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ABSTRACT

In this work, we have faced a critical problem in winemaking, harvesting task, char-

acterized by high uncertainty. This thesis focuses on the decision-making process from

the point of view of operations research, helping to bridge the gap in the literature where

stochasticity has not been directly addressed.

We introduce multi-stage stochastic programming for the harvest process by consid-

ering different grape qualities, with quality degradation curves that depend on time and

climatic conditions, the variable event. Decisions are about labor and its allocation to dif-

ferent lots to advance the task. The labor force may have different flexibility to cope with

the rain, partially maintaining its productivity during dry periods. Stochastic multi-stage

models also present a form of flexibility corresponding to the time when decisions are

made. Both flexibilities are evaluated through the impact they generate on economic per-

formance. The models that support decisions, multi-stage stochastic programming, and

the traditional expected value problem, are compared. All of this is evaluated for various

uncertainty conditions.

The computational effort, measured as the optimization time, appears as an obstacle

to implement the multi-period model. To address this problem, we proposed the rolling

tree algorithm, which resulted in a competitive tool. We test different configurations in the

time structure and arrive at some conclusions that shed light on the relative weights in the

expected gap versus the stochastic multi-period option, both in time and economic terms.

We also analyze a notion of risk for the rolling tree approach.

This thesis contributes to filling the literature gap on the stochastic approach in fresh

products, especially in agriculture and wine grapes. We also determine the impact of

different types of flexibility under conditions of uncertainty, finding patterns that help in

the choice of models to support management, focusing on economic performance. These

types of conclusions are welcome, given that due to the multidimensional nature of flexi-

bility and its difficulty in being measurable, they are difficult to reach. In the same vein,

the rolling tree approach proposal offers a new model that maintains the advantages of

xvi



stochastic multi-period but with less computational effort, giving greater versatility to sto-

chastic modeling.

Keywords: multistage stochastic programming, flexibility measures, rolling tree approach,

computational effort, trees comparative, agriculture, fresh product, wine grape.
xvii



RESUMEN

En este trabajo, nos hemos enfrentado a un problema crı́tico en la elaboración del

vino, la labor de vendimia caracterizada por su alta incertidumbre. Esta tesis se centra

en el proceso de toma de decisiones desde el punto de vista de la investigación operativa,

contribuyendo a acortar el vacı́o de la literatura, donde la estocasticidad no se ha abordado

de forma directa.

Introducimos la programación estocástica multietapa para el proceso de vendimia me-

diante, considerando diferentes calidades de uva, con curvas de degradación que dependen

del tiempo y las condiciones climáticas, que es el evento variable. Las decisiones son so-

bre mano de obra y su asignación a distintos lotes para avanzar en la tarea. La mano de

obra puede tener distinta flexibilidad para enfrentar la lluvia, manteniendo parcialmente

su productividad de periodos secos. Los modelos multietapa estocástico, también presenta

una forma de flexibilidad, correspondiente a la época en la que se toman las decisiones.

Ambas flexibilidades son evaluadas a través del impacto que generan sobre el sobre el

desempeño económico. Los modelos que soportan las decisiones y son comparados son

la programación estocástica de varias etapas y el problema del valor esperado tradicional.

Todo esto es evaluado para diversas condiciones de incertidumbre.

El esfuerzo computacional, medido como el tiempo de optimización, aparece como

un obstáculo para implementar el modelo multiperiodo,. Para enfrentar este problema,

propusimos el algoritmo de árbol rodante, que resultó en una herramienta competitiva.

Repasamos diferentes configuraciones en la estructura temporal y llegamos a algunas con-

clusiones que arrojan luz sobre los pesos relativos en la brecha esperada frente a la opción

multiperiodo estocásticas, tanto en términos de tiempo como económicos. También anal-

izamos una noción de riesgo para la aproximación de árbol rodante.

Esta tesis contribuye a llenar el vacı́o de la literatura sobre el enfoque estocástico en

productos frescos, especialmente en agricultura y en uva de vinificación. También deter-

minamos el impacto de diferentes tipos de flexibilidad en condiciones de incertidumbre,

encontrando patrones que ayudan en la elección de los modelos para apoyo a la gestión,

xviii



enfocándonos en el desempeño económico. Este tipo de conclusiones son bienvenidas,

dado que, por el carácter multidimensional de la flexibilidad y su dificultad para ser men-

surable, son difı́ciles de alcanzar. En la misma lı́nea, la propuesta del enfoque rolling tree,

ofrece un nuevo modelo que mantiene las ventajas de multiperiodo estocástico, pero con

menor esfuerzo computacional, dando mayor versatilidad al modelado estocástico.

Palabras Claves: Programación estocástica multietapa, medidas de flexibilidad, árbol de

horizonte rodante, tiempo computacional, comparativa de árboles de decisión, agricultura,

producto fresco, uva de vinificación..
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Chapter 1

Introduction

In the discipline of operations research, optimization tools and other quantitative al-

gorithms are added to support the decision-making process in a highly uncertain environ-

ment. The most straightforward approach is through deterministic methods that propose

a perfectly-known future. Uncertainty does not exist, and the planning step gives a set

of decisions that do not require updates because no new information is introduced. This

approach may approximate some uncertainty cases where the effect is minor or when a

small variability exists. For other issues, the simplification results in the wrong decisions

being made at a high cost, considering that the variability in the system’s state increases

the complexity and size of the problem. In some cases, the probability distribution or the

stochastic process was undefined. If the probability distribution is available, the stochastic

approach that treats the continuous distribution as a discrete one (both represent the same

probability space with a controlled loss) can be used. Different techniques could be used

to solve the problem.

Stochastic processes could lead to different paths, with potential growth in the num-

ber of feasible scenarios if the time horizon increases. If the uncertainty realizations are
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exhaustively enumerated, high computational efforts will be required, resulting in an in-

crease in the solving time in terms of the practitioner’s requirements. To face this cardi-

nality, reduction and generation scenario algorithms have been proposed. Questions were

derived from investigating the reliability of the forecasts for use in the age of the scenar-

ios, the method of scenario selection (if available) to capture the system’s dynamic, and

the necessary number of scenarios. Other issues include the probability space where the

stochastic process lives because it is not always available or defined; in such cases, differ-

ent approaches such as the robust and fuzzy optimizations should be used. If the space is

limited into several divisions during discretization, the number of possible states or nodes

and the size of the problem increase.

Planning tasks is difficult when variability is present, but choosing the tools may make

finding a solution harder instead of facilitating it. Planning outcome is a set of decisions

linked to the state system; thus, the stability and granularity (number of them) are essential

from a practical standpoint. The trade-off between precision and pragmatism is critical to

practitioners, contributing to expanding the operations research field.

A consistent way to adjust the system behavior when the original program is affected

by a strange event is to have extra capacity waiting for the instance to act or to react

more appropriately. Additional capacity refers to the capacity of an organization that is

over-maintained for the sole purpose of using it as a reaction when something goes out of

schedule. Extra capacity expresses itself in different ways depending on the business, but

in all cases, an additional cost is associated. This extra cost could be an anecdote if the

unplanned event occurs in such a way that the use of the excess capacity balances the op-

posing perspective. If the additional capacity is used less frequently, the costs are reduced.

The idea of extra capacity is linked to a more general concept, ”flexibility.” Flexibility

is typically used so that the definitions could differ slightly. Still, it is generally accepted

that flexibility is related to the ability to re-allocate or re-distribute resources (products,

capacities, or services) most effectively after any uncertainty (demand, supply, or others)

has been revealed (Chen et al., 2018). Its nature is linked to uncertainty management

because it gives the possibility to adjust resources depending on the state of the system.
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Another aspect to consider is the hierarchical nature of decisions. Most operational deci-

sions are discussed frequently, in some cases, daily; however, tactical decisions belong to

the midterm but influence the flexibility or ability to react to variable environments. For

example, choosing a particular technology could increase capacity and affect decision-

making during strategic planning. In such cases, extra capacity could be acquired and

made permanently available, and the idle fraction taken as a sunk cost.

However, not only can flexibility be implemented on resources, but it can also be im-

plemented in the decision-making process, i.e., varying the number of stages or instants

where decisions are made, or by anticipating or postponing decisions (Mandelbaum and

Buzacott, 1990). “Adjusting” or modifying the originally planned decisions as the differ-

ent states of nature affects the planning process because the change in the time for making

decisions results in additional costs; thus, an economic analysis of this stochastic environ-

ment should be conducted.

Agricultural planning is highly affected by this complexity, especially given the num-

ber of sources of uncertainty that are present. The market structure, biology of the prod-

ucts, and the management of industrial and farm operations are highly stochastic. Chile’s

agriculture sector directly accounts for 3% of the country’s GDP and approximately 13%

of the GDP if relative industries (with high impact in different regions) that create oppor-

tunities for local economies were considered (Banco Central de Chile, n.d.). The effective

management of this issue in the Chilean economy critically impacts the country’s position

in international markets and, more importantly, the stability of the local economy. Among

other valuable products, Chilean wine stands out.

The Vitis Vinifera, the scientific name of the wine grape, is strongly affected by spe-

cific geographical and climatic conditions that generate different characteristics of flavor

and intensity, which causes variations in the wines obtained. These characteristics must

be preserved during industrialization, especially if the taste, flavors, and aspects are fac-

tors used in differentiation. However, farm operations are more critical because the input

quality for the industrial process has rarely been improved. There are several operations
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on the farm, and among them, pruning and monitoring the vineyard during the pre-harvest

and harvest phases are the most important. The harvest is also of great importance; once

the fruit is harvested, the biological cycle in the plant stops, and the degradation process

begins. Thus, rapid industrialization is required.

The ripening process can be negatively affected by the effect of rains. There is no con-

sensus on how the intensity of rainfall affects the ripening process since some conditions

do not allow the isolation of this influence. However, there is a consensus that indicates

that beyond a certain threshold of rain intensity, there is a water absorption effect that

brings about a series of inconveniences: low levels of sugar concentration due to dilution

effect of the absorbed water, weight gain that can end in the shelling of the bunch, and

swelling of the grape grain, which can lead to the breakage of the skin and the consequent

development of diseases (Coombe, 1992). For the harvest problem, the decisions to be

made are the number of the labor force, their qualifications, the time of hiring and termi-

nation, where to harvest, and in what quantity. In this study, we treated the harvesting task

for the Vitis Vinifera as a multi-period stochastic problem to understand how this model

adds value to the farmer in different conditions of uncertainty and resource flexibility. To

do that, we used a simplified (but accurate) decision model as a basis. Three main focus

points were developed for this document: 1) generation of a multi-period stochastic model

value for decision-making, which was compared to the simplified approach under different

conditions of uncertainty and flexible resources, 2) the different times of decision-making

and their impact on the value of the solution, incorporating different degrees of flexibility

in the environments where the constitution of work teams is feasible, and 3) the size of

the problem for multi-period optimization, reported in the literature as highly demanding

computationally.

The primary motivation to tackle this problem from a stochastic point of view is the

scarcity of the literature for this type of application, with the real problem requiring fine-

tuning of the model due to the complexity of the task when several lots are being managed.
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To do this, we modeled the harvesting stage using different alternatives, ranging from

deterministic to stochastic optimizations, under other conditions of uncertainty (repre-

sented by probability distribution) and in the presence of flexible resources of various

degrees. In addition to the traditional methods of flexibility (resources), we explored the

impact of the number and periods of stages on the expected results of the system. We at-

tempted to understand which conditions are sources of flexibility for the decision-making

models. Finally, we determined the program’s size, a practical problem linked to the com-

putational effort and complexity.

1.1. Objectives

The main objective of this study is to model the decision-making process for wine

harvesting under uncertain conditions and solve the different optimization problems that

occur considering the existence of flexibility sources; to determine the impact of value

generation in an agriculture case under uncertain conditions.

The specific objectives are:

i To study the current literature and synthesize it in a state-of-the-art analysis

ii To model and solve the harvesting problem using the expected value problem approach

and multistage stochastic programming variants, considering quality degradation in an

uncertain context.

iii To determine the impact on the system’s value on different types of optimization mod-

els for other conditions of uncertainty when flexible resources are present.

iv To develop, model, solve and analyze a novel approach for reducing the size of the

multistage problem.

The contributions of this thesis are threefold:

i Regarding the modeling of the harvesting case in a stochastic way: the stochastic

nature of the problem is acknowledged in this thesis, and a model provided that can be

solved without simplifying the modeling process. As most studies in the literature use
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deterministic approaches or reduce the problem to an expected value, the gap between

the actual application and the published ones is filled in this.

ii Regarding the impacts of the different sources of flexibility: the available literature

states that flexibility is multidimensional. Its value has been studied in the industrial

environment, but this kind of analysis is still new in the agricultural field. Even though

recourse actions are a natural source of flexibility for a stochastic approach, this work

investigates the specific relationship between the different sources of flexibility, uncer-

tainty events, and models that support the decision-making process. This analysis has

been recognized as a poorly explored field, and this thesis contributes to that line.

iii Regarding the tractability problem for the multistage stochastic approach: reducing

and generating algorithms are the two main methods used to tackle the tractability

problem in a multistage stochastic process. In this study, we proposed a novel applica-

tion to reduce the computational effort for the rolling horizon algorithm, maintaining

acceptable performances losses. The proposed model (Rolling Tree Approach) offers

the granularity of the decisions in the short term, combined with a simplified view of

the future. This avoids the myopic approximations of the other methods in the liter-

ature and limits the loss of performance due to the value of the temporal parameters.

Additionally, we went beyond the content in the literature to indicate the conditions of

uncertainty and the convenience of the novel algorithm.

1.2. Wine Industry in Chile

The fig 1.1 shows the annual wine production by country. Traditional winemakers like

France, Italy, and Spain contribute to the total output. Aside from Chile, Australia and

Argentina are the other new players on the international market.

However, although Chile’s production is smaller than other countries, it plays a crit-

ical role in international exportation. Table A.1 shows that Chile occupies one of the

top four positions at the global level with 9% of the total exported volume. Regarding

the commercial impact, wine accounts for 6% of the exports without considering copper

and approximately 16% of the agriculture-relative exports (Banco Central de Chile, n.d.).



7

Figure 1.1. Wine Production in 2018 in different countries. Source:
International Organisation of Vine and Wine (n.d.)

Table 1.1. Main exporters in millions of hl. Source: International
Organisation of Vine and Wine (n.d.)

Country 2014 2015 2016 2017 2018

Spain 22.0% 23.0% 22.0% 21.0% 20.0%

Italy 20.0% 19.0% 20.0% 20.0% 18.0%

France 14.0% 13.0% 14.0% 14.0% 13.0%

Chile 8.0% 8.0% 9.0% 9.0% 9.0%

Australia 7.0% 7.0% 7.0% 7.0% 8.0%

South Africa 4.0% 4.0% 4.0% 4.0% 5.0%

Germany 4.0% 4.0% 3.0% 4.0% 3.0%

USA 4.0% 4.0% 4.0% 3.0% 3.0%

Portugal 3.0% 3.0% 3.0% 3.0% 3.0%

Argentina 3.0% 3.0% 3.0% 2.0% 3.0%

New Zealand 2.0% 2.0% 2.0% 2.0% 2.0%

Thus, this sector is essential and needs its value to be maintained all over the supply chain,

which is linked very strongly to the perceived quality of the product.
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Figure 1.2. Exportation statistics: Volume and Price

The figure 1.2shows the evolution of exported volumes for the Chilean case. Two

different groups exist based on the exportation data, which depends on the appellation

of origin (AO) certificate. Technically, the wines with an AO are from specific regions

established by a ministerial decree that reaches certain standards. The total volume of the

Chilean exportations has been increasing in the last twenty years, with a slight drop in

the previous three years. The AO and bulk exportations follow the same patterns; thus,

it is essential to highlight that the AO volume is approximately 15% bigger than the bulk

because AOs have a higher added value at the time of export, the value that is created in

Chile. The figure 1.2 shows the average exportation price for the 2000-2020 period. It can

be seen that the prices are stable, and the AO price is up to 6 times the price of the bulk

exports, but the costs are also higher.

Lima, J.L. (2015), China is the leading exporter with 15% of the annual volume for

AO wine, followed by Japan, the United Kingdom, and Brazil, with approximately 11%

each. These four countries account for about 50% of the monetary terms.

Besides the international market, Memoria Anual 2019 Vinos de Chile (n.d.) indicate

that the annual inner wine consumption per capita is 14.1 liters (2019). The local market

size reached almost USD 1,000 million, with an annual volume of 248.4 million liters. The
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wine industry accounts for approximately 0.5% of the Chilean GDP and is responsible

for 100,000 direct jobs, 53% of who work in vineyards Memoria Anual 2019 Vinos de

Chile (n.d.). According to Castastro Viticola Nacional 2019 Vinos de Chile (n.d.), the

surface area of wine grapes reached the 136,000 ha mark in 2019, with 26% of this being

white strains. The surface growth has been sustained over time, almost tripling in 1995.

This investment requires at least 4-5 years to producesss returns at full capacity Lima,

J.L. (2015). A method that reports considerably better yields at an additional cost is the

irrigation system, which creates the opportunity to explore new geographical zones of

production. The initial costs for the plantations represent 20% of the total cost of the

vineyard’s life, estimated for 20 years for the purpose of accounting, but with an actual life

span of approximately 30-40 years. The price of bottled wine differs considerably from

the price paid to producers. Part of this gap is explained by the supply chain of the wine.

There are 4 clearly defined participants: grape producer, collectors/intermediaries, wine

producers, and wine marketers. This form of commercialization in the Chilean market

includes three different ways of contracting:

(i) Long Term: they are expected when the arable land is of good quality for super-

premium wines. The winemaking company establishes a relationship with the

producer, where the interference extends to agricultural practices. However, this

type of contract requires permanent monitoring since the prices paid per kilo-

gram for grape are high compared to other options.

(ii) Annual: in this contract, a quantity range in tons is agreed upon, and a base price

is set, which will be corrected by quality parameters.

(iii) Spot Market: there is no contract between the producer and the wine producer

before harvesting. In such cases, the intermediaries play the role of negotia-

tors, agreeing on prices based on the demands and conditions of the grape to be

purchased.
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The contractual strategies should aim to maintain the quality of the wine and at a low

cost for wine producers. Typically, a portfolio of contracts, including the spot market vol-

ume, is kept to adjust some engaged volume variables or take advantage of overproduction

opportunities.

1.3. Vitis Vinifera

The quality of Vitis vinifera is critical to obtaining a qualified wine. The planning pro-

cess includes several cyclic steps, such as the annual tasks and others that are fundamental,

like the soil choice, which could only be done once. The potential quality of the grape is

influenced by the soil selection, weather, and operations during the plant’s shelf life. The

soil and farm operations are decisions that can be controlled, which diminishes the uncer-

tainty. Still, the weather is essentially uncertain and has been unstable through the years,

reducing the effect of its weight which should be high for quality and yield production.

All the efforts at the farm level end during the harvesting stage, a step that will be

addressed in greater detail. Here, the process involves determining the degree of maturity,

the removal of clusters, and the transportation to the industry. The quality of the harvested

material was the maximum that the wine could achieve. Thus, the time and status of the

grape should be chosen carefully. Harvesting can be done manually, through mechanized

means, or dually. The decision depends on several issues such as the variety, winery

reception program, weather, capacity of the vineyard, and availability of labor. Manual

harvesting is versatile in terms of the vineyard driving system, but there are ergonomic

limitations. In mechanized harvesting, the driving system is limiting, and it is necessary

to properly plan the crop development with this orientation. It is advantageous in that

operations can be carried out 24 hours a day, which gives it more sensitivity to harvesting

during low temperatures to preserve the quality. The flexibility that each option adds to

the system is variable. For large extensions, mechanized harvesting could be preferable,

even when the machine’s capacity is equivalent to between 40 and 50 hand pickers. The

cost is less than 20% of the comparable manual labor cost.



11

In Chile, the land extension is smaller than in wine-grape-producing countries like

Spain, and the topography is more irregular. Chile produces different types of wine be-

cause of the altitudes and latitudes of the plantations. By local industry information, the

harvesting process is done manually for at least 60% of the total product. This is a practi-

cal way of managing little farms because it creates the possibility of negotiating the labor

cost, thus reducing the fixed costs. Since grapes need permanent dedication throughout

the year, and not only during the harvest process, a portion of the workforce was also

permanently employed. The harvest can last three months, but the actual demand should

be balanced with other factors, i.e., the progress of the ripening process, the forecast-

ing capacity, winery space, and, finally, workforce availability. This situation makes it

challenging to ensure consistency of the decisions, so a decision model that supports this

process could prove very useful.

1.4. Quality and Ripening process

The physiological maturity of wine grape is given by the appearance of the germi-

nation capacity; for industrial areas, the selected maturity is technological or related to

functionality in winemaking.

The quality of the Vinis vinifera is closely linked to the production area (climate and

soil), effective average temperature, water regime, rainfall during or close to harvest, and

topography of the land. The volatile organic compounds play a critical role in the fi-

nal quality of the wine; however, the balance in the environment, vineyard practices, and

genotypes are poorly understood (Lund and Bohlmann, 2006). This balance must be re-

spected when the harvest time is chosen, considering the acidity, sweetness, taste, and

phenolic ripeness. The quality of the grape at the moment of harvest is indicated as the

main factor for the quality of the wine (Coombe, 1992). It is difficult to define the optimal

maturity because there is no privileged element in the chemical profile to set it (Meléndez

et al., 2013). For example, sugar content and acidity are two commonly used parameters,

but the ratio changes depending on the type of wine and the winemaker’s objective. At

least two types of maturities are recognized: technological and phenolic. The first maturity
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occurred when the sugar content was very high, causing the maturity index (sugar/acidity)

to be high. This indicator is typically used in industry contracts for standard grapes; with

the acidity being measured using pH (with a scale of [1, 14], where pH = 1.0 is extremely

acid, pH = 6.0 is neutral, and pH = 14.0, extremely alkaline) and sugar content through
◦Brix. The sugar content was transformed into probable alcohol, equivalent to 16.83 g of

sugar/l per 1% alcohol(Glories et al., 2000); p, owing its importance.

Phenolic maturity is reached when the anthocyanin compound concentration is maxi-

mum and the tannins content is low for the skin and seed (Le Moigne et al., 2008). Another

indicator of maturity is the status of the skin of the grain. Considering other fruits, as the

ripening process goes on, the skin becomes softer. In practical terms, it is necessary to

incorporate a mix of various ”well-documented” ways of ripening evaluation, especially

for products that are designed for higher prices than the standard (Coombe, 1992).

The beginning of the ripening stage is known as veraison, the time when the color of

the grape grain first changes. This moment varies over the years and is responsible for

most of the changes visible on the final day of harvest. The ripening process is developed

differently for each berry, so the uniformity is not assured. To control the progress at this

stage, a chemical analysis of the juice in the grains was developed. The sugar content

increased until the plateau was reached, and the changes after this milestone are explained

by the loss of water or the gain of water, but not by the changes in the sugar content

(Coombe, 1992).

The maturation stage is highly critical for the development of this raw material. We

detailed some changes below:

• Increase in size and weight

• Increase in sugar content, usually to levels close to 200 gr/liter of grape juice

• Decrease in the concentration of acid content

• Color changes towards the specific pigmentation of the vine type
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• Increase in the concentration of the aromatic and taste substances, responsible

for the organoleptic profile. The observation of the maturation process using

these parameters is called phenolic maturation

Tepferrer2008optimization, the harvest should be done at the right moment. Other-

wise, value is diminished. Premium wine can be degraded if the harvest time differs

from the optimal day. In that study, the authors represented this behavior with a quality

loss function based on the Taguchi model (see Besterfield (2003)), introducing the novel

model. The proposed curve looked like a parabola and was made using enologist surveys

which described the changes following a professional standpoint. In the vinification pro-

cess, sugar changes to alcohol in a controlled fermentation process. The alcohol content

and the high acidity (low pH) allow the wine to be preserved from unwanted microbiolog-

ical events. Still, they are also part of the desired character of the product.

To go deeper into the wine market, wine grape nature, and vinification process, please

refer to the appendix. A

1.5. Structure of the thesis

The rest of the document is divided into five chapters. At the beginning of each chapter,

there is a vocabulary to be used. The content presented in the different branches is as

follows:

Chapter II summarizes the research done in the field of agriculture planning, where

operations research tools have made a remarkable impact. We also reviewed the research

on the wine industry. The use of multi-period stochastic models in agriculture is presented,

and we explore the tractability problem in general applications. Reduction and generation

methodologies are then briefly explained. Finally, we introduced a short review of the

metrics of multistage trees.
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Chapter III is based on an already published paper by the author of this thesis, which

discusses the impact of stochastic models in the valuation of the system for several un-

certain conditions and flexible resources. We expanded the quality degradation formula

Ferrer et al. (2008) and introduced stochastic modeling for the uncertainty event.

Chapter IV presents the different ways through which flexibility determines the in-

teraction and impact of the system value. Two main flexibilities are discussed: epochs

of decisions in multistage stochastic models considering the uncertainty realization as a

reference and the availability of multiple flexible resource types to perform the task. We

determined these flexibilities and performed a sensitivity analysis since the costs are intrin-

sically related to flexibility. We expand the metrics, including nested distance, to measure

how different two stochastic solutions are.

Chapter V offers a new approach to solve the high computational cost in multistage

stochastic problem growths. We discuss an algorithm based on rolling horizon type that

concentrates the calculation efforts in the short-term, maintaining the exhaustive tree struc-

ture and diminishing the computational charge through simplifications for future periods.

We also determine the impact of this approach (Rolling Tree Approach) on the system’s

value for different conditions of uncertainty and configurations. We also study the deci-

sions for a set behavior and the expected computational effort.

Chapter VI presents the main takeaway of this thesis and suggested future research

directions.
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Chapter 2

State of the Art

In this chapter, we give some details on the state of the literature. Initially, a discus-

sion on production planning, and its application in the agriculture sector, is presented.

The variability effects, especially the impact of weather, are then described. After that,

two different approximations to deal with the variability problem are given: stochastic

optimization and flexibility. Additionally, we introduced the performance metrics used

to assess the contribution of the approximations. To finish this chapter, we indicated the

assistance of this thesis based on gaps in the literature.

Nomenclature

ξ, uncertain specific event

Ξ, uncertainty set of events

t ∈ T , a period of the time span of interest

ξt, realization of the uncertain event at time .t

ω, individual scenario

Ω, collection of the possible scenarios for the problem
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x, decisions to be made in a context of uncertainty,

ξ, uncertainty matrix,

f(x, ξ), objective function,

Eξ, expected value of the function under uncertainty

ξ̄, the expected value of the uncertainty possible realizations

w ∈ ,W , one specific resource in the original set

w′ ∈ W ′, one specific resource in the reduced set for the stage t.

x̄(ξ̄, t, w), deterministic solution where w is the resource type or object of decision, at

time t considering the expected value of the uncertainty possible realizations, ξ̄

x̂, specific solution for an optimization problem

RP t, value of the complete or original recourse problem,

EEV t,τ (x1,t−1, ξt−1), value of the simplified model applied over the whole original

tree,

τ , time index for the simplified span time,

V SSt,T ′ , value is the difference between the best of the simplification value and re-

course problem.

MSV t,T ′ , marginal stage value

2.1. Uncertainty in Agriculture Planning

The agricultural supply chain is a highly uncertain environment because of the na-

ture of the raw materials and the supply chain players Ahumada and Villalobos (2009).

The biological nature implies the need for additional variability because the product keeps

changing over time, affecting the shelf life. However, this erratic behavior is also present
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in the early stages of the farm’s operations. Weather factors, such as rain and temperature,

are important sources of uncertainty in agricultural systems. As Ahumada and Villalobos

(2009) points out in their review, what differentiates agricultural supply chains from other

supply chains is the importance played by factors such as food quality and safety and

weather-related variabilities. In the case of wine grape production (see Jones et al. (2005);

van Leeuwen and Darriet (2016); Ramos et al. (2008)), weather factors affect the inten-

sity and length of fruit cycles. Moreover, weather conditions directly affect harvesting

operations. For example, in some cases, mechanical harvesting methods cannot be used

during rainy weather condition due to soil conditions. The work by Ferrer et al. (2008)

presents a deterministic optimization model for grape harvesting operations, weighing a

quality loss function and bounded time for the tasks (see 3.1.3 for a deeper discussion).

Arnaout and Maatouk (2010) developed a heuristic to solve a larger version oishe previous

model. However, in both cases, they did not include stochastic elements. Allen and Schus-

ter (2004) studied the harvesting of concord grapes considering “an uncertain length of the

harvest season and an uncertain crop size” through a risk management model. Seyoum-

Tegegn and Chan (2013) analyzed vineyard investments, considering the yield and uncer-

tainty of the price, and applying real-world options valuation. As Soto-Silva et al. (2016)

mentioned, even though the weather and stochastic nature of the product are critical in

agriculture, the number of studies that consider this approach are few.

Quality is affected by the weather and hence, the economic value of the product. Qual-

ity plays a vital role in the agricultural supply chain since the product is alive and evolves

from the moment it is harvested (Van Der Vorst et al., 2009). There have been contin-

uous efforts in previous studies to model and capture the quality degradation of agricul-

tural products. In work by Rong et al. (2011), the authors model the quality degradation

of products by time and temperature as they pass through the supply chain in different

facilities and transportation modes. Ferrer et al. (2008) Presented a mixed-integer opti-

mization model that considers the cost of harvesting activities and the loss in quality of

the grapes due to delayed harvesting—Ahumada and Villalobos (2011) modeled the har-

vesting, packing, and distribution of crops to maximize revenue. Their model accounted
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for labor availability, price dynamics, and the variable effects in the product quality due

to weather and plant biology through different functions and approximations. The recent

work Jonkman et al. (2019) models the perishability of the product in the form of discrete

quality categories or the condition of shelf-life limitations.

To face this uncertainty, flexibility is the most common approach, even when opera-

tions research tools are used. In our case, there is a history of applications in operations

research, but stochastic vision is scarce. Next, we reviewed the OR approach and its flex-

ibility as a tool in an agricultural context.

