operation of hydraulic facilities, or to the definition of risk zones in order to diminish the

potential damages of fast flooding. Moreover, it is important to consider that it is highly

probable that the recurrence of these events continues to increase in the future due to the

Global Warming phenomena.

Numerical modeling of free surface flows, constitutes then a valuable tool to evaluate

the consequences of this type of events. However, the accurate representation of shallow

inertial flows requires specific mathematical techniques, due to the topographical features

and complex boundaries of the zones where they occur, the discontinuities that might ap-

pear and the flooding of surrounding areas. This features are not correctly captured by

standard numerical methods.

The main objective of this paper is to prove that the numerical model developed in

Chapter 2 is a trustable and robust tool to represent flash extreme flooding under chal-

lenging conditions. Thus, the numerical model is tested against new experimental data

associated to the propagation of a flood wave generated by the rapid emptying of a reser-

voir over a scale river model. Laboratory experiments were performed at the Hydraulic

Engineering Laboratory of the Pontificia Universidad Católica de Chile, with the technical

support of the Instituto Nacional de Hidráulica (INH). The obtained data allows us to eval-

uate the behaviour of the model for conditions similar to reality that incorporate the above

features and complexities. This work focuses on both, the outcome of the experience, and

on the abilities of the model to reproduce the propagation of the bore downstreams of the

reservoir.

The paper is organized as follows. In section 3.3.1 we present the details of the lab-

oratory experiments and the post-processing of the data is shown in section 3.3.2. The

numerical model and its application to the dam-break experiment are described in section

42



3.3.3. Numerical results and comparisons with experimental data are presented in section

3.4. Finally, conclusions and future perspectives of this work are presented in section 3.5

3.3. Methods

3.3.1. Experimental Set-Up

Dam-break experiments were carried out in a scaled river reach constructed at the

Hydraulic Engineering Laboratory of the Pontificia Universidad Católica de Chile. This

physical model has been prepared to simulate unsteady flow over strongly variable topog-

raphy.

The river reach is 16 m long and 4.5 m wide, it starts with a narrow and curved zone of

adverse average bed-slope −2.4%, but it becomes wider towards its downstream end, with

zones of adverse and favourable bed-slopes, raging between ±8%. The average bed-slope

over the considered river reach is −0.8%. A longitudinal profile of the river reach is shown

in Fig. 3.1. Upstream of the river model, there is a reservoir and a gate that holds a fixed

volume of water that can be suddenly released by manual operation of the gate (see Fig.

3.2).
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FIGURE 3.1. Dam-break Experience: Longitudinal profile of the river reach bot-
tom elevation, initial conditions and measurement points

The experience consisted in suddenly open the reservoir gate to release a fixed volume

of water into a quiescent free surface downstreams. Then a bore was generated and propa-

gated to the end of the river reach, producing fast free surface variations that were recorded
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(a) (b)

FIGURE 3.2. Dam-break Experience: (a) Physical Model, (b) Experimental Set-up
and Reservoir

during 60 s. Experimental set-up and the measurement instruments are shown in Figs. 3.2

and 3.3.

FIGURE 3.3. Dam-break Experience: Resistive Gauges

Free surface variations at the reservoir were measured using a KPSI brand pressure

transducer recording voltage at 100 Hz. The accuracy of this instrument is ±1%. It was

calibrated so that 1 V equals 1 cm of water column. At downstream sections, free sur-

face variations over the mean water level were measured using wave DHI resistive gauges,
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which were located at the talweg of the cross sections studied. Every gauge records volt-

age data at 100 Hz, the accuracy of these gauges is ±1.5 mm and the zero drift is ±5%,

depending on water temperature.

Initial conditions in fixing the free surface elevation at 0.85 m inside the reservoir and

at 0.56 m at the river (see Fig.3.1). Free surface variations were recorded at nineteen points

in the river reach (see Fig. 3.1). Four resistive gauges were available, i.e. only four points

could be measured at the same time. Thus, five set of experiences were performed in order

to complete the nineteen considered sections. As a verification of the measured data, three

repetitions were performed at each gauge location, maintaining the position of the pressure

sensor, in order to use its data as a reference and to synchronize the time series.

3.3.2. Post-Processing of the data

A preliminary analysis of the raw data is presented below in order to show the mag-

nitude and propagation of the flooding wave. Time series of free surface variations at the

reservoir and three section downstreams the river reach will be studied (S23, S20 and S12).

Reservoir measurements show an accelerated drop of the free surface level, decreasing

0.2 m in 10 s. The final reservoir level rounds the 0.6 m (Fig. 3.4(a)). In the first studied

measurement point (S23), located 0.97 m downstream from the reservoir exit, the wave

front arrives at 1.5 s. In this time series two amplitude peaks of 0.1 m are observed, which

are detected at 1.9 s and 8.4 s (Fig. 3.4(b)). At the point S20, 2.8 m downstream from

the exit, the wave front is detected 2.5 s after the dam-break, only one peak of 0.13 m was

detected at 5.3 s (Fig. 3.4(c)). Finally, downstream of the channel, at point S12, 7.9 m from

the reservoir gate, the front arrives after 6.5 s and the maximum peak measured was 0.09

m of amplitude after 7 s (Fig. 3.4(d)). After the peaks were detected at every measurement

point, the free surface started to uniformly decrease, reaching 0.57 m of altitude.

In order to compare the recorded data with further numerical results, it has to be post-

processed.
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(a) (b)

(c) (d)

FIGURE 3.4. Time Series of Free surface Measurements at different locations: (a)
Reservoir, (b) Point 23, (c) Point 20, (d) Point 12

Since, several repetitions of the same experiment were performed moving the resistive

gauges and the measurements did not started exactly with the gate opening at every rep-

etition of the experiment, recollected data must be synchronized. First, all the reservoir

recorded data, i.e. off every repetition of the experiment, was synchronized using the first

recorded time series as a reference. The lag time between each reservoir time series and the

first one was calculated using the Cross-covariance function of Matlab. The corresponding

lag time was used to adjust in time every time series of the free surface variation at each

gauge location according to each experiment and repetition.

Finally, due to the high velocity of the propagated flood wave, resistive gauges vibrate.

This vibrations are traduced into small oscillations in the signal, in order to remove spurious

46



oscillations of the data due to signal noise or vibrations of the resistive gauges, a low-pass

digital Butterworth filter was applied using a cutoff frequency of 0.1.

3.3.3. Numerical Modeling

3.3.3.1. Numerical Model

The obtained data from the dam-break laboratory experience will be used to test the

abilities of the numerical model presented in Chapter 2, which has shock-capturing abil-

ity, and manages subcritical and supercritical flows over strongly variable topography with

complex boundaries using a boundary-fitted discretization of the domain. The numerical

model solves the nonlinear shallow water equations (NSWE) (3.1) considering bed-slope

and friction in the source terms, written under a boundary-fitted set of curvilinear coordi-

nates (ξ, η). The NSWE written in dimensionless variables are:

∂Q

∂t
+ J

∂F

∂ξ
+ J

∂G

∂η
= S(Q) (3.1)

where

Q =




h

hu

hv


 , F =

1

J




hU 1

uhU 1 + 1
2Fr2 h

2ξx

vhU 1 + 1
2Fr2 h

2ξy


 , G =

1

J




hU 2

uhU 2 + 1
2Fr2 h

2ηx

vhU 2 + 1
2Fr2 h

2ηy


 , (3.2)

S =




0

− h
Fr2 (zξξx + zηηx) − Sfx

− h
Fr2 (zξξy + zηηy) − Sfx




where h represents the water height, u and v are the dimensionless Cartesian components

of the velocity; z defines the bed elevation, zξ and zη define the bed slope with respect

to the curvilinear coordinate system, Sf represents the friction source term, and Fr =

U/
√

gH is the Froude number defined by the characteristic velocity and vertical scales of

the problem, U and H , and the acceleration of gravity g. ξx, ξy, ηx, and ηy are the resulting

metrics associated to the coordinate system, and J = ξxηy − ξyηx is the Jacobian of the
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transformation, which will remain constant for a fixed grid. U 1 and U 2 are the contravariant

velocity components, and are expressed as U j = uεx + vεy with (j, ε) ∈ (1, ξ), (2, η).

NSWE are solved using a well-balanced finite volume scheme that separately incorpo-

rates the effects of both source terms. Friction is solved using a implicit splitting scheme

presented in (Q. Liang & Marche, 2009). Nonlinear shallow water equations with topo-

graphic variations are solved with the method proposed in Marche et al. (2007). This

scheme combines the approximate Riemann Solver VFRoe-ncv (Gallouet et al., 2003b)

for the homogeneous problem, with the MUSCL type hydrostatic reconstruction method

(Audusse et al., 2004) to balance the bed-slope source term.

The numerical model, includes different boundary conditions, solid reflective wall,

transmissive, periodic and absorbing/generating boundary condition. Time integration is

solved with a fourth order Runge-Kutta scheme and stability is controlled by the Courant-

Friedrich-Lewy condition, which establishes the time step for the integration scheme. The

numerical model has been validated against analytical solutions and laboratory data, and

a wide range of problems that involve variable topography, dam-break phenomena and

complex geometries.

3.3.3.2. Numerical Simulation

Numerical modeling of the experiments requires a digital discretization of the river

bathymetry and the reservoir, and initial and boundary conditions.

Bathymetric profiles of the physical model were recollected and then interpolated to

create the grid using the griddata function of Matlab. As a first attempt to model the exper-

iment, a regular and uniform Cartesian grid was used. The physical model was discretized

into 129 x 37 square cells of size ∆x = ∆y = 0.125 m. A three dimensional view of the

model bathymetry is shown in Fig. 3.5.

Computational initial conditions were 0.85 m of free surface elevation at the reservoir

and 0.56 m at the river reach, and null velocities over the entire domain were considered.

