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Fano resonances and Aharonov-Bohm effects in transport through a square quantum dot molecul
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We study the Aharonov-Bohm effect in a coupled 232 quantum dot array with two terminals. A striking
conductance dip arising from the Fano interference is found as the energy levels of the intermediate dots are
mismatched, which is lifted in the presence of a magnetic flux. A five peak structure is observed in the
conductance for large mismatch. The Aharonov-Bohm evolution of the linear conductance strongly depends on
the configuration of dot levels and interdot and dot-lead coupling strengths. In addition, the magnetic flux and
asymmetry between dot-lead couplings can induce the splitting and combination of the conductance peak~s!.
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I. INTRODUCTION

The famous effect predicted by Aharonov and Bohm~AB!
in 1959 ~Ref. 1! concerns the essential influence of a vec
potential on the interference pattern of two beams of e
trons confined in multiply connected paths, over which
magnetic field is zero. It is manifested by the periodic os
lation of the conductance of a ring or a cylinder as a funct
of the enclosed magnetic fluxF.2 It has been shown that th
AB effect also exists in some singly connected geome
such as a point contact or a disk shape in a two-dimensi
electron gas, in which circulating edge states enclose a w
defined magnetic flux.3 A significant hallmark in mesoscopi
experiments is the phase measurements of the transmi
amplitude through a quantum dot embedded in an AB ring
the Coulomb blockade regime.4 It revived interest on the AB
effect in condensed matter physics.5

Quantum dots are highly tunable artificial mesosco
structures,6 usually called artificial atoms or artificial mol
ecules. Some novel physical properties, such as the Coul
blockade and the turnstile effect, have been demonstrate
some elegant experiments.6 At low temperatures, transpor
through a single quantum dot is dominated by resonant
neling and Coulomb blockade. When the condition for re
nant tunneling is not accessible, co-tunneling events invo
ing the simultaneous tunneling of two or more electro
through a virtual intermediate level can be dominant.7 When
quantum dots are connected in series with tunneling ba
er~s!, it is expected that the coupling between dots play
crucial role in the transport properties of the coupled str
ture. On the other hand, electron tunneling through
coupled dot system is very sensitive to the incoherent s
tering, which has trivial effects on the transport properties
a single dot.8 In the past decade, transport through coup
quantum dot systems has received considerable amou
attention.9–11

In this paper, we investigate coherent electronic transp
through four coupled quantum dots located at the four c
ners of a square enclosing a magnetic flux. This kind
coupled dot structure is the basic unit of two-dimensio
quantum dot arrays. Our goal is to find out how the cond
tance of such a structure depends on the coupling stre
0163-1829/2002/65~8!/085308~7!/$20.00 65 0853
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between dots, the arrangement of dot levels and the magn
flux. In the present work, we do not take into considerat
the interdot and intradot electron-electron interactions.
also assume that just one level is relevant on each dot.
allows us, on the one hand, to obtain some exact analy
results. On the other hand, we can gain much more c
physical insight into the dependence of the conductance
the system on the structure parameters~interdot couplings
and dot levels! and the magnetic flux. Though the model w
consider is simple, some novel and interesting results
obtained arising from the interplay of the specific configu
tion of dot levels and interdot couplings, and the magne
flux.

The rest of the paper is organized as follows. In Sec. II
derive the current through the 232 quantum dot array using
the Keldysh nonequilibrium Green’s function formalism a
a recursive Green’s function technique. Section III prese
the linear conductance spectra of the dot array in the s
metric and asymmetric coupling case. We also investigat
detail the Ahoronov-Bohm oscillation of the linear condu
tance in some specific configurations of the dot levels a
the interdot couplings. Our concluding remarks are given
Sec. IV.

II. FORMULATION

We consider four quantum dots in a square array12 enclos-
ing a magnetic fluxF ~Fig. 1!, with two dots facing each
other connected to the left and right leads. For simplicity,
ignore the intradot and interdot Coulomb interactions, a
assume that just one energy level is relevant at each
Then the Hamiltonian describing such a system is

H5Hdot1H lead1Hdot-lead,

FIG. 1. Schematic plot of a 232 quantum dot structure enclos
ing a magnetic fluxF with two terminals.
©2002 The American Physical Society08-1
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Hdot5(
i 51

4

e idi
1di1~ t12d1

1d21t13e
ifd1

1d3

1t24d4
1d21t34d4

1d31H.c.!,

H lead5 (
kPL

ekak
1ak1 (

pPR
epbp

1bp ,

Hdot-lead5 (
kPL

~Vk1ak
1d11Vk1* d1

1ak!