2.2. Operation Research Approximation

Production planning under uncertainty in agricultural systems has been previously

studied using different operations research techniques PBorodin et al. (2016) presented

in their review. The most common techniques used to handle uncertainty and assist the

decision-making process are stochastic optimization, robust optimization, and simulation-

based programming. Stochastic optimization has become an increasingly popular tool to

model uncertainty in agricultural supply chains (Esteso et al., 2018). Borodin et al. (2016)

Points out that most of the stochastic programming approaches are formulated based on:

(I) chance-constrained programming (or probabilistic) problems (CCP), and (II) stochas-

tic programming problems without recourse (SP) or with recourse (a type of two-stage

programming, TSP).

As examples of optimization in production planning, we found that the work by Bohle

et al. (2010), which uses a robust optimization approach for wine grape harvesting, is

subject to several uncertainties such as the actual productivity achieved during harvest-

ing. Moghaddam and DePuy (2011) Use a stochastic optimization model with chance

constraints to determine the optimal number of acres of hay that a farm should harvest for

animal consumption and how much hay to purchase and sell to maximize the total profits

of the farm. PBorodin et al. (2014) presented a stochastic optimization model for sched-

uling a cereal crop harvest at the optimum maturity, using meteorological conditions as
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a deciding factor. Finally, it Kennedy (2012) examined the applications of dynamic and

stochastic dynamic programming on agriculture and natural resources.

According to Behzadi et al. (2018) there is a need for multi-period planning under

uncertainty in the context of agricultural systems and supply chains. Some examples of the

two-stage stochastic proing approach are (Ahumada et al., 2012; Cholette, 2009; Huh and

Lall, 2013; Wiedenmann and Geldermann, 2015), but multistage stochastic programming

approach (MS) has not been extensively used in agricultural systems. Guan and Philpott

(2011) applied the multistage approach to a production planning problem for Fonterra,

a leading company in the New Zealand dairy industry, taking into account the uncertain

milk supply, price–demand curves and contracting. Another major application of MSSP

is water management for farm irrigation (Q. Li and Hu, 2020; H. Zhang et al., 2017;

F. Zhang et al., 2019). More specifically, the studies involving the application of multi-

period planning are: Kazemi Zanjani et al. (2011), who investigate a sawmill production

planning problem with an uncertainty in the quality of raw materials and demand; Lobos

and Vera (2016) who determine the benefits of using a stochastic modelling approach

in a sawmill production environment; Veliz et al. (2015) who present a harvesting and

road construction decision problem in the forest industry in the presence of uncertainty,

modelled as a multistage problem; Chen et al. (2018) who was motivated by a problem in a

seed producing company, and finally, Varas et al. (2018) who look at the bottling planning

problem for a wine export company facing demand uncertainty.

A multistage stochastic approach could be pertinent for fresh products since their qual-

ity changes over time. Designing stochastic models for fresh fruits (e.g., wine grapes)

would contribute to the knowledge in the field since such studies are currently scarce,

as indicated by Soto-Silva et al. (2016). They also mentioned a need to make flexible

decision-making models that help managers make good decisions throughout the food

supply chain. This need for flexibility is critical to overcoming the new challenges faced

by the agricultural sector, particularly crop production supply chains, which should be re-

active and flexible with a high yield at a low cost Borodin et al. (2016). Some of these
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challenges are detailed by Kusumastuti et al. (2016), who indicated that in harvest mod-

eling and the processing of real-life agri-chain characteristics, there is several productive

aspects such as harvesting time window constraints, yield perishability, seasonality, and

uncertainties(due to weather conditions or customer demand) that were often not consid-

ered in previous studies.

A commonly used algorithm that considers the uncertainty but in a simplified man-

ner is the rolling horizon approach, RHA, S. Sethi and Sorger (1991). In that model, the

planning horizon moves forward to update the system’s status. Decision policies are only

implemented during the immediate periods. Still, for the planning step, the future is ac-

counted for using an expected value and removing the myopic vision in stochastic systems.

As was indicated Chand et al. (2002), long-term forecasts lose their effect on the initial

decisions. The long-term estimates require better determination because the model is my-

opic, and the results could change drastically. The rolling horizon is linked to the forecast

horizon because it should be used when the last decision is reliable. The stopping-rule de-

pends on the specific problem, but three ideas were cited from Morton (1981): 1) apparent

forecast: stop when initial decision has stopped fluctuating or the fluctuation is minimum,

2) near-cost forecast: when the marginal benefit of increasing the horizon is minimum, the

risk is minimized under certain thresholds, and 3) near-policy forecast: the initial decision

is the most optimal for an accumulative probability of all feasible scenarios. According to

the author, a lot of time would be dispensed to estimate the correct horizon, which may be

unproductive due to the high cost. However, (Chand et al., 2002) indicated that this is a

promising field, because the time horizon has complex results for the different factors, and

presents an opportunity for future research. Moreover, the trade-off between extension

and decision quality should be addressed as a critical topic through the approximation of

evaluations.

Based on this, there are some interesting studies where the RHA was linked to the

multi-stage problems, as outlined in the comments below. Tefang1997rolling, the rolling

horizon procedure was applied to a flexible scheduling problem. The demand dynamic

was captured by the dynamic of the update of the information. There are different triggers
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to ensure the information is updated and the planning task is renewed, i.e., event-driven

or periodic-task. Tealonso2020dealing, they present an application of the scenario trees

considering two planning levels, tactical and strategic. The strategic tree is the main level,

with each of its nodes containing a set of scenarios that are treated as two-stage problems,

and they belong to the tactical group. At the end of the tactical planning period, the

scenarios collapsed due to a unique node that is the initial status for planning the strategic

tree. This application does not use the idea of a rolling horizon, but it offers a strategy

to diminish the natural bushiness of a multistage tree. The cost is that the decisions are

divided into two-time horizons, giving less flexibility than the granularity of a unified

tree. Devine et al. (2016) It proposed a sequence of stochastic problems to adapt the

dynamic approach to a natural gas market. In addition, the rolling horizon algorithm was

used to estimate the number of periods to make better current decisions. Finally, the

Value of the rolling horizon, VoRH, was established to measure the difference between

the rolling horizon vision The perfect foresight conditions. In Devine et al. (2014). The

authors proposed an optimization problem that updates information periodically, giving

the dynamic for a rolling horizon problem. A problem exists in UK’s natural gas market,

and the stochasticity is in the demand scenarios that are generated using the Monte-Carlo

simulation. Updating the information was done daily, and the horizon planning time was

five days. Bischi et al. (2019) She proposed a two-phase rolling horizon algorithm to

face the energy cogeneration problem. Specifically, the heuristic was initialized using

past information, where the rolling horizon was developed weekly, taking into account

one week for mixed-integer linear programming, MILP. The process was repeated until

the solution converged. Silvente et al. (2018) We applied a rolling horizon approach to

a microgrid problem, where the production of renewable energy and the public demand

is stochastics. All the fluctuations would make the situation very hard to solve due to

its size, even if the problem had been simplified. Two standpoints may be used to cope

with the problem: 1) reactive, wherein based on a deterministic solution, the plan was

changed according to specific events, and 2) proactive, where different conditions are

considered, giving a more conservative policy. In the second approach, stochastic and

robust optimizations are used. The rolling horizon approach is mainly a reactive way of
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scheduling and solves problems iteratively. A similar application is used Champion and

Gabriel (2017).

Tractability Problem: Scenario Reduction and Generation

The computational complexity of MS programming has been reported in (Birge and

Louveaux, 2011), (Shapiro and Nemirovski, 2005), (Pflug and Pichler, 2016), among oth-

ers. The reason is that the number of periods and the possible chain of events increases

the final tree size, with the model and computational problem suffering the same destiny.

If the original uncertainty set is continuous, it requires a discretization algorithm. This

process is part of the area of the generating tree. Generating trees is a general way to refer

to the process which leads to a smaller tree beginning with a bigger one. This procedure

diminishes the intractability problem. The cost of this approximation is the difference in

the final value of the system and the decisions set this t provided. The tolerance to this

gap depends on the case, but it should typically be kept short. The trade-off between

tractability and gap is linked to specific necessities of the user. The average sample ap-

proximation (SAA) (Kleywegt et al., 2002; Kim et al., 2015) and variants (Bertsimas et

al., 2018; Pagnoncelli et al., 2009; W. Wang and Ahmed, 2008) were frequently used in

the 2000s. However, Shapiro (2010) alerts about the speed-up ramp in the multistage case.

Even when the problem is smaller than the original, the size is critical according to more

periods. There are several approaches to select the scenarios or the subset of components

of the partial tree that will replace the original one to solve it. The reduction path has

been revisited many times as an alternative to the discrete approach for a continuous dis-

tribution. The reason is that even in a discrete way, the tree could be almost intractable

with a high computational effort associated with the solving process. In (Dupačová et al.,

2003), the scenario reduction as a procedure for determining the subset of scenarios of

a more extensive set was introduced, where both distributions are closer in terms of the

probability metrics, including the Kantorovich-related one. In other words, the distance

between the original distribution and the proposed one should be small. Dupačová et al.

(2003) work with the Forget-Mourier distance metric. This type of technique is called

”moments matching”. More recently, Timonina (2015) recognize the critical role of the
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approximation methods in solving multistage problem tasks. In Høyland and Wallace

(2001) an approach where the generation of scenarios is constrained by a minimization

optimization problem is presented, the statistical measure is used as an objective function.

This model tries to solve the problem of choosing the scenarios, their number, and how

representative they are compared to the original tree. Although this is a versatile approach,

the approximated discrete distribution does not always maintain all the values of the dis-

tribution moments equal to the original. Hence, the uncertainty in those cases is different

in the initial and partial distribution proposals. Inherent to that distribution is the risk anal-

ysis, linked to its lower tail. In Høyland and Wallace (2001) the authors allow the user to

select the statistical properties to represent the distance, customizing the best for the user.

(Kovacevic and Pichler, 2015) presented a variation of the distance approach, using

the nested distance concept presented by Pflug (2010) and recently redeveloped by Pflug

and Pichler (2016). This distance extends the Wasserstein distance (see Villani (2003)) for

the multistage problem, where the structure is characterized by the filtrations (available

information at a specific stage) (see Chapter 4 for more details).

In Timonina (2015), the stochastic process is replaced by a scenario process in a spe-

cific probability space, where the distance between the processes is measured by the nested

distance defined in Pflug (2010). This study discusses scenario generation and computa-

tional efficiency. In Pflug and Pichler (2016), several chapters are dedicated to using the

nested distance with a reduction interest while attempting to diminish the business of the

original tree. When we opt to use an approximation instead of the original stochastic

process, there is a loss. Also, the election of specific scenarios leads to different solution

values. The gap between the decisions quantities in the true problem and the approximated

are part of the stability analysis. The stability is also a function of the measured values

that were used. There exists a complete library about it, see (Heitsch et al., 2006; Heitsch

and Römisch, 2009; Ruszczyński and Shapiro, 2003). The main result in (Heitsch et al.,

2006) is that the complexity of multistage optimization cases requires the preservation of

both filtration and probability distances to achieve high stability.
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2.3. Flexibility

As it was mentioned in Soto-Silva et al. (2016), there is a need for considering the

flexibility types to be assessed.

Flexibility has been recognized in various disciplines as a strategy to manage different

uncertainties (Esmaeilikia et al., 2016). There are many definitions of flexibility, and they

vary from one discipline/context to another, with confusion surrounding its dimensions

and stages (Sawhney, 2006). In the case of manufacturing, flexibility is referred to in

various system states that can be adopted to manufacture different product types at other

volumes (Slack, 1983; Upton, 1994). That is the ability of a manufacturing system to

react to shifts in the various forms of the system with a bit of penalty in time, cost, and

performance (Swafford et al., 2006). Manufacturing flexibility and its measures have been

well studied in previous research (Beamon, 1999; De Toni and Tonchia, 1998; Koste et al.,

2004; Koste and Malhotra, 1999; Swafford et al., 2006).

Flexibility sources in manufacturing environments have received significant attention

in recent years; see the reviews (Beach et al., 2000; Chen et al., 2018; Esmaeilikia et al.,

2016; Jain et al., 2013; Slack, 1983; Terkaj et al., 2009) as an example of literature related

to flexibility in manufacturing. The different sources of flexibility that have been analyzed

in the literature have been summarized in Jain et al. (2013)) as: machine, operation, rout-

ing, volume, expansion, process, product, production, material handling, program, and

market and labor flexibility. For our case, we will focus on: operation, volume, process

and labor flexibility. Operational flexibility is defined as the ability of a part to be pro-

duced in different ways. Volume flexibility is the ability of the manufacturing system to

be operated profitably at different levels of overall output (A. K. Sethi and Sethi, 1990).

Process flexibility is defined as the number and variety of products which can be produced

without incurring into high transition penalties or large inventory. Finally, labor flexibility

can be defined as the number and variety of tasks/operations a worker can execute without

incurring into high transition penalties or large changes in performance outcomes (Koste

et al., 2004).
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Jain et al. (2013) indicate that flexibility increases the responsiveness of the manufac-

turing processes of a system, as it improves the utilization of the available system resources

and enhances the ability of a manufacturing system to cope with internal and external dis-

turbances. They further point out that flexibility is not only a desirable characteristic, but

it is quickly becoming a requirement for the survival of production-oriented companies

(Arafa and ElMaraghy, 2012; Barad, 2013; Chryssolouris et al., 2013; Patel et al., 2012;

Patel, 2011; Shi and Daniels, 2003). In the case of the agricultural sector, there is little

research related to production planning optimization models and how flexibility affects

the responsiveness of the system—they work by Mezgár et al. (2000) looks at a flexible

network of co-operating small and medium size farmers in Hungary, but does not present

an optimization model. The recent work by Chen et al. (2018), looks at the value of flex-

ibility in the production of vegetable seeds by upgrading quality after harvest. Some of

the authors of this paper have looked at the value of flexibility by analyzing the benefits of

postponement in the bottling process in the wine industry (Varas et al., 2018).

In multi-stage stochastic optimization models, the sources of flexibility and its value

have not received much attention, especially in the agricultural context. Soto-Silva et al.

(2016) indicate that flexible decision support and models play an important role in helping

managers through the entire food supply chain, which is in continuous change because of

different uncertainties. (Borodin et al., 2016) go further and indicates that to overcome the

new challenges facing the agricultural sector, crop production supply chains in particular

should be very reactive and flexible, with a high yield at low cost. (Labrianidis, 1995)

present a case study, not a mathematical model, of flexibility through subcontracting in

the Greek poultry meat industry, indicating their benefits and drawbacks. Lobos and Vera

(2016) studied the benefits of using a stochastic modelling approach versus a rolling hori-

zon for the case of a sawmill operation. There is also a number of publications related to

multi-stage optimization applied to water resource management (G. H. Huang and Loucks,

2000; W. Li et al., 2010; Zhou et al., 2013).
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2.4. Valuing Models and Flexibility contributions

Valuing different models

Different models represent different requirements of information and modeling efforts.

To compare, we need to measure the differences. In this section, we visited this topic to

understand how to compare stochastic and deterministic approaches.

In (Birge, 1982), the author introduces a way of measuring the contribution of stochas-

tic approaches, considering the expected value. He resumes the Expected Value of Perfect

Information concept (Madansky, 1959), EVPI, to indicate the necessity of having a useful

measure in the cases of incomplete information and a stochastic environment. The Wait-

and-see solution, WS, is the perfect information environment, where each future realiza-

tion is known a priori, so the path is solved optimally without nonanticipative constraints

among them. He also proposed the value of stochastic solution metric, VSS, that looks

for the loss in value by comparing a simplified view of uncertainty, i.e., expected value

problem, EVP, and a solution where stochasticity is taken into account explicitly. In this

context, uncertainty derives from a probability distribution, individualized by different re-

alizations denoted by ξ ∈ Ξ, to computationally manage it. In a time span of size T , there

is a sequence of ξ, i.e. (ξ1, ξ2, ...ξt, ...ξT−1, ξT ). Each sequence is called scenario or leaf,

represented by ω; their collection is Ω. Considering the minimization problem describes

for the function f , with x decisions to be made in a context of uncertainty, min f(x, ξ),

WS approach is formulated by 2.1, and the recourse problem, RP, problem by 2.2

WS : Eξ [minx f(x, ξ)] (2.1)

RP : minx Eξ [f(x, ξ)] (2.2)

Measures such as EVPI (Madansky, 1959), VSS for the two stages (Birge and Lou-

veaux, 2011; Birge, 1982) and the extension for multi-period RP (Escudero et al., 2007),
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provide a base to consider excellent information value, stochastic approach value, and de-

terministic approximation contribution. This thesis does not use the two-stage approach so

the VSS terminology will be used for the MS approximation. The VSS could be computed

as the difference of the expected value of the solution for MS and the desired value prob-

lem decisions applied over the whole set of scenarios in the RP model. The last approach

is called expected value solution of the expected value problem, EEV.

In Maggioni and Wallace (2012) the authors go deeper about why the EV decisions

could be bad. The question is split into two: decisions/resources/action choosing, and

quantities. For 2-stage models, they introduced two new measures, the loss using the

skeleton solution, LUSS, and the loss of upgrading the deterministic solution, LUDS.

Both give information about the structure of the solution and not only about VSS. They

proposed three tests that basis on Thapalia et al. (2009):

• Test A: V SS = EEV −RP , where RP means a stochastic model with recourse,

in the case of the authors, the two-stage problem.

• Test B: Being EV model a simpler approach, the decisions for a specific stage

are denoted by x̄(ξ̄, t, w), where w is the resource type or object of decision. If

x̄(ξ̄, t, w) is in the lower bound, then resource w will not be able to be used in the

stochastic approach, replacing it by zero in the stage t. For example, suppose

that in an assignment problem, there are three types of resources to be used,

and one of them is not assigned in the deterministic solution. The not assigned

resource is not available for evaluation in the stochastic approach. In that way,

we force to use only the resources that were selected from the deterministic point

of view. The stochastic optimization problem could be written as an equation2.3.

The objective function keeps similar to the original problem, but the available

resources to be part of the solution are constrained. The original set of resources,

i.e. w ∈ W is reduced to those used in the EV problem, so w′ ∈ W ′, for the

stage t.

minxw′ Eξ [f(x, ξ)] (2.3)
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Let x̂ be the solution for the problem exposed in the equation2.3. Then, the

answer is computed in the original tree structure. The solution’s value is called

the Expected skeleton solution value, ESSV, obtained like an equation2.4. The

procedure is similar to the EEV case in general terms.

ESSV = Eξ [f(x̂, ξ)] (2.4)

If ESSV=RP, it means that the structure of the solution in the deterministic be-

havior is similar to the one used in the stochastic solution. This is because

the stochastic solution is bounded to the resources selected by the determinis-

tic model. According ESSV and RP gap increases, the deterministic solution is

worse. This metric is called loss using the skeleton solution, LUSS.

• Test C: Being x̄ξ an expected value solution of the deterministic model, now that

solution is used in the stochastic version. The idea is to obtain a matrix of values

in the stochastic solution, such that the difference with x̄ξ will say how good is

the latter.

If in the stochastic problem, the expected deterministic solution could be upgrad-

able, then the contribution of the stochastic approach exists. Still, the determin-

istic solution could be considered a lower bound and is always upgradable. The

original problem is reformulated to model2.4. The answer to the problem2.4,

x̂ is used in the expected input value, EIV, calculated by equation2.6. A new

metric is introduced, the loss of upgrading the deterministic solution, LUDS,

EIV − RP . If EIV is similar to RP, it means that stochastic decisions are not

better than the deterministic one, so then the solution x̂ is optimum to the sto-

chastic problem.

minx≥x̄w(ξ̄) [Eξf(x, ξ)] (2.5)

EIV = Eξ(f(x̂, ξ)) (2.6)
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In Maggioni et al. (2014) they search for bounds in multistage stochastic program-

ming to consider how good the approximations are. They enhance the application of

LUDS, LUSS, and VSS in the multiperiod problem. Three different measures groups are

presented: measures of information, measures of the quality of the deterministic solution,

and the rolling measures which update information. The main contribution is that the

measurements are useful for estimating bounds to the approximation value.

An interesting work by Pantuso and Boomsma (2019) on the multistage stochastic re-

course problem, MSRP, focuses on the number of stages to be solved. As they claimed,

selecting several scenarios could be very difficult when there are a lot. If the horizon is

finite, but the number of nodes in each stage increases, the tractability of the problem will

be complicated, too, because of its size. In that context, reducing scenarios or the horizon

is a way to cope with the problem. The authors in (Pantuso and Boomsma, 2019) try to

answer the following questions: ”What is the value of solving the original problem com-

pared to the approximation?... What are the costs of approximating the original problem

by reducing the number of stages?... What is the benefit of including an additional stage

in the approximation? ”. In that study, the authors use RHA’s rolling horizon algorithm

to extend the concept of expected value solution to the MS approach. The objective is to

replace gradually the tree structure of the MS problem for the uncertainty expected value,

and based on the evolution of the value of the system, the value of an extra stage could

be delimited. The procedure uses the idea of the rolling horizon. Considering a problem

of T -stages, where any intermediate stage is denoted by T ′, they proposed to split the

original time span into two windows, where the first consider the discrete uncertainty set

and the second uses the expected value of the uncertainty set. The figure 2.1 appears in

their work and is useful for a short example. The problem is a four-stage one in a tree

representation. The number of stages is T = 4, but the approximation is a two-stage.

The two-stage is a very well-defined problem in the literature, and considers the first stage

uncertainty and simplified the latter one using its expected values. The ξ1 is known, ξ2 is

unknown and periods ξ3 and ξ4 are approximated by their expected value, ξ̄3 and ξ̄4. The

first step solution after the optimization is x̄0. In step 2, the solution x̄0 is fixed and ξ1 and
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ξ2 are known. Now the expected value of the uncertainty is for stage 4, and we have two

subtrees. The procedure follows until the whole original tree is discovered. The quality of

this approximation is computed when the solution is used in the original problem. They

arrived at the EEV equivalent term in multistage problem, the Rolling-Horizon Value of

the Reference Scenario, RHVRS.

In Pantuso and Boomsma (2019) as well, trie to extend their research to the bounds

determination. They proposed different approximations, for example, the WS model. In

that case, the size of the problem and the uncertainty set keeps similar to the MS model, but

the NAC relaxation may be an advantage in terms of computational effort. The authors

introduce the marginal stage value, MSV, to assess the contribution of different stages.

First, the value of stochastic solution to the stage-t problem compared to the T’-stage

approximation is defined as V SSt,T ′
= minτ=1,...,T ′ (EEV t,τ (x1,t−1, ξt−1)−RP t), where

the RP t is the value of the complete or original recourse problem and EEV t,τ (x1,t−1, ξt−1

is the value of the simplified model applied over the whole original tree. The τ parameter

is the time index for the simplified span time. Finally, as there are different ways of

simplifying future events, the V SSt,T ′ value is the difference between the best of the

simplification value and recourse problem. Once V SSt,T ′ is defined, then marginal stage

value (MSV) expression is MSV t,T ′
= V SSt,T ′−1 − V SSt,T ′ , the difference of making

an approximation of T ′-stage and (T ′ − 1)-stage. The MSV could be obtained by the

difference of the EEV values easily.

They provide a portfolio replication problem as an example. They inform that in their

example, according to increasing the number of stages in the approximation, the value of

the approximation model performance is more significant too. However, they highlighted

that this performance improvement behaves erratically.

Finally, a traditional way to understand the change in the final value of the original

tree and its approximation is through sensitivity analysis. Sensitivity was studied Higle

and Wallace (2003), indicating the necessity to understand the changes due to the variable

form of the coefficients. The post-optimally analysis is used in this work in certain sections
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Figure 2.1. The original ’Rolling-horizon two-stage approximations of a
four-stage problem. The numbers in circles are the steps of the

rolling-horizon procedure. The four-stage scenario tree on the right
illustrates the original unfolding of the random parameters, and numbers

beneath the node are indices’ - source:Pantuso and Boomsma (2019)

to see the effects. Still, it is limited because of the inconvenience that introduces too many

parts varying simultaneously. Although statistical analysis gives general regressions that

correlate that information, it is not always easy to see in terms of managerial practices.

Measuring Flexibility

Measuring the value of accounting for uncertainty and the ability to adjust decisions

has not been significantly studied in the literature. In accordance to Rogalski (2011),

”Flexibility-related characteristic values are currently not available or defined, which seems

to be the crucial difficulty. Reasons for this can, for one, be found in the currently still un-

resolved problem of universally gauging and evaluating flexibility, which arises from the

latter’s multi-dimensional character”; in addition, the author indicates that flexibility is

usually valued considering that the system gains value because of flexibility very exis-

tence, disparaging the environment conditions. K. Huang and Ahmed (2009) propose a

very simple way of measuring the input of the decision process: the difference between

the values of the objective functions. In their work, they present the case for capacity

planning, comparing the values obtained by a multistage stochastic model with a two-

stage model. Some analytical methods to measure flexibility can be found in Buzacott and

Mandelbaum (2008). In their work, they point out that if we want to measure the value of

the added versatility in the system, we can do it by determining the expected value with

and without the possibility to alter the decisions, and then take the difference to deter-

mine the value of the added flexibility. Kazemi Zanjani et al. (2010) use the differences
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in optimal objective values to compare a full recourse model, such as the multistage, with

the mean-value Deterministic and the two-stage stochastic models for sawmill production

planning. Tadei et al. (2019) uses extreme values theory, deriving an asymptotic approx-

imation for the probability distribution of the total utility and determining its expected

value; this result is then used by Roohnavazfar et al. (2019) to construct an efficient and

accurate approach to estimate the value and the structure of optimal paths in a multi-stage

stochastic decision network. Cardin and Hu (2016) determines the value of flexibility by

computing the difference in the net present worth between decentralized designs and the

real option of expanding the capacity of a waste-to-energy system. We will take a similar

approach to what Upton (1994) did, by comparing the expected values.

Measuring flexibility is not simple. Many authors have focused their attention on mea-

suring the effect that each or several dimensions of flexibility have on the organization’s

performance, such as volume, variety, process, and material handling. There is a body

of research related to the empirical flexibility measures, including research related to de-

veloping an instrument for measuring and analyzing flexibility (Y. P. Gupta and Somers,

1996), developing models for measurement (D. Gupta, 1993; Jordan and Graves, 1995),

use of entity-relationship models to evaluate flexibility (Mishra et al., 2014), developing

goodness test for operational measure (D. Gupta and Buzacott, 1996), using transfer func-

tions for measuring flexibility (Alexopoulos et al., 2007; Baykasoğlu, 2009; Buzacott and

Mandelbaum, 2008; Das and Caprihan, 2008; Esturilho and Estorilio, 2010; van Hop and

Ruengsak, 2005; Kahyaoglu et al., 2002). But there is still not enough significant research

in quantitative or analytical flexibility measures, especially in the agricultural sector. One

important point when examining the convenience of models is the value that they report

to the decision-maker. Hu and Hu (2018) compare the results obtained from a two-stage

and a multi-stage programming problem for lot-sizing and scheduling under demand un-

certainty, with results indicating that the quality of the decision can improve to more than

10% by using a multi-stage approach.
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2.5. Summary

In this chapter, state of the art was reviewed. The need to develop more practical

tools to face the uncertainty in agricultural planning is evident, mainly because of the high

variability of the nature of the product. Weather plays a critical role, and its interaction

characterization with the crop is essential in achieving good performance in decisions

models. This was the motivation to develop our first declared objective, the description of

the system.

To face this uncertainty, the use of flexibility and operations research tools has been

suggested in literature reports. Flexible resources are frequently chosen, but their costs

are easy to see, but not their value. Operations research tools offer flexibility in decision-

making if the uncertainty is tackled to the right degree. But two questions were derived

here: 1) how complex should the decision model be to create a real impact in the system?

and 2) flexible resources and flexible decision models compete for economic resources,

thus, which is more profitable and in what context?. Both questions are addressed through

the comparison among different models that consider uncertainty, the epoch of decisions,

and flexible resources in Chapters 3 and 4. The first two are how flexibility is expressed in

the decisions support model.

Additionally, in the literature, the problem size of the stochastic approach was faced

using a reduction algorithm. We think that granularity could be helpful in the short term. In

this context, we propose a novel way to meet the problem size. The rolling tree approach

presented in the Chapter 5is based on the rolling horizon algorithm but maintains the

granularity in the short term. We also discuss the time parameter impacts, something

critical in this approximation.

To finish, the literature review considers measuring the gaps between alternatives. We

follow the traditional ones, but we use in a novel form the nested distance, a concept that

was introduced to reduce trees initially—considering some clues of the Timonina (2015)

work, we use this distance to compare similarities between decisions trees. The concept is

introduced in Chapter 4 and used in Chapters 4 and 5.
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Chapter 3

Multistage Stochastic Programming as

source of value

In this section, we propose to develop a multistage stochastic optimization model that

accounts for the variability in the prevailing climatic conditions and the quality degrada-

tion of the product if it is not harvested in the optimal conditions. We extend the previous

model proposed by Ferrer et al. (2008), adding the effect of climatic conditions. We as-

sume the daily probability of rain according to a proposed transition matrix (Urdiales et

al., 2018), which affects the productivity level of the labor force. We will compare the re-

sults obtained using two different levels of recourse actions of our MS model, with those

obtained using the expected value of the expected solution (EEV) proposed by Birge and

Louveaux (2011) and a wait-and-see (WS) approach. We will compare the objective val-

ues using standard metrics, such as Value of Stochastic Solution V SS and Expected Value

of Perfect Information EV PI , and the way in which that value is created. Also, we will

analyze how the quality, level of uncertainty, and the impact of rain on labor productivity

affects this value. The contributions of this research are twofold. First, we present a MS

approach for grape harvesting, where the quality of the product is degraded and the likeli-

hood of rain is uncertain. Second, we will compare the value of different level of recourse
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actions of the MS approach to the value of the EEV and WS approach and determine if

the ability to update information in the planning stage generates value.

