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Fano resonances and Aharonov-Bohm effects in transport through a square quantum dot molecule
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We study the Aharonov-Bohm effect in a couples 2 quantum dot array with two terminals. A striking
conductance dip arising from the Fano interference is found as the energy levels of the intermediate dots are
mismatched, which is lifted in the presence of a magnetic flux. A five peak structure is observed in the
conductance for large mismatch. The Aharonov-Bohm evolution of the linear conductance strongly depends on
the configuration of dot levels and interdot and dot-lead coupling strengths. In addition, the magnetic flux and
asymmetry between dot-lead couplings can induce the splitting and combination of the conductafsle peak
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[. INTRODUCTION between dots, the arrangement of dot levels and the magnetic
flux. In the present work, we do not take into consideration
The famous effect predicted by Aharonov and Bot&B)  the interdot and intradot electron-electron interactions. We
in 1959 (Ref. 1) concerns the essential influence of a vectoralso assume that just one level is relevant on each dot. This
potential on the interference pattern of two beams of elecallows us, on the one hand, to obtain some exact analytical
trons confined in multiply connected paths, over which theresults. On the other hand, we can gain much more clear
magnetic field is zero. It is manifested by the periodic oscil-Physical insight into the dependence of the conductance of
lation of the conductance of a ring or a cylinder as a functiorfhe system on the structure parameténgerdot couplings
of the enclosed magnetic fluk.? It has been shown that the and dot levelsand the magnetic flux. Though the model we
AB effect also exists in some s|ng|y connected geometry:OI’lSider is Simple, some novel and interesting results are
such as a point contact or a disk shape in a two-dimension&lbtained arising from the interplay of the specific configura-
electron gas, in which circulating edge states enclose a welfion of dot levels and interdot couplings, and the magnetic
defined magnetic flux A significant hallmark in mesoscopic flux.
experiments is the phase measurements of the transmission The rest of the paper is organized as follows. In Sec. Il we
amplitude through a quantum dot embedded in an AB ring irflerive the current through thex2 quantum dot array using
the Coulomb blockade reginfdt revived interest on the AB  the Keldysh nonequilibrium Green’s function formalism and
effect in condensed matter phystts. a recursive Green’s function technique. Section Ill presents
Quantum dots are highly tunable artificial mesoscopicthe linear conductance spectra of the dot array in the sym-
structure$, usually called artificial atoms or artificial mol- Mmetric and asymmetric coupling case. We also investigate in
ecules. Some novel physical properties, such as the Coulonfietail the Ahoronov-Bohm oscillation of the linear conduc-
blockade and the turnstile effect, have been demonstrated fance in some specific configurations of the dot levels and
some e|egant experimerﬁgb_\t low temperaturesy transport the interdot couplings. Our concluding remarks are given in
through a single quantum dot is dominated by resonant tunSec. IV.
neling and Coulomb blockade. When the condition for reso-
nant tunneling is not accessible, co-tunneling events involv- Il. FORMULATION

ing the simultaneous tunneling of two or more electrons Wi ider f dots | rancl
through a virtual intermediate level can be dominawthen € consider four quantum dots in a square arrayclos-

quantum dots are connected in series with tunneling barri’d @ magnetic fluxd (Fig. 1), with two dots facing each

er(s), it is expected that the coupling between dots plays £ther conne_cted to the Ieft and right leads. I_:or simplicity, we
crucial role in the transport properties of the coupled struci9nore the intradot and interdot Coulomb interactions, and

ture. On the other hand, electron tunneling through théSSUme that just one energy level is relevant at each dot.
coupled dot system is very sensitive to the incoherent scatthen the Hamiltonian describing such a system is
tering, which has trivial effects on the transport properties of
a single dof In the past decade, transport through coupled
guantum dot systems has received considerable amount of
attention?~

In this paper, we investigate coherent electronic transport
through four coupled quantum dots located at the four cor-
ners of a square enclosing a magnetic flux. This kind of
coupled dot structure is the basic unit of two-dimensional
quantum dot arrays. Our goal is to find out how the conduc- FIG. 1. Schematic plot of a:22 quantum dot structure enclos-
tance of such a structure depends on the coupling strengthg a magnetic flux® with two terminals.