1 (
pPR

~Wp4bp
1d41Wp4* d4

1bp!, ~1!

where e i is the energy level of doti ,ak(ak
1),bp(bp

1), and
di(di

1) ( i 51,2,3,4) are the annihilation~creation! operators
of electrons in the left~L! lead, right~R! lead and quantum
dot i, and t i j and Vk1(Wp4) are the interdot and dot-lea
coupling matrix elements, respectively. In Eq.~1!, a factor
eif(f52pF/F0 ,F05h/e) is attached tot13 to account for
the magnetic fluxF through the structure.

The current flowing from the left lead to the structure is13

JL5
2ie

\ E de

2p
GL~e!$ f L~e!@Gd1d1

r ~e!2Gd1d1

a ~e!#

1Gd1d1

, ~e!%. ~2!
08530
The notation we use throughout isGXY
r ,a(t,t8)57 iu(6t

7 t8) ^$X(t), Y1(t8)%&, GXY
, (t, t8) 5 i ^Y1(t8)X(t)&,

X,Y5ak ,bP ,di ( i 51,2,3,4), GL(e)52puVk1u2d(e2ek),
while f L(e)5@11e(e2mL)/kBT#21 is the Fermi-Dirac distri-
bution function of the left lead, with chemical potentialmL .
The factor of 2 in Eq.~2! is due to the spin degeneracy.

Following the recursive decoupling technique develop
in Ref. 14, the retarded Green’s function appearing in Eq.~2!
Gd1d1

r (e) can be calculated from Dyson’s equation

Gd1d1

r 5@e2e12Sd1

r #21, ~3!

Sd1

r 52
i

2
GL1ut12u2G̃d2d2

r 1ut13u2G̃d3d3

r

1t12t13* e2 ifG̃d2d3

r 1t12* t13e
ifG̃d3d2

r . ~4!

Here and in what followsG̃didj

r ,a,, denote the Green’s function

which is decoupled from the quantum dotk @k5min(i,j)
21#. In the above and following equations we drop the
gumente, and recover it wherever necessary. Following
similar recursive decoupling method, one has
G̃d2d2

r 5

~e2e3!S e2e41
i

2
GRD2t34t34*

~e2e2!~e2e3!S e2e41
i

2
GRD2t24t24* ~e2e3!2t34t34* ~e2e2!

, ~5!

G̃d3d3

r 5

~e2e2!S e2e41
i

2
GRD2t24t24*

~e2e2!~e2e3!S e2e41
i

2
GRD2t24t24* ~e2e3!2t34t34* ~e2e2!

, ~6!

G̃d2d3

r 5
t24t34*

~e2e2!~e2e3!S e2e41
i

2
GRD2t24t24* ~e2e3!2t34t34* ~e2e2!

, ~7!

G̃d3d2

r 5
t34t24*

~e2e2!~e2e3!S e2e41
i

2
GRD2t24t24* ~e2e3!2t34t34* ~e2e2!

, ~8!

whereGR(e)52puWp4u2d(e2ep). In the following we will assume that the coupling matrix elements (Vk1 ,Wp4, andt i j ) are
real since the tunnel rates just depend on the amplitude of the coupling matrix elements. Substitution of Eqs.~5!–~8! into Eq.
~4! yields
8-2
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Sd1

r ~e!52
i

2
GL1

S e2e41
i

2
GRD @ t12

2 ~e2e3!1t13
2 ~e2e2!#2~ t12

2 t34
2 1t13

2 t24
2 !12 cosft12t13t24t34

~e2e2!~e2e3!S e2e41
i

2
GRD2t24

2 ~e2e3!2t34
2 ~e2e2!

. ~9!
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It can be seen from the above expression that the AB ef
manifests itself in an additional term 2(cosf21)t12t13t24t34
in the self-energySd1

of dot 1 Green’s function, the domi
nant contribution to the spectral density of the structure.

We now have to calculate the lesser Green’s funct
Gd1d1

, . It can be obtained from the Keldysh formula

Gd1d1

, 5Gd1d1

r Sd1

, Gd1d1

a 5Sd1

, uGd1d1

r u2, ~10!

where

Sd1

, 5 i f L~e!GL1 (
i 52,3

t1i
2 G̃didi

,

1t12t13e
2 ifG̃d2d3

, 1t12t13e
ifG̃d3d2

, . ~11!