The document is organised as follows. In Section 3.1 we present the problem in math-

ematical way, the optimisation models, and the quality and rain concepts. Section 4.4

shows the main results, for later discussion and conclusion in Section 3.3.

Nomenclature

ω ∈ Ω, a specific scenario or leaf of the whole set of scenarios of the tree

Ω, the set of scenarios or leaves.

Ω′
t, the set of scenarios or leaves that present state equal to one at time t.

Ωg, set of scenarios in node g ∈ G.

g ∈ G: set of nodes

Gt: set of nodes in stage t : (Gt ⊂ G), t ∈ T .

ωg ∈ Ωg: set of scenarios in node g ∈ G

τ0,1: transition factor between two consecutive rainy periods

ϕ ∈ [0, 1]: skill level of labor force

β̂m: nominal productivity for the resource m. If there is only one type, the sub-index

is avoided.

βω
tm: effective worker m ∈ W productivity at time t ∈ T in scenario ω ∈ Ω (kilograms

per worker per period).

β̆t,m: actual deterministic productivity for the resource m at moment t

ξ ∈ Ξ: the set of possible values that may take the uncertainty realization. Binary

values.
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ξ̄t: expected realization in period t ∈ T .

ẋ, decorator for variables (i.e. x) that are decided before uncertainty of the period is

realizated

hω
jt: daily harvested quantity at block j ∈ J in period t ∈ T in scenario ω ∈ Ω,

calculated as βω
t z

ω
jt (kilograms/day).

xω
tm: workers m ∈ W hired at time t ∈ T (workers) for path ω ∈ Ω (when EV

problem, Ω = {1}, and belongs to the expected value of the uncertainty).

ytm: workers m ∈ W laid off at time t ∈ T (workers) for path ω ∈ Ω (when EV

problem, Ω = {1}, and belongs to the expected value of the uncertainty).

żjtm: workers m ∈ W allocated in block j ∈ J in period t ∈ T before uncertainty

happens (workers) for path ω ∈ Ω (when EV problem, Ω = {1}, and belongs to the

expected value of the uncertainty).

zjtm: workers m ∈ W allocated in block j ∈ J in period t ∈ T after uncertainty

is revealed (workers) for path ω ∈ Ω (when EV problem, Ω = {1}, and belongs to the

expected value of the uncertainty).

lωmt: manpower or labor force m ∈ W at time t ∈ T (workers) for path ω ∈ Ω (when

EV problem, Ω = {1}, and belongs to the expected value of the uncertainty).

T : set of stages in the time horizon.

j ∈ J : a specific block j of the set of blocks of the vineyard.

m ∈ W: a specific manpower resourcer m of the complete set. If there is only one

type, the subindex is avoided.

r01: probability rain for two consecutives periods when first period is dry and the

second is rainy

r11: probability rain for two consecutives periods when both periods are rainy
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wω: conditional probablity for the specific scenario ω

aj, bj, cj: quality parameters for the cuadratic equation that represents the quality of

the grape in the block j

uj: fractional quality loss per rainy period for the grape in block j

Bj: price of the grape in lot j ($/kilograms).

CE,m: cost of hiring ($/worker).

CF,m: cost to lay off ($/worker).

CP,m: cost of keeping labor idle between periods ($/worker per period).

CH.m: cost of harvesting ($/kilograms).

CZ,m, cost of assignment before uncertainty is revealed by worker m ∈ W ($/kilo-

grams).

CŻ,m, cost of assignment after uncertainty is revealed by worker m ∈ W ($/kilo-

grams).

K: maximum daily reception capacity of the winery (kilograms/day).

Sj: initial amount of grapes in lot j (kilograms).

Qω
jt: daily quality of the wine grape at block j ∈ J in period t ∈ T in scenario ω ∈ Ω.

Q̄jt: average quality for block j ∈ J , t ∈ T .

Q̆jt: actual deterministic quality for the block j at moment t

UM: expected value of the solution of a model, i.e., stochastic one.

M: represents any model ant it is useful to write general expressions

IM: actual income as a percentage of the maximum feasible income for the modelM
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LM: cost of labor as a percentage of the maximum income

QM: percentage deviation of grape quality from optimum conditions

SM: percentage of unharvested grapes

ξωt : the value of the uncertainty realization at moment t for the specific scenario ω

t ∈ T : specific period time in the time span

Note 1: when there is a unique type of resource available, the sub index m is avoided.

Note 2: when there is a unique scenario (i.e., deterministic model), the supra index ω

is avoided.

3.1. Problem Formulation

In this section, we will first present a stylized version of the deterministic model in

Ferrer et al. (2008). Second, we will discuss the way we model rain uncertainty. Third, we

introduce the quality approach used in our model as an extension of the one in Ferrer et al.

(2008). We also explain the way we modeled worker ability and the way it is affected by

rain. Finally, we formulate the expected value and the multistage stochastic models, both

considering uncertainty and quality effects.

3.1.1. The Grape Harvesting Problem

Our model is based on Ferrer et al. (2008) formulation for a vineyard harvesting plan-

ning problem with quality degradation present. The vineyard is divided in little pieces of

lands, called blocks or lots. The criteria for this division is not unique, but it is connected

with the product inside, the facilities, and the type of job that require, among others. The

prevalent idea in the division is to obtain blocks of lands that require similar types of

work, to make easier the job scheduling task. The authors’ goal is the cost minimization

and quality maximization. For this, they introduce a quality loss function that generates

extra costs when harvesting deviates from the ideal date. Harvesting as planned may use
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several blocks with different initial quality states, making the routing of operations through

time part of the problem. The results give a good approach for a practical decision support

system, but uncertainty was not considered.

In this work, we assume that a manager needs to plan the harvest of different blocks

that contain wine grapes and her/his goal is to maximize the profit. The operational harvest

plan is generally performed one week before its execution, hence we will use a 10 day

span for harvest planning. During that time, on each day he/she has to make a decision

regarding the amount of workers hired and dismissed, and how they are allocated. The

allocation process renders the harvesting capacity for that period and blocks and grapes are

harvested and sent to a winery the same day, where the daily reception is made according

to a bounded capacity of the winery.

The costs are mainly given by labor force. There are costs of hiring, termination, and

costs of keeping labor between periods. Additionally, there is the harvesting cost which is

a productivity payment. Even when the harvesting cost is more important than the cost of

keeping labor, we make this difference because in Chilean context, it is common to have a

stable seasonal team that remains as a part of the vineyard.

Income is produced by selling the harvested grapes at a market price. The actual price,

however, is affected by the final quality and type of the grapes, which depends on the

specific harvest time. We represent this by a quality factor, which is equal to 1 when

the harvesting day is the optimal day, and less than 1 otherwise (later in this document,

we present the mathematical model). We tested two different varieties of wine grape,

standard and premium, where the time pass has different effects. As prices are according

to the quality, the benefits change; the progress of the harvesting depends on the balance

of cost and benefits, so very poor qualities probably will not be harvested depending on

the kind of grape.
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3.1.2. Rainfall Events

Rain events could be characterized both by occurrence and intensity. The occurrence

and intensity effect of rain will be modeled using a 0-1 binary event, which is defined

by ξ ∈ Ξ : {0, 1} where 1 corresponds to the rain event and 0 to no rain. This might

be seen as an oversimplification of the rain effect. However, in the work by Haeger and

Storchmann (2006), the authors studied the effect that climate, craftsmanship and critics

have on the prices of American Pinot Noir. In their work, they found that rainfall during the

ripening period and the harvest plays virtually no effect on the price of grapes and hence

the quality. On the contrary, the work by Ashenfelter et al. (1995) indicates that rainfall

during the ripening period and the harvest had a negative effect on the rices of Burgundy

french wines. Haeger and Storchmann (2006) analyzes this contradicting effects between

Burgundy and Oregon wines and conclude that precipitation variables during the ripening

period in Oregon have no effect, because it only rains 14 ml compared to Burgundy were

rain during that season is significant with 30-year average of 127 ml. This is an indication

that the intensity of the rain has an effect on the quality once a certain threshold or level

has been achieved, but we see no direct effect between the intensity and the loss of quality.

So the use of a 0-1 binary process can adequately represent the rain event and probability

of occurrence of the event will represent the intensity, indicating when the rain exceeds the

threshold level and affects both the quality of the grapes and also the harvesting process.

The dynamics of rain probabilities have been studied and are reported in weather and

atmospheric science. The available information is usually a weather forecast where rain is

reported as a probability. The forecast time span is variable and requires frequent updates,

leading to planning reviews. We use a convenient model for our multistage programming.

The model is a two-stage first-order Markovian chain representation, where the probability

of rain on a specific day depends on the rainfall status from the previous day (Richardson

and Wright, 1984).

As shown in Figure 3.1, the transition probability between states in two consecutive

periods t − 1 and t is represented by rξt−1,ξt . We define the transition factor, τ01, as the
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Figure 3.1. Markov Chain for rain transition probabilities. Nodes 0 and 1
represent no rain and rain events, respectively.

quotient r11/r01 which represents the propensity of the system to continue in the rain event

(τ01 > 1) or continue in the no rain event (τ01 < 1).

Urdiales et al. (2018) presents a rain model implementation for the Chilean case; they

propose an expression which takes into account the “El Niño” climatic event, which gen-

erally brings rains in what they define as an El Niño–Southern Oscillation (ENSO) index,

the geography for several places and different months. The result is a general equation

that estimates the probability of rain considering only the rain realization of the immedi-

ate period before. According to the information reported, the transition probabilities are

stable for each month, year, and location. In our Markov representation we will consider

three different transition states: to a smaller rain probability, to a larger rain probability

and to one that offers little change (almost constant in practical terms).

According to the Markov representation that we choose for uncertainty, the temporal

structure is similar to a tree, specifically a binomial tree. This representation is very con-

venient and we discuss it later. However, it is important to say that each leaf in the tree

is denoted by ω, being Ω the complete set. The sequence of uncertainty realizations is

another way to describe the scenario.

Let ξωt denote the value of the uncertainty realization at moment t for the specific sce-

nario ω. Then, for this particular scenario, we can compute the probability of occurrence

of the event wω, as:
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wω =
∏
t∈T

rξωt−1,ξ
ω
t

3.1.3. Grape Quality

As Ahumada and Villalobos (2009) points out, since in agriculture we work with living

organisms, quality degradation in the supply chain is a differentiating factor from other

productive systems. Wines are categorized into quality groups starting at the icon level,

premium level, and going down to the reserve, the varietals, and finally the bulk wines

(Ferrer et al., 2008). As the actual harvest date of the grapes deviates from the optimal

maturity date, the quality of the grapes is affected; a premium wine quality grape could

be degraded to a reserve wine quality grape, and if no action is taken it could be finally

degraded into a bulk wine quality grape. Hence, during the wine harvest, quality must be

carefully managed to obtain the best product at an adequate cost (Coombe, 1992).

During harvest, the quality of the grape is represented by its maturity. However, three

types are recognized: technological, phenolic, and chemical maturity (Le Moigne et al.,

2008). In this work, we concentrate on the technological maturity, which relates to the

degree of sugar content or Brix degree and the acidity level, which renders the final alco-

holic degree of a wine during the fermentation process. We will focus our attention on the

evolution of short-term maturation, which happens during the final weeks, since it drives

the operational planning of the harvest. The harvesting task is planned in detail 5 or 6

days before the optimum day to coordinate the resources needed to proceed. During the

harvest, the planner must consider the cost of the resources needed to harvest the grapes on

an adequate time-frame, and the cost associated with quality degradation due to deviating

from the optimal harvest day.

In the work by Ferrer et al. (2008), the authors modeled quality loss as a function of

time that reaches the maximum at the optimal day. Before or after the optimum, quality

drops. One way of representing this function is by means of a parabola with equation

Qjt = ajt
2 + bjt + cj , for a specific block j and time t, which has a certain variety of
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Figure 3.2. Quality degradation curves for three different types of grapes.

grapes. The parameters of this function have to be chosen in such a way that the values

Qjt are not negative. Hence, the quality value is in the interval [0, 1]. In Figure 3.2, we

show three curves corresponding to grapes with three different levels of quality: standard,

medium, and high.

About the ripening pattern, we see in Figure 3.3 two extra ripening sequence: 1)

medium quality (M), standard quality (S), premium quality (H), or simply, MSH, and

2) HSM. The difference among them is the moment of the optimum maturity.

In this representation, when Qjt = 1 the optimum Brix degree has been reached, and it

is the right time to harvest. Any change in the Brix degree is represented by a proportionate

change in Qjt. The three quality curves that we show correspond to different specifications

of wine. High quality grapes correspond to a wine that needs very specific features, while

a standard grape is used for a wine that offers no differentiation.

In this work, we extend the quality concept to introduce the damage produced by rain.

Experts indicate that the absorption of raindrops into the grape’s grain decreases the sugar

content, so the quality, in terms of alcoholic degree, also decreases Coombe (1992). The
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(a) HSM
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Figure 3.3. Ripening pattern for two different qualities of grapes
considering the optimum day of maturity. The market price is inversely

proportional to the narrowness of the maturity curves.

effect varies according to the type of grape. This process is reversible under the assump-

tion that the grain skin is not damaged, but will result in a harvesting delay because grapes

require sunny days with high temperatures “to dry.” This usually implies commercial

penalties because it impacts industrial planning. In real terms, rainfall bounds the maxi-

mum available quality in a specific time window because we cannot wait for the drying

process. Therefore, while the potential quality evolution is similar in all scenarios, the

achievable quality depends on the particular sequence of rain events in that scenario. The

penalty for a sequence of rain events in a specific path, ω, is a function of the uncertainty

realization in that scenario between the initial period and t, ξωt .

Rain penalty = 1− uj

t∑
τ=1

ξωτ (3.1)

where uj denotes the fractional loss of quality per period and has to be calibrated so

that the above expression remains in the interval [0, 1]. Since the focus of this research is

to study the effect that quality degradation (due to rain or deviation from optimal date) has

on the harvesting decision, we will keep the optimal harvest date unchanged.
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Final quality, then, is given by the following expression:

Qω
jt = (ajt

2 + bjt+ cj)(1− uj

t∑
τ=1

ξωτ ) (3.2)

We notice that with this effect quality becomes a random variable affected by rain.

3.1.4. Labor Productivity

The effective worker productivity at each day will be defined as βt
1. The nominal or

base productivity of the worker will be β̂, which corresponds to the harvesting capacity of

a single worker in daily base in a dry period. When it rains, the productivity of the worker

is affected and so the actual productivity is less than the nominal. We will use a factor

ϕ ∈ [0, 1] to account for this reduction in productivity effect due to rain, and we will name

it “resource skill” or “ability” of the worker to handle the rain effect. The closer this factor

is to 0, the higher the effect the rain has on the productivity and the worker has “lower

ability”; as this factor comes closer to 1 the worker is less affected by rain so he/she has a

“high ability”. The relationship between rain and productivity is given by equation 3.1.4.

βt = β̂ − β̂(ξt − ξtϕ) (3.3)

3.1.5. Deterministic Model

In the deterministic model, the realization of uncertainty is known at the beginning of

the planning. We decorated productivity, β̆ and quality, Q̆jt, to emphasize their determin-

istic condition :

1If there is more than one harvest resource available at time t, sub-index m should be added. In the same
way, if there is more than one scenario, super-index ω is added
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max
∑
j ∈J

∑
t∈T

((BjQ̆jt − CH)hjt − CExt − CFyt − CP lt)

s.t.

lt = lt−1 + xt − yt ∀t ∈ T (d1)∑
j∈J

zjt ≤ lt ∀t ∈ T (d2)∑
j∈J

β̆tzjt ≤ K ∀t ∈ T (d3)

hjt ≤ Sj −
t−1∑
τ=1

hjτ ∀t ∈ T , j ∈ J (d4)

xt, yt, lt ≥ 0,∈ Z+ ∀t ∈ T (d5)

zjt ≥ 0,∈ Z+ ∀t ∈ T , j ∈ J (d6)

In objective function we have the profit, which is given by the price of the grapes

multiplied by its quality factor minus the harvest cost, then multiplied by the quantity har-

vested minus the hiring costs, idle cost and lay off cost. Expression (d1) is the manpower

balance, while relation (d2) limits the number of allocated resources. This restriction gives

the opportunity to keep workers without going to harvest, if costs are convenient. Relation

(d3) bounds the total daily harvest in terms of daily reception capacity of the wine indus-

try. Relation (d4), establishes that the daily harvest is bounded by the remaining volume

available in the block. Finally, relations (d5) and (d6) establish the nature of the variables.

3.1.6. Model Formulation with Uncertainty

We will now present three different formulations of the problem which account for

uncertainty: first, a Multistage Stochastic Problem with Recourse Actions (MA), which

accounts for uncertainty in rain events and can perform worker re-assignment to blocks

after the rain uncertainty reveals itself; second, a Multistage Stochastic Problem without

recourse actions (MB) formulation, that is quite similar to the MA but does does not allow

for worker re-assignment after the rain uncertainty reveals itself; and finally a third for-

mulation, an Expected Value Problem (EV) formulation in which uncertainty is reduced

to its expected behavior. The three models represent different degrees of flexibility in the
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decision making process, through the consideration of updating information and active

management. Even when MA is the most familiar approach, MB may be required if har-

vesting blocks are significantly space apart, so its value could be of interesting in practical

terms. We will also present the Wait and See (WS) approach in order to determine an

upper bound to the system.

The notation used in the stochastic models is based mostly on the one proposed by

Escudero et al. (2007). In this case the number of periods will refer to the number of the

stages, so the index t will be use now as stage in the time horizon.

3.1.6.1. Multistage Stochastic Programming with recourse action (MA)

Multistage Stochastic Programming allows to account for all the states of nature, how-

ever when accounting for all the scenarios the model can easily become intractable. To

avoid the intractability of the model we will use a tree representation of the state space

which is commonly used for representing agricultural systems (C. Zhang et al., 2017; Dai

and Li, 2013). Also the use of stochastic modeling allows flexibility in terms of antici-

pating or postponing certain actions (Mandelbaum and Buzacott, 1990). In this context,

we will consider what decisions and the moment in which they are taken. In our proposed

Multistage Stochastic Programming with recourse action (MA) formulation, the hiring

and firing processes are decisions that must be made at each stage before the realization

of uncertainty occurs, and the allocation decisions are made after uncertainty is revealed,

requiring an active management (when decisions are made after the uncertainty is re-

vealed, we decorate the decision variable, i.e. ẋ). The model’s goal is to maximize the

expected value of revenue for all the scenarios, keeping the limitations about future infor-

mation. Because of its linearity and discrete probability distribution, we represent the MA

model as an enumeration of the different scenarios in its deterministic equivalent model

representation (Figure 3.4). To preserve the lack of information in the decision process,

the nonanticipativity principle is used (Escudero et al., 2007; Mulvey and Ruszczyński,

1995; Rockafellar and Wets, 1991). The MA model is as follows.
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max
∑
ω∈Ω

wω
∑
j∈J

∑
t∈T
{(BjQ

ω
jt − CH)h

ω
jt − CEx

ω
t − CFy

ω
t − CP l

ω
t }

s.t.

lωt = lωt−1 + xω
t − yωt ∀t ∈ T , ω ∈ Ω (s1)∑

j∈J
żωjt ≤ mω

t ∀t ∈ T , ω ∈ Ω (s2)∑
j∈J

βω
t z

ω
jt ≤ K ∀j ∈ J , t ∈ T , ω ∈ Ω (s3)

βω
t ż

ω
jt ≤ Sj −

t−1∑
t′=1

βω
t′ ż

ω
jt′ ∀j ∈ J , t ∈ T , ω ∈ Ω (s4)

xω
t = xω′

t ∀ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T : t ≥ 2 (s5a)

xω
1 = xω′

1 ∀ω′, ω ∈ Ω, ω′ ̸= ω (s5b)

yωt = yω
′

t ∀ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T : t ≥ 2 (s6a)

yω1 = yω
′

1 ∀ω′, ω ∈ Ω, ω′ ̸= ω (s6b)

żωjt = żω
′

jt ∀ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt, t ∈ T , j ∈ J (s7)

xω
t , y

ω
t ,∈ Z+ ∀t ∈ T , ω ∈ Ω (s8)

żωjt,∈ Z+ ∀t ∈ T , j ∈ J , ω ∈ Ω (s9)

Model 1. Multistage stochastic model with recourse action

Constraints (s1), (s2), (s3) and (s4) are the stochastic reformulation of deterministic con-

straints (d1), (d2), (d3) and (d4), respectively. The nonanticipativity principle is repre-

sented by (s5a), (s5b), (s6a), (s6) and (s7) constraints. Constraints (s8) and (s9) are

connected to the nature of the variables.

As indicated before, we used a binomial tree to represent the stochastic model (Pflug and

Pichler, 2016) as is shown in Figure 3.4 (a). In that tree, the squares represents the nodes

or status of the system, a full-filled diamond means a decision made before the realization

of uncertainty, and the empty diamonds are decisions made after uncertainty is revealed.

Finally, circles are the uncertainty revelation moments. In this work, time and stages are

similar.
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(a) Scenario Tree (b) DEM for Scenario Tree

Figure 3.4. Binomial Tree (a) and the Deterministic equivalent representation (b) of the MA model, based on
Rockafellar and Wets (1991). References: square:node, full-fill diamond: decision made before uncertainty is

revealed, empty diamond: decision made after uncertainty is revealed, circle: uncertainty realization
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3.1.6.2. Multistage Stochastic Programming with no recourse action, MB

As it was previously discussed, in some cases the assignment of workers to harvesting

blocks needs to be done previously to the event in which the uncertain event has been

realized. To account for this we introduce the MB model, in which we do not have the

possibility of recourse actions once uncertainty has revealed. This will allow us to deter-

mine the value of the recourse actions. We will now present the list the constraints that

have been modified in the MB:
zωjt = zω

′
jt ∀ω′, ω ∈ Ωg, ω

′ ̸= ω, g ∈ Gt−1, t ∈ T t :≥ 2, j ∈ J (b7a)

zωj1 = zω
′

j1 ∀ω′, ω ∈ Ω, ω′ ̸= ω, j ∈ J (b7b)

zωjt ≥ 0,∈ Z+ ∀t ∈ T , j ∈ J ω ∈ Ω (b9)

Constraints (b7a) and (b7b) replace the original constraints in MA model (s7) while (b9)

replaces (s9). The rest of the model is unchanged.

3.1.6.3. Expected Value Model, EV

The EV model is much like the basic deterministic model presented in section 3.1.1. How-

ever, the uncertain events are replaced by its expected value while the productivity and

quality must determined by the the expected uncertainty. The expected uncertainty real-

ization at moment t can be obtained by equation 3.4. As ξωt could be 0 or 1, the expected

rain event is the sum of the conditional probabilities of scenarios if the uncertainty real-

ization is rain.

ξ̄t =
∑
ω∈Ω′

t

wω
t ξ

ω
t =

∑
ω∈Ω′

t

wω
t (3.4)

The expected productivity is calculated as:

β̄t = β̂ − β̂(ξ̄t − ξ̄tϕ) ∀ t ∈ T (3.5)

Regarding quality, the expected value of quality is given in (3.6):

Q̄jt = (ajt
2 + bjt+ cj)(1− uj

t∑
t′:1

ξ̄t′) ∀ j ∈ J , t ∈ T (3.6)
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3.1.6.4. Wait-and-See model, WS

Finally, we present the Wait and See Model (WS) which is exactly the same as the

MA, but all nonanticipativity constraints have been relaxed; it denotes the expected

value of using the optimal solution for each scenario. So the WS model does not con-

sider constraints (s5), (s6) and (s7). The rest of constraints and structure keeps simi-

lar. Under these conditions it can be expected that the following inequalities are satisfied

EV ≤MB ≤MA ≤ WS.

3.1.7. Model Comparison Metrics

To compare the solutions obtained by using different approaches, we will use three well

known metrics: first, the expected value of the solution of the EV (EEV), second, the

expected value of perfect information (EVPI) and third, the value of the stochastic solution

(VSS) (Birge and Louveaux, 2011; Escudero et al., 2007). We will denote UMA and

UMB as the solutions for the multistage stochastic models with and without recourse,

respectevely. In the case of EV model we will apply the policy to the whole tree of

scenarios which renders the EEV. The Expected Value of Perfect Information EV PI is

obtained by EV PI = WS − UMA for the recourse model. We will also use the Value of

Stochastic Solution V SS formulated as V SS = UMA−EEV , and the Value of Stochastic

Solution without recourse as V SSMB = UMB − EEV . We use the Wait and See WS

model as an upper limit and report the results as a fraction of it.

Escudero et al. (2007) proposes a methodology for determining the VSS for multistage

cases at each stage compared to our current approach of determining the difference be-

tween the expected values. We will compare them following the proposal by Upton (1994)

which indicates a direct method, that is more intuitive for a manager.

To explore where value is generated in different approaches, we will look into four eco-

nomical components of the problems: actual income as a percentage of the maximum

income (I), cost of labor as a percentage maximum income (L), percentage deviation of

grape quality from optimum conditions (Q) and the percentage of unharvested grapes (S).

IM =

∑
ω∈Ω

∑
t∈T

∑
j∈J wωQω

jth
ω
jtBj∑

j∈J SjBj

(3.7)
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LM =

∑
ω∈Ω

∑
t∈T

∑
j∈J wω(CExt + CFyt + CPmt)

ω∑
j∈J SjBj

(3.8)

QM = 1−
∑

ω∈Ω
∑

t∈T
∑

j∈J wωQω
jth

ω
jtBj∑

ω∈Ω
∑

t∈T
∑

j∈J wωhω
jtBj

(3.9)

SM = 1−
∑

ω∈Ω
∑

t∈T
∑

j∈J wωhω
jt∑

j∈J Sj

(3.10)

The value of the percentage from maximum income (IM) is constructed by dividing the

expected income (considering grape quality) by the maximum possible income, given by

the total amount of grapes multiplied by their price. For the value of cost of labor as

a percentage of total income, (LM), we determine the expected total cost, given by the

cost of hiring, direct harvest cost, and the cost of worker termination, multiplied by the

probability of each scenario divided by the total income. For the value of percentage

deviation of grape quality from optimum conditions (QM) we do not include unharvested

grapes, in order to capture just the quality effect. Finally, we indicate the final progress

of harvesting by introducing the quotient of the expected final unharvested stock and the

initial stock (SM).

3.2. Results

In this section, we start by presenting the parameters and structure used in the computa-

tional experiments, and then present the main results of this work. In the results we will

compare economic performances of the models for several conditions of rain and resource

or labor ability. Secondly, we show the effect of quality in the contribution of each model.

Immediately after, we discuss the way value is created, considering the harvest planning

and real progress as central elements. To the end of this section, we introduce the effect of

the rain probability transition matrix and the computational times.

3.2.1. Model Parameters

Table 3.1 presents the base parameters used in this work; most of them were obtained from

the work by Ferrer et al. (2008).



53

Table 3.1. Model base parameters, most of them obtained from Ferrer et
al. (2008)

Model Parameter Notation Value Units

Grape Price Bj Standard 1.4 $/kg

High 6 $/kg

Lay-off cost CF 630 $/worker

Hiring cost CE 420 $/worker

Maintain cost CP 84 $/worker/period

Harvest cost CH 0.28 $/harvested kg.

Initial harvest stock Sj 300,000 kg.

Harvest Period n(T ) 10 days

Optimal Harvest periods 5 and 6 days

To analyze the effect the parameters (e.g., workers ability, rain probability and transition,

quality and the impact of rain) have on the models performance we will perform several

optimizations with configurations or instances. The parameters used for each configura-

tion or instance are summarized in Table 3.2. We tested a total of 2430 instances, so the

total number of models optimized were 9720.

Table 3.2. Parameters for the different experiments

Feature Notation Values Units

Workers Ability ϕ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 –

Rain probability r01 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 –

Transition factor τ01 0.6, 0.8, 1.0, 1.2, 1.4 –

Grape quality Standard a:-0.005, b:0.055, c:0.85 $

High a:-0.04, b:0.44, c:-0.2 $

Rain quality penalty u 2%, 4%, 6% %

The models were implemented using Python , the model was written for PYOMO Python

(Hart et al., 2017) and the optimization engine was GUROBI v. 8.1.0. The solution time

was not limited, the optimality gap was set to 1% and the integrality parameter was the
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solver default. We used a laptop computer with an Intel Core processor i7-6700HQ CPU

2.60 GHz, with 32.0 GB of RAM memory running Windows 10.

3.2.2. Economic Performance

Table 3.3 shows the solutions obtained for different grape quality levels and rain proba-

bilities (r01) for the different models and the EV PI, V SSMB and V SS metrics. In Table

3.4 we can observe the values in relative terms to the EEV model. Rain probabilities are

defined as low when r01 = 0.1, medium when r01 = 0.5 and high when r01 = 0.9

Table 3.3. Solutions for WS, MA, MB and EEV models with
EV PI, V SSMB and V SS metrics, for three transition probabilities of

rain, two grape qualities and low worker ability.

Quality r01 WS UMA UMB EEV EV PI V SS V SSMB

std low 241,458 237,383 237,286 233,970 4,075 3,413 3,315

medium 191,532 182,634 181,925 175,544 8,898 7,090 6,380

high 91,350 84,873 81,275 80,794 6,477 4,079 481

hgh low 1,484,874 1,475,731 1,473,150 1,410,185 9,143 65,545 62,965

medium 1,336,996 1,303,615 1,293,576 1,202,743 33,381 100,873 90,833

high 1,113,867 1,082,632 988,975 966,236 31,235 116,396 22,739

Table 3.4. Solution values in relative terms to the EEV model for three
transition probabilities of rain, two grape qualities and low worker ability.