H=H gor+ Hieadt Haotleads
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where €; is the energy level of dot,a.(ay),by(b,), and
di(d") (i=1,2,3,4) are the annihilatiofcreation operators
of electrons in the leffL) lead, right(R) lead and quantum
dot i, andt;; and V,,(Wp,) are the interdot and dot-lead
coupling matrix elements, respectively. In E@d), a factor
e'¥(p=2md/d,,P,=h/e) is attached td,5 to account for
the magnetic flux® through the structure.

The current flowing from the left lead to the structur®is

2ie (d
JL:TJ irL(e){fL(e)[Galdl( € Ggldl( €]
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The notation we use throughout BY9(t,t")=Fi0(=t
FUIEAX®), YT, Gyt t) = YT ()X(D),
X,Y=a,,bp,d; (i=1,2,3,4), I'.(e)=27|Vi1|?5(e—€y),
while f, (e)=[1+el¢"#U’keT]~1 is the Fermi-Dirac distri-
bution function of the left lead, with chemical potentia] .
The factor of 2 in Eq(2) is due to the spin degeneracy.
Following the recursive decoupling technique developed

in Ref. 14, the retarded Green'’s function appearing in(2g.
G[jldl(e) can be calculated from Dyson’s equation

Galdl=[e—el—2fjl]_1, ()
= tT [t + [t,47C
d, = 7 oL LTt Gy e, T 1113 “Ga 0,

+ t12t;367i¢é:12d3+ thatsa€’ ¢(~333d2 : 4

Here and in what foIIowé[j'if‘,'j< denote the Green’s function

which is decoupled from the quantum dit[k=min(,j)
—1]. In the above and following equations we drop the ar-
gumente, and recover it wherever necessary. Following a

+Gg g (€)}. (2)  similar recursive decoupling method, one has
|
i *
~ (e—€3)| €~ €45 R| ~ladls
szzdzz i ) (5)
(e—€5)(e— 63)( €~ €4t EFR) —tosts(€— €3) —tagzy(€—€3)
i *
B (e—€)| e~ €4+§FR — oty
Gtrd3d3= i ) (6)
(e—€)(e— 53)( €— E4+§FR) —tosts (€~ €3) —tagz( €~ €3)
~ toatza
Gazdsz i ) (7)
(E_ 62)(6_ 63)( €— E4+§FR) _t24t§4(6_ 63) _t34t§4(€_ 62)
= tad3s
G:j3d2: ’ (8)

i
(e—€))(e— 63)( €— f4+§FR) —togts (€ €3) —tagtzy(€— €3)

wherel'g(€) = 277|Wp4|25(e— €p)- In the following we will assume that the coupling matrix elemeMg, (W,4, andt;;) are
real since the tunnel rates just depend on the amplitude of the coupling matrix elements. Substitutio®fER)snto Eq.

(4) yields
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i
€— €4+§FR) [tiAe— €3) +tig €~ €3)]— (115, 115, + 2 COSPtoot1at oat s

i
2o (e=—5T+ ; ©)
(e—€y)(e— 63)( €— €4+ EFR) —t§4(e— €3) —t§4(e— €)
|
It can be seen from the above expression that the AB effedh which
manifests itself in an additional term 2(cés 1)t t1atoataa I'.(e)['r(e)
in the selfjene_zrg)Edl of dot 1 Greens_ function, the domi- T(e)= mp(e),
nant contribution to the spectral density of the structure.
We now have to calculate the lesser Green’'s function 2[T (e)+Tr(e)] i
Gy 4. - It can be obtained from the Keldysh formula ple)=— Im[24 (e)+ 5T (e)
1% Tr(e) 1972
Gg,d,=Gu,¢,2a,68,4,= %q,1Ga,q,1* (10) 1 2
— 17)
where e— 61—231(6)

< . 2 R<
= + . . . - .
g, =ifL(aTL ig,gtl'edidi is the transmission probability for an electron passing

o o through the quantum dot square structure. Equaiib&sand
+tlztlge"¢G§2d3+t12t13e'¢G§3d2. (1) (17 are the central results of this work. It can be seen that
3 the transmission probability and current are proportional to
The lesser Green’s functior@jidj (i,j=2,3) can be calcu- the dot-lead couplingsI{_ ,I'gr) and a generalized spectral