Bed-roughness was not considered in the simulations. Open boundary condition was used

at the downstream end of the river reach and close boundary condition was applied to the
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other sides of the domain, CFL condition was set to 0.8 in order to esure the numerical

stability of the simulations.
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FIGURE 3.5. Dam-break Experience: Digital physical model bathymetry

3.4. Results

Qualitatively, the numerical model was able to simulate the dam-break event and the

propagation of the flood waves over the river model. The main features of the rapidly

varying flow were reproduced by the numerical model. Discontinuities observed in the

laboratory experiment, such as hydraulic jumps, recirculation and reflection due to topo-

graphical obstacles are clearly observed in the numerical results. The model was also able

to flood the dry areas and to converge to the steady state. Fig. 3.6 shows a three dimen-

sional view of the free surface 3.1 s after the gate opening, in which the propagated flood

wave train surface can be appreciated.

Based on the obtained results, three variables were studied: arrival time of the wave

front, maximum amplitudes and the total volume of water per unit area under each gauge

after 60 s of simulation. Comparisons between measured and numerical time series of the

free surface at the studied measurement points are shown in Fig. 3.7. This figure shows
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FIGURE 3.6. Dam-break Experience: Effects of the dam-break over the river free
surface at t = 3.1 s

that the main features of the flood, arrival time and peak amplitude, agree well with the

experimental data.

Quantitative comparisons of the numerical results with the experimental data are shown

in Fig. 3.8. Fig. 3.8(a) compares the arrival time of the wave front for every measurement

point; Fig. 3.8(b), the maximum amplitude peaks, and Fig. 3.8(b), the volume per unit area

under each gauge.

It was verified that the arrival times of the wave front to the measurement points (virtual

gauges) are well reproduce by the numerical model, a 7.2% relative error was calculated for

the last measurement gauge. Predicted results indicate that the wave front will move faster

at the beginning of the river, reaching the first studied virtual gauge (Point 23) 0.7 s after the

dam-break. Downstream, the numerical model predicts a deceleration of the front, arriving

at similar times at point 12. This differences may be explained by the opening mechanism

of the gate, which is instantaneous in the numerical model but is done in a finite time in the

experience.

As for the magnitude of the observed peaks, differences vary within the studied point.

The numerical model underestimates the maximum amplitudes in most cases, but not the
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FIGURE 3.7. Comparison between measured and predicte free surface elevation at
different locations: (a) Reservoir, (b) Point 23, (c) Point 20, (d) Point 12

time of their arrival. Relative errors up to 6% are found, which is an acceptable error

considering how demanding the experience is. After the peaks occur, the amplitude of the

wave front decays, then the model correctly predicts the recession curve at every gauge,

reaching the final 0.57 free surface elevation level at almost every point.

Finally, the volume per unit area that passed under each gauge was calculated, it was

compared with experimental values and excellent agreement if found, with relative errors

ranging from 0.6% to 3.5%.

3.5. Conclusions

High resolution experimental data was obtained for the free surface variations in a

physical model of a river, associated with the propagation of a flooding wave. This data
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FIGURE 3.8. Comparison between measured and predicted results: (a) Arrival
Time, (b) Maximum free surface elevation, (c) Volume of water per unit area

is of great interest to test numerical models and to evaluate if they are appropriate for

representing this kind of phenomena over natural conditions. Also, it helps to illustrate, in

a simplified manner, the effects of extreme events, such as GLOF or Dam-breaks, and their

consequences on surrounding areas.

The numerical model was able to represent the propagation of the wave front and the

flooding processes under the tough circumstances of the experience. Arrival times, peak

amplitudes and recession curves are well represented. Small differences found between

experimental and numerical results may be explained by different factors. One of them

is the opening mechanism of the gate, which was manually lifted in the experiments, but

instantly disappears in the numerical simulations. This can generate extra oscillations in the

reservoir and a delay in its emptying. Another factor can be an inadequate representation
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of some sections of river due to the griding method used, especially at the curved zone of

the rive after the reservoir, where a boundary-fitted grid could be more appropriate.

The numerical model is a robust and useful tool to deduce the behaviour of natural

flows and the singularities that may appear. The obtained results, experimental and numer-

ical, show the magnitude of the effects that an extreme event similar to the simulated could

produce in real life. Considering the data obtained, the free surface elevation could rise

35% in just a few seconds. The latter illustrates the need of previously define risk zones,

evacuation programs, and restoration guides of the affected lands and structures.
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4. CONCLUSION AND FUTURE PERSPECTIVES

In the previous thesis, the development, implementation, validation and application

of the SURFWB UC numerical model were presented. The model is a low cost tool

intended to study free-surface variations in time of shallow inertial flows over strongly

varying topography with complex boundaries. It solves the NSWE equations written in a

non-orthogonal curvilinear coordinate system using a well-balance, shock-capturing finite

volume method based in the SURF WB model presented in (Marche et al., 2007) and in

the friction method proposed in (Q. Liang & Marche, 2009).

In order to probe its capabilities, the numerical model was submitted to several val-

idation test and new experimental data associated with the propagation of a flash flood

wave. The test cases studied involved convergence to steady state at rest, 1D and 2D dam-

break, frictional topographies, moving shore-line processes, subcritical and supercritical

flow, among others features, all of them propper of shallow-inertial flows. Good agree-

ment was found between numerical results and analytical solutions, and also between the

laboratory data. The presented numerical model was stable and accurate in all of those

applications, thus confirming the capabilities of the model.

During the performed simulations, the main drawback that was encountered was the

gridding process for extremely complicated geometries such as the physical river model.

This can be a demanding task in the case of natural topography if the needed information is

not enough. To address this issue, information can be obtained from field surveys or digital

elevation models (DEM). Also, to create boundary-fitted grids, a good gridding software

or interpolation method has to be available.

The numerical model was developed to satisfy the need of predicting the effects of

flash extreme flooding over complex topographies resulting form storm surges, dam-breaks,

tsunamis or GLOF. The obtained results and the demonstrated capabilities of the model

shown in both articles allow us to affirm that it is a powerful tool to study the consequences

of this kind of phenomena, leading to a better understanding and analysis of the develop-

ment and behavior of the flow.
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SURFWB UC may be used to determine the hazards of flash extreme floods in terms

of local water depth and velocities, variables that are useful to define risk zones and poten-

tial damage in the surrounding areas of a river basin or in the coast-line. For example, the

effects of a river flood can be studied by simulating different discharge hydrographs based

in historical data or in hydrological simulation results; the consequences of a tsunami in

coastal areas can be simulated in detail by introducing long waves of different amplitude or

period and direction to the computational domain. The information that the model deliv-

ers can further be used for urban planning and to define flood protection and management

plans.

Future work should be oriented to complement the model with other source terms, such

as the Coriollis effect in order to simulate large scale scenarios. Also, the model can be im-

proved by coupling it with other numerical models, such as pollutant transport to analyse

plumes trajectory, sediment transport to study erosion and sedimentation processes, infiltra-

tion model to account for the soil characteristics. The model could also be complemented

by the integration of GIS. Finally, a friendly graphical user interface could be implemented

to easily use SURFWB UC.

Finally, due to the good obtained results and the wide range of application that the

model can have, it can be concluded that the development of this thesis constitutes an

advance in the modeling of rapidly varying flow and provides an excellent tool to study

shallow inertial flows.

55



REFERENCES

(n.d.).

Alcrudo, F., & Garcı́a-Navarro, P. (1993). A high resolution Godunov-type scheme

in finite volumes for the 2d shallow-water equations. International Journal of Nu-

merical Methods in Fluids, 16, 489-505.

Aliabadi, S., Johnson, A., Zellars, B., Abatan, A., & Berger, C. (2002). Parallel simu-

lation of flows in open channels. Future Generation Computer Systems, 18, 627-637.

Audusse, E., Bouchut, F., Bristeau, M., Klein, R., & Benoit, P. (2004). A Fast and

Stable Well-Balance Scheme with Hysdrostatic Reconstruction for Shallow Water

Flows. SIAM Journal on Scientific Computing, 25(6), 2050-2065.

Baghlani, A., Talebbeydokhti, N., & M.J., A. (2008). A shock-capturing model based

on flux-vector splitting method in boundary-fitted curvilinear coordinates. Applied

Mathematical Modeling, 32, 249-266.

BBC. (2010). Flooding traps 30.000 in chinese town.

http://www.bbc.co.uk/news/world-asia-pacific-10784666.

Berger, R., & Stockstill, R. (1995). Finite-element model for high-velocity channels.

Journal of Hydraulic Engineering, 121, 225-252.

Bradford, S., & Sanders, B. (2002). Finite-volume model for shallow-water flooding

of arbitrary topography. Journal of Hydraulic Engineering, 128, 289-298.

Buffard, T., Gallouet, T., & Herard, J.-M. (2000). A sequel to a rough Godunov

scheme: application to real gases. Computers and Fluids, 29, 813-847.

Cao, Z., Pender, G., Wallis, S., & Carling, P. (2004). Computational dam-break hy-

draulics over erodible sediment bed. Journal of Hydraulic Engineering, 130, 689-

703.

Causon, D., & Mingham, C. (1999). Advances in calculation methods for supercrit-

ical flow in spillway channels. Journal of Hydraulic Engineering, 125, 1039-1050.

Chow, V.-T. (1959). Open-channel hydraulics. New York McGraw-Hill.

56



Cienfuegos, R., Barthelemy, E., & Bonneton, P. (2007). A fourth order compact fi-

nite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equa-

tions - Part II : Boundary Conditions and validation. Int. J. Num. Meth. Fluids, 53,

1423-1455.

Courant, R., Friedrichs, K., & Lewy, H. (1928). Uber die pertieller Differenzen-

Glichungen der mathematischen Physik. Mathematische Annalar, 100, 32-74.

Cunge, J. (1991). Simulation des Encourements dans les Rivieres et Canaux. Institut

National Polytechnique de Grenoble.

Cunge, J., F., H., & A., V. (1980). Practical Aspects of Computational River Hy-

draulics. Pitman Publishing Limited.

Dussaillant, A., Benito, G., Buytaert, W., Carling, P., Meier, C., & Espinoza, F.

(2009). Repeated glacial-lake outburst floods in Patagonia: an increasing hazard?

Natural Hazards, 54, 469-481.

Farias, M., Vargas, G., Tassara, A., Carretier, S., Baize, S., Melnick, D., et al. (2010).