Quality r01 WS/EEV UMA/EEV UMB/EEV

std low 3.20% 1.46% 1.42%

medium 9.11% 4.04% 3.63%

high 13.07% 5.05% 0.60%

hgh low 5.30% 4.65% 4.46%

medium 11.16% 8.39% 7.55%

high 15.28% 12.05% 2.35%

The MA model achieves its highest absolute value under low rain probability and high

grape quality. However, the largest relative difference between the MA and EEV model is
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under high rain probability and high quality of grapes. This relative difference is followed

by the high rain probability and standard quality of grapes scenario. If we observe the

VSS for the MA model, we can see the same behavior; however in the case of high grape

quality the largest VSS value is obtained under medium rain probability. In the case of the

MB model, the largest relative difference between the model and EEV is under medium

rain probability for both quality levels. A similar behavior is observed in the VSS, with the

difference that highest value is obtained under medium rain probability and high quality

of grapes.

Figure 3.5 presents the V SS for two different grape qualities, for a range of rain proba-

bilities and for three levels of resource ability. In the case of standard grape quality, we

can observe a bell-curved shape for different rain probabilities, with a peak around 0.5 for

high ability. If we observe the extreme probabilities of rain (0.1 and 0.9) the VSS value is

smaller and the differences between the ability levels is also lower indicating that the use

of MA approach produces less value than in the highly uncertain scenario (rain probability

close to 0.5). In the case of high quality grapes, as the probability of rain increases, the

benefit of using a MA approach is higher, indicating that for high quality grapes the use of

an MA approach is more valuable when the probability of the negative event is higher, due

to the value of the product. Hence quality and rain probability have a significant impact

on V SS while the ability of workers mitigates both effects.

In Figure 3.6 we can observe the V SSMB. We can observe a similar behavior to the

V SS in the standard quality case, with a significant decrease in the value in the case of

the high probability of rain event. In the case of the high quality grapes, we can observe

a significant reduction in the V SSMB for the high probability of rain scenario, which

indicates that the recourse action generates a significant portion of the of value in the case

of unfavorable scenarios. For both cases the ability of the workers is able to mitigate the

negative effect of the uncertainty and the quality of the grapes.

From these results, we can extract that the three factors which significantly affect the V SS

are: grape quality, labor ability, and rain probability.
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Figure 3.5. V SS for two qualities of grapes, different rain transition
probabilities and three levels of worker ability.
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Figure 3.6. V SSMB for two qualities of grapes, different rain transition
probabilities and three levels of worker ability.

3.2.3. Sources of Value

To determine the sources of value produced by the MA approach, we will present the

results of four metrics: percentage deviation from maximum income (I), cost of labor as a

percentage of total income (L), percentage of grape quality from optimum conditions (Q),

and the percentage amount of unharvested grapes (S). Table 3.5 shows the results for the

four metrics.
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From the table, we can observe that when a rain event is highly uncertain (0.5), the max-

imum income percentage is higher for the MA than the EEV and MB. This indicates that

the MA, under highly uncertain conditions, can capture more value from the grapes. This

can be also reflected in the percentage of unharvested grapes, where the MA harvests

nearly 100% while the EEV leaves a percentage behind. This difference is particularly

clear for high quality grapes where the EEV loses over 3% of grapes across all levels

of worker ability, while the MA loses less than 0.3%. The unharvested stock is similar

in MA to MB. In the case of standard quality grapes, MA and EEV sacrifice almost the

same percentage of quality. However, for high quality grapes, the MA sacrifices a higher

percentage of quality than the EEV for all cases. This indicates that the MA model can

capture more value by leaving fewer grapes behind. This is because the MA observes

the posibility of rain in the future and reacts by advancing the harvest decisions of some

blocks, while sacrificing the quality of the grapes, in order to leave fewer grapes behind.

In the case of the MB, the impossibility to adjust the resource allocation, limits its reaction

and so the value.
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Table 3.5. Results for the four metrics for three levels of worker ability (flex), two levels of grape quality and two
rain transition probabilities
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When the rain probability is high (0.9), we can observe that the difference in the maxi-

mum income percentage is small between the MA and EEV. In the case of standard quality,

those similarities are maintained across the metrics, indicating that the difference between

the solutions given by the MA and EEV are similar. However, in the case of high qual-

ity grapes, the MA leaves fewer grapes behind while sacrificing quality. For both high

uncertainty and high probability of rain, the MA model advances harvesting decisions in

order to leave fewer grapes behind, while sacrificing quality. MB incomes are similar to

the ones obtained by MA and EEV.

Worker ability has the effect of reducing the consequences of rain and the differences

among models for all situations, allowing more value to be captured and costs to be re-

duced.

Quality and the decision to leave grapes behind play a significant role in the value gen-

eration process, especially in the moment the grapes are harvested. To corroborate that

the MA approach foresees certain situations, and advances the harvest decision of some

blocks, we will now compare the planning and execution of harvesting tasks to determine

how the decision to harvest is handled by the MA, MB and EV approaches.

3.2.4. Planning and Execution of Harvesting

Tables 3.6 and 3.7 present the percentage of scenarios with harvest for each period which

allow to observe the differences between the MA, MB and EV harvest decisions for two

grape quality levels, two probabilities of rain (0.5 and 0.9) and three labor ability levels

(Note that it is the planning step, so is EV and not EEV). The tables show the 10 harvest

planning periods with their optimal harvest dates located in t5 and t6. The values inside

represent, for each time period, the percentage of scenarios in which the model decided

to harvest. In the case of the EV, since there is only one plan, the possible values are

binary; however, the MA and MB models can make different harvest decisions according

to previous conditions.

We can observe that for a standard quality level (Table 3.6), models tend to harvest during

the entire planning period, thus reducing the number of workers required for harvest. As

expected, the MA and MB tend to advance the harvest decision in comparison with the EV.
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This is reflected in the final periods of harvest, where the EV performs harvest while the

MA, in some scenarios, does not perform any harvest at all (values less than 1). When the

probability of rain and its effect on harvest is more certain, increased to 0.9, the differences

among approaches is reduced. Similarly, when labor ability is increased, the effect of rain

and the differences between models are reduced.

In the case of high quality grapes (Table 3.7), we can now observe that the three models

do not use the complete span of the planning periods, they concentrate near the optimal

harvest time. When the probability of rain is highly uncertain (0.5), the EV approach

concentrates the harvest very close to the optimal date in order not to be exposed to rain

and hence lose quality. In the case of the MA model, since it accounts for the probability

of no rain and can recourse in the event of rain, the decision to harvest is delayed to some

post-optimal harvest periods in order to reduce the cost of harvesting. The MB model,

delays even more the harvest decision since it does not have the possibility of a recourse

action. When the probability of rain is increased to 0.9, we can observe that the number of

scenarios in which the EV and MA continues with harvesting after the optimum window

increases.
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Table 3.6. Percentage of scenarios with harvest for each period for MA, MB and EV, three levels of worker ability,
two rain transition probabilities and standard quality grapes.

Table 3.7. Percentage of scenarios with harvest for each period for MA, MB, and EV, three levels of worker ability,
two rain transition probabilities and high quality grapes.
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Table 3.8 shows the average percentage of accumulated harvest for standard quality

grapes. We can observe that both approaches use almost the complete time span of harvest,

with an average of 10% of harvest for each day. In the case of EEV, the solution uses a

stable harvest approach of 10% to reduce the harvest cost, except in a scenario with a high

probability of rain and high labor ability, in which case the harvest is increased to 11.1% to

shorten the harvest period. As labor skill increases the percentage of unharvested grapes

is significantly reduced for EEV and MB models, while in the case of the MA model the

reduction is more stable as the ability is increased. For high probability of rain, the MA

and MB advances the harvest decision so that around 7% more grapes are harvested by

the end of the optimal period (t5 and t6). This is done to avoid damage caused by rain in

the final periods and, hence, it allows the model to leave fewer grapes unharvested.

If we look at high quality grapes (Table 3.9), when the probability of rain is highly uncer-

tain (0.5), we can observe that the EEV leaves on average a significant volume of grapes

unharvested, compared to the MA. This is because the EEV approach concentrates the

harvest very close to the optimal dates, in a small time window of 4 to 5 days, in order

to reduce the quality degradation of the grapes. Unfortunately, when the harvest plan is

implemented in the EEV, there are some scenarios of rain in which the workers cannot

harvest the amounts planned and, due to its inflexible nature, all unharvested grapes are

left behind. Since the MA approach adjusts the harvest plan and labor to the prevailing

rain conditions, the harvest is extended to the end of the period, which leaves fewer grapes

unharvested, although their quality is reduced. Thus, the ability of the MA model to ac-

count for different rain scenarios allows the harvest to be delayed and, in the event of rain,

adjusts the labor requirement in order to leave fewer grapes unharvested, compared to the

EEV. When the event of rain is more likely (0.9) we can observe a similar behavior as in

the highly uncertain case, though with a smaller gap in the amount of unharvested grapes

between the EV and MA approaches. Furthermore, as expected, the ability of the workers

tends to reduce the differences between the models. Due to the recourse actions, the MA

approach advances on average more harvest in the optimum days compared to the MB and

EEV, allowing to capture both quality and volume.
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From these results, we can see that the probability of rain also has an important effect on

the approaches decisions, and the generation of value. In the following section we will

explore the effect of rain probabilities.
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Table 3.8. Average percentage volume of accumulated harvest for each period for EEV, MB and MA, for three
levels of worker ability, two rain transition probabilities and standard quality grapes.Final column indicates the

average percentage volume of grapes not harvested.
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Table 3.9. Average percentage volume of accumulated harvest for each period for EEV, MB, and MA, for three
levels of worker ability, two rain transition probabilities and high quality grapes. Final column indicates the average

percentage volume of grapes not harvested.
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3.2.5. Rain Probability Effects

Since we modeled the probability of rain using a Markov process, the rain probability

effect can be divided into two components: first, the transition probability of changing

from a non-rainy day into a rainy day, which we defined as r01 and, second, the probability

of rain to continue from one day to the next, which we stated as r11. Figures 3.7 and 3.8

present the percentage value of V SS over the EEV for low and high labor ability, for

a given set of r01 and percentage changes in the transition factor τ01, being 0% when

r01 = r11.

Figure 3.7 (a) shows that for standard quality and low labor ability, the V SS value against

the EEV is not significantly affected by the percentage changes in the quotient r11/r01 for

medium and low rain probabilities (r01). However, when rain probability is high (0.9) and

as the quotient r11/r01 increases, the value of using an stochastic approach is increased.

Figure 3.8 (a), presents the results for standard quality and high ability, in all cases the

value of using the stochastic approach is reduced if we compare with the low ability. When

the probability of rain is low (r01 = 0.1), the V SS is unaffected by changes in the quotient

r11/r01. When rain probability is very high, r01 = 0.9 and high r11/r01 quotient, the V SS

has no difference with the EEV . When r01 = 0.5 and as the quotient r11/r01 increases,

the value of using an stochastic approach is increased. In 3.7 (b) and 3.8 (b), we can

observe the same behavior, but the differences in the V SS are increased due to the quality

of the grapes, more in the case of low ability than in the high ability.

3.2.6. Value of Worker Reassignment Flexibility

As it was mentioned at the beginning of the work, the non-recourse (MB) and recourse

(MA) modeling approaches of grape harvest differ, since the latter can reassign labor once

the state of the nature reveals. The possibility or flexibility to reassign after the uncertainty

reveals itself gives a performance advantage to the MA approach. We will now look at the

value differences between both models, under various scenarios, in order to determine

under which conditions the recourse action renders more value. In Figures 3.9 and 3.10

we can observe the percentage value difference between MA and MB for low and high
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Figure 3.7. V SS percentage for low labor ability, different probabilities
of rain (r01) and percentage changes in the quotient r11/r01

labor ability, respectively, for a given set of r01, and percentage changes in the quotient

r11/r01.

For low labor ability and both standard and high quality, we can observe that the value

generated by the MA approach is significant when the probability of rain is high (r01 =

0.9) and the gap is enlarged as the quotient r11/r01 increases. When the rain event is

improbable r01 = 0.1 or uncertain r01 = 0.5 the differences between both approaches is

not significant for both cases. The gap increases according τ01 is bigger. In Figure 3.10

we can observe that when the resource ability is high the effects of the recourse actions
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Figure 3.8. V SS percentage for high labor ability, different probabilities
of rain (r01) and percentage changes in the quotient r11/r01

are diluted, however under high rain probability we can observe that the benefits of using

the recourse approach are increased.

3.2.7. Computational Times and the Effect of Instance Size

In the previous sections we have seen that under certain conditions the MA generates

better solutions than the EV approach. This is because, unlike the EV, it accounts for the

uncertainty in weather conditions and does not prescribe a single solution but a set, or tree,

of solutions which are conditional to how the states of nature are revealed. Obtaining a set,

or tree, of solutions does not come without cost; simultaneous optimization models need
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Figure 3.9. Percentage differences MA and MB for a low labor ability,
different probabilities of rain (r01) and percentage changes in the quotient

of r11/r01.

to be solved for each scenario and must also account for non-anticipativity principle. This

puts a significant computational burden on the MA approach, which grows exponentially

with the number of periods.

To determine the computational effect that the number of periods has on the MA approach

against the EV, we run a number of experiments in which we increase the number of

periods and record the difference in time required to obtain an optimal solution for the MA

and EV. In Figure 3.11 we can observe the results of these experiments. The computation

time is shown in seconds and is the difference between MA and EV solving time; the



70

−50%−40%−30%−20%−10% 0% 10% 20% 30% 40% 50%
−1%

0%

1%

2%

3%

4%

5%

Percentage changes in the quotient of r11/r01

U
M

A
/U

M
B

(a) UMA/UMB for standard quality

r01 = 0.1
r01 = 0.5
r01 = 0.9

−50%−40%−30%−20%−10% 0% 10% 20% 30% 40% 50%
−1%

0%

1%

2%

3%

4%

5%

Percentage changes in the quotient of r11/r01

U
M

A
/U

S
W

R

(b) UMA/USWR for high quality

r01 = 0.1
r01 = 0.5
r01 = 0.9

Figure 3.10. Percentage differences between flexible MA and MB for
high worker ability, different probabilities of rain (r01) and percentage

changes in the quotient of r11/r01.

result is similar to previous literature where, as the quantity of instances increases, the

computation time grows exponentially for the MA compared to the EV.

3.3. Discussion and Conclusions

We presented two multistage stochastic optimization models for planning wine harvest

operations that accounts for rain uncertainty and quality degradation of the product. The

first one, the MA model with recourse actions which can reassign labor once the state of

the nature reveals; the second, the MB model which cannot reassign labor once the state
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Figure 3.11. Differences in net solving time for different sizes (periods of
harvesting) between the MA and EV approaches.

of the nature reveals. Both models were developed to analyze and determine the value of

using a stochastic approach against an expected one and the value of the recourse actions,

under different scenarios. The solutions obtained using the MA model were significantly

different to the one obtained using an expected value approach and provides better results

when tested against all possible scenarios. This result is similar to what Ahumada et al.

(2012) concluded when applying a two-stage stochastic optimization approach.

The MA model can adjust the labor requirements and assignment as more information

is available, and its decision process allows flexibility in whether to advance or defer

harvesting. Results indicate that we can produce solutions that would generate up to 8%

more value by using a MA approach rather than a EV. In some specific cases, MB produces

a solution which is 12% lower in value than its EV counterpart, specially as effect of the

structure and the nonexistence of recourse actions. The parameters that affect the harvest

plan are: grape quality, rain probability, worker ability and decision flexibility.

As grape quality improves, the value of using a MA approach increases for every instance.

The source of the value produced by using the MA comes from the ability of the model

to not prescribe a single solution, but a set, or tree, of solutions which are conditional to

the state of nature. The value produced by implementing the MA solution comes from

two main actions the models performs: first, the model leaves fewer grapes unharvested
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while maintaining a similar harvest cost as the EV and, second, it does not sacrifice the

quality of the grapes. These two sources of values are reflected in the two harvest actions

the model takes: first, it advances harvest decisions when the quality is not significantly

affected by moving from the optimal harvest date (standard quality grapes), especially

when the probability of rain is uncertain (0.5). Second, when the quality of the grapes

is high, the model harvests as many grapes as possible within the optimal window, while

also postponing a small part of the harvest in the event that it does not rain.

We modeled the rain effect using a Markov process composed of two probabilities: first,

the transition probability of changing from a non-rainy day into a rainy day and second, the

probability of rain to continue from one day to the next. When rain probability is uncertain

and as the transition probability is closer to 0.5, using a MA approach significantly renders

more value than the EEV approach. This difference is reduced as the transition probability

is near the extremes (0.1 and 0.9).

When both the transition probability of rain (0.9) and the recurrent probability of rain are

high, the MA approach renders similar value than the EEV. If we compare the MA with

MB approach, the latter produces less value due to the inability of MB model to adjust

worker assignment according to changes in the state of nature. This result is similar to

what Goyal and Netessine (2007) found in manufacturing service, where they conclude

that flexibility should be favored in highly uncertain environments.

Finally, we integrated worker ability, which reflects the effect of rain on productivity, and

decision making flexibility into the model. As worker ability increases, the effect of rain

on the harvest is reduced, as is the value of using the MA and MB approach. The use

of an stochastic approach adds complexity into the process, since the formulation, data

collection and implementation are more elaborate. Furthermore, the computational time

grows exponentially with the number of instances, which can be a deterrent from using

such an approach.

The main managerial insight obtained from this research is identifying under which condi-

tions the use of the MA approach renders more value than the EV single solution approach.

In Table 3.10 we can observe how the V SS for the MA and MB models compare to the

EEV. The MA model always generates more value than the MB approach. Specially, if
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Table 3.10. Values for V SS/EEV and V SSMB/EEV for different
scenarios

we are dealing with grapes of high quality and low ability, the benefits of using the MA

are significant and positive for all parameters, therefore the use of this approach is recom-

mended. Moreover, the V SSMB presents very poor performance when the rain probability

is high (r01) and the quotient r11/r01 > 1, results can even be lower than the EEV. If abil-

ity is high, the behavior is quite similar, so using MA may not be critical, and MB could

be a good option. When Quality is standard, the price of the grape limits the value of

the whole system, so the benefits of using an stochastic approach are not as significant

as the high quality case. For low abilities, MA renders better than MB compared to the

case of high ability in which the benefits of using an stochastic approach are not so signif-

icant. Hence under high quality grapes, low ability of labor and high probabilities of rain,

the decision maker should definitely use an stochastic approach. The same would hold

for standard quality of grapes, however the economic benefits would be smaller. Under

standard quality and high ability of labor, the benefits are significantly reduced and so the

decision maker can rely on a standard expected value approaches

Our stochastic modeling approach has several limitations. First, to model the event of rain

we use a Markov chain binomial approach, which does not account for the intensity of

the event. The intensity may be useful to indicate intermediate effects on the fruit or soils

conditions, important for machine jobs. This should be addressed by either increasing

the possible states or by generating an intensity feature for the rain event. Second, we

only use one type of harvest resource (labor); in reality, managers can also use machinery

to perform the harvest, or different expertise teams. Third, we did not set an external
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constraint that accounts for how the manager needs to consider the daily capacity of the

cellar to receive grapes or, in the case of a third-party buyer, the maximum level that

can be sold. Fourth, in modeling the effect of quality degradation we account for the

effect of previous rain and use a symmetrical concave function, while in the work by

Arnaout and Maatouk (2010) they use a non-symmetrical quality degradation function.

Finally, since our MS model is based on a Mixed-Integer Programming approach with a

binomial scenario generation scheme, the computational times grow exponentially with

the number of instances, making the model solvable only for harvesting problems with

fewer instances.
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Chapter 4

The value of decisions and labor ability

as flexibility sources

In the previous chapter, we compared a simplified model, EV, with a stochastic approach,

MS, applied in the harvesting of grape wine. The aim was to understand the contribution

of complex models when flexible resources are present, in context of uncertainty. The

uncertainty refers to rain conditions, being a binary variable, and its impact on quality

and productivity. Quality is deteriorated if rain happens; it limits the quality of the block,

so the final income decreases. About productivity, harvest resource is represented by

manpower, in a context of manual picking. The resource has a nominal productivity that

is the maximum that can be reached; however, depending on the flexibility for working

under rain conditions, the productivity in the rainy periods will be affected. Highly flexible

resources suffer slight penalization in rainy conditions. Three different ripening patterns

were examined under varying sequences of the optimum maturity days. We concluded that

very skilled resources gave stability to the decisions and the EV model has an acceptable

performance compared to MS. If the uncertainty increases, the gap between EV and MS

is small only for highly flexible resources. When the ability decays, the advantage for

MS increases considerably. Finally, when rain is highly probable, EV behaves better than

the MS without recourse action; but if recourse action is allowed, then MS recover the

advantage.
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In general terms, the ability to harvest under the rain is a kind of flexibility. It gives the

capacity to react to the negative event with a correct answer in some degree. Nominal pro-

ductivity is also flexibility, because it gets better the performance base. As was indicated

by Buzacott and Mandelbaum (2008), the number of decisions and their stages are ways

of flexibility, even when they are not always considered like this in operation research.

MS formulation is more flexible than EV approach because it has detailed information to

make decisions. But the created value does not justify always the complexity of MS. This

problem is part of a bigger one: flexibility value is complex to understand and predict

(Rogalski, 2011).

In this chapter we will extend the Chapter 3 to other ways of flexibility. The first source

of flexibility to value is the allocation epoch. In Chapter 3 the allocation is cost-free,

and we tested two options limited by the information about the uncertainty realization.

If any of decisions were made before uncertainty is revealed, the MS model is called

MB. If any of decisions are made after the uncertainty is revealed, the MS variant is

called MA. We observe that the last option creates more value; in the free-charge model,

the extra value of MS model, keeping all the rest of conditions céteris páribus, is the

willingness to pay for the flexibility of delaying the decision. Delaying decisions is linked

to the information availability, so, it is a way of value the information update. Now,

we propose to compare three variants of MS models, MB, MA, and after-and/or-before

(MC). Making decision before is cheaper than after, because the risk of making before is

compensated with minor costs (the compensation is not exactly). The after-and/or-before

alternative offers the opportunity of a later correction if decision was made before, or just

to make the decision after uncertainty realization. The worst situation about cost is to

decide before and change the decision then, assuming both costs. To refer to exact instant

of the decisions, we observe that the limit is the uncertainty realization; henceforth, we

will say that MB and MA make at least one of the decisions in different epochs in the same

periods.

The other source of flexibility is the harvest resource. We explore here the value creation

considering first, a single resource with variable ability to harvest under rain, and second,

providing to the problem of two different resources, experts and rookies. The ability to
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harvest under the rain is similar but experts are more productive. This extra capacity has

a cost. Choosing the team components is a flexibility for the farmer; intuitively expert

should be better, but their cost is higher so the obvious decision are not such in uncertain

contexts. In order to understand what the cost impact is on team selection under uncer-

tainty, we carried out a sensitivity analysis of cost and productivity.

To monitor the performance gaps, we follow the metrics VSS and EVPI, previously de-

fined, but we incorporated a decision analysis, based on the comparison of the trees. The

decisions sequences and their dynamic are compared using the nested distance concept,

introduced by Pflug (2010), that captures the structure of the tree and the values of the

revealed information. In Pflug and Pichler (2016) the concept is used to compare uncer-

tainty trees, but we will use it to compare the decisions trees. One of the main advantages

of this method, is that it keeps the dynamic of the information and the probability of the

events and the subsequent paths.

In this chapter, first, we describe briefly the original case, secondly we introduce the no-

tation, third, the variants that lead to the flexibility forms at the same time that the models

are presented. Then, we discussed the metrics used in this thesis. Finally, results and

discussion are presented.

Nomenclature

ω ∈ Ω: a specific scenario or leaf of the whole set of scenarios of the tree

Ω: the set of scenarios or leaves.

Ω′
t: the set of scenarios or leaves that present state equal to one at time t.

Ωg: set of scenarios in node g ∈ G.

g ∈ G: set of nodes

Gt: set of nodes in stage t : (Gt ⊂ G), t ∈ T .

ωg ∈ Ωg: set of scenarios in node g ∀ g ∈ G
τ0,1: transition factor between two consecutive rainy periods

ϕ ∈ [0, 1]: skill level of labor force

β̂m: nominal productivity for the resource m. If there is only one type, the sub-index is

avoided.
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βω
tm: effective worker m ∈ W productivity at time t ∈ T in scenario ω ∈ Ω (kilograms

per worker per period).

β̆t,m: actual deterministic productivity for the m resource at moment t

ξ ∈ Ξ : {0, 1}: the set of possible values that may take the uncertainty realization.

ξ̄t: expected realization in period t (–) t ∈ T .

ẋ: decorator for variables (i.e. x) that are decided before uncertainty of the period is

realizated

hω
jt: daily harvested quantity at j ∈ J block in period t ∈ T in scenario ω ∈ Ω, calculated

as βω
t z

ω
jt (kilograms/day).

xω
tm: workers m ∈ W hired at time t ∈ T (workers) for path ω ∈ Ω (when EV problem,

Ω = {1}, and belongs to the expected value of the uncertainty).

ytm: workers m ∈ W laid off at time t ∈ T (workers) for path ω ∈ Ω (when EV problem,

Ω = {1}, and belongs to the expected value of the uncertainty).

żjtm: workers m ∈ W allocated in block j ∈ J in period t ∈ T before uncertainty

happens (workers) for path ω ∈ Ω (when EV problem, Ω = {1}, and belongs to the

expected value of the uncertainty).

zjtm: workers m ∈ W allocated in block j ∈ J in period t ∈ T after uncertainty is

revealed (workers) for path ω ∈ Ω (when EV problem, Ω = {1}, and belongs to the

expected value of the uncertainty).

lωmt: manpower or labor force m ∈ W at time t ∈ T (workers) for path ω ∈ Ω (when EV

problem, Ω = {1}, and belongs to the expected value of the uncertainty).

T : set of stages in the time horizon.

j ∈ J : a specific block j of the set of blocks of the vineyard.

m ∈ W: a specific manpower resourcer m of the complete set. If there is only one type,

the subindex is avoided.

r01: probability rain for two consecutives periods when first period is dry and the second

is rainy

r11: probability rain for two consecutives periods when both periods are rainy

wω: conditional probablity for the specific scenario ω
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aj, bj, cj: quality parameters for the cuadratic equation that represents the quality of the

grape in the block j

uj: fractional quality loss per rainy period for the grape in block j

Bj: price of the grape in lot j ($/kilograms).

CE,m: cost of hiring ($/worker).

CF,m: cost to lay off ($/worker).

CP,m: cost of keeping labor idle between periods ($/worker per period).

CH.m: cost of harvesting ($/kilograms).

CZ,m: cost of assignment before uncertainty is revealed by worker m ∈ W ($/kilograms).

CŻ,m: cost of assignment after uncertainty is revealed by worker m ∈ W ($/kilograms).

K: maximum daily reception capacity of the winery (kilograms/day).

Sj j ∈ J : initial amount of grapes in lot j (kilograms).

Qω
jt: daily quality of the wine grape at j ∈ J block in period t ∈ T in scenario ω ∈ Ω (–).

Q̄jt: average quality for that block j ∈ J , t ∈ T .

Q̆jt: actual deterministic quality for the block j at moment t

UM: expected value of the solution of a model, i.e., stochastic one.

M: represents any model ant it is useful to write general expressions

IM: actual income as a percentage of the maximum feasible income for the modelM
LM: cost of labor as a percentage of the maximum income

QM: percentage deviation of grape quality from optimum conditions

SM: percentage of unharvested grapes

ξωt : the value of the uncertainty realization at moment t for the specific scenario ω

t ∈ T : specific period time in the time span

rk: rookie labor force

ex: expert labor force

β̂ex: expert individual nominal productivity

β̂rk: rookie individual nominal productivity

θβ: Expert/rookie nominal productivity ratio

θc: Expert/rookie cost ratio

M: total expected manpower requirement
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θm: expected percentage of experts manpower

d(i, j): the value of the nested distance algorithm where i− th is the id number of the first

tree to compare, and j − th the id number of the second. It could be described shortly as

d

d(τ): having fixed the two trees to be compared, it means the nested distance at any

moment between them at time t = τ , with t ≤ T
T(I),T(J): treed that represent different probability spaces

it: number of scenarios for tree T(I), at moment t

jt: number of scenarios for tree T(J), at moment t

ni,t ∈ N (T(I), t): the sets of nodes in tree T(I) at time t

nj,t ∈ N (T(J), t): the sets of nodes in tree T(J) at time t

d̂(ni,t, nj,t): the value of the Wasserstein distance between two specific distributions

Note 1: when there is a unique type of resource available, the sub index m is avoided.

Note 2: when there is a unique scenario (i.e., deterministic model), the supra index ω is

avoided.

4.1. A brief description of the case

In Chapter 3 the model focused on labor hiring, lay-off and allocation decisions in order

to maximize the value of the wine grape field. We assumed that a farmer can harvest

different types of wine grapes that are divided in lots or blocks. Each block has a specific

type of grape, with specific market price, sensitivity to rain effects, and ripening curve.

The ripening curve was modeled following a parabola shape; while more narrow this

curve, higher quality, and better market price. The optimum epoch for harvesting is when

the quality is maximum, and it is a function of time and rain. Rain is the uncertain event,

represented by a binary variable, leading to a binomial tree, where probabilities changes

according to a Markov two-stages chain. The harvesting task is developed in a time span

that lasts 10 days approximately. The blocks are monitored during all the maturity process,

that takes different duration (i.e.,60 to 120 days), but in operational terms, the interest in

the harvesting task begins when the maturity riches a threshold, and this is the reason

for the number of periods that we considered here. The quality is affected negatively by
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Model Decisions Made at the
First Epoch Second Epoch

MB xω
mt, y

ω
mt, z

ω
mjt

MA xω
mt, y

ω
mt żωmjt

MC xω
mt, y

ω
mt, z

ω
mjt żωmjt

Table 4.1. Different decisions and their epoch in three MS models

the rain. The productivity of the resources is affected by rain also and the risk of future

rainfalls could affect the decisions pattern. When the system adds flexibility, the decisions

weigh diminishes, but the costs increase, so the balance is something that farmer would

prefer. In order to understand this value creation, we study different alternative of system

parameter and models, that we call generally, configurations.