lated from the following Keldysh equation density functionp(e) of the system. Note that the current
includes contributions from the upper arm path{2—4),
é;d_: E éﬁvd N; § (”3& . ij=23, (12 and the bottom arm path (23—4), which interfe_re With_
I mp=23 Tm Tmtn Ent each other. At zero temperature, the conductance in the linear
Where regime limit u, =~ ur— € becomes
< if (€)' rtmatna 22 T\ T
Sig=——7 m,n=2,3. (13 G(d)= LR (18)

mdn (6_64)2+F§/4’ TFL'FFRP(GF).
HerEfR(f_):[1+e(ETMR)/kBT]71 is the Fermi-Dirac distribu- |, ohtaining Eq.(18) the wide-bandwidth approximatiéh
tion function of the right lead, with chemical potentjaj . It has been used, i.e., the linewidthig andT'y are constants

is worth noticing that the above procedure of calculating th‘?ndependent of energy. From the expression of the self-
various kinds of Green'’s functions can be verified to give theenergy (9) one can find that the linear conductagic®) is
same results as the equation-of-motion methid@ombining 5 periodic function of the magnetic fluk, with periodicity

Egs.(6)—(10) we find ®,=h/e, andG(P)=G(— P). These observations are con-
_ _ _ oo C sistence with the general results of the two-terminal setup of
Gy9,=| ifL(e)'L—2ifR(€)Im Ed1+ EFL |Gd1dl| . the AB ring?
When quantum dot 2or 3) is decoupled from the system,
14
) i.e., t1o=1,4,=0 (or t;3=t3,=0), we recover the results for
Notice that the coupled triple quantum dot chéin
r a 1 1 r 2
Gdldl_ dyd; G G |Gdld1 2e
did;  Pdydy J:JL:FJ de[f(e) —fr(e)]T5(e), (19
=2iIm[24,1|Gg,q, | (15

where the transmission probability is
Substituting Egs(14) and(15) into Eq.(2), one then obtains

the current entering the structure from the left lead T3(€) =T Trltyi?[tis) 2A(e), =2 (or 3). (
20)

2e
=L ddtia-taamma, a0 o,

[(e— )+ THAIN[ (e~ €)[ (e~ €2)+ T 3]~ tFy(e— €)1+ |tr| T E/4}

i=2 3), 21
[e—e;—t2.ReB(€)?]+ [T — 2t2.1mB(€)%/4] ! (or 3 @)

A(e)=
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Where 2 e‘=sz=e3=ed=0
( a) to=t o=ty =t,,=0.5T"
t»24 -1 - -« - -t =t,;=0.5T; t,,=t,=1.00
B( E) = €E— € — ! | s | = 2 (Or 3) . 4L s .'-.‘t‘2=134=0.51':;-'t13=t2‘=1.—(.)'1"
e—e + _F . SN, kY . P
4 2 R =
(22) ~
N
When the levels of the three dots are aligned, we find the o 2 P~
condition for complete transmissiofd=1) to be Q (b) 0 bt 0
[¢)] Tt t12=t24=t13=24=1 or
(6]
til F L . c 1 ,’~‘\ A A
S =T =2 (or 3). (23 © DN ' Y
t: FR .'G H . . i Y
i4 ! - AU
It can be expected that the criteria for complete resonant _8 0 hmmes 0 : 5 ==
transmission or maximum peak conductance plays an impor- 8 2 7=, =5, =05
tant role in the formation of conductance peaks with the con- (c) Sl emen0r
ductance quantae?/h for the square quantum dot array. ceeee 8=0; €=0.25T; ¢,=0.5T; €,=0.75T

[ll. LINEAR CONDUCTANCE CHARACTERISTICS

A. Symmetric coupling between dots and leads 0

It is well known that the two-terminal conductance of an
AB ring is a periodic even function of the enclosed magnetic
flux @.° The oscillation of the conductance, with periodicity ~ FIG. 2. Conductancé as a function of Fermi energgk in the
h/e, results from the quantum interference between the pathsase of symmetric dot-lead couplings (=I'g) and in the absence
located in the upper and lower arms of the ring. For electrorof magnetic flux when the levels of the four dots are aligt@dind
tunneling through a single dot, the conductance peak reachest aligned(b), (c).