The lesser Green’s functionsG̃didj

, ( i , j 52,3) can be calcu-

lated from the following Keldysh equation

G̃didj

, 5 (
m,n52,3

G̃didm

r S̃dmdn

, G̃dndj

r , i , j 52,3, ~12!

where

S̃dmdn

, 5
i f R~e!GRtm4tn4

~e2e4!21GR
2/4

, m,n52,3. ~13!

Here f R(e)5@11e(e2mR)/kBT#21 is the Fermi-Dirac distribu-
tion function of the right lead, with chemical potentialmR . It
is worth noticing that the above procedure of calculating
various kinds of Green’s functions can be verified to give
same results as the equation-of-motion method.15 Combining
Eqs.~6!2~10! we find

Gd1d1

, 5S i f L~e!GL22i f R~e!ImFSd1

r 1
i

2
GLG D uGd1d1

r u2.

~14!

Notice that

Gd1d1

r 2Gd1d1

a 5S 1

Gd1d1

a
2

1

Gd1d1

r D uGd1d1

r u2

52i Im@Sd1

r #uGd1d1

r u2. ~15!

Substituting Eqs.~14! and~15! into Eq.~2!, one then obtains
the current entering the structure from the left lead

J5JL5
2e

h E de@ f L~e!2 f R~e!#T~e!, ~16!
ct

n

e
e

in which

T~e!5
GL~e!GR~e!

GL~e!1GR~e!
r~e!,

r~e!52
2@GL~e!1GR~e!#

GR~e!
ImFSd1

r ~e!1
i

2
GL~e!G

3U 1

e2e12Sd1

r ~e!U
2

~17!

is the transmission probability for an electron pass
through the quantum dot square structure. Equations~16! and
~17! are the central results of this work. It can be seen t
the transmission probability and current are proportiona
the dot-lead couplings (GL ,GR) and a generalized spectra
density functionr(e) of the system. Note that the curren
includes contributions from the upper arm path (1→2→4),
and the bottom arm path (1→3→4), which interfere with
each other. At zero temperature, the conductance in the li
regime limit mL'mR→eF becomes

G~F!5
2e2

h

GLGR

GL1GR
r~eF!. ~18!

In obtaining Eq.~18! the wide-bandwidth approximation13

has been used, i.e., the linewidthsGL and GR are constants
independent of energy. From the expression of the s
energy (9) one can find that the linear conductanceG(F) is
a periodic function of the magnetic fluxF, with periodicity
F05h/e, andG(F)5G(2F). These observations are con
sistence with the general results of the two-terminal setup
the AB ring.5

When quantum dot 2~or 3! is decoupled from the system
i.e., t125t2450 ~or t135t3450), we recover the results fo
the coupled triple quantum dot chain14

J5JL5
2e

h E de@ f L~e!2 f R~e!#T3~e!, ~19!

where the transmission probability is

T3~e!5GLGRut1i u2ut i4u2A~e!, i 52 ~or 3!.
~20!

Here
A~e!5
@~e2e4!21GR

2/4#/$@~e2e i !@~e2e4!21GR
2/4#2t i4

2 ~e2e4!#21utRu4GR
2/4%

@e2e12t1i
2 ReB~e!2#1@GL22t1i

2 ImB~e!2/4#
, i 52 ~or 3!, ~21!

085308-3



th

a
po
on

an
ti
ty
at
ro
ch

nc
ea

on

th
in
,

n
th

se
ng

n

u
ar
th
tri
an
o
n
n

n
ple
p
co

nters
the
eak
the

s
cou-
ted
uc-

d by

ls,

n
gy
m

o
plit
ls of
ther

the
a

e
ect

t

ing

Z. Y. ZENG, F. CLARO, AND ALEJANDRO PE´REZ PHYSICAL REVIEW B65 085308
where

B~e!5S e2e i2
t i4
2

e2e41
i

2
GR

D 21

, i 52 ~or 3!.

~22!

When the levels of the three dots are aligned, we find
condition for complete transmission (T351) to be

t1i
2

t i4
2

5
GL

GR
, i 52 ~or 3!. ~23!

It can be expected that the criteria for complete reson
transmission or maximum peak conductance plays an im
tant role in the formation of conductance peaks with the c
ductance quanta 2e2/h for the square quantum dot array.