4.2. Models

Now, we present three formulations of the multistage stochastic problem. The difference

among them is the right instant of the resources allocation decision. We will use the word

epoch to avoid any confusion with the statistical meaning of word moment. Decisions

made before uncertainty is revealed in a specific stage, are made in the first epoch and

decisions made after uncertainty realization, are made in second epoch, and both happens

in the same period of time. Epoch must not to be confused with stage; in a same stage

occurs two epochs. Hiring and firing processes are decisions that must be made at the first

epoch, and the allocation decisions are made depending on the approach, according to:

• MS with assignment in the first epoch, MB

• MS with assignment in the second epoch, MA

• MS with assignment in the first epoch with a later correction in the second epoch,

MC

Being xω
mt the hiring decision, yωmt, the termination one, zωmjt, allocation decision in the

first epoch and żωmjt, allocation decision in the second epoch, the models differences are

shown in table 4.1.

The recourse actions are present in MA and MC.
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To choose these variants we based on market information. Worker transport could be an

extra cost in some cases, i.e. when distances are important, transport could be even a

problem of lodging if the task extends over time. Beyond this, to know the probable dates

of allocation gives the opportunity to negotiate with local workers instead of considering

transportation. Finally, the decision process requires time and meetings, what it is complex

in the harvest season, while the efforts are orientated to the coordination of the primary

supply chain.

To solve the MS models, we use the deterministic equivalent model representation, as in

Chapter 3.

The first model to present is MB, model 2.
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max UMB =
∑
ω∈Ω

wω
∑
j∈J

∑
t∈T

∑
m∈W
{(BjQ

ω
jt − CH,m)h

ω
mjt − CE,mx

ω
mt − CZ,mz

ω
mjt − CF,my

ω
mt − CP,ml

ω
mt}

s.t.

lωmt = lωm,t−1 + xω
mt − yωmt ∀t ∈ T , ω ∈ Ω,m ∈ W (b1)

∑
j∈J

zωmjt ≤ lωmt ∀t ∈ T , ω ∈ Ω, m ∈ W (b2)

∑
j∈J

∑
m∈W

βω
mtz

ω
mjt ≤ K ∀j ∈ J , t ∈ T , ω ∈ Ω,m ∈ W (b3)

∑
m∈W

t∑
τ=1

βω
mτz

ω
mjτ ≤ Sj ∀j ∈ J , t ∈ T , ω ∈ Ω, m ∈ W (b4)

xω
mt = xω′

mt ∀m ∈ W , ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T : t ≥ 2 (b5a)

xω
m,1 = xω′

m,1 ∀ω′, ω ∈ Ω, ω′ ̸= ω, m ∈ W (b5b)

yωmt = yω
′

mt ∀m ∈ W , ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T : t ≥ 2 (b6a)

yωm,1 = yω
′

m,1 ∀ω′, ω ∈ Ω, ω′ ̸= ω, m ∈ W (b6b)

zωmjt = zω
′

mjt ∀m ∈ W , j ∈ J, ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T : t ≥ 2 (b7a)

zωm,j,1 = zω
′

m,j,1 ∀ω′, ω ∈ Ω, ω′ ̸= ω, m ∈ W (b7b)

xω
mt, y

ω
mt ∈ Z+ ∀t ∈ T , ω ∈ Ω, m ∈ W (b8)

zωmjt ∈ Z+ ∀t ∈ T , j ∈ J , ω ∈ Ω, m ∈ W (b9)

Model 2. MB model

In this case all the decisions are made before uncertainty is revealed or at the first

epoch. Anticipating next sections, the manpower linked terms are under-indicated consid-

ering the possible set of resources type.
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The goal is the maximization of the expected value of the benefits. Income is a function

of price, quality, quantity and cost of harvesting, and the costs are connected mainly with

labor actions. Constraint (b1) is the balance of manpower, (b2) gives the opportunity to

have idle manpower in some periods without the necessity of firing them (if costs are

convenient), (b3) is the dairy winery capacity that bounds the dairy harvested total (there

is not stocks of harvested grapes because of the acceleration of quality degradation in that

context), and (b4) means that the block stock is always greater than zero or zero. The

nonanticipativity principle, NAC, is represented by (b5a), (b5b), (b6a), (b6b), (bra) and

(b7b) constraints (to go deeper in this kind of formulation, see Chapter 3). Constraints

(b8) and (b9) are about the nature of the variables.

The second model is MA, presented in model 3.

max UMA =
∑
ω∈Ω

wω
∑
j∈J

∑
t∈T

∑
m∈W
{(BjQ

ω
jt − CH,m)h

ω
mjt − CE,mx

ω
t,m − CŻ,mż

ω
mjt − CF,my

ω
t,m − CP,ml

ω
t,m}

s.t.

∑
j∈J

żωmjt ≤ lωmt ∀t ∈ T , ω ∈ Ω, m ∈ W (a2)

∑
j∈J

∑
m∈W

βω
t,mż

ω
mjt ≤ K ∀j ∈ J , t ∈ T , ω ∈ Ω,m ∈ W (a3)

∑
m∈W

t∑
τ=1

βω
τ,mż

ω
mjτ ≤ Sj ∀j ∈ J , t ∈ T , ω ∈ Ω, m ∈ W (a4)

żωmjt = żω
′

mjt ∀m ∈ W , ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt, t ∈ T , j ∈ J (a7)

żωmjt ∈ Z+ ∀t ∈ T , j ∈ J , ω ∈ Ω, m ∈ W (a9)

Model 3. MA model

In order to avoid repetition, we indicate the changes compared to MB model. In the objec-

tive function, the assignment cost terms considers that decision is made after uncertainty is

revealed, changing the variable decorator and the cost of decision. Other important change
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is the nonanticipativity constraint about allocation. For each uncertainty realization, deci-

sion will be fitted to the tree that begins in the next node. Constraint (a7) replaces (b7a)

and (b7b). The other changes are easy to follow.

MC approach considers variables z and ż, to refer both before and after correction. In this

model, the cost of making the decision before is less than making the decision after, and

the values are similar to those used in MB and MA. In this work CZ,m < CŻ,m. The MC

model is model 4 and presents only the changes compared to model 2.
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max UMC =
∑
ω∈Ω

wω
∑
j∈J

∑
t∈T

∑
m∈W
{(BjQ

ω
jt − CH,m)h

ω
mjt − CE,mx

ω
mt − CZ,mz

ω
mjt − CŻ,mż

ω
mjt − CF,my

ω
mt − CP,ml

ω
mt}

s.t.

lωmt = lωm,t−1 + xω
mt − yωmt ∀t ∈ T , ω ∈ Ω,m ∈ W (c1)

∑
j∈J

(zωmjt + żωmjt) ≤ lωmt ∀t ∈ T , ω ∈ Ω, m ∈ W (c2)

∑
j∈J

∑
m∈W

βω
mt(z

ω
mjt + żωmjt) ≤ K ∀j ∈ J , t ∈ T , ω ∈ Ω,m ∈ W (c3)

∑
m∈W

t∑
τ=1

βω
mτ (z

ω
mjτ + żωmjτ ) ≤ Sj ∀j ∈ J , t ∈ T , ω ∈ Ω, m ∈ W (c4)

xω
mt = xω′

mt ∀m ∈ W , ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T : t ≥ 2 (c5a)

xω
m,1 = xω′

m,1 ∀ω′, ω ∈ Ω, ω′ ̸= ω, m ∈ W (c5b)

yωmt = yω
′

mt ∀m ∈ W , ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T : t ≥ 2 (c6a)

yωm,1 = yω
′

m,1 ∀ω′, ω ∈ Ω, ω′ ̸= ω, m ∈ W (c6b)

zωmjt = zω
′

mjt ∀m ∈ W , j ∈ J, ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T : t ≥ 2 (c7a)

zωm,j,1 = zω
′

m,j,1 ∀ω′, ω ∈ Ω, ω′ ̸= ω, m ∈ W (c7b)

żωmjt = żω
′

mjt ∀m ∈ W , ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt, t ∈ T , j ∈ J (c8)

xω
mt, y

ω
mt ∈ Z+ ∀t ∈ T , ω ∈ Ω, m ∈ W (c9)

zωmjt, ż
ω
mjt ∈ Z+ ∀t ∈ T , j ∈ J , ω ∈ Ω, m ∈ W (c10)

Model 4. MC model

4.2.1. Expected Value Model, EV

The EV model is much like a deterministic model where the known event is replaced by

its expected value taking into account the distribution. Quality and uncertainty expected
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value are calculated as was previously introduced in Chapter 3. As EV model considers

that the future is known perfectly (the expected scenario is taken as the real one), later

corrections to decisions policy have no value, because they are not needed essentially. We

must consider instead, that making decisions before and after have different cost, so even

when the expected events do not change, but due to that cost, the decision may be.

The EV approach was formulated as in the previous chapter. To illustrate, we present the

EA model (model 5), because EB is similar to the presented in Chapter 3. Model EC does

not exist in actual terms; giving the opportunity to change a decision lately does not offer

an advantage in context where future is perfectly known.

max
∑
j∈J

∑
t∈T

∑
m∈W
{(BjQ̄jt − CH,m)hj,t,m − CE,mxmt − CŻ,mżj,t,m − CF,mymt − CP,mlmt}

s.t.

lmt = lm,t−1 + xmt − ymt ∀t ∈ T ,m ∈ W (ea1)

∑
j∈J

żmjt ≤ lmt ∀t ∈ T , m ∈ W (ea2)

∑
j∈J

∑
m∈W

β̄mtżmjt ≤ K ∀j ∈ J , t ∈ T ,m ∈ W (ea3)

∑
m∈W

t∑
τ=1

β̄mτ żmjτ ≤ Sj ∀j ∈ J , t ∈ T , m ∈ W (ea4)

xmt, ymt ∈ Z+ ∀t ∈ T , m ∈ W (ea9)

u̇mjt ∈ Z+ ∀t ∈ T , j ∈ J, m ∈ W (ea10)

Model 5. EA model

We kept the id number of the constraints on the MS model even when the number of them

is larger than the require in EA model. The scenarios have been reduced by the expected
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value of the uncertainty. The NACs are not present because the information is available

since the planning step.

In order to compare with an upper bound, we solve models Wait and See, WS. A WS

model is similar to a MS but the NAC are inactive because we make decisions considering

perfect information about future, so each scenario does not need to be limited for other

possible events. Similarly to EC model variant, the WC model is only a mathematical issue

because with perfect information since the beginning, later corrections are not required.

WS approach has two flavors, WB and WA, mainly differentiated by the cost of decision.

WB is similar to MB and WA, to MA, but with a relaxation of NACs.

4.3. Model Comparison Metrics

To compare the solutions obtained by using different approaches, we will use three well

known metrics (Birge and Louveaux, 2011; Escudero et al., 2007):

• the expected value of perfect information (EVPI),

• the value of the stochastic solution (VSS)

• the nested distance (d)

The first two were introduced in Chapter 3. The nested distance is a metric that allows

the comparison of two trees. We use this concept to consider if there are changes in the

decisions tree through the models. The nested distance, was introduced by Pflug (2010). In

Pflug and Pichler (2016) there is a very extensive content to know better details, especially

in the mathematical aspects. In the appendix B we offer a summary and some experiments

to understand better the intuition of the metric. Now we will describe how nested distance

works.

If there are two trees, we want to establish if they are similar in all their elements: structure,

nodes value, and probabilities associated with their arcs. This method proposes to obtain a

numerical value whose magnitude indicates the difference between two specific trees. Two

trees where their structure, value of nodes and associated probabilities are known will be

compared. The first step is to position both trees in their last period, T . Subsequently, for

each of the scenarios, a predecessor node from which they originate was identified. Thus,

in period T − 1 we identify a list of nodes that represent the complete set of predecessors
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for the final step. Each of those nodes is the predecessor of one or more scenarios, and the

total probability of the scenarios that belongs to a specific node, is equal to one.

The first step is to operate both trees, T(I) and T(J), to obtain a first matrix of distances

between scenarios. So, there are iT and jT scenarios for first and second tree respectively,

at moment T . The matrix distances is done for all the combinations of scenarios, so at

time T the matrix of distance has a size of (iT × jT ). This matrix is formed by distances

among scenarios, taking their absolute value.

The second step, is to gather the scenarios that share a common predecessor node. Being

N (T(I), t) and N (T(J), t) the sets of nodes in first tree and second tree respectively, at

time t = T − 1, we go for all ni,t ∈ N (T(I), t) and list the scenarios that are gathered

in it and their probability distribution. We do the same for nj,t ∈ N (T(J), t). So for

each combination of (ni,t, nj,t) we also have a list of probabilities and a list of distances

(obtained before). As the distances are similar for both trees, the only difference at that

node combination are the probability distributions. The method proposes to reduce this

structure through a distance that takes into account the probability distribution. Based on

the optimal transport problem, the authors suggest the Wassertein distance, d̂. So, after

two nodes are compared, ni,t and nj,t, their differences are reduced to d̂(ni,t, nj,t). After

going through all the nodes of a time period, we have a collection of differences between

nodes. Now, the original distance matrix of size (i × j) is reduced to a matrix of size

(ni,t × nj,t). This matrix considers that the actual size of the trees is given by the number

of nodes in period t, because the rest of the branches has been reduced to that size.

This procedure goes on until there is no more stages, and the trees are reduced to a final

distance, the nested distance, d(i, j). The nested distance method is a generalization of the

Wasserstein distance, where Euclidean distance are used. As nested distance summarizes

the structure, node information and probabilities. It is difficult to understand the specific

and individual impact of the elements on the final magnitude. Experiments in appendix

B help in this sense. From those, we reinforce some behaviors, considering two trees and

their relative results:

• The nested distance increases according to the differences between the two trees

that appeared earlier.



90

• While the node information value is big, so was the nested distance.

• The probability distribution impacts more on the final nested distance if the node

that is most likely has a different magnitude than those nodes with which it is

compared. In another term, the difference between two nodes will be expressed

more if this combination is supported by a greater probability of occurrence.

Vitali (2018) indicates that the objective function value in a multi-stage stochastic prob-

lem is positively correlated to the nested distance, but there is no information about more

concrete relationships. They go even further in Horejšová et al. (2020), and the conclu-

sions are in the same line. We think that there is a space for an exhaustive study of the

numeric behavior of nested distance, but it is out of this thesis scope. Finally, for measure

instances, d has been proved in the literature valid and meaningful in relatives analysis.

The implementation of the algorithm for d was made in Python 3.0, using a python library

to calculate the WD, called POT (Flamary et al., 2021), where the algorithm approximates

the Sinkhorn instead of d̂ as it is described by Cuturi (2013).

4.4. Results and Discussion

Results will be presented in two parts. The first is about the value created by the decision

epoch as a flexibility source. The second is on the contribution of different harvesting

resources in this context. In the first part, we compared the profit performances of the

models for several conditions of rain and resource ability. The main aim is to understand

if the epoch of the decisions created value and in what degree. We also studied how

quality patterns affect the models’ contributions. At the end of this part, we compared the

decisions policies through d, in order to explore if decisions policies are really different.

The second part is about the contribution of teams instead of any unique type of resource.

First, we explained the experiments after which the model updates, and then, the results

are produced. A cost-sensitive analysis was developed to understand how the staff changes

to ensure the highest expected profit value.

The parameters of models and the quality patterns are similar to the used in Chapter 3. The

models were implemented using Python, written for PYOMO Python (Hart et al., 2017)

and the optimization engine was GUROBI v. 8.1.0. The solution time was not limited, the
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optimality gap was set to 1% and the integrality parameter was the solver default. We used

a laptop computer with an Intel Core processor i7-6700HQ CPU 2.60 GHz, with 32.0 GB

of RAM memory running Windows 10.

We tested a total of 405 instances per model and decision epoch, so the total num-

ber of optimization running was 2835 considering the variants of MS (3), EV (2), and

WS (2). The number of instances is the combination of five rain probabilities (r01 =

(0.1, 0.3, 0.5, 0.7, 0.9)), three rain probability transition factor, three levels of flexibility

(ϕ = (0.3, 0.5, 0.7)), three ripening pattern, three available combinations of resources

(rookies, experts, both). For the cost sensitivity we added more than 600 optimization

runs.

4.4.1. Decision epoch and contribution to the value of the system

Farmer makes three general decisions, hiring, lay-off and allocation the resources to dif-

ferent blocks. As allocation decision is being evaluating as a source of flexibility, we will

present its effects.

MA is a variant of the MS that considers information about uncertainty occurrence in

order to make the correct assignment. Two derived questions are: if the epoch of making

the assignment decision changes, how much does it impact in the expected value of the

system?; and, what are the conditions that affect this value?

To explore these questions, we compare the expected profit value of MS in identical condi-

tions for MA, MB and MC. MC acts like a kind of option: we can make a decision before

uncertainty happens assuming first cost, that is cheaper than to make the same decision

after uncertainty realization. If that decision is not so useful for the conditions of the sys-

tem once uncertainty reveals, decision could be corrected paying an extra cost. In Figure

4.1, we compare UMC and UMA to UMB as a ratio. MB was selected to be the reference

because it is the most disadvantageous model.

Chart (a) shows the relative behavior for MA to MB. For low rain probabilities, regardless

of the resource ability, MB seems to be better than MA, even when differences are very

little. This makes sense because the decisions in MA are more expensive than in MB, and

in context where risk is not so important, an extra cost is not necessary. The MA value
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Figure 4.1. MA and MC performances compared to MB, expressed as the
ratio of their economic expected final result. Three levels of skill are
examined in the harvesting resource, under the SOD ripening pattern.

increases when rain conditions are more probable. When decisions could be made after

uncertainty happens in risky environment it has more value for the system. Flexibility in

resources, helps as it was studied in Chapter 3.

Chart (b) shows the relative performances for MC and MB. MC is the more flexible model,

because it gives the opportunity to decide at any epoch. For low rain probabilities, MB

and MC are similar in performance. In this case it is supposed that MC decision policy

is similar to the MB and the cost are similar too. When rain probability increases MC

is more advantageous than MB and even than MA. In a very extreme condition of rain

it is interesting to see that MC is even better than MA; this comes from the nature of

decisions. There are some decisions that could be made before uncertainty happens, and

if they require fine tuning, the correction could be made.

To highlight is the efficiency of models around maximum uncertainty. As the three vari-

ants are MS models, there is not significant contribution in that situation of the epoch of

assignment.

In terms of information requirement, when rain probability is less than 40%, the refresh of

the system is not highly appreciated. To invest in the update of the uncertainty information,

seems to be more important when the risk of bad performances in farm is present. The

possibility of having fresh information captures value, and the gap growth is exponential.
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Figure 4.2. VSS considering EVA and MA (a), for three levels of flexible
rookie resource, under the SOD ripening pattern. In chart (b) the results

are shown in a relative way.

4.4.2. Flexible resources influence in decision epoch

As we discussed in Chapter 3, the flexibility of the resource compete with the contribution

of the model. Changing the epoch of decision, the impact of flexible resources could be

less important, so even for low flexible resources results would be suitable. Let’s see how

this intuitive though is mathematically discovered.

To begin, we discuss the MA model, which is a traditional recourse model. Figure 4.2,

chart (a), shows the VSS value for MA and EA approaches (in that case, we denoted by

EVA) for different conditions of uncertainty, represented by the rain probability.

When ϕ is near 1, the contribution of the MA model is poor, so the difference between both

approaches, could be negligible. If the skill level decreases, the VSS increases, giving to

MA more value because of its advantage of considering the uncertainty in an exhaustive

way, and more general in an explicit form. The shape of the VSS curve is a bell considering

the rain probability. If r01 is very low, the weight of the scenarios will be concentrated,

and EV approach captures in a good manner this situation. When rain event is highly

probable, EV consider this as a fact and the behavior is like a worst case. This vision lacks

some of the positive scenarios that should be used to leverage better results, something

that explains the gap with MA. The expected value of the rain event, will be similar to the
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Figure 4.3. Relative Performance in terms of expected value of the
economic profit for MC and EVC (a), and MB and EVB (b), for three
levels of skill in the rookie resource, under the SOD ripening pattern.

heavier scenarios in the extremes. When uncertainty increases, that is with r01 around 0.5,

there is no preference for the occurrence of specific scenarios, so the performance of the

EA gets worse and MA is a good choice.

In Figure 4.2, chart (b), we observed performance ratio. The shape of the curve keeps

similar to the shown chart 4.2-(b). It is interesting to remark, that for poor skills, the

relative advantage of MA reaches levels greater than 18%.

Now we extend the flexible resource impact to the other models, especially the relative

analysis. In Figure 4.3, we see the relative behavior for the MB and MC models con-

sidering EVB (the EB solution value) and EVC (the EB solution value, similar to EC),

respectively. In the first graph (a), the shape is alike to MA variant. For both decisions

moments, MS approach creates value, but it was more restricted when decisions need to

be made before uncertainty realization, (b) chart.

4.4.3. Comparing decisions sets

As time goes by, the decisions that the manager makes could be different between the

support models. There are three types of decisions: hiring, terminations, and allocation or

assignment. Only the last one offers some flexibility to the decision-maker according to the

type of the model, EV, MA, MB or MC. MS models are different to EV solutions because



95

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1,000

1,500

Rain probability r01

d

φ = 0.3
φ = 0.5
φ = 0.7

(a) d(MB,MA)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1,000

1,500

Rain probability r01

d

φ = 0.3
φ = 0.5
φ = 0.7

(b) d(MB,MC)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1,000

1,500

Rain probability r01

d

φ = 0.3
φ = 0.5
φ = 0.7

(c) d(MA,MC)

Figure 4.4. Final Nested Distance for labor decision tree in different
conditions of uncertainty and resources flexibility - Models MA, MB, and

MC (SOP ripening pattern)

of the nature of the assumptions. But it is not clear yet if the MS alternative solutions are

very different between them. In this section, we will concentrate in comparing decisions

sets for MS variants. Decisions should be different, if the expected value of the system is.

To advise about those differences we study how the trees of decisions differ among them

through the nested distance concept. Firstly, we explore the MS variants final gaps, and

secondly, the behavior of nested distance over time.
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In Figure 4.4 there are three charts that present d(MB,MA), d(MB,MC) and d(MA,MC).

The decisions trees are about labor stock, a way of summarizing the hiring and termi-

nation decisions. The three charts present similar patterns. Low abilities increments the

nested distance value, according rain probability is higher. MB and MA presents differ-

ences even at low rain probability; the value is similar to the observed when MB and MC

are compared, probably because set of decisions and risk even when low could require

some adjustment after uncertainty is revealed. MA and MC, are very similar when rain

probability is low, but as it increases, the decisions set are also more diverse.

In Figure 4.5 we see the d(MB,MA), d(MB,MC) and d(MA,MC), for three different lots,

two flexibility levels and different rain probabilities.

In the standard quality lot (where time and rain have low impact), high ability decreases

the nested distance among the models. In context of high ability, MA and MC present low

differences in the trees. When ability is low, the distances between trees rise quickly when

0.5 ≤ r01. This pattern has been observed previously in labor trees distances.

The second chart and third chart in Figure 4.5, keep the same pattern than first chart, pre-

viously explained, but for medium and high quality respectively. All the charts show that

MA and MC are very similar, something that is reinforced by d(MB,MC) ≈ d(MA,MC).

The d parameter fits well to the expected behaviors of the decisions policies, with the

advantage of summarizing this intuition in just a single metric. Beyond the total nested

distance, it is interesting to see the rate of change, in order to understand if there are

specific moments in which the decisions trees diverge strongly. According to Figure 4.5,

when r01 = 0.9 and ϕ = 0.3, the decisions sets are very different. We will review that

situation for the three lots and for the labor decisions trees.

Figure 4.6 indicates two cases that present great divergence, both when rain probability is

high, and resources ability are low and high, respectively. For low flexible resources, the

differences are present from the beginning. The d(MB,MA) and d(MB,MC) behave lin-

early and in a very similar path. The d(MA,MC) is very small according fig 4.5; however,

the divergence is more pronounced in the first 7 periods than in the last.

When ability is very high, we know that differences trends to be minor between models.

Even in that case, there is an evolution of the nested distance value that changes over
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Figure 4.5. Final Nested Distance for different conditions of uncertainty
and resources flexibility for three different lots in the allocation decision-

Models MA, MB, and MC (SOP ripening pattern)

time. Chart (b) in fig 4.6 shows the evolution of d for high ability resources. d(MB,MA)

indicates that in the first five periods the decisions about labor forces are quite similar.

Just when the optimum day has passed, decisions set changes, because MA offers later

corrections that are useful in this context. We could appreciate the effect of the high

flexible resource with this delay; the decisions divergences could wait because there is a

strong capability to react. d(MB,MC) shows a progressive distance increment; period five

is the inflection point, accelerating the differences because MC model reacts using its later

correction capability. Finally, d(MA,MC) evolution is at constant rates. Remember that
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Figure 4.6. Nested Distance Evolution for labor decision set when rain
probability is high. Chart (a) is for ϕ = 0.3 and chart (b) is for ϕ = 0.7

(SOP ripening pattern)

even when final distances could be very short, there is an evolution that may be used to

indicate inflection points.

Let us see what happens with the evolution of nested distance over time when allocation

decisions are studied.

In Figure 4.8 there are three charts; each of them belongs to a specific type of grape,

differentiated by quality. In chart (a), d(MB,MC) and d(MB,MA) are very similar for the

first lot. Both distances say that (MB,MC) and (MB,MA) have been different from the

beginning. This divergence is attenuated in the first period but it increases linearly. For

d(MA,MC) there is a big difference at the beginning. MC is more versatile than MA; MA

makes decisions that are more expensive even when they are similar to MC. In this case,

MC differs from the policy from the beginning. it is fundamental to remember that the

final magnitude of d(MA,MC) is independent of what we see in the evolution analysis.

Charts (b) and (c) smooth the evolution speed, linearizing it.

In Figure 4.8, chart (d), when resource is highly skilled, all the models show very similar

behaviour until period five. The features of each models are used in the last part of the

harvesting period. d(MB,MC) and d(MB,MA) follows the same evolution path. Even
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Figure 4.7. Evolution of the nested distance between (MB,MA),
(MB,MC) and (MA,MC) allocation trees when rain probability is high for

SOP ripening pattern - PART A

when in magnitude d(MA,MC) is small, the evolution pattern is similar to the previous

ones.

In chart (e) the change rate is smoothed and more distributed in all the periods. In chart (f),

there is an interesting pattern. In this case, decisions differs in the first five periods, and

beyond that, the divergence is completely developed. This conduct coincides with the idea

of harvesting in advance because of the high sensibility of the grape to the rain effects.
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Figure 4.8. Evolution of the nested distance between (MB,MA),
(MB,MC) and (MA,MC) allocation trees when rain probability is high for

SOP ripening pattern - PART B

4.4.4. Resources Flexibility: Harvest Resources Team

As we mentioned previously, the flexibility value is connected with the cost and the benefit

of using it. Benefit is a consequence of the occurrence of the event for which the flexibility

was thought. Also, the benefit depends on the extension of the event that faces flexibility;

in some cases the extension should be very important to give the opportunity to generate

value throw flexibility execution.
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In this section we study the effects of having the opportunity to hire different skilled re-

sources, to constitute a team. The problem offers the opportunity to contract two types

of resources that differ in the nominal productivity keeping similar the skill to work un-

der rainy conditions. Rookies have less productivity than experts, but their contracts are

cheaper too. Farmer must decide if more expensive resource is useful, and then, makes the

hiring decisions. There is sensitivity to the price of the resource, because as cost increases,

the possibility of repayment is smaller.

To conduct this exploratory study we have reduced the number of experiments trying to

diminish the moving parts. Block number was reduced to one, with 900,000 kg of initial

stock, and one type of grape at a time. Grapes quality are standard and premium, where the

latter’s price is three times the first one. The set of resources is W = {rk, ex}, rookie and

experts, respectively. Expert/rookie nominal productivity ratio, θβ is used to formulate the

nominal productivity of the expert, β̂ex = θββ̂rk. There is also a cost ratio, θc, that allows

to express the hiring cost of the expert as CE,ex = θcCE,rk. This is the unique cost that

changes for experts and rookies. Both ratios are added to the model, to represent the new

resource. For example, MC’s objective function will be:

max
∑
ω∈Ω

wω
∑
j∈J

∑
t∈T

∑
m∈W

{(BjQ
ω
jt − CH,m)h

ω
mjt − CE,rkx

ω
rk,t − θcCE,rkx

ω
ex,t

− CZ,mz
ω
mjt − CŻ,mż

ω
mjt − CF,my

ω
mt − CP,ml

ω
mt} (4.1)

The harvested quantity in a period hω
mjt could be written in a general way as∑

m βω
mt(z

ω
mjt + żωmjt); explicitly, βω

rk,t(z
ω
rk,jt + żωrk,jt) + θββ

ω
rk(z

ω
ex,jt + żωex,jt)

Each leaf of the tree will have a total requirement of manpower during the harvest process,

and also a weight to be pondered. We define the expected number of total manpower

requirement, expressed by equation 4.2. To consider the distribution of the resources

in the team, we defined the θm index as the ratio of expert manpower to total expected

requirement (equation 4.3).
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M =
∑
ω∈Ω

wω
∑
t∈T

(lωex,t + lωrk,t) (4.2)

θm =

∑
ω∈Ω

wω
∑
t∈T

lωex,t∑
ω∈Ω

wω
∑
t∈T

(lωex,t + lωrk,t)
=

∑
ω∈Ω

wω
∑
t∈T

lωex,t

M
(4.3)

The intuition says that low prices for expert resource (similar to the rookies one) will lean

towards to their hiring. In the same way, if experts are extremely expensive, their number

will be very low. In the middle, there are several combinations, where decisions are not

linear and support is required. We explore that zone. Before continuing, in Table 5.1, the

rest of the parameters values to be tested in this study are shown.