its maximum wherd" =T'g. In the coupled double quantum )
dot structure with aligned energy levels, the conductanc&Uctance gap. The separation between the two group centers

peak reach a maximum value and splits into a double pea® mainly detgrmined by the larger interdot coupling, and the
with peak separation 23— T'2/4)*2 when the interdot cou- peak separation of each group by the_ s_maIIer one. The peak
pling t becomes larger than the width of the pekn the and group center separations have trivial dependen(_:e on the
symmetric dot-lead coupling ca&&For the three coupled dot-lead couplings’, andI'g in the coupled quantum dimers
dot string, the situation is more complicated, though the con@5€- The conductance gap is introduced by the larger cou-
dition for maximum conductance peak is the simple &) pling strength between the two dimers and can not be lifted
since the levels of the dots are aligned. We expect that thBY @ magnetic flux, contrary to the case of the Fano conduc-
conductance peak will split into three maxima when the in-t@nce dip discussed below. The gap can be broadened by
terdot coupling becomes larger than the width of the peak, adicréasing the coupling strength t,, (and/ortz,) between

in the double dot case. the two dimers. , , ,

For further comparison, we first calculate the linear con- F19Ures b), 2(c), displaying cases of mismatched levels,
ductance of the quantum dot array in the absence of th&NowW more interesting conductance spectra. \Whgr t;5
magnetic fluxd and in the symmetric dot-lead coupling case = t24= ta4 @ striking novel conductance digi€0) appears
(T =TR). Throughout this paper, energy and coupling halfway between the energy levels of dots 2_ar[E|§s. c)
strengths are measured in units Bf=T". The results for and dashed line in(B)] if these Ievgls are different. When
aligned levels and various kinds of interdot coupling con-t12=t24<t13=ts4 the conductance dip is pinned at the energy
figurations are shown in Fig.(@, while Figs. Zb), 2(c) are Ieve_I of thg quantum dot with _small couplings to the _sy_stem
for different arrangements of the dot levels. When the fourS0lid line in Fig. Zb)]. The middle peak appears split into
dot levels are aligned, three conductance peaks appear /0 @symmetric peaks. The asymmetry between the two split
t;,=t;3 and t,y=tss. Then the conductance possesses th&eaks depends on the mismatch between the energy levels of

same three resonant peak structure as the three dot strin&‘?ts 2and 3, as well as the arrangement of the levels of other
One can also find that the criteria for complete resonanfiots 1 and 4. Novel five spikdthe dashed line in Fig.(8)]

transmission for the three-dot systems manifests itself in ouf? the conductance can be seen if the mismatch between the
devels of dot 2 and 3 is large enough. The dip results from a

Jdano interferenc® between two distinct current paths, one

from the upper and lower three-dot arms. Whip=ts,  P€iNg g;ff’sah nonr((ajsonant andb the otr|1|er _r%?ndwect
<t15=t,, the situation becomes different. In this case, ond €Sonant. = The conductance can be generally writteas

can consider the dot structure as a system of two coupled= Gnod (€+ (1)2/(752+ 1)1, where Gy, is the nonresonant
quantum dot dimers. One observes in the conductance spesenductancee= e— €., and q is the “Fano parameter”
tra four peaks, arranged in two groups separated by a comssessing the asymmetry of the line shape. Two limiting

in our case is simply the superposition of the contribution
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e =g,=g,=¢,=0 =¢g,=¢,=¢€,=0
- 1 (a) :12=::3=§‘5=t3410.5tr 1.0 (a) t:z'tia':z‘t:t =0.5T"
= - - §=1,3=0.5T; 1,,=t,,=1.0T =
- t,=t,,=0.5T; t, .=t =1.0r —~ 1
~ b <~
o /
q) ~
N
[¢)]
o 0 : :
D 1=sz=e"=0 s3=1 .or £\I/
O (b) _ t,=t, =0T t =t =1.00 @ (b) € =e,=€,=¢,=0
% - b=, =t, =, =1.0r o 1t t,,=t,,=0.5T; t,,=t,,=1.0r
5 - S
= } \\‘ /'I -I‘E
O o (&)
C e - 3
8 0 toty =t,y=t,,=0.6T -8
(c) ol re 08T 8 wemeyme =0
- - &=£,=0; &;=¢,=0.5I" T
b e &,=0; &,=0.25[; £,=0.5T; &,=0.75T (C) bt =05 fe=t,=1.07
FIG. 3. AB oscillations of the conductangeas a function of
magnetic flux¢ in the case of symmetric dot-lead couplinds, ( FIG. 4. Evolution of the conductand® with the Fermi energy
=FR)_. The strugture parameters are the same as in Fig. 2 and theeF for the case of symmetric dot-lead couplindy €I'g) and the
Fermi energyee is set to be O.IL. levels of the four dots aligned, arb=0 (solid), ¢= /4 (dashe]
g