Land-level changes produced by the Mw 8.8 2010 chilean earthquake. Science, 329,

916.

Ferziger, J., & Peric, M. (1996). Computational Methods for Fluid Dynamics.

Springer.

Fujihara, M., & Borthwick, A. (2000). Godunov-type solution of curvilinear

shallow-water equations. Journal of Hydraulic Engineering, 126, 827-836.

Gallouet, T., Herard, J.-M., & Seguin, N. (2003a). On the use of symmetrizing vari-

ables for vacuums. Calcolo, 40, 163-194.

Gallouet, T., Herard, J.-M., & Seguin, N. (2003b). Some approximate Godunov

scheme to compute shallow-water equations with topography. Computers and Fluids,

32, 479-513.

Greenberg, J., & Leroux, A. (1996). A well-balanced scheme for the numerical pro-

cessing of source terms in hyperbolic equations. SIAM Journal on Numerical Analy-

sis, 33(1), 1–16.

57



Hervouet, J. (2000). A high resolution 2-d dam-break model using parallelization.

Hydrological Processes, 14, 2211-2230.

Hogg, A., & Pritchard, D. (2004). The effects of hydraulic resistance on dam-break

and other shallow inertial flows. Journal of Fluids Mechanics, 501, 179-212.

Ippen, A., & Dawson, J. (1951). Desing of channel constractions: High velocity flow

in open channels (symposium). Transactions of ASCE, 116, 326-346.

Kruger, S., & Rutschmann, P. (2006). Modeling 3d supercritical flow with extended

shallow-water approach. Journal of Hydraulic Engineering, 127, 916-926.

Lackey, T., & Sotiropoulos, F. (2005). Role of artificial dissipation scaling and multi-

grid acceleration in numerical solution of the depth-averaged free-surface flow equa-

tions. Journal of Hydraulic Engineering, 131, 476-487.

LeVeque, R. (1998). Balancing source terms and flux gradients in high-resolution

godunov methods: the quasi-steady wave-propagation algorithm. Journal of Compu-

tational Physics, 146(1), 346–365.

Leveque, R. (2002). Finite Volumen Methods for Hyperbolic Problems. Cambridge

University Press.

Liang, D., Lin, B., & Falconer, R. (2007). A boundary-fitted numerical model for

flood routing with shock-capturing capability. Journal of Hydrology, 332, 477-486.

Liang, Q., & Marche, F. (2009). Numerical resolution of well-balanced shallow wa-

ter equations with complex source terms. Advances in Water Resources, 32, 873-884.

Loose, B., Niño, Y., & Escauriaza, C. (2005). Finite volume modeling of variable

density shallow-water flow equations for a well-mixed estuary: application to the rio

Maipo estuary in central Chile. Journal of Hydraulic Research, 43, 339-350.

Marche, F. (2005). Theoretical and Numerical Study of Shallow Water Models. Apli-

cations to Nearshore Hydrodynamics. Unpublished doctoral dissertation, LUniversit

Bordeaux I.

Marche, F. (2007). Derivation of a new two-dimensional viscous shallow water

model with varying topography, bottom friction and capillary effects. European Jour-

nal of Mechanics B/Fluids, 26, 49-63.

58



Marche, F., Bonneton, P., Fabrie, P., & Seguin, N. (2007). Evaluation of well-balance

bore-capturing schemes for 2D wetting and drying processes. International Journal

for Numerical Methods in Fluids, 53, 867-894.

Masella, J., Faille, I., & Gallouet, T. (1999). A rough Godunov scheme. Interna-

tional Journal of Computational Fluid Dynamics, 12, 133-149.

Mignot, E., & Cienfuegos, R. (2009). On the application of a Boussinesq model to

river flows including shocks. Coastal Engineering, 56, 23-31.

Mingham, C., & Causon, D. (1998). High-resolution finite-volume method for shal-

low water flows. Journal of Hydraulic Engineering, 124, 604-614.

Molls, T., & Chaudry, D. (1995). Depth-averaged open-channel flow model. Journal

of Hydraulic Engineering, 121, 453-465.

Molls, T., & Zhao, G. (2000). Depth-averaged simulation of supercritical flow in

channel with wavy sidewall. Journal of Hydraulic Engineering, 126, 437-444.

Sampson, J., Easton, A., & Singh, M. (2006). Moving boundary shallow water flow

above parabolic bottom topography. ANZIAM Journal, 47, C373-C387.

Shi, F., Dalrymple, R., Kirby, J., Chen, Q., & Kennedy, A. (2001). A fully nonlinear

Boussinesq model in generalized curvilinear coordinates. Coastal Engineering, 42,

337-358.

Stoker, J. (1992). Water Waves, The Mathematical Theory with Applications. John

Wiley and Sons, Inc.

Synolakis, C., & Kong, L. (2006). Runup measurements of the december 2004 In-

dian ocean tsunami. Earthquake Spectra, S67-S91.

Thacker, W. (1981). Some exact solutions to the nonlinear shallow-water wave equa-

tions. Journal of Fluids Mechanics, 107, 499-508.

Toro, E. (1997). Riemann Solvers and Numerical Methods for Fluid Dynamics.

Springer.

Toro, E. (2001). Shock-Capturing Methods for Free-Surface Shallow Flows. John

Wiley and Sons, Inc.

59



TranNgoc, A., & Takashi, H. (2007). Depth-Averaged model of open-channel flows

over an arbitrary 3d surface and its applications to analysis of water surface profile.

Journal oh Hydraulic Engineering, 133, 350-360.

Tucciarelli, T., & Termini, D. (2000). Finite-element modeling of floodplain flow.

Journal of Hydraulic Engineering, 126, 416-424.

USGS. (2007). Earthquake lists & maps. http://earthquake.usgs.gov/earthquakes.

USGS. (2010). Magnitude 8.8 offshore Maule, Chile.

http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/.

Valiani, A., Caleffi, V., & Zanni, A. (2002). Case study: Malpasset dam-break sim-

ulation using a two-dimensional finite volume method. Journal of Hydraulic Engi-

neering, 128, 460-472.

Van-Leer, B. (1979). Toward the ultimate conservative difference scheme V. A sec-

ond order sequel to Godunov’s method. Journal of Computational Physics, 32, 101-

136.

Vasquez, J., Steffler, P., & Millar, R. (2008). Modeling bed changes in meandering

rivers using triangular finite elements. Journal of Hydraulic Engineering, 134, 1348-

1352.

Zhou, J., Causon, D., Mingham, C., & Ingram, D. (2004). Numerical prediction of

dam-break flows in general geometries with complex topography. Journal of Hy-

draulic Engineering, 130, 332-340.

60



APPENDIX A. SHALLOW WATER EQUATIONS

A.1. Non-linear Shallow Equations

(i) Continuity Equation:

The two-dimensional mass conservation equation, written in terms of water depth

h and Cartesian velocities, u and v, is defined as:

∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0 (A.1)

(ii) Momentum Conservation Equations:

In the x direction:

∂hu

∂t
+

∂

∂x
(hu2 +

1

2
gh2) +

∂

∂y
(huv) = −gh

∂z

∂x
− Sfx (A.2)

In the y direction:

∂hv

∂t
+

∂

∂y
(hv2 +

1

2
gh2) +

∂

∂x
(huv) = −gh

∂z

∂y
− Sfy (A.3)

Where Sf corresponds to the friction source term, which can be calculated using

Manning or Chezy approaches.

The NSWE can be written in matrix form as:

Qt + F (Q)x + G(Q)y = S(Q) (A.4)

Where Xt o Xx denote the partial derivatives of X with respect to time t or position x. In

this case:

Q =




h

hu

hv


 , F (Q) =




hu

hu2 + 1
2
gh2

huv


 , G(Q) =




hv

huv

hv2 + 1
2
gh2


 , (A.5)
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S(Q) =




0

−hg∂z
∂x

− Sfx

−hg∂z
∂y

− Sfy




A.2. Dimensionless NSWE

A.2.1. Dimensional Scales

The characteristic scales used to obtain dimensionless variables are:

Horizontal: L

Vertical: H

Velocity: U

Froude Number: Fr = U√
gH

From the Froude number, the gravity acceleration can be written as g = U2

Fr2H

Then the variables are transformed into:

x → Lx̂

y → Lŷ

z → Hẑ

h → Hĥ

u → Uû

v → Uv̂

t → L
U
t̂

Where α̂ correspond to the dimensionless variables, which will be used from now on,

for simplicity theˆsymbol will be omitted.

A.2.2. Dimensionless Equations

The NSWE written in terms of dimensionless variables and characteristic scales are:
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(i) Continuity Equation:

UH

L

∂h

∂t
+

UH

L

∂hu

∂x
+

UH

L

∂hv

∂y
= 0 (A.6)

Simplifying
∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0 (A.7)

(ii) Momentum Equations:

In the x direction:

HU2

L

∂hu

∂t
+

HU2

L

∂

∂x
(hu2) +

HU2

L

1

2Fr2

∂h2

∂x
+

HU2

L

∂

∂y
(huv)

= −HU2

L

h

Fr2

∂z

∂x
− τ1 (A.8)

Simplifying,

∂hu

∂t
+

∂

∂x
(hu2 +

1

2Fr2
h2) +

∂

∂y
(huv)

= − h

Fr2

∂z

∂x
− τ1 (A.9)

In the y direction:

HU2

L

∂hu

∂t
+

HU2

L

∂

∂y
(hu2) +

HU2

L

1

2Fr2

∂h2

∂y
+

HU2

L

∂

∂x
(huv)

= −HU2

L

h

Fr2

∂z

∂y
− τ2 (A.10)

Simplifying,

∂hu

∂t
+

∂

∂y
(hu2 +

1

2Fr2
h2) +

∂

∂x
(huv)

= − h

Fr2

∂z

∂y
− τ2 (A.11)

τj , j = 1, 2, represents the dimensionless friction shear stress.