Table 4.2. Parameters for the different experiments

Feature Notation Values Units

Workers Ability ϕ 0.3, 0.7 –

Expert/rookie nominal productivity ratio θβ 1.0, 1.15, 1.30, 1.45, 1.60, 1.75 –

Expert/rookie cost ratio θc 1.0, 1.05, 1.10, 1.15 –

1.20, 1.30, 1.40, 1.60, 1.80 –

Rain probability r01 0.1, 0.5, 0.9 –

Transition factor τ11 1.0 –

Rain quality penalty uj 2% %

In Figure 4.9 we present θm and M for different θc for EV and MA. We returned to these

cases because there are two possible and basis approaches. The total workers requirement

is on the left y-axis, expert percentage is on the right y-axis and θc is on x-axis. The skill

level is ϕ = 0.3, grape is standard and r01 = 0.5. The dashed line values is read in the

right y-axis, and the solid line values is read in the left y-axis.

In Figure 4.9 there are three charts that offer a lot of information.

The x axis is the expert/rookie cost ratio; as it increases, expert resource is more expensive.

In the left y-axis the expected total manpower requirement is represented, M; in the right

y-axis, we present the percentage of the total expected manpower that is expert, θm. We
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Figure 4.9. Total manpower (expressed as total of hired days) (left y-axis,
solid line), θm (right y-axis, dotted line), for different conditions of costs,
θc (x-axis), for productivity expert/rookie ratio, θβ : (1.0, 1.3, 1.6), when

skills are low, standard quality and rain probability is around 0.5

set in this Figure r01 = 0.5, harvesting standard quality. Each of the three charts offer

the sensitivity results considering different productivity ratios for expert/rookie. In chart

(a), the productivity of expert is similar to the rookie’s one, θβ = 1.0. At the same

cost, θc = 1.0, the decision is not relevant because the resources behave in a similar way,

including their costs. When θc > 1.0 but θβ = 1.0, then the ratio θc/θβ increases meaning

that expert is more expensive than rookie even when the productivity is the same. In

this case the expected requirement of experts decays to zero, and rookies are chosen like

harvesting resources. Further this point, the team is made up of only rookies.
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Chart (b) offers a higher level of productivity for the expert, θβ = 1.3, 30% more than

rookie. For ratios θc/θβ < 1, the productivity unit is cheaper than the rookie option. At low

costs, the team is completely integrated by experts; according cost increases, rookies are

an option, mixing the resources. It is interesting to highlight that for ratios like (1.2/1.3)

the option of expert is weaker. These decisions are an effect of flexibility; although experts

are cheaper than rookie in term of nominal productivity unit price, they imply a bigger cost

that may be hard to recover. The opportunity to recover the investment is the weak spot in

the some flexibility analysis, because the real value is linked to the use of that flexibility

(Rogalski, 2011). In chart (c), the value feature of flexibility is strongly present. In this

case, θβ = 1.6 and the choice of expert, according to an economic concept, is reasonable

in the range θc = [1, 1.6), because in that interval θc/θβ < 1. In spite of that expected

behavior, expert resource is an alternative in the range θc = [1, 1.4). The reason is that

the cost is too high to bear and recovery is not assured. In this context, the expected total

manpower, M increases about 30% when expert resources are not hired; for this particular

configuration, the decision based on an average productivity is wrong, so the MS model

shows the importance to consider the stochasticity in an explicit way.

When rain probability is high, the expert contribution may change and they can be more

valuable for the system. In order to analyze it we present in Figure 4.10 information about

team constitution.

In the context of Figure 4.10, in chart (a) the behavior is similar to the case when rain

probability is 0.5. Charts (b) and (c) are a little different to the previously discussed.

For example, in chart (c), according expert cost increase, the expected total manpower is

minor, but it is still completely constituted by experts.

We present the same results in Figure 4.11, but in a compact way. Three charts present

the θβ : (1.0, 1.3, 1.6) cases, and each of them shows the behavior for r01 = 0.5 and

r01 = 0.9. Again the dynamic of the expert choice is conditioned by the risk. The total

expected labor force is bigger than in the case of standard quality, mainly because the

features of the product, both in maturity curve and price.
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Figure 4.10. Total manpower (expressed as total of hired days) (left
y-axis, solid line), θm (right y-axis, dotted line), for different conditions of
costs, θc (x-axis), for productivity expert/rookie ratio, θβ : (1.0, 1.3, 1.6),

when skills are low, standard quality and rain probability is around 0.9

4.5. Conclusions

In this chapter we explore the value of flexibility, considering two main sources: decision

epoch and manpower teams. This is an expansion of the work in Chapter 3, because

we add a variant with two decision epoch for the same variable (allocation, model MC).

About resources flexibility, we add to the rain ability, the nominal productivity as a source,

dividing the group of workers in two, experts and rookies.

In MS approach, we observe that the decision epoch creates value, especially when un-

certainty is important. The recourse action is not always needed, and the largest values
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Figure 4.11. Total manpower (expressed as total of hired days) (left
y-axis, solid line), %, θm (right y-axis, dotted line), for different conditions

of costs, θc (x-axis), when θβ : (1.0, 1.3, 1.6), skills are low, premium
quality and r01 : {0.5, 0.9}

are obtained when decisions are made before with minor costs, and later correction are

allowed, model MC. The cost of the later correction and the previous decision affect the

flexibility acquisition, so the cost analysis is a must in order to understand the dynamic

of the managerial job. In this line, the comparison among different approaches is nec-

essary, because the goodness of different models finally depends on the tolerance of the

decision-maker.

As we have seen in previous chapter, models contribution could be less important if re-

source skills are high. The nominal productivity is a flexibility source, but the effect is
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not so clear as in the case of ability. Expensive resources ensure quick answers for some

scenarios, but in other case they only ensure a higher cost that it is not tackled by the

manager. At this point, we see that expert resources are not always preferred even when

their cost per unit of productivity may be better than the rookie one. This result could be

intuitive, but we indicate that flexibility has value only when a resource is used, and in

that context, the initial paid in the hiring process make the resources unprofitable if an MS

approach is used, where stochasticity is explicit.

This part of the chapter offers important opportunities to improve the study. Statistical

analysis considering the original results for each of the scenarios in the more of thousand

variant per models, may offer an interesting shortcut to understand the risk, and main

numbers behind the complex MS optimization. Those shortcuts could be of interest in the

real-world application.

Finally, we also address the decision analysis through nested distance concept. This dis-

tance is a way of summarizing the difference between decisions maps, being a novel ap-

plication, even when the principle and uses are pretty the same that introduce (Pflug and

Pichler, 2016). The d shows a relationship with uncertainty, tree size, model, variant, and

values of decisions; probably we can identify how each of them affects the d value, but

it is difficult to predict, because the decision map is function of the business opportunity.

Results follows some appreciations of the reducing scenarios theory Vitali (2018); Timon-

ina (2015); Horejšová et al. (2020) that agrees on the capacity of d to be used as a relative

metric to compare trees, but that correlates weakly with the objective function value. In

our application, we note that the divergence between solutions trees is gradual and it is not

concentrated in a specific period. However, in the allocation variable, we observed very

similar patterns to those observed in the progress of the harvest. The changes in d repre-

sent correctly the dynamic and gives an idea of how different are the trees at each point in

the timeline. Additionally, the decisions trees become more different when rain probabil-

ity increases and resources flexibility decreases; in those cases the d for the variant of MS

growth exponentially.
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Chapter 5

Rolling tree Approach

Flexibility is a system attribute that is recognized as a way of handling uncertainties.

T. Wang (2005) indicated that flexible thinking is more proactive than the robust approach,

but requires better abilities and tools for management. Therefore, we presented mathe-

matical programming models in the previous chapters that serve as part of the quantitative

tools. The MS model behaves similar to the management practice, with the number of

decisions and when they should be made being two sources of flexibility for the manager

Mandelbaum and Buzacott (1990). The MS approach similar to the managing practice

could be mathematically intractable because of its size. The discretization process for the

probability distribution and the impact of the time span on the explosion of the tree and

computational times tend to increase exponentially. Along this line, researchers have been

working for decades to develop practices linked to the scenario reduction (refer to Chapter

2 for literature details).

In this chapter, we faced the size problem but with a slightly different vision to the reducing

and generating scenarios proposed in literature. The rolling horizon approach uses an

algorithm that allows the opportunity to update information according time goes by. This

approach is a way of implementing a multi-period model. The decisions are made using

an expected value of the uncertainty events; with the plan being periodically revisited

to re-optimize it with new available information. In this chapter, we proposed a rolling

approach that uses sub-trees keeping part of the original granularity of the information
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(original tree), instead of expected value simplification. The rolling tree algorithm, RTA,

is a rolling algorithm where each planning step is solved through a partial tree in the short

term, and a simplification of the uncertainty in the long term. This algorithm is smaller

than the complete MS model, so the computational effort is minimized; however, the loss

of information may have a negative impact on the final decisions. The aim of this chapter

is to shed light on: whether RTA can replace the MS approach while still maintaining a

controlled loss of performance, which conditions of uncertainty and context RTA compete

with the MS approach, and finally, how the temporal parameters affect the value of the

RTA as an alternative to the MS?

Before going any further, it is necessary to make an explanation of the information up-

date. In this work, MS considers that the stochastic process leads to all the feasible nodes

from the very beginning. It means that when time goes by, the probability of the rain events

follows the stochastic process and new information about this stochastic process, i.e. prob-

ability changes, does not occur. In practical terms, the farmer has an MS solution, a tree

that has all the feasible paths, and according to the history of events, individualized nodes

that describe the status of the system and the decisions to be considered in future scenarios.

When the rolling horizon approach is used, there is the advantage of added information

at the moment of system review, for example, the changes in the rain probabilities. How-

ever, in this study, the information was kept constant according to the Markovian process.

Hence, what kind of update could be made to the rolling horizon approach in this chapter?

We considered that the update to the rolling horizon approach is linked to the possibility of

having more detailed information about future, or in the possibility of knowing a specific

node. In both cases, the updated process gives more information about the future without

changing the data that is available for the MS approach. In this way, the economic per-

formance between MS and rolling horizon approach, as well as the computational times,

could be compared.

The rest of the chapter is organized as follows. Initially, we presented the rolling horizon

approach. After that, the rolling tree approach was outlined in detail. Subsequently, the

computational experiments and metrics were discussed, and the results and discussion

presented immediately after. Finally, the main conclusions were drawn and presented.
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Nomenclature

k ∈ {1 . . .K}: number of planning process in a rolling scheme

n ∈ {1 . . .N}: all the nodes that could be the initial node for a planning task

T , Ti: the very original tree under study; when two trees should be differentiated, a

subscript could be used

t ∈ T : time periods in the whole complete time span card(T )
ξ ∈ Ξ: uncertainty set

P(Ξ), Pt(Ξ): probability distribution of the set of uncertain events. As distribution could

changes over time, a t subscript could be added to indicate that distribution belongs to a

specific period

P̄t(Ξ), P̄: expected value of the distribution at moment t. If there is no chances of con-

fusing, the simplest notation is used, P̄
Tk, Tk

i : the planning step k original tree; if k = 1 then the tree is the very original.

T̄k: the simplified or reduced tree version of Tk

T k, (tkp : T ): time span for the planning step k, that begins in tkp and finishes in T
Ik: initial information for the planning step k

Ikt : information available at period any period t during planning step k.

Dk: decisions set that are obtained by optimization in planning step k

∆r: time span for system review

tkp: initial period of planning for the cycle k

tkr : revision period in cycle k; the status of the system in this point is the initial status for

planning cycle k + 1.

∆z: frozen time span

tkz : final period of the execution of decisions made in cycle k

tks : first period for the simplification trees.

n ∈ N : number of running of the planning process to evaluate the expected value of the

approach rolling horizon approach

Uk
n : partial profit of the planning step k in the planning process running n

URH : the expected value of the RHA solution. General notation
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ĝ ∈ Ĝ: the list of nodes that could be used as initial nodes for the planning step. These

nodes belong to different periods

t̂ ∈ T̂ : the list of periods where a planning step begins, in accordance with a previous

time structure

Ṫ(k, ĝ): the primary tree that begins in node ĝ in the planning step k

I(k, ĝ): the information for the planning step k in node g

T̈(k, ĝ): secondary tree, generated from Ṫ(k, ĝ)

ğ ∈ G(k, ĝ, tkr): a node that belongs to the set of terminal nodes of the secondary tree

T̈(k, ĝ) when is review at period tkr
...
T(ğ): tertiary tree that initiates in node ğ

T̂(ğ): means the tertiary tree,
...
T(ğ): after the simplification process

ˆ̇T(k, ĝ): the consolidated primary tree after the reduction process

tks : the first period of the simplified part of the secondary tree

∆f : time span for the secondary tree fan

g0: initial node for implementing a decision policy

gd: destiny node when a decision policy has been implemented

F : mathematical transformations of information received to conduct from the origin node

to the destiny one.

URE: expected value of the profit in a RTA using EV reduction

URW : expected value of the profit in a RTA using WC reduction

Ugd: profit in node gd obtained by simulation

d: nested distance

τ(ˆ̇T(k, ĝ)): Optimization Time for the consolidate tree

τωt : computational time or effort for the optimization process that begins in time t , sce-

nario ω , that keeps correspondence with the ĝ ∈ Ĝ
ω ∈ Ω: a specific scenario or leaf of the whole set of scenarios of the tree

Ω: the set of scenarios or leaves.

Ω′
t: the set of scenarios or leaves that present state equal to one at time t.

Ωg: set of scenarios in node g ∈ G.

g ∈ G: set of nodes
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Gt: set of nodes in stage t : (Gt ⊂ G): t ∈ T .

ωg ∈ Ωg: set of scenarios in node g ∀ g ∈ G
τ0,1: transition factor between two consecutive rainy periods

ϕ ∈ [0, 1]: skill level of labor force

β̂m: nominal productivity for the resource m. If there is only one type, the sub-index is

avoided.

βω
tm: effective worker m ∈ W productivity at time t ∈ T in scenario ω ∈ Ω (kilograms

per worker per period).

β̆t,m: actual deterministic productivity for the m resource at moment t

ξ ∈ Ξ : {0, 1}: the set of possible values that may take the uncertainty realization.

ξ̄t: expected realization in period t (–) t ∈ T .

ẋ: decorator for variables (i.e. x) that are decided before uncertainty of the period is

realizated

hω
jt: daily harvested quantity at j ∈ J block in period t ∈ T in scenario ω ∈ Ω, calculated

as βω
t z

ω
jt (kilograms/day).

xω
tm: workers m ∈ W hired at time t ∈ T (workers) for path ω ∈ Ω (when EV problem,

Ω = {1}, and belongs to the expected value of the uncertainty).

ytm: workers m ∈ W laid off at time t ∈ T (workers) for path ω ∈ Ω (when EV problem,

Ω = {1}, and belongs to the expected value of the uncertainty).

żjtm: workers m ∈ W allocated in block j ∈ J in period t ∈ T before uncertainty

happens (workers) for path ω ∈ Ω (when EV problem, Ω = {1}, and belongs to the

expected value of the uncertainty).

zjtm: workers m ∈ W allocated in block j ∈ J in period t ∈ T after uncertainty is

revealed (workers) for path ω ∈ Ω (when EV problem, Ω = {1}, and belongs to the

expected value of the uncertainty).

lωmt: manpower or labor force m ∈ W at time t ∈ T (workers) for path ω ∈ Ω (when EV

problem, Ω = {1}, and belongs to the expected value of the uncertainty).

T : set of stages in the time horizon.

j ∈ J : a specific block j of the set of blocks of the vineyard.
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m ∈ W: a specific manpower resourcer m of the complete set. If there is only one type,

the subindex is avoided.

r01: probability rain for two consecutives periods when first period is dry and the second

is rainy

r11: probability rain for two consecutives periods when both periods are rainy

wω: conditional probablity for the specific scenario ω

aj, bj, cj: quality parameters for the cuadratic equation that represents the quality of the

grape in the block j

uj: fractional quality loss per rainy period for the grape in block j

Bj: price of the grape in lot j ($/kilograms).

CE,m: cost of hiring ($/worker).

CF,m: cost to lay off ($/worker).

CP,m: cost of keeping labor idle between periods ($/worker per period).

CH.m: cost of harvesting ($/kilograms).

CZ,m: cost of assignment before uncertainty is revealed by worker m ∈ W ($/kilograms).

CŻ,m: cost of assignment after uncertainty is revealed by worker m ∈ W ($/kilograms).

K: maximum daily reception capacity of the winery (kilograms/day).

Sj j ∈ J : initial amount of grapes in lot j (kilograms).

Qω
jt: daily quality of the wine grape at j ∈ J block in period t ∈ T in scenario ω ∈ Ω (–).

Q̄jt: average quality for that block j ∈ J , t ∈ T .

Q̆jt: actual deterministic quality for the block j at moment t

UM: expected value of the solution of a model, i.e., stochastic one.

M: represents any model ant it is useful to write general expressions

ξωt : the value of the uncertainty realization at moment t for the specific scenario ω

t ∈ T : specific period time in the time span

d(i, j): the value of the nested distance algorithm where i− th is the id number of the first

tree to compare, and j − th the id number of the second. It could be described shortly as

d

d(τ): having fixed the two trees to be compared, it means the nested distance at any

moment between them at time t = τ , with t ≤ T
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Note 1: when there is a unique type of resource available, the sub index m is avoided.

Note 2: when there is a unique scenario (i.e., deterministic model), the supra index ω is

avoided.

5.1. Rolling Horizon Approach

A multi-period decision model that considers the uncertainty in an explicit way, which may

be represented by a tree and consequently, in the MS model. We denoted the complete

and original tree as T, with T time span size. The rolling horizon approach, RHA, is

an algorithm that replaces the tree with a single scenario that is based on the expected

probability of uncertainty. The optimization model is solved as a deterministic one using

the artificial scenario, and the set decisions implemented. The optimization horizon for

the RHA is smaller than the original; after some periods of decisions for policy execution,

the system state was updated and the RHA optimization process repeated. We will go into

further details on this approach, because it will make it easier to understand the rolling

tree approach later.

The RHA considered that the original horizon of interest, T , was approachable from suc-

cessive optimizations where information on the state of the system is updated and the

stochasticity is simplified. Considering the original tree, T, with an uncertainty set of

event Ξ and probability distribution, Pt(Ξ) where t ∈ T , the original tree could be sim-

plified by replacing the probability distribution with an expected value, P̄t(Ξ), or briefly,

P̄ . The tree is reduced to a single sequence of events that are based on the expected value

of the uncertainty; and the reduced tree with a single scenario is denoted by T̄. This sim-

plification implies a loss of information that impacts on the final results. However, the bias

depends on the uncertainty set, probability distribution and re-planning steps. We denoted

each planning cycle as k, and K as the total number of cycles. The span for the plan-

ning time could reach the time span or be shorter than the original horizon. In our case,

the planning time span was complete (finite), but decreased in length when we advanced

through the planning steps. For a planning cycle k, its time span was T k : (tkp : T ),
where tkp is the initial period for the planning step k. The simplified tree for this initial

planning cycle was denoted by T̄k. It was optimized using initial information denoted by
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Figure 5.1. Schematic representation of two planning cycles for RHA

Ik, to obtain a decision set Dk. After the decision set had been applied by some periods

in the system, the review time, tkr , is calculated, defined as min (tkp + ∆r, T ), where ∆r

is the review time span. At the review point, the decision-maker observes the state of the

system and the information about it is updated; this information is the initial status of the

system for the new planning cycle, k + 1, Ik+1. The next planning cycle begins at period

tk+1
p = tkr + 1. In some cases, the decision set Dk for the time span T k will be applied

even after the review time, tkr . The time span where decisions in the planning step k will

be applied is called the frozen time span, ∆z, and the last period of frozen decisions tkz

is defined as min (tkp + ∆z, T ). These decisions are rescued in every optimization, and

are part of the decision policy for the next planning step. Considering two consecutive

planning cycles, k and k + 1, the time parameters for the relationships are in eq. 5.1.

tkp ≤ tkr ≤ tk+1
p ≤ tkz ≤ T (5.1)

To see more clearly the temporal parameters, we offer two planning cycles in Figure 5.1.

To estimate the value of the RHA strategy, we run the complete planning process sev-

eral times. We used simulations to represent the real events. The final profit from each

complete planning process is the cumulative sum of the partial profits based on the im-

plementation steps; for the n ∈ N running of the complete planning process, the partial

profit from each planning step was Uk
n . To compare its performance with other models,
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the expected value is used, defined as (
∑

n∈N
∑

k∈K Uk
n)/N , and written as URH as a

general notation. In algorithm 1 is described the procedure for the RHA.

Algorithm 1 Rolling Horizon Algorithm Expected Value
1: Input: Information: Instance, Initial conditions I
2: Input: Model Information: T, Ξ , P
3: Input: Structure: T , ∆z, ∆r, K
4: n = 0
5: while n ≤ N do
6: Un = 0
7: for k = 1..K do
8: Determine tkp, tkr , tkz , T k {Time Parameters}
9: Determine P̄k ← Pk, T̄k ← Tk

10: Determine Dk ← opt E (T̄k,Dk−1) {Optimization Routine}
11: Implementing: {Through Simulation}
12: for t = tkp, ..., t

k
r do

13: Uncertainty Realization ξ̂t
14: State Update Ikt ← ξ̂t,Dk,F , Ikt−1 {Information update}
15: end for
16: Update Un+ = Uk

n

17: end for
18: Save final value Un

19: n+ = 1
20: end while
21: URH = (

∑
n∈N Un)/N {Expected Value Estimation }

5.2. Rolling Tree Approach

We introduced the RHA in the last section; however, we now present the RTA based on

RHA.

We denoted the very original tree as T, with T time span size. The Rolling Tree algorithm,

RTA, considers that the original horizon of interest, T , is approachable from successive

optimizations using a short term multistage model and a simplified view of the long term

future. The RTA has similar principles to RHA, but is more complex especially because

the information of the original tree is preserved to a larger degree. Each of the successive

planning steps updated RTA information on the real state of the system. The progress of

the system is obtained using simulations, giving the opportunity to visit different paths of
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realizations. The periods for the planning tasks are known as priori because all the time

parameters are shared as information at the beginning.

Considering that our tree was now exhaustive, all the possible states and paths were per-

fectly listed. In each period there was a list of nodes where the information was kept. The

list of nodes that belong to the planning periods are denoted by ĝ ∈ Ĝ, and the list of

initial periods for planning, t̂ ∈ T̂ .

In each of the planning steps, a new tree, shorter than the original is generated. These trees

are called primary trees and represent a fan or sub-tree of the original one, retaining the

original granularity and belonging to the planning step k with an initial node ĝ, Ṫ(k, ĝ).

The initial node is important because it contains the initial information, I(k, ĝ). The initial

period for the planning cycle k is denoted by tkp. The primary tree extension is [tkp, T ] and

the original tree extension is [1, T ], where 1 ≤ tkp. The first periods of Ṫ(k, ĝ) will be

preserved as a tree, retaining the original bushiness, but the lasts are simplified. The part of

the primary tree that keeps the original bushiness is called secondary tree, and is denoted

by T̈(k, ĝ). For the last period of T̈(k, ĝ), there are final nodes that belong to the different

leaves. Each of them is originally the birth of a new tree; and these trees will be simplified

in our model, collapsing the granularity in a specific way. The list of the nodes that belong

to the last period of the secondary tree are represented by ğ ∈ G(k, ĝ, tkr). Each of

the simplified trees is called tertiary tree,
...
T(ğ); in this case the planning cycle is not

relevant. The number of simplifications in each optimization process is card(G(k, ĝ, tkr)).
The simplified form of

...
T(ğ) is written as T̂(ğ). The first period of the simplified tree is

tks , so the two time spans are [tkp, t
k
s) and [tks , T ]. The simplified part of the tertiary tree

could be done using different methods; we opted for an expected value problem, EV, and

a worst case problem, WC. The main difference in the time parameters between RTA and

RHA is that the planning horizon is divided in two parts for the RTA; the first part will be

optimized as a fan or tree, and the remaining is simplified and solved as if the information

was perfect. The time span to optimize as a fan is denoted by ∆f , such that the initial

period in the simplified tree is tks = min (tkp + ∆f , T ). The min expression is linked to

the last planning process, because the remaining time horizons could be shorter than the
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T(ğ) → T̂(ğ)
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Figure 5.2. Schematic representation of two planning cycles for RTA

original time spans. To clarify, Figure 5.2 offers two timelines that show the parts of the

timeline that are encompassed by the different trees.

The RHA relationship presented in equation 5.1 is updated to equation 5.2. Figure 5.2

shows the timeline for RTA.

tkp ≤ tkr ≤ tk+1
p ≤ tkz ≤ tks ≤ T (5.2)

The inequality tks ≥ tk+1
p means that the next planning cycle, k + 1, will always be done

on the fan part of the previous planning cycle, k. This is necessary because the nodes of
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the simplified part are not necessarily real. When we simplified the tertiary trees using the

expected value, the optimized scenario probably does not exist; if the simplification crite-

rion is WC, the scenario exists, even with low probability. The tkr ≤ tk+1
p ≤ tkz inequalities

indicate that in the planning step k + 1, previously-made decisions could exist; and in the

k step, decisions can be executed. This group of decisions will be conserved in the new

planning step because the cost of changing them is prohibitive and is not instantaneous

(RHA suffers the same).

In real life, each planning step is followed by an implementation time span and then a

new planning step begins. In computational experiments, the realization is simulated. To

clarify, in Figure 5.3, there is schematic example of how the rolling tree and its different

elements roll over the tree according to the planning steps.

In Figure 5.3 (a), the primary tree for k = 1 is shown, maintaining the available total gran-

ularity. At this point, the first scenario simplification happens at period three. To represent

them, we opted for the artificial scenario which had birth at the gray termination nodes of

the secondary tree without branches. There are so many artificial scenarios as termination

nodes are varied. In chart (b), the bushiness was erased to show the consolidated tree for

the optimization of this planning step. Chart (c) shows a hypothetical realization of the

uncertainty that was conducted at a specific node in period two, the moment of review,

whose path is red and in a dashed line. The new primary tree for k = 2 is shorter than

the original tree. A part of the original tree is not available to be visited, because the first

realization leads to a path that is not linked with that side. It’s important to mention that

this is a representation following the tree graph; and it does not mean that the scenarios

on the decisions could be overlapped, as well as the information at different paths. We

prioritized the structure guide instead of the values, because the tour through the tree is

based on the structure, and the rolling tree algorithm follows the same idea. The hidden

side of the tree appears in a very light gray tone, and the available side in darker tones.

This cycle continues until the final period is reached.

For computational implementation, the complete algorithm is shown in algorithm 2.
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tree, with time parameter (tkp, t
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Algorithm 2 Rolling Tree Algorithm
1: Input: Information: Initial conditions I
2: Input: Model Information: T, Simplification Strategy (EV or WC)
3: Input: Temporal structure: T , ∆z, ∆r, ∆f , K
4: for k = 1 . . .K do
5: Determine tkp, tkr , tks , tkz {Critical Periods}
6: Load ĝ ∈ Ĝ {Planning Node}
7: Ṫ(k, ĝ)← T {Primary Tree generation}
8: T̈(k, ĝ)← Ṫ(k, ĝ) {Secondary Tree generation}
9: Load ğ ∈ G(k, ĝ, tkr) {Terminal nodes list generation}

10: for all ğ ∈ G(k, ĝ, tkr) do
11: T̂(ğ)←

...
T(ğ) {Simplified tertiary tree generation}

12: end for
13: ˆ̇T(k, ĝ)← (T̈(k, ĝ), T̂(ğ), ∀ ğ ∈ G(k, ĝ, tkr)) {Primary tree consolidation}
14: Dk ← max E (ˆ̇T(k, ĝ),Dk−1) {Optimization Step}
15: Implementing:
16: go = ĝ {Initial node for implementing step}
17: for t = tkp, ..., t

k
r do

18: Uncertainty Realization ξ̂t
19: Destiny node identification gd ∈ Gt
20: Update of node information I(k, gd,t)← ξ̂t,Dk,F , I(k, g0)
21: Node id update go ← gd
22: end for
23: end for

5.2.1. Models Formulation

The RTA requires two considerations:

• On the simplifying procedure: EV simplification is done considering the way it

was presented in Chapter 3. Basically, the tertiary trees are reduced using the

expected value of the uncertain events to build a single scenario. This procedure

is repeated for each terminal node of the secondary tree. For WC, the simplifi-

cation is done making rain probability equal to one. In both cases, the secondary

tree keeps the original probabilities and structure of the problem.

• About NACs: NACs are active in the secondary tree, but not in tertiary trees that

are simplified. The reduced-tertiary-trees behave like independent path, so the

decisions for similar periods are not necessary equals among reduced trees.
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Next, we present the general optimization model for the RTA planning step. The model is

very similar to the observed in Model 1, where the costs of recourse actions are negligible.

In order to avoid confusing notation, part of that has been removed. Please read the model

considering that it is for a planning step k such as 1 < k < K; additionally, the structure

of the primary-tree is Ṫ(k, ĝ).

max
∑
ω∈Ω

wω
∑
j∈J

∑
t∈T
{(BjQ

ω
jt − CH)h

ω
jt − CEx

ω
t − CFy

ω
t − CPm

ω
t }

s.t.

mω
t = mω

t−1 + xω
t − yωt ∀t ∈ T k, ω ∈ Ω (rt1)∑

j∈J
zωjt ≤ mω

t ∀t ∈ T k, ω ∈ Ω (rt2)∑
j∈J

βω
t z

ω
jt ≤ K ∀j ∈ J , t ∈ T k, ω ∈ Ω (rt3)

βω
t z

ω
jt ≤ Sj −

t−1∑
t′=1

βω
t′z

ω
jt′ ∀j ∈ J , t ∈ T k, ω ∈ Ω (rt4)

xω
t = xω′

t ∀ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T k : 2 ≤ t ≤ min(∆f , T − ktkp) (rt5a)

xω
1 = xω′

1 ∀ω′, ω ∈ Ω, ω′ ̸= ω (rt5b)

yωt = yω
′

t ∀ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt−1, t ∈ T k : 2 ≤ t ≤ min(∆f , T − ktkp) (rt6a)

yω1 = yω
′

1 ∀ω′, ω ∈ Ω, ω′ ̸= ω (rt6b)

żωjt = żω
′

jt ∀ω′, ω ∈ Ωg, ω
′ ̸= ω, g ∈ Gt, j ∈ J, t ∈ T k : t ≤ min(∆f , T − ktkp) (rt7)

xω
t , y

ω
t ≥ 0,∈ Z+ ∀t ∈ T k, ω ∈ Ω (rt8)

żωjt ≥ 0,∈ Z+ ∀t ∈ T k, j ∈ J , ω ∈ Ω (rt9)

Model 6. Rolling tree optimization model for cycle k

5.2.2. Model Comparison Metrics

To measure the performance of RTA, we use three main indexes:

• Profit expected value of the solutions (U)

• Decisions sets nested distances

• Computational times (θ)

The expected value of the profit for MS and WS models is the objective function value.