¢=3ml4 (dotted, and ¢= 7 (dash-dotteg

cases exisfRef. 11b)]: (a) g— o, with a dominating reso-
nant transmission resulting in Breit-Wigner resonances antty between the two arms, the larger the conductance near
(b) g—0, with a dominating nonresonant transmission lead<=m. To get a clearer insight into the influence of a
ing to asymmetric dips. Since hetg,=t;3=t,,=t3,, one  magnetic flux org, we give in Figs. 4 and 5 the conductance
can consider either the arm consisting of dot 2 or 3 as thef the structure as a function of the Fermi energy for differ-
resonant(nonresonantpath. This special symmetry locates ent values of magnetic flux within half a periode (
the Fano-type conductance dip at neither the level of dot 2=0,w/4,3w/4,), and different configurations of interdot
nor that of dot 3, but halfway between them. On the othercouplings and dot levels. The dependence of the conductance
hand, whent,=t;3=t,,=t34, we find from Eqgs.(9), (17), on the magnetic flud is apparent. The magnitude of the AB
and(18) that G« (2eg— e,— €3)/(er— €,) (e — €3) . Itis evi-  oscillation strongly depends on the matching condition of the
dent that two resonance peaks exist whgn=¢e, and e dot levels and the configuration of the interdot couplings. It
= €3, While G=0 when e-=(e,+ €3)/2, which is just the also differs for different pinning positions of the Fermi en-
position of the Fano conductance dip. For large mismatclergy at the leads. The presence of a magnetic flux can lead to
between energy levels of dots 2 and 3, Fano interferencthe splitting[Fig. 5(b)] and combinatioriFig. 4(c) and Figs.
between the two paths develops both a conductance dip arfida), 5(c), 5(d)] of conductance pe&® since it changes the
a peak halfway between these levejsande;. One can then interference between the two current paths, as determined by
observe a five peak structure in the conductance. When tHerm 2(cosp— 1)t t15to4t34 in Eq. (9). Another striking ef-
levels of dots 2 and 3 are matched, the resonant peak strufect induced by the magnetic flux is that the central conduc-
ture of the dot systems behaves to a large extent the sant@nce peak, if preserFig. 4], becomes a conductance dip
way as the coupled three-dot syst&h. when the levels of dots 2 and 3 are aligned, while the Fano-
Now we turn to study the effect of the magnetic fdixon  type dip appearing in the case of mismatched levels is lifted
the conductance spectra of our square dot system. Figure(8ig. 5, contrary to the usual conductance gap which sur-
exhibits clearly the AB oscillations of the conductance as aives in the presence of a magnetic fllixig. 4(c)]. This
function of the magnetic flux¢ within a period ater  feature is typically a result of the modified Fano phase inter-
=0.1I". When the two arms of the dot ring are symmetric, ference by the magnetic flux. Whef= 7, the conductance
i.e., the dot levels and interdot couplings are arranged to bis depressed everywhere #=¢e; and tity=ti3ts,, as
the same, the conductan@evanishes atp= 7 [Fig. 3@ and  shown in Figs. 4 and Fig.(). The overall depression of the
the solid line in Fig. &)]. In the case of asymmetric arms, conductance results from the complete destructive interfer-
the conductance is nonzero within the whole period. Theence between the upper-arm and lower-arm current paths.
vanishing ofg at ¢= 1 results from the complete destructive When €= €3 =€ and tystos=tigtss, one finds Gx2(1
interference between the two symmetric arms, which will be+ cosé)té,t3,, which implies zero conductance for any value
analyzed in more detail below. If the two arms are not sym-of the Fermi energy ith= 7. We can also analyze it from the
metric, complete destructive interference is never achievablénterference pattern of the two current paths containing either
and the conductance is always nonzero. The more asymmedet 2 or 3. The respective transmission amplitudes
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e =e,=¢,=¢,=0
( a ) t,,=t,,=t,,=t,,=0.50"

( b) e,=¢,=e,=¢,=0

1l t,,7t,,=0.5T; t,,=t,,=1.0T

Conductance (2 e’/ h)

( C ) &,=€,=e,=¢,=0

t,,=t,,=0.5T; t,,=t,,=1.0r

FIG. 6. Conductancg in the cases of symmetric dot-lead cou-
plings ' =Tk, thin line) and asymmetric dot-lead couplings
(F'r=T"_/2, thick line for aligned four dot levels. The solid and
dotted lines correspond = 7/4 and 3r/4, respectively.

on the value of the magnetic fluk, the conductance in the
case of asymmetric dot-lead couplings is liftgelgs. Ga),
6(c), ¢=3ml4] or suppresseffFigs. 6a), 6(c), ¢= /4 and
Fig. 7(a) ¢=m/4,3w/4], as compared to the symmetric case.