III. LINEAR CONDUCTANCE CHARACTERISTICS

A. Symmetric coupling between dots and leads

It is well known that the two-terminal conductance of
AB ring is a periodic even function of the enclosed magne
flux F.5 The oscillation of the conductance, with periodici
h/e, results from the quantum interference between the p
located in the upper and lower arms of the ring. For elect
tunneling through a single dot, the conductance peak rea
its maximum whenGL5GR . In the coupled double quantum
dot structure with aligned energy levels, the conducta
peak reach a maximum value and splits into a double p
with peak separation 2(t22G2/4)1/2 when the interdot cou-
pling t becomes larger than the width of the peakG in the
symmetric dot-lead coupling case.14 For the three coupled
dot string, the situation is more complicated, though the c
dition for maximum conductance peak is the simple Eq.~23!
since the levels of the dots are aligned. We expect that
conductance peak will split into three maxima when the
terdot coupling becomes larger than the width of the peak
in the double dot case.

For further comparison, we first calculate the linear co
ductance of the quantum dot array in the absence of
magnetic fluxF and in the symmetric dot-lead coupling ca
(GL5GR). Throughout this paper, energy and coupli
strengths are measured in units ofGL5G. The results for
aligned levels and various kinds of interdot coupling co
figurations are shown in Fig. 2~a!, while Figs. 2~b!, 2~c! are
for different arrangements of the dot levels. When the fo
dot levels are aligned, three conductance peaks appe
t125t13 and t245t34. Then the conductance possesses
same three resonant peak structure as the three dot s
One can also find that the criteria for complete reson
transmission for the three-dot systems manifests itself in
four dot structure. This is not strange since the conducta
in our case is simply the superposition of the contributio
from the upper and lower three-dot arms. Whent125t34
,t135t24, the situation becomes different. In this case, o
can consider the dot structure as a system of two cou
quantum dot dimers. One observes in the conductance s
tra four peaks, arranged in two groups separated by a
08530
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ductance gap. The separation between the two group ce
is mainly determined by the larger interdot coupling, and
peak separation of each group by the smaller one. The p
and group center separations have trivial dependence on
dot-lead couplingsGL andGR in the coupled quantum dimer
case. The conductance gap is introduced by the larger
pling strength between the two dimers and can not be lif
by a magnetic flux, contrary to the case of the Fano cond
tance dip discussed below. The gap can be broadene
increasing the coupling strength~s! t12 ~and/or t24) between
the two dimers.

Figures 2~b!, 2~c!, displaying cases of mismatched leve
show more interesting conductance spectra. Whent125t13
5t245t34 a striking novel conductance dip (G50) appears
halfway between the energy levels of dots 2 and 3@Figs. 2~c!
and dashed line in 2~b!# if these levels are different. Whe
t125t24!t135t34 the conductance dip is pinned at the ener
level of the quantum dot with small couplings to the syste
@solid line in Fig. 2~b!#. The middle peak appears split int
two asymmetric peaks. The asymmetry between the two s
peaks depends on the mismatch between the energy leve
dots 2 and 3, as well as the arrangement of the levels of o
dots 1 and 4. Novel five spikes@the dashed line in Fig. 2~b!#
in the conductance can be seen if the mismatch between
levels of dot 2 and 3 is large enough. The dip results from
Fano interference16 between two distinct current paths, on
being direct nonresonant and the other nondir
resonant.17,18 The conductance can be generally written17 as
G5Gnon@( ẽ1q)2/( ẽ211)#, where Gnon is the nonresonan
conductance,ẽ5e2e reso, and q is the ‘‘Fano parameter’’
assessing the asymmetry of the line shape. Two limit

FIG. 2. ConductanceG as a function of Fermi energyeF in the
case of symmetric dot-lead couplings (GL5GR) and in the absence
of magnetic flux when the levels of the four dots are aligned~a! and
not aligned~b!, ~c!.
8-4
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cases exist@Ref. 17~b!#: ~a! q→`, with a dominating reso-
nant transmission resulting in Breit-Wigner resonances
~b! q→0, with a dominating nonresonant transmission le
ing to asymmetric dips. Since heret125t135t245t34, one
can consider either the arm consisting of dot 2 or 3 as
resonant~nonresonant! path. This special symmetry locate
the Fano-type conductance dip at neither the level of do
nor that of dot 3, but halfway between them. On the ot
hand, whent125t135t245t34, we find from Eqs.~9!, ~17!,
and~18! thatG}(2eF2e22e3)/(eF2e2)(eF2e3). It is evi-
dent that two resonance peaks exist wheneF5e2 and eF
5e3, while G50 when eF5(e21e3)/2, which is just the
position of the Fano conductance dip. For large misma
between energy levels of dots 2 and 3, Fano interfere
between the two paths develops both a conductance dip
a peak halfway between these levelse2 ande3. One can then
observe a five peak structure in the conductance. When
levels of dots 2 and 3 are matched, the resonant peak s
ture of the dot systems behaves to a large extent the s
way as the coupled three-dot system.14