To refer to the expected value of the solution in RTA, we use the notation URE and URW .

The expected value is built using an algorithm that goes around all the planning nodes

according to time structure, solving all the possible paths to the final period. The algorithm

3 shows the procedure that measure the RTA performance in order to be comparable to MS

information.
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Algorithm 3 Algorithm to estimate the performance of the RTA in terms of expected value
of the profit and rescue information

1: Input: Information: Initial conditions

2: Input: Model Information: T, Simplification Strategy (EV or WC)

3: Input: Temporal structure: T , ∆z, ∆r, ∆f , K
4: for k = 1.. |K| do

5: Determine tkp, tkr , tks , tkz { Critical Periods }
6: for all ĝ ∈ Ĝ do

7: Ṫ(k, ĝ)← T {Primary Tree generation}
8: T̈(k, ĝ)← Ṫ(k, ĝ) {Secondary Tree generation}
9: Load ğ ∈ G(k, ĝ, tkr) {Terminal nodes list generation}

10: for all ğ ∈ G(k, ĝ, tkr) do

11: T̂(ğ)←
...
T(ğ) {Simplified tertiary tree generation}

12: end for

13: ˆ̇T(k, ĝ)← (T̈(k, ĝ), T̂(ğ), ∀ ğ ∈ G(k, ĝ, tkr)) {Primary tree consolidation}
14: Dk ← max E (ˆ̇T(k, ĝ),Dk−1) {Optimization Step}
15: Implementing:

16: go = ĝ {Initial node for implementing step}
17: for t = tkp, ..., t

k
r do

18: Uncertainty Realization ξ̂t

19: Destiny node identification gd ∈ Gt
20: Update of node information I(k, gd,t) , Ugd ← ξ̂t,Dk,F , I(k, g0)
21: Uω

t ← Ugd {Update information in T}
22: Node id update go ← gd

23: end for

24: end for

25: end for

26: URTA =
∑

Ω, T̂ wωUω
t {Profit Expected Value}
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The algorithm is called EVR, expected value of the solution of RTA. Used for RTE, we call

the algorithm EVRE, and EVRW for RTW. The algorithm works as follows. Each node of

the tree suffers several information refreshes as planning steps go ahead. Once the node is

reached by the implementation procedure, the information is fixed, because the node will

not be used in next planning steps. The EVRT solves the RTA for all the feasible planning

nodes, ĝ ∈ Ĝ, and the information is displayed in a similar structure to the original tree.

The outcome in the EVR is comparable to the monolithic outcome of the MS optimization

model.

To value how different are the policy sets, we use the nested distance concept, introduced

in Chapter 4. The information is rescued in the algorithm 3, when I(k, gd,t) is updated.

Finally, we hypothesized that for certain conditions RTA keeps an acceptable performance

about the expected profit but with smaller computational time, represented by θ. θ(MS)

is obtained from the solver optimization report. In that case, a complete tree is solved, so

the computational effort should be greater than in the RTA, where the optimization stages

are smaller about bushiness. Even when RTA needs multiple planning cycles to complete

the whole process, the optimization time is individual for each of the cycle. We compare

in this work, the optimization time for the first cycle that presents the same T of the MS

model.

5.3. Results

5.3.1. Computational Experiments

In order to test hypothesizes, we run different numerical experiments. The cost parameters

are similar to the describe in Chapter 3. The instance parameters are shown in Table 5.1.

We introduce three-time structures, TS that provide different dynamic to the RTA; this

is a short way of naming the temporal parameters as a unique concept. The relationship

among the time spans in time structure is: T ≥ ∆f ≥ ∆z ≥ ∆r

It’s important to highlight that the size of the fan is 80% of the original for TS1, 50%

in TS2, and 20% in TS3. It means that computational effort should decrease according

fan size decreases, but as it is mentioned in Rardin (2016), the final time depends on the

instance and the structure of the problem.
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Table 5.1. Parameters for the different experiments

Feature Notation Values Units

Workers Ability ϕ 0.3, 0.5, 0.7 –

Rain probability r01 0.1, 0.5, 0.9 –

Rain factor between consecutive periods τ11 0.7, 1.0, 1.3 –

Rain quality penalty γj 2% %

Ripening Patterns SOD, MSH, HSM –

Time Structure TS1 (T , ∆f , ∆z, ∆r) : (10, 8, 4, 2) days

TS2 (T , ∆f , ∆z, ∆r) : (10, 4, 2, 1) days

TS3 (T , ∆f , ∆z, ∆r) : (10, 2, 1, 1) days

The models were implemented using Python, written for PYOMO Python (Hart et al.,

2017) and the optimization engine used was the GUROBI v. 8.1.0. The solution time was

not limited, but the optimality gap was 1% and the integrality parameter was the solver

default. We used a laptop computer with an Intel Core processor i7-6700HQ CPU 2.60

GHz, with 32.0 GB of RAM memory running Windows 10. We tested a total of 243 in-

stances per model, RTE, RTW, RH, WS, EV and MS. The total number of optimization

running was 1458. In this chapter we report only the main results, especially the compar-

ison among RTA variants and MS.

5.3.2. Economic Performance of RTE and RTW

In Figure 5.4, the relative expected profit value is presented for models RTE, RTW and

MS. The figure has six charts. The chart (a) shows the results when ability is low, ϕ = 0.3;

the second one, (b), shows the intermediate ability results, ϕ = 0.5, and the last, (c), is

referred to high levels of ability, ϕ = 0.7. The same results are shown for RTW in charts

(d), (e) and (f), respectively.The x-axis in the three charts shows the rain probability r01.

All the cited charts are for RTE. The last three charts are referred to RTW. Finally, in each

of the charts, three series are shown, TS1, TS2 and TS3.

Figure 5.4 (a) shows the URTE/UMS value for ϕ = 0.3 or poor skill. For TS1, the fan

time span is similar to the original time horizon, and the expected performances between
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Figure 5.4. Relative Expected Profit Value for three different time
structure and resource flexibility - SOD pattern
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the models do not differ mostly. TS2 offers a shorter fan, around 50% of the original

time, and more planning steps. It introduces a small loss in the simplified model, but this

is still less than 4% when rain probability is very high. When the number of planning

steps increases, reaching the daily information update, TS3, URTE/UMS is close to 1.

To improve abilities, one needs to consider an exhaustive tree or update the information

frequently. The RTE with highly frequent updates, does not require granularity because

the tomorrow’s decisions, and for an expected future are made today. If rain probability is

low in the future, it will not affect the performance of RTE. If rain event is highly probable,

then the expected value considers mostly the negative occurrence and the decisions will

be conservative, losing the opportunity to capture better alternative although they are few

probable. While shorter the time span for revision, better reactions could have the system

in extremely negative conditions if approximation is used; however, the implementation

or frozen horizon should be short because the information update requires to be active in

the decision model.

In Figure 5.4 charts (b) and (c), the same information is presented for medium and high

ability, respectively. Regardless of the time structure, both graphs support the Chapter 3

conclusions; higher ability in the resource takes off value from the model contribution,

making the last less critical. At medium or major levels of ability, the performance of

RTE seems to be comparable to MS.

The last three charts in Figure 5.4 shows the information for RTW. The worst case consid-

ers that in the future will be always raining. This affects the quality and creates a context

of risk about quality of the product. This standpoint punishes low rain probabilities in the

simplified tertiary trees, but it works, intuitively, well when rain probability is really high.

In the same way, for low rain probabilities, it is desirable to have less number of planning

steps to avoid the negative bias of the simplification.

For the three levels of skills, when partial fan is similar to the original one (MS), series

TS1, the relative gaps are minors, in terms of expected values.

As the partial fan becomes shorter, the gap with MS increases. The worst situation, with

losses about 10% is when the rain probability is very low, and the fan is very short. Two

situations impact on this gap: first, the granularity of the events is very poor, and the weight
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of the expected scenario is very high in each optimization step. Second, even when rain

is very unlikely, the simplification considers the event occurrence as sure. This increases

the costs, so the strategy is very different to the MS case. Furthermore, when rain event is

highly probable, the gap decreases considerably. It gives an interesting clue: the rain event

or uncertainty, plays a critical role in the relative value of RTW. In Figure 5.4 (e) and (f)

the gap between models decreases because of the contribution of the resource flexibility.

5.3.3. Quality Value in RTA approach

The ripening pattern may change the decisions and the value of the system consequently.

We presented formerly the SOD patterns results, now we show the results for the HSM

pattern.

Figure 5.5 shows that the HSM pattern offers competence between RTE, RTW and MS

approaches. The differences saw in SOD pattern for these models, do not appear here. In

that case, was the high rain probability where differences make greater. Here the ripening

pattern changes and then the value over time, specifically, is more concentrated at the

beginning. With this scenario, even when granularity is low, this reaches the first period

and then the value is mostly captured.

Figure 5.5 shows in (d) a loss about 10% when rain probability is very low and the partial

fan time is far way of the original one. The gap is greater than in the same case for

SOD pattern; the reason is that HSM is a negative scenario for the ripening process as we

indicated in Chapter 3, so the stress is really high, and the better performance of MS model

is emphasized. When the resource ability increases, the results are better, but keeping a

worse performance at low rain probabilities.

As gaps are very short in some cases, we present the values of the four previous graphs in

Table 5.2.

5.3.4. Manpower Policy Nested Distance

In order to discuss the manpower decisions policies obtained by the models, we compared

them using the nested distance.

In Figure 5.6 we observe the nested distance for the completes trees where the probability

structure is similar to the original tree, and nodes information are the decisions made under
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Figure 5.5. Relative Expected Profit Value for three different temporal
structure and resources flexibility for HSM pattern
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Table 5.2. Relative Expected Profit Value

URTW/UMS URTE/UMS

r01 0.1 0.5 0.9 0.1 0.5 0.9

TS1 0.993 0.999 0.988 1 1 1

TS2 0.944 0.979 0.974 0.994 1 0.958ϕ = 0.3

TS3 0.841 0.936 0.972 0.995 0.997 0.979

TS1 0.994 1 1 1 0.999 1

TS2 0.965 0.99 0.999 0.992 1 0.995ϕ = 0.5

TS3 0.948 0.981 0.991 0.998 0.999 0.987

TS1 0.996 0.999 0.999 1 1 1

TS2 0.984 0.993 0.997 0.995 0.999 0.996

SOD

ϕ = 0.7

TS3 0.959 0.992 0.997 0.999 0.997 0.995

TS1 0.993 1 0.998 0.992 0.997 0.995

TS2 0.955 0.988 0.998 1 0.982 0.991ϕ = 0.3

TS3 0.903 0.969 0.997 0.995 0.995 0.987

TS1 0.996 1 0.993 0.998 0.999 0.993

TS2 0.965 0.999 0.992 1 0.997 0.99ϕ = 0.5

TS3 0.948 0.985 0.993 0.997 0.998 0.987

TS1 0.987 0.992 0.989 0.989 0.996 0.993

TS2 0.971 0.985 0.989 1 1 1

HSM

ϕ = 0.7

TS3 0.967 0.987 0.991 0.995 0.993 0.991

each type of models and time structures. We use the MS model as reference to calculate

the d, so we will simplified the notation leaving the MS subscript, i.e., from d(MS,RTW)

to d(RTW).

Chart (a) shows different cases of d(RTE) and d(RTW). Both RTA simplifications lead

to a minor distance to MS when resources ability increases. It is reasonable because high

capabilities or abilities make decisions less dependent on uncertainty, so the exhaustive

tree probably offers information that is not as critical. In the RTE case, the time structure

seems not to have a special weight in the trend and magnitude of the distance. Values are

concentrated with little dispersion at each level of resource flexibility.
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Figure 5.6. Final nested distance value (y-axis) for three different time
structure (series) and resource’s ability (x-axis). Both RTA are in these
charts. The rain probability is low in chart (a), medium in chart (b) and

high in chart (c). The quality pattern is SOD

For TS1, the d(RTW) is pretty similar to the d(RTE). Both consider the same information

for the fan part, and this is almost the same as MS original model. The gap between them

is related to the probabilities considerations in the simplified part. When granularity of the

secondary tree decreases, d(RTW) increases.

In chart (b), uncertainty is maximum. Both RTA distances decrease compared to r01 = 0.1

chart. In the case of RTE, the probability simplification leads to behaviors that are not so

different to the MS approach. We know that in the case of EV models, the performance
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Figure 5.7. Total nested distance value (y-axis) for three different time
structure (series) and resource’s ability (x-axis). Both RTA are in these
charts. The rain probability is low in chart (a), medium in chart (b) and

high in chart (c). The quality pattern is HSM.

difference is largest when uncertainty also (Chapter 3); this effect is weakened by the

update of information. The RTW simplification leads to worse trees when granularity of

the secondary tree decreases. The ability impact is present in all the approximations.

The last chart, (c), is for a highly rainy probability. In this situation, d(RTW) and d(RTE)

behave very similar. Increasing granularity of secondary tree, diminishes the distance to

MS, and higher abilities reduce also the differences between the sets of decisions.
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In Figure 5.7 shows the same information that in Figure 5.6, but for HSM ripening pattern

in this case. The ability impact trend follows the behavior that we described in Chapter

3 and also here. When r01 = 0.1, the nested distance values in RTE are concentrated in

different levels depending on the ability of the resource. RTW is more variable, strongly

affected by the granularity of the secondary tree and the bad approximation made for the

rain event. When rain probability is strongly uncertain, the differences between the policy

trees are fewer than in the SOD case. In this pattern, the highest value is in the first

periods, so event with a minor granularity in the secondary tree, the value of the system

could be captured. Finally, chart (c) shows the nested distance value for very probable

rain environment. There is a difference among models when ability is low, something

predictable.

5.3.5. Computational Times

To complete the performance analysis of RTA, we compare now the computational effort.

MS has been said to be a huge consumer of resources when size increases. RTA should

offer an advantage in that sense without great performance losses. Table 5.3 shows a

summary of the quartiles of the recorded optimization times, where the last two rows

offer two relative indicators comparing the RTA behavior and MS performance. All the

information is expressed in milliseconds, excepts the relative performances rows.

Table 5.3. Computational times performances. Optimization time
expressed in millisecond

θ(RTE) θ(RTW)
θ(MS)

Statistics TS1 TS2 TS3 TS1 TS2 TS3

Scenario Number 256 16 4 256 16 4 1024

Min 28.25 14.04 10.25 268.94 45.79 42.26 1673.03

Median 33.28 46.89 19.62 336.67 52.01 106.19 2415.74

Max 144.73 184 145.63 419.92 72.29 500.6 47955.59

Average 54.58 52.91 34.6 337.9 139.14 53.11 6280.79

RT average / MS average 0.87% 0.84% 0.55% 5.38% 0.85% 0.62%

RT median / RT average 1.38% 1.94% 0.81% 13.94% 2.15% 4.40%
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Both RTW and RTE show that the simplification expected speeds are always smaller than

MS one’s. The behavior is not homogeneous, but the magnitudes are very different to MS.

Time structures, TS, should be a good estimator of the final speed. In the case of RTE, the

TSs do not present important differences among configurations. In RTW, the differences

are more important, and the consumed time is up five time the RTE computational effort.

However, in both cases, there are less than 5% of the MS optimization time.

5.4. Last Stage Distributions

The final analysis is about the distributions of the outcome in RT and MS. As we noted

before, the expected profit value is a performance index, but it does not give any details

about the real distribution of the individual scenarios and probable results of the model.

Individual scenarios performance and their probability of happening hide risks for the

decision-maker. To observe this behavior, we opt by expected shortfall, ES, where poor

skilled labor (ϕ = 0.3) is confronted in the complete set of models for two conditions

of rain probability. Resulting distribution are shown in Table 5.4. The results show that

ES for RTA variants are worse than MS cases, but negative scenarios are not present in a

statistical representative way.

Table 5.4. Expected Profit Value ES10% [$(000) and relative expected
profit, ESRTA/ESMS

RTE RTW MS

ES TS1 TS2 TS3 TS1 TS2 TS3

r01 = 0.1 1375 1567 1599 1630 1614 1615 1698

r01 = 0.9 211 218 228 139 208 139 233

Relative r01 = 0.1 81.0% 92.3% 94.1% 96.0% 95.0% 95.1%

Relative r01 = 0.9 91% 94% 98.5% 60% 89% 60%

5.5. Conclusions

In this chapter we introduce the rolling tree approach, RTA, hypothesizing that this ap-

proximation could offer a good approach to the final expected value of MS approach, with
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less computational effort. First, we describe the rolling horizon approach, RHA, giving a

complete description of the elements of the algorithm and the way it works; immediately

after we introduce the rolling tree algorithm. Then, the basis of the optimization model

and metrics to be used in this chapter are shown. Subsequently, results are presented.

The main purpose of Chapter 5 was to discuss if a kind of rolling horizon approximation

may be a better solution for those cases where EV fails in terms of profit performance. We

chose the specific conditions where EV was not successful, providing big gaps between

EV and MS.

In RTA, we see that for SOD pattern, when ability increases, the RTA-MS economic per-

formance gap decreases. RTE behaves very close to the MS model, showing good results

for different levels of rain probability. Granularity of the secondary tree and planning final

number of cycles seem not to have a great effect in the final performance, losing few val-

ues compared to MS. In RTW, the losses are more important when rain probabilities are

low, because of the poor approximation to those cases. When rain probability increases,

the RTW-MS gap becomes smaller and even acceptable in some cases. The quality degra-

dation plays a critical role; for HSM pattern, the value is concentrated at the first periods,

so the granularity of secondary tree and the few feasible paths at the first periods, impacts

positively on the capture of the higher prices, and finally, value.

In terms of computational times, RTA is considerably faster than MS model. The gain

depends on the number of planning steps and their sizes. The rain probability also plays a

role here, changing the shape of expected times.

The last comparison for the original test time structures and instances was how signifi-

cant are the differences between the set of decisions made under different models. The

results indicate that as the rain probability increases, at least for the examined conditions,

the decisions trees trend to be closer, but not equals. It iss imperative to mention that

probabilities are similar, so the differences are concentrated in the nodal decisions.

The last part of this chapter is about the distribution of the final results of the scenarios.

RTA has a partial myopic vision about future, so some decisions may lead to negative

scenarios that are hidden in the average performance analysis. We observed for a pair

of examples that the exposure to negative results are nonexistent both in RTA and MS.
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However, it is only an example of two rain probabilities instances, and more research

should be developed to study more general the risk under RTA models.

To conclude, we consider that RTA has offered promising results, in accordance with our

expectations, that encourage the continuity of studies in this research line. Key informa-

tion about the conditions in which they develop their potential and a magnitude of the

probable impacts that are very important for a manager has also been presented. A sensi-

tivity analysis may add notable information for applications. However, we consider that

this kind of fine-tuning should be done in the specific application because costs play an im-

portant role. We highlight the way of conducting the experiments, in order to understand

better each of farmer’s unique case. Finally, we believe that a Decision Support System,

DSS, would be a very useful step to get close to the real application.
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Chapter 6

Conclusions and Future Work

This chapter is a summary of the thesis. First, we describe what has been done. Then,

the most relevant conclusions are exposed, and finally, the future research directions are

presented.

6.1. Thesis overview

Agricultural planning has been recognized as especially complex given the number of

sources of uncertainty that are present. The market structure, biology of the products, and

the management of industrial and field operations present high stochasticity.

In this work we addressed the wine grape case, an especially important agricultural item

in Chilean market. Wine grape is responsible in great part for having excellent qualified

wines in the international context, so its quality should be the object of study under the

right management. Expert judgment is critical, but the complexity of decisions conse-

quences over time would be benefited with the help of mathematical supports.

Our research was focused on the multi-period models where uncertainty was critical. The

base formulation was a multi-stage stochastic model, a contribution to new research liter-

ature where the variability consideration has not been addressed extensively. This model

describes the farmer decisions in the harvest time, by means of a fundamental moment for

the final quality. The farmer’s dilemma can be summarized as: to anticipate the harvest

destroys value because the optimum maturity (the maximum price) is still not reached, but

this anticipation decreases the risks of negative impacts because of rain consequences, the
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uncertain event. Hence, anticipating or postponing needs an economic analysis but also

an operational interpretation of the feasibility of the decisions to be implemented.

At the beginning of this thesis, we reviewed the literature to look for multi-stage stochastic

programming applications in agriculture, and even more in fresh fruit cases (Chapter 2)

The first approach to the problem was to compare an expected value problem with mul-

tistage stochastic programming (Chapter 3. The EV considers the uncertainty in an ex-

pected way, creating a scenario used in deterministic optimization. While EV recognizes

the uncertainty existence (deterministic does not), the posterior transformation implies loss

of information, so it has been described as having poor performances against stochastic

approaches. Multistage stochastic programming was our first stochastic approach. It de-

scribes as a binomial tree, the possible paths in an exhaustive way. Initially, two versions

are presented: with recourse and without recourse actions. The difference between them is

that not all the decisions could be made after the uncertainty was revealed (second epoch).

Making decisions after uncertainty has been revealed to be flexibility source because it

allows the farmer to react after information is updated. It also means added costs, because

if flexibility was free it would be a commodity and not a competitive advantage. The EV

model was compared to MS in terms of the expected profit with and without recourses. In

order to understand how ripening patterns change the value of the system, we tried three

different configurations with different optimum ripening moments.

Chapter 4 explores in detail the effect of the decision epochs and other configuration of

resources. We formally introduced the flexibility concept defined as the ability to react to

a variable context. Having flexibility implies paying an extra cost that will be recovered

only if it could be used. We tested three different models to understand the epoch of

decision-making; which could be before, after, and before with later corrections of the

uncertainty realization. Thus, each of the allocation moments has different costs to value

the extra information. Additionally, we tested the possibility of constituting teams with

two types of resources, with different productivity levels and similar skills to work under

the rain.

After several optimization runs, the computational effort was found to be an important fac-

tor to consider, because of the hardware requirement (see the exponential behavior with



139

the size increment of the model, Chapter 3). This problem has been reported in the litera-

ture like the tractability problem and different methods, especially since the reduction tree

has been used. In Chapter 5 we face this problem using the rolling horizon approach in a

novel algorithm called rolling tree. The hypothesis is that the original complete tree could

be split in minor trees that rolls over time and maintains a level of granularity for short-

term decisions and simplified view for the rest of the original time span of optimization.

Intuitively, if the number of leaves decreases then the optimization time goes in the same

direction. The cost of this simplification is the loss in quality of the decisions, but it is

not clear in which conditions this kind of approximation should be used with a controlled

loss. To explore these balances, we designed an algorithm that gives form to the rolling

tree approach, and then a way of measuring the expected profit to be compared with the

MS results, our benchmark. We run different time structures that are critical to create the

rolling approach, and we compared three performances, expected final value, difference

among trees of decisions and computational effort in terms of the expected time. To sim-

plify the tree in the final periods, we used the expected value (RTE) and the worst case

used in other model, RTW.

Finally, we considered that the RT approach could hide negative scenarios under an ac-

ceptable expected value performance. We reviewed some of the final distributions and the

existence of negative scenarios was discarded for at least four of our experiments. This

does not mean that risk does not exist in RT approach, but it needs more development that

exceeds this initial study.

6.2. Conclusions

The general conclusions of this thesis are listed below:

i The expected economic performance gap between EP and MS models, is a function

of the uncertainty and the flexibility of the resources of the system to face the uncer-

tain event. While higher skilled resources are used, the uncertainty impact diminishes

and the decisions support model adds extra value to the system. EP is very useful in

this situation due to the lower computational effort required to solve the problem in a

correct way, giving a decision policy that is stable over time.
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ii When the uncertainty was at a maximum (rain and no-rain are equally probable), for

medium and low ability in resources, the MS approach creates considerable value and

the gap with the EV problem increases. It could be explained assuming that the in-

formation for decision-making is not biased enough, hence, the application of the EV

decision policies is not appropriated for any of the feasible paths.

iii The decisions set for the models differ in capacity to anticipate or postpone decisions.

EV considers a perfectly known future, so the reaction to not describing events is null.

In MS without recourse, MB, anticipated decisions are used in order to avoid risky

future scenarios.

iv The MA model is not always the best to apply. The cost in some cases is not recover (in

expected terms). For high or medium ability, MB could be a very good approximation.

v The mix model, MC, offers the best combination because it gives the chance to make

decisions inexpensive, and makes some specific corrections assuming an extra cost.

vi The team’s constitution is strongly dependent on the cost of extra productivity; even

when highly productive resources have a minor cost considering the USD/ton price for

a rookie resource. If the fixed cost is high, the MS model prefers rookie resources.

This is linked to the probability of recovery of the investment for this extra flexibility.

This result contradicts the basic economical approach, where the value of the system

is obtained without considering the potential realizations of uncertainty.

vii The methodology we used to determine the value of some decisions that are intuitive to

managers, like teams’ constitution and information buy, allows for the more scientific

analysis of the alternatives.

viii RTA offers acceptable performances compared to MS and is always better compared

to EV approach. The gap between RTA and MS increases when the secondary tree has

minor periods of fan.

ix RTE has an acceptable performance for our set of temporal structures, independent of

the rain probabilities, in profitable terms.

x RTW pays a high cost when the rain probability is low, because of its belief in allowing

for large performance gaps.

xi The resources’ ability diminishes the RTA-MS, being a critical issue.
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Figure 6.1. Quick tool to chose the model to apply according system
features)

xii The computational time gain in using RTA instead of MS, is especially high when

granularity in the secondary tree is low because it avoids the computational effort of

big trees.

xiii We observed that the decisions trees are similar when the profit follows the same di-

rection, but the general analysis indicates that there is a potential interaction with the

time structure that requires to go deeper.

To conclude, the comparison of the models and conditions led to some criteria to choose

the rights for different contexts of problems. Part of the facts that lead to the right choice

of the model to use are presented in a flow diagram in Figure 6.1.

The first question is the tolerance of the decision-maker to a very high computational ef-

fort. If the decision-maker tolerates the effort, the variant with decisions in two epochs

is preferred for the MC model. If the tolerance is low, we need to investigate other al-

ternatives where the loss of performance is not more than 10% for the MC option. The
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first question in this branch is the ability of resource; if it is high, then the EV models

could be good approximations. To decide which approach to use, the farmer should know

about the dispersion of the optimum days of harvesting. If the optimum days are similar,

the harvest will be concentrated, so the EV approach is sufficient. If the optimum days

are dispersed, more sensibility is needed to anticipate or postpone harvesting; and RTE

becomes a good option, specifically with a time structure that ensures granularity in the

secondary tree for approximately 40–50% of the original tree. This granularity helps in

capturing the versatility of the MS model while reducing the computational effort.

If the resource ability is medium or low, the farmer should analyze the weather forecast.

For high rain probabilities, the RTW model with ∆f ≈ 40–50%T , is acceptable. If the

probability of rain is very low, RTE with ∆f ≈ 40–50%T is acceptable too. Lastly, the

rain condition near the maximum uncertainty value, MC model, should be preferred, or an

RTE with ∆f ≈ 40–50%T as a poorer alternative.

6.3. Future Work

This research requires going beyond the current scope, to deal with the interesting ques-

tions that arose throughout the development of the project, as well as with the relaxation of

the assumptions that have simplified the real system. This section suggests some of these

promising aspects:

i The flexibility price has been constant during the optimization time span. However,

if more periods are considered, the market game resorts to variable prices. In that

context, the decisions keep changing. If the models are incorporated with the new

stochastic parameters, the size increases; thus, one feasible approach is to understand

which interval allows the set decision to remain unaltered. Similar variability could be

found in the real productivity of the resources, and even in other operational parame-

ters.

ii There are biological aspects that could be improved; for example, the use of heat

degree days, a more direct measure of the evolution of the fruit, which has even been

modeled for financial derivatives that are not applied in optimization.
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iii RTA offers positive signals in the first exploration. Risk aspects should be consid-

ered as a performance parameter and more experiments should be run to extend the

conclusions.

iv The measured Nested Distance has proved the usefulness of having relative results;

but it is difficult to understand what this means for the magnitude itself. A sensitivity

study that is compared with performance indexes is useful to get knowledge in order

to predict the structure of the decisions and information, validating the value of the

system.

v The benefits of each model and the conditions in which they are to be applied need to

be translated to the farmer language in their native language, thus, a decision support

system (DSS) would be an interesting application to develop.

vi This work could be applied to other fresh fruits or crops that require a multi-period

analysis to completely understand the impacts of practices and decisions.

vii This model, especially the RTA approach, offers an MS-simplified version but with

a high potential to be applied in supply chain models that require the stochasticity

without paying the computational cost.
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A. WINE: MARKET, NATURE AND INDUSTRIALIZATION

Wine Sector in Chile

In figure A.1 world wine annual production by country is shown. The traditional winemak-

ers (France, Italy, and Spain) contribute to the total output, setting aside Chile, Australia,

and Argentina, the new players in the international context.

Figure A.1. Wine Production in 2018 in different countries. Source:
International Organisation of Vine and Wine (n.d.)

However, although Chile is peripheral in terms of production, it plays a critical role in

exportations. In table A.1, Chile reaches the four position at the global level with 9% of

the total exported volume.