FIG. 5. Same as Fig. 4, but with the levels of the four dots notWe also observe another interesting phenomenon. The con-

aligned.

:t12t24/(€[:_ €2+ | O+) and T3:t13t34ei¢/(€[:_ €3+ | O+)
equal T/(eg—e+i0") and Te'%/(eg—e+i0"), respec-
tively, whent ,t,y=t43t3,=T ande,= e3= €. Then the total
transmission probabilitg=|T,+ T,|? for electron tunneling
through the dot structure is proportional to T2
X (1+ cose)dez—€), which is zero whenp= 1.

B. Asymmetric coupling between dots and leads

In the preceding subsection we have reported in detail the
linear conductance spectra in the absence and presence of a
magnetic flux, in the limit of symmetric dot-lead couplings.
There we saw symmetrically located conductance peaks if
the dot levels are aligned, which is a consequence of the
particle-hole symmetry. In this subsection, we want to study
how the conductance is modified if the dot-lead couplings
are asymmetric.

We model the asymmetry between the dot-lead coupling
I'L andI'g by settingl'g=T1"| /2. Figures 6 and 7 present the
comparison of conductance spectra in the cases of symmetric
(thin lines and asymmetric¢thick lines dot-lead couplings,
with structure parameters the same as in Figs. 4 and 5, re-
spectively. A surprising feature in these figures is that the
asymmetry between dot-lead couplings can remove the sym-
metry of the conductance spectra around some energy when
the energy levels of dots are not alignglgs. 7c), 7(d)],
while it cannot if they are aligne¢Fig. 6). Also depending
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FIG. 7. Same as Fig. 6 but for nonaligned levels.
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ductance changes in a nonuniform way when the dot-leadnclosing a magnetic flux. Although our results are not di-
couplings become asymmetric. This is reflected in the obserectly applicable to more complex arrays involving more
vation that some conductance peaks are lifted while the otheonducting paths and dots, we believe that our study will
ers are suppressé¢Higs. §b) and 7c), 7(d)]. In addition, we  provide insight into the physics of interference that such ar-
find that the asymmetric dot-lead couplings would introducerays will exhibit. Our main results may be summarized as
a splitting of the conductance pedkig. 6(b), Figs. 4c),  follows: (1) The AB oscillations of the conductance strongly
7(d)]. It is worth mentioning that the position of the conduc- depends on the configurations of dot levels and interdot and
tance peaks remain nearly unshifted when the dot-lead cowot-lead couplings, along with the position of the Fermi en-
plings become asymmetric. ergy of the leads(2) a striking conductance dip is developed
These features can be understood for linear conductanaiie to the Fano interference when the levels of the interme-
from the analysis of the generalized spectral funcgie) in diate dots are mismatched, and a novel five peak structure is
Eq. (17), which depends on the dot-lead couplinigs and  observed for large mismatcli3) the magnetic flux and an
I'r. In the case of a single quantum dot, a difference in theassymmetric dot-lead coupling can induce the splitting and
value of the dot-lead couplinds, andI'; does not change combination of the conductance pésik and (4) the inter-
the position of the resonant transmission or conductancplay of a magnetic flux and asymmetry between dot-lead
peak, but does alter its height. In our case, the dependence onupling can lead to interesting AB oscillations of the linear
I' . andI'k of the spectral function or conductance is muchconductance. If the electron-electron interactions are taken
more complicated. However, it appears that a difference bento consideration, further structure in the conductance may
tweenl"| andI's does also modify the weight of the peaks in be expected due to the presence of an additional energy
the generalized spectral functigife) in a complicated way scale. Results in the regime in which such energy scale is
dependent on the applied magnetic flux. The position of theelevant will be reported elsewhere.
conductance peaks is kept intact by the difference between
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