(iii) Matrix Form of the dimensionless NSWE:

Qt + F (Q)x + G(Q)y = S(Q) (A.12)
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Each vector is rewritten as:

Q =




h

hu

hv


 , F (Q) =




hu

hu2 + 1
2Fr2 h

2

huv


 , G(Q) =




hv

huv

hv2 + 1
2Fr2 h

2


 , (A.13)

S(Q) =




0

− h
Fr2

∂z
∂x

− Sfx

− h
Fr2

∂z
∂y

− Sfy



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APPENDIX B. CURVILINEAR SHALLOW WATER EQUATIONS

B.1. Generalized Curvilinear Coordinate System

In this section, a generalized, boundary-fitted, curvilinear coordinate system is intro-

duced. The change of coordinates is done from the Cartesian system (x, y) to the curvilin-

ear system (ξ, η).

B.1.1. Some Properties of the (ξ, η) system

Some properties of the coordinate system change which will be used in the transfor-

mation process are:

(i) Jacobian of the geometric transformation (x, y) → (ξ, η):

J =
∂(ξ, η)

∂(x, y)
= det


 ξx ηx

ξy ηy


 = ξxηy − ξyηx (B.1)

(ii) Jacobian of the inverse transformation (ξ, η) → (x, y):

G = J−1 =
∂(x, y)

∂(ξ, η)
= det


 xξ yξ

xη yη


 = xξyη − xηyξ (B.2)

(iii) Jacobian relationships or metrics:

(a) Relations between Cartesian coordinates:

∂x

∂x
= 1,

∂x

∂y
= 0,

∂y

∂x
= 0,

∂y

∂y
= 1 (B.3)

(b) Coordinate Transformation using the chain rule:

 xx

yx


 =


 xξ xη

yξ yη





 ξx

ηx


 =


 1

0


 (B.4)

and 
 xy

yy


 =


 xξ xη

yξ yη





 ξy

ηy


 =


 0

1


 (B.5)
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(c) Relations between booth coordinate systems: The solution of the (B.4) and

(B.5) systems establishes the following relations:

ξx =
yη

G
= Jyη

ξy = −xη

G
= −Jxη

ηx = −yξ

G
= −Jyξ

ηy =
xξ

G
= Jxξ (B.6)

(d) Conservation Relations: The metrics satisfy the following conservation re-

lations:
∂

∂ξ
(
ξx

J
) +

∂

∂η
(
ηx

J
) = 0 (B.7)

∂

∂ξ
(
ξy

J
) +

∂

∂η
(
ηy

J
) = 0 (B.8)

(iv) Metrics Calculations: In a discretizated domain, the derivatives of the Cartesian

coordinates with respect to the curvilinear coordinates can be calculated as,

xξ =
xi+1,j − xi−1,j

2∆ξ

xη =
xi,j+1 − xi,j−1

2∆η

yξ =
yi+1,j − yi−1,j

2∆ξ

yη =
yi,j+1 − yi,j−1

2∆η
(B.9)

B.1.2. Covariant and Contravariant Components of a Cartesian vector

Considering a set of curvilinear coordinates which consist in two lines families: (ξ(x, y) =

cte y η(x, y) = cte). At a point P, two vector basis are defined (see Fig. B.1). The first base

consists in two vectors that are tangent to the coordinate lines, call covariant base.

g1 = (∂x
∂ξ

, ∂y
∂ξ

), g2 = ∂x
∂η

, ∂y
∂η

(B.10)
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FIGURE B.1. Covariant and Contravariant Basis

The second one, consist in two vectors that are perpendicular to the ξ and η lines, and

is known as contravariant base.

g1 = ( ∂ξ
∂x

, ∂ξ
∂y

), g2 = (∂η
∂x

, ∂η
∂y

) (B.11)

A cartesian vector, V = (u, v) can be expressed in terms of the covariant abse as:

V = V 1g1 + V 2g2 (B.12)

Where,

V 1 = V • g1 = u
∂ξ

∂x
+ v

∂ξ

∂y
(B.13)

V 2 = V • g2 = u
∂η

∂x
+ v

∂η

∂y
(B.14)

The latter components of the vector, V 1 y V 2, are called contravariant components.

Similarly, a covariant set can be defined as:

V = V1g
1 + V2g

2 (B.15)
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Where,

V1 = V • g1 = u
∂x

∂ξ
+ v

∂y

∂ξ
(B.16)

V2 = V • g2 = u
∂x

∂η
+ v

∂y

∂η
(B.17)

B.2. Curvilinear NSWE

The complete details of the change of coordinate of the dimensionless NSWE (A.12)

is described bellow.

(i) Continuity Equation:

∂h

∂t
+

∂(hu)

∂ξ

∂ξ

∂x
+

∂(hu)

∂η

∂η

∂x
+

∂(hv)

∂ξ

∂ξ

∂y
+

∂(hu)

∂η

∂η

∂x
= 0 (B.18)

The strong-conservation form of the latter equation can be obtained by multiply-

ing and dividing the equation by the Jacobian J:

∂h

∂t
+ J(

∂(hu)

∂ξ

∂ξ

∂x

1

J
+

∂(hu)

∂η

∂η

∂x

1

J
+

∂(hv)

∂ξ

∂ξ

∂y

1

J
+

∂(hu)

∂η

∂η

∂x

1

J
) = 0 (B.19)

Using the conservative relations (B.7) and (B.8) and rearranging,

ht + J
∂

∂ξ
[
h(uξx + vξy)

J
] +

∂

∂η
[
h(uηx + vηy)

J
] = 0 (B.20)

Defining U 1 = uξx + vξy y U 2 = uηx + vηy as the contravariant velocities com-

ponents, the continuity equations in a curvilinear coordinate system is written

as:

ht + J(
U1h

J
)ξ + J(

U2h

J
)η = 0 (B.21)

(ii) Momentum Equations:
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In the x direction:

(hu)t +
∂

∂ξ
(hu2 +

1

2Fr2
h2)ξx

+
∂

∂η
(hu2 +

1

2Fr2
h2)ηx +

∂

∂ξ
(huv)ξy +

∂

∂η
(huv)ηy

= − h

Fr2
(zξξx + zηηx) − τ1 (B.22)

Multiplying and dividing by the Jacobian J,

(hu)t + J
∂

∂ξ
(hu2 +

1

2Fr2
h2)

ξx

J

+
∂

∂η
(hu2 +

1

2Fr2
h2)

ηx

J
+

∂

∂ξ
(huv)

ξy

J
+

∂

∂η
(huv)

ηy

J

= − h

Fr2
(zξξx + zηηx) − τ1 (B.23)

Using the conservative relations (B.7) and (B.8) and rearranging,

(hu)t +
∂

∂ξ
(hu(uξx + vξy)

1

J
+

1

2Fr2
h2ξx

1

J
)

+
∂

∂η
(hu(uηx + vηy)

1

J
+

1

2Fr2
h2ηx

1

J
)

= − h

Fr2
(zξξx + zηηx) − τ1 (B.24)

Finally,

(hu)t +(
huU 1 + 1

2Fr2 h
2ξx

J
)ξ +(

huU 2 + 1
2Fr2 h

2ηx

J
)η = − h

Fr2
(zξξx + zηηx)−τ1 (B.25)

Analogously in the y direction:

(hv)t +(
hvU 1 + 1

2Fr2 h
2ξx

J
)ξ +(

hvU 2 + 1
2Fr2 h

2ηy

J
)η = − h

Fr2
(zξξy + zηηy)− τ2 (B.26)

(iii) Matrix Form:
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The NSWE in curvilinear coordinates, written in a conservative form, are:

Qt + JFξ + JGη = S (B.27)

Where:

Q =




h

hu

hv


 , F =

1

J




hU 1

uhU 1 + 1
2Fr2 h

2ξx

vhU 1 + 1
2Fr2 h

2ξy


 , G =

1

J




hU 2

uhU 2 + 1
2Fr2 h

2ηx

vhU 2 + 1
2Fr2 h

2ηy


 ,(B.28)

S =




0

− h
Fr2 (zξξx + zηηx) − Sfx

− h
Fr2 (zξξy + zηηy) − Sfx



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APPENDIX C. NON-CONSERVATIVE FORM OF THE CURVILINEAR NSWE

C.1. Non-Conservative form of the curvilinear NSWE

The system (B.27) is a hyperbolic system of partial differential equations and it can be

written in a non-conservative form as:

Qt + A(Q)Qξ + B(Q)Qη (C.1)

Where A and B correspond to the Jacobian matrices of the system, which are diagonalizable

and have real eigenvalues λi. A linear combination of the corresponding eigenvectors,

constitute a solution to the hyperbolic problem, which consist in a linear combination of m

”waves”’ travelling at the characteristic speed λi.

In this section, the procedure to find the eigenvalues, or characteristic directions, is

explained. These values will be used in the numerical solution of the curvilinear SWE.

(i) Continuity Equation:

Expanding the derivatives of the Eq. B.20:

ht + J

[
(hu)ξ

ξx

J
+ (hu)(

ξx

J
)ξ + (hv)ξ

ξy

J
+ (hu)(

ξy

J
)ξ

]

+J
[
(hu)η

ηx

J
+ (hu)(

ηx

J
)η + (hv)η

ηy

J
+ (hu)(

ηy

J
)η

]
= 0 (C.2)

Then, using relations (B.7) and (B.8) and rearraging,

ht + ξx
∂(hu)

∂ξ
+ ξy

∂(hv)

∂ξ
+ hu

∂ξx

∂ξ
+ hv

∂ξy

∂ξ

+ηx
∂(hu)

∂η
+ ηy

∂(hv)

∂η
+ hu

∂ηx

∂η
+ hv

ηy

∂η
= 0 (C.3)
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but ∂ξx

∂ξ
= ∂2ξ

∂x∂ξ
= ∂

∂x
∂ξ
∂ξ

= 0 (the same for η), then the mass conservation equa-

tions in its non-conservative form is defined as:

ht + ξx(hu)ξ + ξy(hv)ξ + ηx(hu)η + ηy(hv)η = 0 (C.4)

(ii) Momentum Equations:

In the x direction, starting from Eq. (B.22):

(hu)t + hu
∂

∂ξ
U1 + U 1 ∂(hu)

∂ξ
+

1

2Fr2
2hξx

∂h

∂ξ
+

1

2Fr2
h2

�
�

��7
0

∂ξx

∂ξ

+hu
∂

∂η
U2 + U 2∂(hu)