Now we turn to study the effect of the magnetic fluxF on
the conductance spectra of our square dot system. Figu
exhibits clearly the AB oscillations of the conductance a
function of the magnetic fluxf within a period at eF
50.1G. When the two arms of the dot ring are symmetr
i.e., the dot levels and interdot couplings are arranged to
the same, the conductanceG vanishes atf5p @Fig. 3~a! and
the solid line in Fig. 3~c!#. In the case of asymmetric arm
the conductance is nonzero within the whole period. T
vanishing ofG at f5p results from the complete destructiv
interference between the two symmetric arms, which will
analyzed in more detail below. If the two arms are not sy
metric, complete destructive interference is never achieva
and the conductance is always nonzero. The more asym

FIG. 3. AB oscillations of the conductanceG as a function of
magnetic fluxf in the case of symmetric dot-lead couplings (GL

5GR). The structure parameters are the same as in Fig. 2 and
Fermi energyeF is set to be 0.1G.
08530
d
-

e

2
r

h
ce
nd

he
c-

me

3
a

,
e

e

e
-
le,
e-

try between the two arms, the larger the conductance n
f5p. To get a clearer insight into the influence of
magnetic flux onG, we give in Figs. 4 and 5 the conductan
of the structure as a function of the Fermi energy for diffe
ent values of magnetic flux within half a period (f
50,p/4,3p/4,p), and different configurations of interdo
couplings and dot levels. The dependence of the conducta
on the magnetic fluxF is apparent. The magnitude of the A
oscillation strongly depends on the matching condition of
dot levels and the configuration of the interdot couplings
also differs for different pinning positions of the Fermi e
ergy at the leads. The presence of a magnetic flux can lea
the splitting@Fig. 5~b!# and combination@Fig. 4~c! and Figs.
5~a!, 5~c!, 5~d!# of conductance peak~s! since it changes the
interference between the two current paths, as determine
term 2(cosf21)t12t13t24t34 in Eq. ~9!. Another striking ef-
fect induced by the magnetic flux is that the central cond
tance peak, if present@Fig. 4#, becomes a conductance d
when the levels of dots 2 and 3 are aligned, while the Fa
type dip appearing in the case of mismatched levels is lif
~Fig. 5!, contrary to the usual conductance gap which s
vives in the presence of a magnetic flux@Fig. 4~c!#. This
feature is typically a result of the modified Fano phase int
ference by the magnetic flux. Whenf5p, the conductance
is depressed everywhere ife25e3 and t12t245t13t34, as
shown in Figs. 4 and Fig. 5~b!. The overall depression of th
conductance results from the complete destructive inter
ence between the upper-arm and lower-arm current pa
When e25e35e and t12t245t13t34, one finds G}2(1
1cosf)t12

2 t24
2 , which implies zero conductance for any valu

of the Fermi energy iff5p. We can also analyze it from th
interference pattern of the two current paths containing eit
dot 2 or 3. The respective transmission amplitudesT2

he
FIG. 4. Evolution of the conductanceG with the Fermi energy

eF for the case of symmetric dot-lead couplings (GL5GR) and the
levels of the four dots aligned, andf50 ~solid!, f5p/4 ~dashed!,
f53p/4 ~dotted!, andf5p ~dash-dotted!.
8-5
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5t12t24/(eF2e21 i01) and T35t13t34e
if/(eF2e31 i01)

equal T/(eF2e1 i01) and Teif/(eF2e1 i01), respec-
tively, whent12t245t13t345T ande25e35e. Then the total
transmission probabilityT5uT21T3u2 for electron tunneling
through the dot structure is proportional to 2T2

3(11cosf)d(eF2e), which is zero whenf5p.