∂η
+

1

2Fr2
2hηx

∂h

∂η
+

1

2Fr2
h2

�
�

��7
0

∂ηx

∂η
= S2 (C.5)

Expanding the derivatives that are not in function of h,u and v variables:

hu∂U1

∂ξ
= ∂huU1

∂ξ
− U 1 ∂(hu)

∂ξ

= u∂hU1

∂ξ
+

����
hU 1 ∂u

∂ξ
− U 1u∂h

∂ξ
−

����
U1h∂u

∂ξ

= u ∂
∂ξ

(huξx + hvξy) − U 1u∂h
∂ξ

= uξx
∂(hu)

∂ξ
+ uξy

∂(hv)
∂ξ

− U 1u∂h
∂ξ

Analogously:

hu∂U2

∂η
= uηx

∂(hu)
∂η

+ uηy
∂(hv)

∂η
− U 2u∂h

∂η

Finally, the equation written in a non-conservative form is:

(hu)t +

(
h

Fr2
ξx − U 1u

)
hξ + (U 1 + uξx)(hu)ξ + uξy(hv)ξ +

(
h

Fr2
ηx − U 2u

)
hη + (U 2 + uη)(hu)η + uηy(hv)η = Snc2 (C.6)

Analogously, in the y direction,

(hv)t +

(
h

Fr2
ξy − U 1v

)
hξ + (U 1 + uξx)(hv)ξ + vξy(hu)ξ +

(
h

Fr2
ηy − U 2v

)
hη + (U 2 + vη)(hv)η + vηx(hu)η = Snc3 (C.7)
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(iii) Matrix Form:

Qt + A1Qξ + A2Qη = Snc (C.8)

Where:

Q =




h

hu

hv


 , (C.9)

A1 =




0 ξx ξy

h
Fr2 ξx − U 1u U1 + uξx uξy

h
Fr2 ξy − U 1v vξx U1 + vξy


 , (C.10)

A2 =




0 ηx ηy

h
Fr2 ηx − U 2u U2 + uηx uηy

h
Fr2 ηy − U 2v vηx U2 + vηy


 , (C.11)

Snc =




0

− 1
Fr2 (zξξy + zηηx) − τ1

− 1
Fr2 (zξξy + zηηy) − τ2


 (C.12)

C.2. Eigenvalues of Jacobian matrices

The eigenvalues are the solution of the following system:

|A − λI| = 0 (C.13)

Thus, the eigenvalues are:

λ1
1 = U 1 −

√
h

Fr2
(ξ2

x + ξ2
y), λ

1
2 = U 1, λ1

3 = U 1 +

√
h

Fr2
(ξ2

x + ξ2
y) (C.14)

λ2
1 = U 2 −

√
h

Fr2
(η2

x + η2
y), λ

2
2 = U 2, λ2

3 = U 2 +

√
h

Fr2
(η2

x + η2
y) (C.15)
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Here, the dimensionless wave celerity is defined as C =
√

h
Fr2 .
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APPENDIX D. THE VFROE-NCV APPROXIMATE RIEMANN SOLVER

The VFRoe-ncv is inspired in Godunov’s and Roe’s schemes. A linearized Riemann

problem is solved at each cell interface, following Roe’s idea. This linearized exact solution

is used to calculate the numerical fluxes, following Godunov’s idea. This scheme was first

presented in Masella et al. (1999), and its detailed development can be found in Masella et

al. (1999); Buffard et al. (2000); Marche et al. (2007).

D.1. Formalism of the VFRoe-ncv scheme

In a one-dimensional frame, the following Riemann problem is:

Qt + F (Q)x = 0 (D.1)

Q(x, 0) =





QL if x < 0

QR if x > 0
(D.2)

Where Q(x, t) ∈ <p an the F (Q) flux is such that the Jacobian matrix, A(Q) = ∂F
∂Q

is

diagonalizable and has real eigenvalues.

Considering the change of variables Q → Y (Q) (Y is an invertible function), the

system (D.1) is define in a non-conservative form:

Yt + B(Y )Yx = 0 (D.3)

Following Roe’s idea, at each cell interface the following linear Riemann (LRP) prob-

lem is solved:

Yt + B(Ỹ )Yx = 0 (D.4)

Y (x, 0) =





YL if x < 0

YR if x > 0
(D.5)

Where Ỹ in an averaged state that depends of YL and YR. B(Ỹ ) is a diagonalizable

matrix and has real eigenvalues λ̃i with i ∈ 1, ..., p sorted from lowest to highest.
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The exact solution to the LRP at each side of the discontinuity is written as:

Y ∗((
x

t
)−, YL, YR) = YL +

∑

λ̃i<( x
t
)

l̃i[Y ]RL r̃i (D.6)

Y ∗((
x

t
)+, YL, YR) = YR −

∑

λ̃i>( x
t
)

l̃i[Y ]RL r̃i (D.7)

Where l̃i and r̃i correspond to the left and right eigenvalues associated with λ̃i, and

[Y ]RL = YR − YL.

The values, Y ∗((x
t
)−, YL, YR) and Y ∗((x

t
)+, YL, YR), are equal when x

t
6= λ̃i. Thus, if

none of the eigenvalues λ̃i vanishes, the solution at the interface, i.e x
t

= 0, is given by:

Y ∗(0, YL, YR) = Y ∗((0)−, YL, YR) = Y ∗((0)+, YL, YR) (D.8)

Finally, the scheme allow us to calculate the fluxes trough the interface as:

F V FRoe(QL, QR) = F (QV FRoe(Y (QL, QR))) (D.9)

In the case when a rarefraction wave crosses the interface, VFRoe-ncv scheme can

produce weak solutions with non-physical meaning. Therefore, a entropy correction should

be added in order to reach the correctly physical solution. The latter occurs when λLi <

0 < λRi. In this special case, the interface solution is defined by an intermediate state,

Ym, following the correction proposed by Masella et al. (1999). The intermediate state is

defined as:

Ym = YL +
l̃iYL + l̃iYR

2
r̃i = YR − l̃iYL + l̃iYR

2
r̃i (D.10)
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APPENDIX E. WELL-BALANCED NUMERICAL SCHEME

In this section the well-balance scheme used to solve the hyperbolic step of the model

is detailed. The hydrostatic reconstruction method presented in Audusse et al. (2004) will

be explained, and it will be applied to the curvilinear NSWE.

A finite volume formulation of the system (B.27) is given by:

d

dt
Qi,j(t) +

Ji,j

∆ξ
(F ∗

i+ 1

2
,j
− F ∗

i− 1

2
,j
) +

Ji,j

∆η
(G∗

i,j+ 1

2

− G∗
i,j− 1

2

) = Si,j (E.1)

Where:

Qi,j = (hi,j, hi,jui,j , hi,jvi,j)
T

F ∗
i± 1

2
,j

, G∗
i,j± 1

2

correspond to the numerical fluxes trough the cell (i, j) interfaces, and Si,j

corresponds to the centered discretization of the bed-slope source term Usually, the fluxes

Fi± 1

2
,j and Gi± 1

2
,j) are calculated using a Riemann solver (VFRoe-ncv in this case), using

the cell centered values of the state variables (Fi+ 1

2

= F (Qi,j, Qi+1,j)), but a centered

evaluation of the bed-slope source term will not be able to preserve steady states at rest

(Audusse et al. (2004)). These states are defined by:

hi,j + zi,j = Cte, ui,j = vi,j = 0 (E.2)

Thus, Audusse et al. (2004) method consist in caculate the numerical fluxes with recon-

structed values at the cell interface, then, bed-slope well-balance terms are introduced.

Finally the FV scheme that will be solve is:

∂Qi,j(t)

∂t
+

Ji,j

∆ξ
(F+

i+ 1

2
,j
− F−

i− 1

2
,j
) +

Ji,j

∆η
(G+

i,j+ 1

2

− G−
i,j− 1

2

) = Sci,j (E.3)

Where F± and G± are the fluxes calculated using the reconstructed and balanced terms

and the solution of the approximate Riemann solver. Sci,j corresponds to the centered

discretization of the bed-slope source term using, also, reconstructed values.
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E.1. 1st Order Hydrostatic Reconstruction

The first step is to obtain reconstructed values at the cell interfaces, taking into account

bottom variations and the obtained balance for static flows. Without loss of generality, the

values at the cell interfaces (i + 1
2
, j) and (i, j + 1

2
) will be defined. The cell discretization

is shown in Fig. (E.1).

FIGURE E.1. Discretización en la celda i-ésima

Topography values at the cell interfaces are defined as:

zi± 1

2
,j = max(zi,j , zi±1,j) (E.4)

zi,j± 1

2

= max(zi,j , zi,j±1) (E.5)

Then, the water depth reconstruction at the cell interfaces, which must be possitivity

preserving, is defined as:

h
i+ 1

2

−

,j
= max(0, hi,j + zi,j − zi+ 1

2
,j) (E.6)

h
i+ 1

2

+
,j

= max(0, hi+1,j + zi+1,j − zi+ 1

2
,j) (E.7)

h
i,j+ 1

2

− = max(0, hi,j + zi,j − zi,j+ 1

2

) (E.8)

h
i,j+ 1

2

+ = max(0, hi,j+1 + zi,j+1 − zi,j+ 1

2

) (E.9)
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and the complete reconstructed values are:

Q
i+ 1

2

−

,j
=




h
i+ 1

2

−

,j

h
i+ 1

2

−

,j
ui,j

h
i+ 1

2

−

,j
vi,j


 (E.10)

Q
i+ 1

2

+
,j

=




h
i+ 1

2

+
,j

h
i+ 1

2

+
,j
ui+1,j

h
i+ 1

2

−

,j
vi+1,j


 (E.11)

Q
i,j+ 1

2

− =




h
i,j+ 1

2

−

h
i,j+ 1

2

−ui,j

h
i,j+ 1

2

−vi,j


 (E.12)

Q
i,j+ 1

2

+ =




h
i,j+ 1

2

+

h
i,j+ 1

2

+ui,j+1

h
i,j+ 1

2

−vi,j+1


 (E.13)

These reconstructed values, (E.10),(E.11), (E.12) and (E.13), are used as an input to

solve the Riemann problem and then to calculate the numerical fluxes of the homogeneous

problem, (F ∗
i± 1

2
,j

y G∗
i,j± 1

2

), then:

F ∗
i± 1

2
,j

= F (Q∗
i± 1

2
,j
) = F (Q∗(0, Q

i± 1

2

−

,j
, Q

i± 1

2

+
,j
)) (E.14)

G∗
i,j± 1

2

= G(Q∗
i,j± 1

2

) = G(Q∗(0, Q
i,j± 1

2

− , Q
i,j± 1

2

+)) (E.15)

At the same time, the bed-slope source term is discretized and distributed to the cell

interfaces, considering the hydrostatic balance for static flows. At steady state h+z = Cte,

hu = Cte, hv = Cte and ∂
∂t

= 0, at rest: u = v = 0. Then, from the momentum equations

(B.25) and (B.26):

J(
1

2Fr2
h2 ξx

J
)ξ + J(

1

2Fr2
h2 ηx

J
)η = − h

Fr2
(ξxzξ + ηxzη) (E.16)
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J(
1

2Fr2
h2 ξy

J
)ξ + J(

1

2Fr2
h2 ηy

J
)η = − h

Fr2
(ξyzξ + ηyzη) (E.17)

For simplicity, we will proceed only with Eq. (E.16). The source term associated with

each curvilinear direction will be balanced with the corresponding flux:

a. J( 1
2Fr2 h

2 ξx

J
)ξ ≈ − h

Fr2 ξxzξ

b. J( 1
2Fr2 h

2 ηx

J
)η ≈ − h

Fr2 ηxzη

Considering the ξ (Eq. a.) and integrating over the la i-th cell, an approximation of the

averaged source term into the cell

− 1

∆ξ

∫ ξ
i+1

2

−
,j

ξ
i− 1

2

+
,j

h

Fr2
ξxzξdξ ≈ J

∆ξ

∫ ξ
i+1

2

−
,j

ξ
i− 1

2

+
,j

1

2Fr2

ξx

J
h2

ξdξ

=
J

∆ξ
(

∫ ξi,j

ξ
i− 1

2

+
,j

1

2Fr2

ξx

J
h2

ξdξ +

∫ ξ
i+1

2

−
,j

ξi,j

1

2Fr2

ξx

J
h2

ξdξ)

=
J

∆ξ

1

2Fr2
(

(
ξx

J

)

i,j

h2
i,j −

(
ξx

J

)

i− 1

2
,j

h2

i− 1

2

+
,j

+

(
ξx

J

)

i− 1

2
,j

h2

i+ 1

2

−

,j
−

(
ξx

J

)

i,j

h2
i,j)(E.18)

The latter is analogous for the η direction, and motivates to discretize the bed-slope

source term Sci,j as:

Sci,j =
Ji,j

∆ξ
Scξ

i,j +
Ji,j

∆η
Scη

i,j (E.19)

Scξ
i,j = Scξ

i+ 1

2

−

,j
+ Scξ

i− 1

2

+
,j

(E.20)

Scξ

i+ 1

2

−

,j
+ Scξ

i− 1

2

+
,j

=




0

Sc1

i+ 1

2

−

,j

Sc2

i+ 1

2

−

,j


 +




0

Sc1

i− 1

2

+
,j

Sc2

i− 1

2

+
,j


 (E.21)

Scη
i,j = Scη

i,j+ 1

2

− + Scη

i,j− 1

2

+ (E.22)

Scη

i,j+ 1

2

− + Scη

i,j− 1

2

+ =




0

Sc1

i,j+ 1

2

−

Sc2

i,j+ 1

2

−


 +




0

Sc1

i,j− 1

2

+

Sc2

i,j− 1

2

+


 (E.23)
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Where:

Sc1

i+ 1

2

−

,j
=

1

2Fr2
(

(
ξx

J

)

i+ 1

2
,j

h2

i+ 1

2

−

,j
−

(
ξx

J

)

i,j

h2
i,j) (E.24)

Sc1

i− 1

2

+
,j

=
1

2Fr2
(

(
ξx

J

)

i,j

h2
i,j −

(
ξx

J

)

i− 1

2
,j

h2

i− 1

2

+
,j
) (E.25)

Sc1

i,j+ 1

2

− =
1

2Fr2
(
(ηx

J

)
i,j+ 1

2

h2

i,j+ 1

2

− −
(ηx

J

)
i,j

h2
i,j) (E.26)

Sc1

i,j− 1

2

+ =
1

2Fr2
(
(ηx

J

)
i,j

h2
i,j −

(ηx

J

)
i,j− 1

2

h2

i,j− 1

2

+) (E.27)

Sc2

i+ 1

2

−

,j
=

1

2Fr2
(

(
ξy

J

)

i+ 1

2
,j

h2

i+ 1

2

−

,j
−

(
ξy

J

)

i,j

h2
i,j) (E.28)

Sc2

i− 1

2

+
,j

=
1

2Fr2
(

(
ξy

J

)

i,j

h2
i,j −

(
ξy

J

)

i− 1

2
,j

h2

i− 1

2

+
,j
)

(E.29)

Sc2

i,j+ 1

2

− =
1

2Fr2
(
(ηy

J

)
i,j+ 1

2

h2

i,j+ 1

2

− −
(ηy

J

)
i,j

h2
i,j) (E.30)

Sc2

i,j− 1

2

+ = 1
2Fr2 (

(ηy

J

)
i,j

h2
i,j −

(ηy

J

)
i,j− 1

2

h2

i,j− 1

2

+)(E.31)

Then, the FV scheme that will be solved is:

dQi,j(t)

dt
+

Ji,j

∆ξ
(F ∗

i+ 1

2
,j
− F ∗

i− 1

2
,j
) +

Ji,j

∆η
(G∗

i,j+ 1

2

− G∗
i,j− 1

2

) =

Ji,j

∆ξ
(Scξ

i+ 1

2

−

,j
+ Scξ

i− 1

2

+
,j
) +

Ji,j

∆η
(Scη

i,j + Scη

i,j+ 1

2

− + Scη

i,j− 1

2

+) (E.32)
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dQi,j(t)

dt
+

Ji,j

∆ξ
(F ∗

i+ 1

2
,j
− Scξ

i+ 1

2

−

,j
− (F ∗

i− 1

2
,j

+ Scξ

i− 1

2

+
,j
))

+
Ji,j

∆η
(G∗

i,j+ 1

2

− Scη

i,j+ 1

2

− − (G∗
i,j− 1

2

+ Scη

i,j− 1

2

+)) = 0 (E.33)

Which is summarize as:

dQi,j(t)

dt
+

Ji,j

∆ξ
(F−

i+ 1

2
,j
− F+

i− 1

2
,j
) +

Ji,j

∆η
(G−

i,j+ 1

2

− G+
i,j− 1

2

) = 0 (E.34)

Finally, the fluxes are defined as:

F−
i+ 1

2
,j

= F (Q∗
i+ 1

2
,j
) +




0

1
2Fr2 (

ξx

J
h2

i,j − ξx

J
h2

i+ 1

2

−

,j
)

1
2Fr2 (

ξy

J
h2

i,j − ξy

J
h2

i+ 1

2

−

,j
)


 (E.35)

F+
i− 1

2
,j

= F (Q∗
i− 1

2
,j
) +




0

1
2Fr2 (

ξx

J
h2

i,j − ξx

J
h2

i− 1

2

+
,j
)

1
2Fr2 (

ξy

J
h2

i,j − ξy

J
h2

i− 1

2

+
,j
)


 (E.36)

G−
i,j+ 1

2

= G(Q∗
i,j+ 1

2

) +




0

1
2Fr2 (

ηx

J
h2

i,j − ηx

J
h2

i,j+ 1

2

−)

1
2Fr2 (

ηy

J
h2

i,j − ηy

J
h2

i,j+ 1

2

−)


 (E.37)

G+
i,j− 1

2

= G(Q∗
i,j− 1

2

) +




0

1
2Fr2 (

ηx

J
h2

i,j − ηx

J
h2

i,j− 1

2

+)

1
2Fr2 (

ηy

J
h2

i,j − ηy

J
h2

i,j− 1

2

+)


 (E.38)
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E.2. 2nd Order Hydrostatic Reconstruction

Following Audusse et al. (2004) methodology, is possible to obtain a second order

extension of the hydrostatic reconstruction. This is accomplish by reconstructing the hy-

drodynamic variables from limited and interpolated values at the cell interfaces.A MUSCL

type method is used to reconstruct the cell values.

These new state variables will be obtained in three steps: gradient predictions inside

each cell, linear extrapolation and limitation procedure. In this case, a minmod reconstruc-

tion method will be used.

Minmod Reconstruction: Reconstructed and linear extrapolated values at the cell

edges, i ± 1
2

∓
, j and i, j ± 1

2

∓
(See Fig. (E.2)) are defined as:

QiL,j = Qi,j −
∆ξ

2
∇iQi,j (E.39)

QiR,j = Qi,j +
∆ξ

2
∇iQi,j (E.40)

Qi,jL = Qi,j −
∆η

2
∇jQi,j (E.41)

Qi,jR = Qi,j +
∆η

2
∇jQi,j (E.42)

FIGURE E.2. Schematic drawing of the Minmod reconstruction method, Marche (2005)
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The gradients ∇i and ∇j are calculated with:

∇iQi,j = minmod(
Qi,j − Qi−1,j

∆ξ
,
Qi+1,j − Qi,j

∆ξ
) (E.43)

∇jQi,j = minmod(
Qi,j − Qi,j−1

∆η
,
Qi,j+1 − Qi,j

∆η
) (E.44)

With:

minmod(x, y) =





min(x, y) if x, y ≥ 0

max(x, y) if x, y < 0

0 if othercase

(E.45)

These limited values at each cell interface: QiL,j , QiR,j , Qi,jL, Ui,jR, will be used to

the hydrostatic reconstruction of the water depth instead of Qi,j . The reconstruction of the

topography,zi,j , is obtained from the reconstruction of the free surface elevation, (h + z)

and the reconstruction of the water depth. In order to accomplish the well-balance property

of the model and its consistency, a center discretization of the bed-slope source term must

be added (Ver (Audusse et al., 2004)).