B. Asymmetric coupling between dots and leads

In the preceding subsection we have reported in detail
linear conductance spectra in the absence and presence
magnetic flux, in the limit of symmetric dot-lead coupling
There we saw symmetrically located conductance peak
the dot levels are aligned, which is a consequence of
particle-hole symmetry. In this subsection, we want to stu
how the conductance is modified if the dot-lead couplin
are asymmetric.

We model the asymmetry between the dot-lead coup
GL andGR by settingGR5GL/2. Figures 6 and 7 present th
comparison of conductance spectra in the cases of symm
~thin lines! and asymmetric~thick lines! dot-lead couplings,
with structure parameters the same as in Figs. 4 and 5
spectively. A surprising feature in these figures is that
asymmetry between dot-lead couplings can remove the s
metry of the conductance spectra around some energy w
the energy levels of dots are not aligned@Figs. 7~c!, 7~d!#,
while it cannot if they are aligned~Fig. 6!. Also depending

FIG. 5. Same as Fig. 4, but with the levels of the four dots
aligned.
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on the value of the magnetic fluxf, the conductance in the
case of asymmetric dot-lead couplings is lifted@Figs. 6~a!,
6~c!, f53p/4# or suppressed@Figs. 6~a!, 6~c!, f5p/4 and
Fig. 7~a! f5p/4,3p/4#, as compared to the symmetric cas
We also observe another interesting phenomenon. Thet

FIG. 6. ConductanceG in the cases of symmetric dot-lead co
plings (GL5GR , thin line! and asymmetric dot-lead coupling
(GR5GL/2, thick line! for aligned four dot levels. The solid an
dotted lines correspond tof5p/4 and 3p/4, respectively.

FIG. 7. Same as Fig. 6 but for nonaligned levels.
8-6
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ductance changes in a nonuniform way when the dot-l
couplings become asymmetric. This is reflected in the ob
vation that some conductance peaks are lifted while the
ers are suppressed@Figs. 6~b! and 7~c!, 7~d!#. In addition, we
find that the asymmetric dot-lead couplings would introdu
a splitting of the conductance peak@Fig. 6~b!, Figs. 7~c!,
7~d!#. It is worth mentioning that the position of the condu
tance peaks remain nearly unshifted when the dot-lead
plings become asymmetric.

These features can be understood for linear conducta
from the analysis of the generalized spectral functionr(e) in
Eq. ~17!, which depends on the dot-lead couplingsGL and
GR . In the case of a single quantum dot, a difference in
value of the dot-lead couplingsGL andGR does not change
the position of the resonant transmission or conducta
peak, but does alter its height. In our case, the dependenc
GL andGR of the spectral function or conductance is mu
more complicated. However, it appears that a difference
tweenGL andGR does also modify the weight of the peaks
the generalized spectral functionr(e) in a complicated way
dependent on the applied magnetic flux. The position of
conductance peaks is kept intact by the difference betw
GL andGR .

IV. CONCLUSIONS

To sum up, we have investigated the transport proper
in the linear regime, of a two-terminal quantum dot squ
ys

s.
,

L
, i

a

08530
d
r-
h-

e

u-

ce

e

e
on

e-

e
en

s
e

enclosing a magnetic flux. Although our results are not
rectly applicable to more complex arrays involving mo
conducting paths and dots, we believe that our study w
provide insight into the physics of interference that such
rays will exhibit. Our main results may be summarized
follows: ~1! The AB oscillations of the conductance strong
depends on the configurations of dot levels and interdot
dot-lead couplings, along with the position of the Fermi e
ergy of the leads;~2! a striking conductance dip is develope
due to the Fano interference when the levels of the inter
diate dots are mismatched, and a novel five peak structu
observed for large mismatch;~3! the magnetic flux and an
asymmetric dot-lead coupling can induce the splitting a
combination of the conductance peak~s!; and ~4! the inter-
play of a magnetic flux and asymmetry between dot-le
coupling can lead to interesting AB oscillations of the line
conductance. If the electron-electron interactions are ta
into consideration, further structure in the conductance m
be expected due to the presence of an additional en
scale. Results in the regime in which such energy scal
relevant will be reported elsewhere.
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~1994!; J. Göres, D. Goldhaber-Gorden, S. Heemeyer, and M
Kastner, Phys. Rev.62, 2188 ~2000!; A.A. Clerk, X. Waintal,
and P.W. Brouwer, Phys. Rev. Lett.86, 4636~2001!.

18T.S. Kim and S. Hershfield, Phys. Rev. B63, 245 326~2001!.
8-7