Summarizing, the second order reconstruction methodology is:

(i) Linear Reconstruction of the state variables Qi,j:

QiL,j , QiR,j , Qi,jL, Qi,jR are obtained using the minmod reconstruction.

(ii) Linear Reconstruction of the free surface (h + z)i,j:

(h + z)iL,j , (h + z)iR,j , (h + z)i,jL, (h + z)i,jR are calculated using minmod

reconstruction.

(iii) Topography reconstruction zi,j:

ziL,j = (h + z)iL,j − hiL,j (E.46)

ziR,j = (h + z)iR,j − hiR,j (E.47)

zi,jL = (h + z)i,jL − hi,jL (E.48)

zi,jR = (h + z)i,jR − hi,jR (E.49)

84



(iv) Hydrostatic Reconstruction:

h
i+ 1

2

−

,j
= max(0, hiR,j + ziR,j − zi+ 1

2
,j) (E.50)

h
i+ 1

2

+
,j

= max(0, hi+1L,j + zi+1L,j − zi+ 1

2
,j) (E.51)

h
i,j+ 1

2

− = max(0, hi,jR + zi,jR − zi,j+ 1

2

) (E.52)

h
i,j+ 1

2

+ = max(0, hi,j+1L + zi,j+1L − zi,j+ 1

2

) (E.53)

Then, the reconstructed values at the cell interfaces are:

Q
i+ 1

2

+
,j

=




h
i+ 1
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+
,j
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i+ 1
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u(i+1)L,j
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i+ 1
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,j
=
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
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i+ 1
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−

,j

h
i+ 1
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−

,j
uiR,j

h
i+ 1

2

−

,j
uiR,j


 (E.54)
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+ui,(j+1)L
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+
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vi,(j+1)L
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−ui,jR,j

h
i+ 1
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−

,j
vi,jR


 (E.55)

(v) Fluxes:

F−
i+ 1

2
,j

= F (Q∗
i+ 1

2
,j
(0, Q

i+ 1
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−

,j
, Q

i+ 1

2

+
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))

+
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2Fr2
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ξx
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(E.56)

F+
i− 1

2
,j

= F (Q∗
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(0, Q

i− 1

2

−

,j
, Q

i− 1
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+
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))

+
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h2
iL,j −
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J
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(
ξy
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+
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+
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(E.57)
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− , Q
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+))
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Sci,j = − 1

Fr2




0

ξx(
hiR,j+hiL,j

2
)(

ziR,j−ziL,j

∆ξ
) + ηx(

hi,jR+hi,jL

2
)(
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)

ξy(
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2
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)


 (E.60)

Finally, the FV formulation of the problem is given by:

dQi,j(t)

dt
+

Ji,j

∆ξ
(F−

i+ 1

2
,j
− F+

i− 1

2
,j
) +

Ji,j

∆η
(G−

i,j+ 1

2

− G+
i,j− 1

2

) = Sci,j (E.61)
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APPENDIX F. BOUNDARY CONDITIONS

Due to the use of the MUSCL reconstruction, two lines of ghost cells are needed for

the computation of the state variables at the boundaries of the domain. The computational

domain is shown in Fig. F.1).

FIGURE F.1. Schematic computational domain including ghost cells, Marche (2005)

F.1. Reflective solid wall

This boundary condition represent the of a solid wall that closes the domain and reflex

any informations that propagates over it. The condition is given by:

hN+1 = hN , u′
N+1 = −u′

N , v′
N+1 = −v′

N , (F.1)

hN+2 = hN−1, u′
N+2 = −u′

N−1, v′
N+2 = −v′

N−1, (F.2)

Where N y N − 1 denote the last two cells inside the computational domain, N + 1

and N + 2, the two cells outside of the domain, u′ and v′ are the normal and tangential

components of the velocity to the boundary of the domain.
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F.2. Transmissive boundary

This condition represents an open boundary. It provides a simple absorbing conditions

that allows information to leave the domain as it was infinite.

hN+1 = hN , u′
N+1 = u′

N , v′
N+1 = v′

N , (F.3)

hN+2 = hN−1, u′
N+2 = u′

N−1, v′
N+2 = v′

N−1, (F.4)

F.3. Periodic boundary condition

This condition connects both ends of the domain and is equal to have no boundary.

hN+1 = h1, u′
N+1 = u′

1, v′
N+1 = v′

1, (F.5)

hN+2 = h2, u′
N+2 = u′

2, v′
N+2 = v′

2, (F.6)

Tangent and normal velocities correspond to the contravariant components of the ve-

locity. Also, the metrics at the boundaries are needed, which are defined as:

(xξ)N+1 = (xξ)N , (yξ)N+1 = (yξ)N (F.7)

(xξ)N+2 = (xξ)N−1, (yξ)N+2 = (yξ)N−1 (F.8)

(xη)N+1 = (xη)N , (yη)N+1 = (yη)N (F.9)

(xη)N+2 = (xη)N−1, (yη)N+2 = (yη)N−1 (F.10)

(F.11)

According to the latter, the boundary conditions are defined as:
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Solid wall:

uN+1 = −uN , vN+1 = −vN , (F.12)

uN+2 = −uN−1, vN+2 = −vN−1, (F.13)

(F.14)

Transmissive:

uN+1 = uN , vN+1 = vN , (F.15)

uN+2 = uN−1, vN+2 = vN−1, (F.16)

(F.17)

Periodic:

uN+1 = u1, vN+1 = v1, (F.18)

uN+2 = u2, vN+2 = v2, (F.19)

(F.20)

F.4. Absorbing/Generating Boundary Condition

This boundary condition allow us to introduce information to the domain, such as

waves or hydrographs, and to evacuate back travelling waves. The implementation of this

boundary condition is based in the work of Cienfuegos et al. (2007); Mignot and Cienfue-

gos (2009).

The methodology behind this boundary condition is to solve a Riemann problem at

the boundary of the computational domain in order to determine the state variables at that

place. Since a RK scheme is used to integrate in time the NSWE, the methodology is

applied to each RK step, with the objective to find the state values at A’ y A” (Fig. (F.2)).

At the ξ = 0 boundary, the following Riemann invariants and characteristic trajectories are
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FIGURE F.2. Absorbing/Generating boundary condition scheme, Cienfuegos et al. (2007)

defined:

R+ = U + 2C
√

ξ2
x + ξ2

y (F.21)

R− = U − 2C
√

ξ2
x + ξ2

y (F.22)

dR+

dt
= − 1

Fr2 zξ(ξ
2
x + ξ2

y) − τbx

ρh
ξx sobre dξ

dt
= U 1 + C

√
ξ2
x + ξ2

y
(F.23)

dR−

dt
= − 1

Fr2 zξ(ξ
2
x + ξ2

y) − τbx

ρh
ξx sobre dξ

dt
= U 1 − C

√
ξ2
x + ξ2

y
(F.24)

The condition has been only implemented in the case of normal wave entering the

domain and for uniform discretizations in the signal direction, in such way that in the

boundary ξy = 0 and v = 0, which is shown in Fig. (F.3). Thus, the Rieman invariants and

the characteristic trajectories are redefined as:

R+ = U + 2Cξx (F.25)

R− = U − 2Cξx (F.26)

dR+

dt
= − 1

Fr2 zξξ
2
x − τbx

ρh
(ξx + ξy) sobre dξ

dt
= uξx + Cξx (F.27)

dR−

dt
= − 1

Fr2 zξξ
2
x − τbx

ρh
(ξx + ξy) sobre dξ

dt
= u1 − Cξx (F.28)
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FIGURE F.3. Absorbing/Generating boundary condition meshes

F.4.0.1. First RK step

In this step, the state variables at the A’ point are calculated integrating from t to

t + ∆t/2. From an outside point L a positive characteristic leaves to the A interface, R+
L ,

that arrives at t + ∆t/2. The value of this characteristic is given by:

R+
L = ξxL(uL + 2CL) (F.29)

Where, depending of the information introduced to the domain, a wave or a given

discharge, uL, CL and ξxL are calculated. At the same time, from an unknown point R

inside the domain, a negative characteristic leaves, which value is calculated as:

R−
R = ξxR(uR − 2CR) (F.30)

To find uR, CR and ξR, since the position of R is unknown, the following implicit

trajectory problem is solved:

∫ A′

R

dξ =

∫ R

A′

ξx(u − C)dt (F.31)

Which can be approximately solved by:

0 = ξ|R − ξ|A′ + (u − C)ξx|R
∆t

2
(F.32)

After calculating R+
L y R−

R, the values at A’ are found by solving the following charac-

teristic problems:
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From L to A′:
∫ A′

L

dR+ = − 1

Fr2

∫ A′

L

zξξ
2
xdt − 1

ρ

∫ A′

L

τbx

h
ξxdt (F.33)

R+
A′ = R+

L − 1

Fr2

1

2
(zξξ

2
x

∣∣
L

+ zξξ
2
x

∣∣
A′

)
∆t

2
− 1

ρ

τbx|L
h|L

ξx|L
∆t

2
(F.34)

From R to A′:

∫ A′

R

dR+ = − 1

Fr2

∫ A′

R

zξξ
2
xdt − 1

ρ

∫ A′

R

τbx

h
ξxdt (F.35)

R+
A′ = R+

R − 1

Fr2

1

2
(zξξ

2
x

∣∣
R

+ zξξ
2
x

∣∣
A′

)
∆t

2
− 1

ρ

τbx|R
h|R

ξx|R
∆t

2
(F.36)

Then,

R+
A′ = ξxA′(uA′ + 2CA′) (F.37)

R−
A′ = ξxA′(uA′ − 2CA′) (F.38)

C =

√
h

Fr2
(F.39)

Thus, the state variables at the A’ point at time t + ∆t/2 are calculated as:

hA′ =
(R+

A′ − R−
A)2

16ξ2
xA′

Fr2 (F.40)

uA′ =
R+

A′ − R−
A

2ξxA′

(F.41)

F.4.0.2. Second RK step

In the second RK step, the estimation of the state variables at A’ is improved. The val-

ues obtained for the first RK step are used, and the Riemann invariants and the trajectories

are recalculated as:

92



R+
A′ = R+

L − 1

Fr2

1

2
(zξξ

2
x

∣∣
L

+ zξξ
2
x

∣∣
A′

)
∆t

2
− 1

ρ

1

2
(
τbx|L
h|L

ξx|L +
τbx|A′∗
h|A′∗

ξx|L)
∆t

2
(F.42)

R+
A′ = R+

R − 1

Fr2

1

2
(zξξ

2
x

∣∣
R

+ zξξ
2
x

∣∣
A′

)
∆t

2
− 1

ρ

1

2
(
τbx|R
h|R

ξx|R +
τbx|A′∗
h|A′∗

ξx|R)
∆t

2
(F.43)

0 = ξ|R − ξ|A′ +
1

2
((u − C)ξx|R + (u − C)ξx|A′∗)

∆t

2
(F.44)

Where A′∗ corresponds to the state values found in the first RK step.

In the following RK steps, the same methodology is applied, from t + ∆t/2 to t + ∆t

(A’ to A”).

Finally, for at each time step, state variables at the computational domain boundaries,

which include outside information and inside information, are found.

F.5. Ghost Cells Bathymetry

The bathymetry of the ghost cells is set to be the same as the first, or last, cell of the real

domain, in order to maintain the free surface elevation at the boundary for the transmissive,

solid wall and periodic boundary conditions, since the depth is the same.
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APPENDIX G. TIME INTEGRATION METHOD

In this section the methodology used to obtain the state variables at time tn+1 from the

known variables at time tn, considering the effects of friction and of the numerical fluxes.

First, the friction effect is calculated using the time step defined by the CFL condition.

This process was explained in Chapter 2. Then, a 4th order Runge-Kutta (RK) scheme is

applied to integrate in time the Hypervbolic NSWE step of the model. Considering the

second order accuracy in space finite volume scheme:

∂Qi,j

∂t
= Sci,j −

1

∆ξ
(F

i+ 1

2

−

,j
− F

i− 1

2

+
,j
) − 1

∆ξ
(G

i,j+ 1

2

− − G
i,j− 1

2

+) = f(Qi,j, t) (G.1)

Then, the applied RK method is defined as:

Qn+1 = Qn +
1

6
(K1 + 2K2 + 2K3 + K4)∆t (G.2)

Where,

K1 = f(tn, Q
n) (G.3)

K2 = f(tn, Q
n+ 1

2

∗

) (G.4)

K3 = f(tn, Q
n+ 1

2

∗∗

) (G.5)

K4 = f(tn, Q
n+1∗) (G.6)

With,

Qn+ 1

2

∗

= Qn +
∆t

2
K1 (G.7)

Qn+ 1

2

∗∗

= Qn +
∆t

2
K2 (G.8)

Qn+1∗ = Qn + ∆tK3 (G.9)
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APPENDIX H. BENCHMARK CASES

In this appendix, various test cases simulated with the curvilinear model are presented.

These test cases and the ones presented in Chapter 2, exemplify each one of the capabilities

of the model.

H.1. Steady State at rest

This case considers a two-dimensional steady state flow over variable topography with

dry zones. The objective of this test is to show the well-balance property of the model and

the ability to preserve steady state.

The topography is defined by:

z(x, y) = 0.5exp(−(r/σ)2) (H.1)

Where r =
√

((x − xo)2 + (y − yo)2), σ = 0.5 and xo = yo = 5. The initial condition of

the free surface is such that a part of the domain is dry, it is defined as h+z = max(z, 0.3).

Null flow and velocities is impose in the domain. In Fig. H.1 the topography and the free

surface after 200 s of simulation is shown.

FIGURE H.1. Estado Estacionario: Batimetrı́a y Condiciones Iniciales
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In Fig. H.2(a) a center profile of the water depth and the topography at 200 s are

presented, in Fig. H.2(b) the discharge evolution at point (x, y) = (0, 0) is shown. Water

depth maintains constant and no discharge is observed during the 200 s of simulation, thus,

preserving the steady state at rest.
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FIGURE H.2. Estado Estacionario t=200 s: (a) Corte transversal, (b) Serie de
Tiempo de Caudal en (x, y) = (0, 0)

H.2. 1D Dam-break

This test has been classically used to validate NSWE numerical models. It consist in

two different states, separated by a discontinuity: the dam. The dam is instantly removed

at t = 0 s, and a shock-wave propagates downstream and a rarefraction wave propagates

upstream. An schematic drawing of the 1D dam-dreak initial configuration is shown in Fig.

H.3. The ratio between the water depths downstream the dam and upstream of it, ht/hr,

is known as depth ratio, as this ratio decreases, the test becomes more demanding for the

numerical model. In this case, the model was tested with a 0 depth ratio, meaning that

ht = 0 m. Water depth upstream the dam was settled to be hr = 1 m. Numerical solutions

were compared with the analytical solutions proposed in Stoker (1992).

A rectangular channel of 50 m length and 1 m width was considered for the simu-

lations. It was discretized in a regular and uniform mesh of size ∆x = 0.05 m. The

discontinuity is located at the center of the channel. Fig. H.4 shows a comparison between
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FIGURE H.3. 1D Dam-break: Schematic drawing of the initial conditions

numerical and analytical solutions of the evolution of the free surface after the breaking

of the dam. Velocity evolution and discharge per unit width are shown in Fig. H.5. Ex-

cellent agreement is found between numerical and analytical solutions for the free surface

elevation and for the discharge, small differences are found for the velocity. The model

underestimates the velocity of the shok-wave front when wetting the dry zones. This could

be improved with a thinner discretization of the domain. Other test were performed with

coarser grids and results improved when using a refined discretization of the domain. This

test shows the shock-capturing ability of the model and the capability to flood dry zones.
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FIGURE H.4. 1D Dam-break: Free surfave profiles at different times

H.3. 2D Dam-break

In this case a partial 2D dam-break over a flat and frictionless bed is studied. No

analytical solutions exist for this case, but the results can be compared with other numerical

results, such as Alcrudo and Garcı́a-Navarro (1993); Baghlani et al. (2008).
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FIGURE H.5. 1D Dam-break: (a) Velocity profiles, (b) Discharge per unit width profiles

FIGURE H.6. 2D dam-break: Schematic plan view of the domain

The breaking occur over a flat channel of 200 m long and 200 m width. The dam

opening is 75 m width. A schematic drawing of the domain configuration is shown in Fig.

H.6. Water depth upstream the dam is initially 10 m and downstream the dam is 5 m. At

the breaking, a wave is propagated downstream that spreads to the sides of the channel, at

the same time, a rarefraction wave propagates upstream of the channel decreasing the water

depth. Free surface elevation 7.2 s after the break, using a uniform and regular grid of 40x40

cells, is shown in Fig. H.7(a). A contour map of the same result is shown in Fig. H.7(b).

The propagation of a rarefraction wave involves high velocity gradients in the boundaries

of the broken zone of the dam, which represent a demanding test for the numerical model.

The numerical results presented in the latter figures show that the solution is stable and
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smooth in the complicated zones. The velocity field at the same time is shown in Fig. H.8,

where the two-dimensional character of the break is observed . The obtained numerical

results are in agreement with those studied in the literature.

(a) (b)

FIGURE H.7. 2D Dam-break, 7.2 s after de breaking: (a) 3D view of the free
surface elevation, (b) Contour map of the free surface

FIGURE H.8. 2D Dam-break: Velocity field

H.4. Thacker’s curved solution

In Thacker (1981), some analytical solutions to shallow water flows are presented. One

of them is the analytical solution for a bidimensional and symmetric oscillating flow over
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a frictionless parabolic basin (see Fig. H.9). The basin is defined as:

z(r) = h0

(
1 − r2

a2

)
(H.2)

where, h0 is the water depth at the center of the basin and a is the distance from the center

point to the shoreline (see Fig. H.10). This test is interesting since one of the few cases that

involves moving shoreline and wave run-up and run-down without applying any special

boundary condition. Besides, since the basin is frictionless, no energy dissipation occurs,

thus the solution is periodic and do not decay in time.

FIGURE H.9. Thacker’s curved solution: Parabolic basin

The analytical solution of the problem is given by:

h(r, t) = h0

[
(1 − A2)1/2

1 − Acos(ωt)
− 1 − r2

a2

(
1 − A2

(1 − Acos(ωt))2
− 1

)]
(H.3)

u(x) =
1

1 − Acos(ωt

(
1

2
ωxAsin(ωt)

)
(H.4)

v(y) =
1

1 − Acos(ωt

(
1

2
ωyAsin(ωt)

)
(H.5)
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FIGURE H.10. Thacker’s curved solution: Geometry of the problem, Marche et
al. (2007)

where the angular frequency ω is defined as ω =
√

8gh0/a2, r is the distance from the

center, r0 is the distance from the center to the initial shoreline and A = (a2 − r2)/(a2 +

r2). The initial conditions are defined by the analytical solution at time 0. The chosen

parameters for this case are: a = 1, r0 = 0.8 m and h0 = 0.1 m. The domain is 4 m

x 4 m, and it was discretized using a uniform and regular mesh of 400x400 cell of size

∆x = ∆y = 0.01 m.

Fig. H.11 shows free surface profile comparisons between analytical and numerical

solution at different times for the center line of the parabolic basin in the x direction. Ex-

cellent agreement is obtained after three oscillation periods. The oscillations remain peri-

odical and the amplitude do not decay in time, the run-up and rundown process is correctly

represented.

In Fig. H.12 a zoom view of the free surface at the moving shoreline is shown. Small

differences and oscillations are found, but the model is capable of eliminate them and they

do not propagate.
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(d)

FIGURE H.11. Thacker’s curved solution: Numerical and analytical solutions of
the free surface in the center line of the basin at times: (a) 3T, (b) 3T+T/6, (c)
3T+T/3, (d) 3T+T/2
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FIGURE H.12. Thacker’s curved solution: Zoom view of the shoreline
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