In figure A.2, the evolution of exported volumes is shown for the Chilean case. There

are two different groups of exportation, depending on the appellation of origin certificate

(AO). Technically, the wines with an AO are from specific regions established by minis-

terial decree that reaches certain standards. For example, a wine with the Valle de Maule

cabernet sauvignon, 2015 AO, requires that 75 % of the grapes come from Maule Val-

ley, 75% of the grape should be Cabernet Sauvignon grape, and it has to be produced in

2015 in the same percentage. Different abbreviations are used to refer to this feature; see

https://www.wine-searcher.com/wine-terms for more details. The wine without this feature
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Table A.1. Main exporters in millions of hl. Source:International
Organisation of Vine and Wine (n.d.)

Country 2014 2015 2016 2017 2018

Spain 22.0% 23.0% 22.0% 21.0% 20.0%

Italy 20.0% 19.0% 20.0% 20.0% 18.0%

France 14.0% 13.0% 14.0% 14.0% 13.0%

Chile 8.0% 8.0% 9.0% 9.0% 9.0%

Australia 7.0% 7.0% 7.0% 7.0% 8.0%

South Africa 4.0% 4.0% 4.0% 4.0% 5.0%

Germany 4.0% 4.0% 3.0% 4.0% 3.0%

USA 4.0% 4.0% 4.0% 3.0% 3.0%

Portugal 3.0% 3.0% 3.0% 3.0% 3.0%

Argentina 3.0% 3.0% 3.0% 2.0% 3.0%

New Zealand 2.0% 2.0% 2.0% 2.0% 2.0%

Moldova 1.0% 1.0% 1.0% 1.0% 1.0%

is bulk wine. The total volume of chilean exports has increased in the last twenty years,

with a drop in the previous three years. AO and bulk exportations follow the same pat-

terns. It’s important to highlight that the AO volume is around 15% bigger than the bulk

ones because AOPs have more added value when exporting, which is created in Chile. In

figure A.3 the average exportation price is shown for 2000-2020 period. Prices present a

slight positive trend, but there are generally stables, which are similar for both types of

exportations. The AOP price is up to 6 times the bulk price, but the costs are also higher.

According to ?, China is the leading destination with 15% of the annual volume of the

DO wine, followed by Japan, United Kingdom, and Brazil, with around 11% each of

them. These four countries represent almost the 50% in monetary terms. The average

price expressed in usd/l FOB is 3.4, 2.7, 2.9, and 2.5, for China, Japan, UK, and Brazil,

respectively. The grannel business is smaller than the DO, and USA and Argentina are

the main destinies, meaning 30% of the total annual volume. In figure ??, appears the

exportation bottled volume grouped by the price of each box. The figure goes through

different years.
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Figure A.4. Bottled Wine exportation gathered by price range. Source:
(International Organisation of Vine and Wine, n.d.)

Besides the international market, Memoria Anual 2019 Vinos de Chile (n.d.) indicates

that inner wine consumption per capita yearly is 14.1 liters (2019). The local market

size reaches almost USD 1,000 million, with an annual volume of 248.4 million liters.

As we mentioned before, the sector’s contribution to the GDP is important. It plays a

fundamental role in employment and local economic development because of the vast

region of the crops. According to Castastro Viticola Nacional 2019 Vinos de Chile (n.d.),

in 2019, 136,000 hectares of wine grapes are reached, with 26 % of white strains; the

distribution is shown in table A.2.

The surface growth has been sustained over time and almost tripled the 1995 produc-

tion. The investment requires at least 4-5 years to produce with full capacityLima, J.L.

(2015). An extra cost that reports better yields is the irrigation systems, which promotes

the opportunity to explore new geographical zones for production. The initial prices of the

plantations represent in the order of 20 % of the total cost of the vineyard’s life, estimated

in 20 years for accounting use, but with an actual life span around 30-40 years. Grape

costs are significant in this sector because of the variability of the prices. In table A.3 15

years of history of prices for some varieties are shown, and the variability among years

and harvest moment is evident, giving significant weight to the management capacity to

make profitable the cultivars.

The bottled wine price differs considerably from the price paid to producers. The supply

chain of the wine explains part of this gap. There are four clearly defined participants:



162

Table A.2. Vineyard land distribution in Chile in 2019 (Castastro Viticola
Nacional 2019 Vinos de Chile, n.d.)

Region Area (ha) White strains Red strains

ARICA 15 15.00

TARAPACA 3.10 1.30 1.80

ANTOFAGASTA 4.97 1.06 3.91

DE ATACAMA 48.62 21.43 27.19

DE COQUIMBO 3,147.55 1,784.28 1,363.27

DE VALPARAISO 9,657.20 6,251.63 3,405.57

DEL L.G.B. O’HIGGINS 45,142.42 6,545.80 38,596.62

DEL MAULE 53,818.68 14,290.95 39,527.73

ÑUBLE 10,172.21 4244.13 5928.08

DEL BIO BIO 2,581.87 1300.45 1281.42

DE LA ARAUCANIA 84.55 38.69 45.86

LOS RIOS 18.50 13.70 4.80

DE LOS LAGOS 9.25 2.59 6.66

METROPOLITANA DE SANTIAGO 11,584.87 1,428.80 10,156.07

TOTAL 136,288.79 35,924.81 100,363.98

grape producers, collectors/intermediaries, wine producers, and wine marketers. The form

of commercialization in the Chilean market includes three different ways of contracting:

(i) Long Term: they are expected when the arable land is of quality for super-

premium wines. The winemaker company establishes a relationship with the

producer, where the interference extends to agricultural practices. As a disad-

vantage, this type of contract requires permanent monitoring, and the prices paid

per kilogram of grape are high compared to other options.

(ii) Annual: in this contract, a range of tonnes is received, and a base price is set,

corrected by quality parameters.

(iii) Spot Market: there is no contract between the producer and the wine producer

before the harvest event. The intermediaries play the role of negotiators, agree-

ing on prices based on the demands and conditions of the grape to be purchased.
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Table A.3. Producer nominal price in Chilean pesos per kilogram of
harvested grape. Nuble region, periods: 2002-2003 to 2016-2017- Fuente:

Seremi de Agricultura Región del Bı́o Bı́o.

Harvest Beginning Harvest End

Year Paı́s Moscatel de Alejandrı́a Paı́s Moscatel de Alejandrı́a

2002-2003 45-50 50-70 55-60 60-70

2003-2004 65 75 85 80

2004-2005 135 140 110 120

2005-2006 50 60 50 60

2006-2007 25-35 40-60 25-35 25-30

2007-2008 70 70 70-80 70-75

2008-2009 50 50 50 50

2009-2010 100 100 120-130 120

2010-2011 150 150 180 180

2011-2012 130 130-150 100-130 100-130

2012-2013 80 80 90 100

2013-2014 80 120 100 140

2014-2015 70 85 60 70

2015-2016 75 90 85 100

2016-2017 130 100 190 165

The contractual strategies should aim to maintain the quality of the wine and a low cost for

wine producers. Usually, a portfolio of contracts is kept, including spot market volume,

to adjust some engagement volume variability or to take advantage of overproduction
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Table A.4. Main activities in farm and months when they are done (based
on Alvarez de la Paz F. (18.10.2005/n.d.)

Months

North Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

South Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Land tillage

Weed control

Prunning

Phytosanitary application

Sulfur added

Defoliate

Green Prunning

Irrigation

Fertilization

Grape Harvest

opportunities.

Vitis Vinifera

Vitis vinifera quality is critical to obtain a qualified wine. In this section, we briefly discuss

the farm tasks to end in the harvesting process. Next, we describe the ripening curve and

the weather impact qualitatively.

The Vitis vinifera planning includes several steps that are cyclic as the annual tasks, but

others are fundamental, like the soil choice, and could be done only once. The potential

quality of the grape is influenced by the soil selection, weather, and operations during the

plant’s shelf life. Soil and operations are decisions that could be controlled to some degree,

diminishing the uncertainty. Still, weather is essentially uncertain, unstable through the

years, and additionally, its weight is high for quality and yield production.

In table A.4 we present the gathered tasks in the farm (Alvarez de la Paz F.,

18.10.2005/n.d.), and when they are done considering the months of the year, corrected by

the hemisphere where the production is carried on.
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The initial step is the selection of the soil. The choice considers some drivers: good

drainage, protection from winds, and the type of biodiversity present. The level of soil

drainage is critical since excess water has positive effects on the growth and vigor of

the plant but not on the development of the grape; This flexibility comes from the type

of soil but also from its management. After leveling the soil according to the type of

irrigation chosen, pre-planting activities like subsoiling (consisting of breaking the ground

to facilitate the growth of the roots and the retention of water) and fertilization are carried

out. It usually consists of increasing the organic matter of the soil and a correction of

essential elements.

The planting stage is itself critical. Momentum, varieties, and training system are defined.

The latter refers to how the growth of the vineyard branches will be conducted and will

influence the life of the vineyard because important tasks like pruning and harvesting

depend on that. The training system is also responsible for the planting density; around

5,000 to 10,000 plants/hectare is adequate for quality wines.

Once the plant is set, it is necessary to guide the efforts to product development, and the

pruning step is one of the critical stages. Pruning refers to the removal of plant organs,

shoots, leaves, clusters, and others. It impacts in quality and yield of the grape and is

frequently used as a milestone to determine the moment of maximum production. Biolog-

ically, pruning limits the energy destined for non-productive purposes. Therefore it allows

for balancing the conditions of the season with the objective of the plantation. There is a

winter and a summer pruning; the first is orientated to the maintenance of the plant and

the second for productive purposes (carried out in the vegetation stage).

Fertilization also plays a vital role throughout the life of the plant. It seeks to restore

the capacities of the soil, given the wear it has due to consumption and helps with micro

components that correct some deficiencies. Irrigation is another critical practice because

the water regime needs to be such that it avoids the stress that will result in production

losses.

All the previous efforts end in the harvest stage, the step that we will address in this work

in greater detail. It involves determining the degree of maturity, the removal of clusters,

and the transport to the industry. The quality that we harvest is the maximum that the
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wine will achieve, so the moment and status of the grape should be chosen carefully.

Harvesting can be manual, mechanized, or dually. The decision depends on several issues,

variety, the winery reception program, weather, capacity of the vineyard, and availability

of labor. The manual harvest is versatile in terms of vineyard driving; you have to observe

the ergonomic limitations. In automatic harvesting, the driving system is limiting, and it

is necessary to think about the crop’s development with this orientation. The advantage is

that it can operate 24 hours a day, which gives it more sensitivity to harvest at times where

low temperatures preserve quality.

The flexibility that each option adds to the system is variable. In a recent visit to Raimat

vineyards in Spain (http://raimat.com/es/), the manager of 1800 cultivated lands indicated

that they are the owner of 6 harvest machines. Still, in the moment of harvesting, they

also rent three more. Asked about the necessary number of devices to finish the work

according to their production planning, he indicated that three units are enough, but they

need the other options available because the cost of not having them may be very high.

For large extensions, mechanized harvesting could be a reasonable strategy, even more,

when the machine’s capacity is equivalent to 40 to 50 hand pickers and the cost is less than

20% of the equal manual labor. In the case of little plantations, there is the opportunity to

rent machines in a cooperative way to take advantage of cost, avoiding the financial cost

of the immobilized money of buying the equipment (usd 300,000 - 600,000). In this case,

the schedule of the work is a deal because the postponement or anticipation of the harvest

impacts the individual finances, generating a loss of quality in the decision because there

is no common good to pursue.

Another essential zone of wine grapes production is Huesca Region. Some producers in-

dicate that their machines work in a mixed regime, both in their fields and in rental for

third parties. They reduced the quality of the grape plants to extract with cheaper tech-

nology avoiding the cost of the high-quality equipment, making profitable also the rental

for other minor farmers of the region. In both cases, despite the presence of machinery, a

small portion, around 5-10%, is made by manual labor, because of the conditions of the

land (topography).
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In Chile, the land extension is smaller than in Spain, and the topography is more irregular.

Chile produces different types of wine because of the altitudes of the plantations and

their latitudes. According to the local industry information, the harvest process is manual

at least 60% of the total product. It is a practical way to manage little farms because it

gives the possibility of negotiating the labor cost, reducing fixed costs. As grape needs

permanent dedication during the year and not only in the harvest process, a part of the

workforce is permanently employed. The required labor for the harvest is a function of

the progress of the ripening process, the forecasting capacity, winery space, and, finally,

workforce availability. The harvest could last three months, but the actual demand should

be balanced with other factors, making difficult the consistency among decisions. To face

this, a decision model that supports this process could be advantageous.

Quality and Ripening process

The appearance of the germination capacity gives physiological maturity; For industrial

areas, the selected maturity is technological or related to functionality in winemaking.

The quality of the Vinis vinifera is closely linked to the production area (climate and

soil), effective average temperature, water regime, rainfall during or close to harvest, and

topography of the land. The volatile organic compounds play a critical role in the final

quality of the wine; however, the balance among the environment, vineyard practices,

and genotypes is poorly understood (Lund and Bohlmann, 2006). This balance has to

be respected when the harvest time is chosen, considering acidity, sweetness, taste, and

phenolic ripeness. The quality of the grape at the moment of harvest is the main factor for

the quality of the wine (Coombe, 1992). It isn’t easy to define the optimal maturity because

there is not a privileged element in the chemical profile to set it Meléndez et al. (2013). For

example, sugar content and acidity are two very used, but the ratio between them changes

depending on the type of wine and the winemaker objective. At least two types of maturity

are recognized: technological and phenolic. The first, technological maturity, occurs when

the sugar content is very high, so the maturity index (sugar/acidity) is high. This indicator

is usual in industry contracts for standard grapes; acidity is measured by pH (with scale
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Brix evolution pH evolution

Figure A.5. Brix and pH evolution over time since the veraison.
Source:Falcão et al. (2008)

[1, 14], where pH = 1.0 is extremely acid, pH = 6.0 is neutral, and pH = 14.0, extremely

alkaline) and sugar contents by ◦Brix. The sugar content is transformed into a probable

alcoholic equivalent degree considering 16.83 g of sugar/l per 1% alcohol (Glories et al.,

2000), and hence its importance. Figure A.5 is shown an example of their progress on

time.

The phenolic maturity is reached at the stage when both anthocyanin compound concen-

tration is maximum, and tannins content is low in skin and seed (Le Moigne et al., 2008).

Another indicator of maturity is the status of the skin of the grain; following the case

of other fruits, the skin becomes softer according to the ripening process. Beyond these

”well-documented” ways of ripening evaluation, in practical terms is necessary to consider

a mix of them, especially in products that are designed for higher prices than the standard

(Coombe, 1992).
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The beginning of the ripening stage is the veraison, the moment when the color of the

grape grain presents the first change. This moment varies among years, and it’s respon-

sible for a significant part of the change in the final harvest day. The ripening process is

developed in a particular way in each berry, so the uniformity is not assured. Chemical

analyses are developed over the juice of the grains to control the progress of the stage.

The sugar content increases until a plateau is reached; the changes after this milestone

are explained by the loss of water or the gain of water, but not sugar content changes

(Coombe, 1992). Figure A.6 shows a very general scheme of the ripening process through

two indicators, as berry size and solid contents, measured as ◦Brix.

Figure A.6. Berry weight and sugar concentration through different
stages. (Source: https://ohioline.osu.edu/factsheet/HYG-1434-11)

The maturation stage brings critical events in the development of this raw material. We

detail some below:

• Increase in size and weight

• Increase in sugar content, usually to levels close to 200 gr / liter of grape juice

• Decrease in the concentration of acid content

• Color changes towards the specific pigmentation of the vine type
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• Increment in the concentration of aromatic and taste substances, responsible for

the organoleptic profile. The observation of the maturation process through these

parameters is called phenolic maturation.

According to (Ferrer et al., 2008), the harvest should be done at the right moment;

otherwise, value is destroyed. Premium wine quality is degraded if the harvest moment

differs from the optimal day. In that paper, the authors represent this behavior with a

loss quality function, based on the Taguichi model (see Besterfield (2003)), introducing a

novel model. The proposed curve looked alike a parabola and was made using enologist

surveys which described the changes following their professional standpoint. In the

vinification process, sugar becomes alcohol in a controlled fermentation. Both the

alcohol content and high acidity (low pH) allow the wine to be preserved from unwanted

microbiological events. Still, they are also part of the desired character of the product.

Industrialisation

The industrialization of the vinifera grape is called vinification. According to the type of

strain to be processed, there are some differences. In figure A.7, (Jackson, 2008) shows

the operational flow in the industry for both strains.

The general process includes an initial destemming, common to all types of grapes, remov-

ing leaves, stones, and any extraneous material. Immediately after, the crushing process

gives juices and waste. Press machines could make the crushing step. The most common is

the rotary press, where two objectives are pursued. The extraction of juices is through cen-

trifugal forces and mechanical forces (grains crash with the device’s walls). The filtration

of the juice is helped by the accumulation of grape waste that stays adhered to the metallic

wall because of the centrifugal force. This cake improves the filtering performance, but

according to time goes by, it is necessary to remove them to prevent the internal pressure

from increasing and losing the working capacity. After this process, each strain presents

different approaches in the maceration step. The maceration step facilitates the extraction

of minor components from the solid parts of the grape. It’s a bioprocess that leads to the

must or grape macerate.



171

Figure A.7. Diagram Flow for industrialization of both strains. Source:
(Jackson, 2008)

For white strains, the maceration time lasts only a few hours, and it’s kept to a minimum,

leaving the primary transforming process to the fermentation stage. The crushed wastes

must be processed, so there are three different approaches to recovering the grape must.

• From the crushing machine to the press

• Preprocess with temperature reduction, decreasing the fermentation speed (it is

directly proportional to the temperature), and then send to the press

• Start a maceration to achieve better organoleptic characteristics and then con-

tinue pressing.

Variants two and three represent extra actions, making the process more expensive than

the first approach. The third option is costly, making it a practice for high-quality wines.
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In the case of the red strains, the maceration and fermentation happen at the same time.

The fermentation process increases the ratio of ethanol, and it serves as a solvent in the ex-

traction of phenolic and minor components. The process could extend for several hours. In

this stage, the sugars are converted into ethyl alcohol and carbonic anhydride, generating

a bubbling from the latter’s escape. The microbiological action is key in this stage, with a

base, temperature, and density. The temperature is a parameter that allows the biological

continuity of the yeasts, and the density control refers to the periodic verification of the

existence of sugars, fundamental in the fermentation process. When the sugar level is low,

the vat is technically exhausted. The tank used can be made of different materials, which

generates other profiles in the final product. In the case of white vines, the time spent in

barrels after fermentation can last up to four months.

The free-run juices flow aways under gravity, and the solid material is sent to the pressing

step, where the remaining liquid and other components are extracted. The final blends

among the different press outcomes and original juice depend on wine type. The must

from the press can be tempered in a heat exchanger to cool it down. This must require

decantation to separate impurities, in addition to allowing aeration. It is critical to consider

the atmosphere for this decantation due to the possible degradation effects of the final

product. Post decantation, the solids that have remained at the tank’s bottom are filtered

to recover the grape juice.

The fermentation process in the red strain is similar to the white strain, but it differs in

the working temperature, 20 − 36◦ for red strains. In addition, the must is present in this

process and is recirculated periodically.

After completing the alcoholic fermentation, the malolactic fermentation begins. This

fermentation consists of the transformation of the malic acid into lactic acid. Lactic acid

is a weak acid, so the medium becomes more alkaline. This condition is beneficial for

red strains, and grapes from cool regions. White wines take advantage of higher acidity,

so this fermentation should be rigorously analyzed in order to be implemented. There are

alternative practices, as early clarification, that could lead to competitive results.
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The last process of the chemical transformation is the addition of a preservative, in this

case, sulfur anhydride, which aims to limit microbial activities in the already prepared

wine.

Before proceeding to bottle the wine, there are stages of completion. Clarification is the

first of them and tries to eliminate substances that may negatively affect the aspect and

taste of the product. Fine elements are separated; they transfer both cloudy appearance

and potential off-flavor and odors. The applied technologies differ, using activated carbon

to flocculating features that allow the fines’ accumulation and subsequent removal. To

complement this activity, a traditional filtration or others that improve the relative acceler-

ation of the particles, such as centrifuges to achieve the separation of finos, may be used.

It is worth mentioning that the latter incorporates air and can lead to accelerated oxidation.

The next stage is stabilization, which will allow the wine to extend its shelf life, especially

when faced with temperature changes.

Once the wine has finalized its final adaptation, it is subjected to the fractionation or bot-

tling process. The traditional sequence begins with washing the bottles, then the filling

that may require a modified atmosphere to reduce the amount of oxygen present, and then

the corking, which can be made of natural or synthetic cork. In modern lines, a decoupling

of the last stages or finishing of the bottles is generated, consisting of encapsulating the

bottle’s neck, labeling, boxing, and palletizing.

The wine process has been very well studied. It’s only a very briefly introduction, where

general features have been indicated for the non especialist reader. In order to go deeper,

we recomend Jackson (2008), Boulton et al. (2013), Reynolds (2010), Morata (2018) or

Glories et al. (2000).
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B. ABOUT NESTED DISTANCE

Nomenclature

ξ̂t, means the value of the uncertain event realization at time t

Pi,probability spaces characterized by the i− th probability distribution

Ti, tree that represents the i− th probability space

Tref , tree that represents the reference for the planned experiences

Texp, tree that represents the experience

s ∈ S , means one stage of the set of stages, St

pred(n), n∗
s direct predecessor of node n in a tree representation

preds(n), predecessor of node n in a tree representation in the stage s

N , the complete set of nodes of a tree

Nt, means the list of nodes in at time t

n∗
s ≺ n, means that there is a time t that is a stage s where n∗

s =

pred(pred(...(pred(n))...))

n̊, denotes a node that belongs to the set NT

Ft, filtration in a time t

ξn, the uncertainty event value at node n

d(i, j), the value of the nested distance algorithm where i− th is the id number of the first

tree to compare, and j − th the id number of the second.

d̂(i, j), the value of the Wasserstein distance where i− th is the id number of the first tree

to compare, and j − th the id number of the second.

θβ , Expert/rookie nominal productivity ratio

θc, Expert/rookie cost ratio

M, total expected manpower requirement

θm, expected percentage of experts manpower

The nested distance concept, ND, was introduced by Pflug (2010). In this section, we will

introduce the concept (please refer to Pflug and Pichler (2016) for more details).
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Nested distance is a multistage generalization of the Wasserstein distance, WD, denoted

by ḋ. Having two probabilities space, P1 and P2, there is a cost function c to transport

P1 to P2. In practice, both are discrete (even when they could be continuous originally),

so the transport is between two sets of points. The cost function represents the effort to

transport one distribution to other, and it’s connected with the value of the samples and

their probabilities. If both distributions are equal, the transport will be null, so WD is

null. According distributions become different both in probability and values, the WD

value increases. The WD is a cost function, where the distance is proportional to the cost.

Distances ḋ(P1,P2 and ḋ(P2,P1 are similar, one of the requirement that a metric should

preserve; WD meets all the metric features.

In a multistage tree, leaves ω are paths where the final state forms a distribution, using

conditional probabilities. If we applied WD in a multistage tree, the structure of informa-

tion and the time evolution are not taken into account, so even when the final state could

be similar, the history is lost. WD works like a picture, more than as a movie, in terms of

the captured information; used recursively, it should keep the dynamic of the distribution

change over time. This is the idea behind ND, an extension of WD to stochastic processes.

Now, it’s necessary to establish a few concepts. Our goal is not to treat ND mathematically

but to generate a strong enough intuition for the application to be correct.

Pflug and Pichler (2016) defines a tree as a representation of a multistage stochastic opti-

mization program in a finite probability space. The probability space for the ith distribu-

tion is denoted by Pi, and the tree representation of the stochastic process is Ti. A tree is

a directed graph with a single root, where each node belongs to a specific moment in time

and contents a set of values for different elements of interest in the problem. Its topology is

important because it summarizes how information and decisions are connected. The arcs

between nodes have different weights or probability of happening. Consider that a tree

has N nodes, where n = 1 is the root. For each node n > 1, there is a direct predecessor

node, pred(n), or shorter n∗. The distance from node n to n∗ is called stage (the stage is

in time units). BeingN the set of nodes of a tree,Nt means the list of nodes in that period.

In the beginning, N0 = {1}, the root; NT means the leaves (final) nodes, and N0:T−1 are

the inner nodes or complements of the leaves nodes. If s is a stage of S, and we are in a
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Figure B.1. Tree with unbalance bushiness

period t, where s = t + 1, then a node n ∈ Nt, has an immediate predecessor preds(n)

in period s, n∗
s, where n∗

s ∈ Ns . Considering that the distance between s and t may

be more than 1 period, n∗
s is the nested predecessor according to the structure of the tree,

n∗
s = pred(pred(...(pred(n))...)), where n ∈ Nt. This formulation allows to consider

periods in which there are no decisions, but implementations and thus, new status. A gen-

eral way of representing this is to write n∗
s ≺ n that means that there is a time t where n∗

s

precedes n. Additionally, it gives the opportunity to describe a path between the decision

period and specific status of the system at time. In figure B.1 we can see an example. For

node n : 8, pred(8) : {4, 2}; for n : 16, pred(16) : {8}. Stages refer to decision times. If

in every period of time, a decision is made, the stages are similar to the periods of time,

in number and sequence. But in a more general way, they are not necessary equal. In the

figure case, node n : 8 is not a direct predecessor of node 8, because between n : 1 and

n : 8 exist alternative path the sub-tree that begins in node n : 3, product of a stage or

decision moment.

Each node has an unconditional probability of occurrence, while arcs probability is con-

ditional. If n ∈ NT , we decorate the nodes as n̊; the conditional arc probability is defined

as the probability of being n constrained to the previous path. If the path between two

nodes is unique, then the conditional probability is referred to have been in a specific

predecessor, n∗
s. The conditional probability w(n) = P (n | n∗

s) = P (n)/P (n∗
s).

If we consider the tree process (based on a stochastic process), appears an equivalence

between tree structure and filtration concept F. Filtration is linked to the information that
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Figure B.2. Binomial Tree structure Example, with 16 leaves and 4 stages

is available at a specific time. As time goes by, the filtration is bigger; if Ft means the

filtration at moment t, then F1 ≤, ...,≤ Ft−1 ≤ Ft; at a specific moment, Ft, there is a

natural filtration that considers the whole past information.

For making the concept clearer, see figure B.2, a binomial tree structure. The same tree

is written like a table in table B.1. Each leaf corresponds to a node in NT , with T = 4.

For example, the path to the n = 30 or leaf ω15 is (1, 3, 7, 15), the collection of nodes that

precedes the final node. We have four stages, where the set of nodes are N1, N2, N3 and

N4.

In terms of filtration, the tree is F = {F0,F1,F2,F3}, that is the set of information

available at each moment, and the definition of each of these σ-algebras are:

F0 = σ({ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, ω10, ω11, ω12, ω13, ω14, ω15, ω16})
F1 = σ({ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}, {ω9, ω10, ω11, ω12, ω13, ω14, ω15, ω16})
F2 = σ({ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8}, {ω9, ω10, ω11, ω12}, {ω13, ω14, ω15, ω16})
F3 = σ({ω1, ω2}, {ω3, ω4}, {ω5, ω6}, {ω7, ω8}, {ω9, ω10}, {ω11, ω12}, {ω13, ω14}, {ω15, ω16})
F4 = σ({ω1}, {ω2}, {ω3}, {ω4}, {ω5}, {ω6}, {ω7}, {ω8}, {ω9}, {ω10}, {ω11}, {ω12}, {ω13},
{ω14}, {ω15}, {ω16})
The filtration at the beginning considers that any of the scenarios are possible. According

to time goes by, the possible scenarios are gathered by the nodes because the available

information increases each period of time. The filtration is connected with the structure
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Table B.1. Tree process written as a table

Leaves t0 t1 t2 t3 t4

ω1 1 2 4 8 16

ω2 1 2 4 8 17

ω3 1 2 4 9 18

ω4 1 2 4 9 19

ω5 1 2 5 10 20

ω6 1 2 5 10 21

ω7 1 2 5 11 22

ω8 1 2 5 11 23

ω9 1 3 6 12 24

ω10 1 3 6 12 25

ω11 1 3 6 13 26

ω12 1 3 6 13 27

ω13 1 3 7 14 28

ω14 1 3 7 14 29

ω15 1 3 7 15 30

ω16 1 3 7 15 31

of the tree, considering the possible scenarios or leaves. A different structure gives other

filtrations.

In terms of the original work by Pflug and Pichler (2016), the structure (Ω,F, P, ξ) is called

a value-and-information structure. The adding ξ represents the value that the structure

takes in each node, introducing the node-orientated notation, ξn for n ∈ N .

In this work, we mapped the tree space exhaustively with the complete node collection.

As Timonina (2015) mentions, ”...the tree that represents the finitely valued stochastic

process, is called finitely valued tree. To solve the approximate problem numerically we

should represent the stochastic process ξ as a finitely valued tree. ”. In the same way, we

use the information of the decisions policies to complete the knowledge of the tree and

then proceed with the ND algorithm.

To estimate the ND we follow the algorithm proposed in Pflug and Pichler (2016)
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Figure B.3. Binomial Tree structure Example, with 8 leaves and 3 stages

According to it, we calculate in a backward iteration from the last stage to the first. In our

case, the last stage is T because we include in each period the final status of the system.

Hence, the first stage is t = 1. The period of interest (estimate how different both trees

are) is [T, ..., 1]. ND has been used to represent the difference in stochastic processes as

a measure of distance. Once that a stochastic process is mapped completely (a developed

tree), ND could be implemented.

The ND value is a scalar that represents a metric to characterize the relative distance.

We call this scalar the value nested distance for both specifics trees, and the notation is

d(i, j) where ith and jth are the id number trees. For example, if d(1, 2) = 100 and

d(1, 3) = 1000, we can say that trees T1 and T2 are more similar than T1 and T3. Similar

trees, with little changes, could present very different ND; to gain better intuition about

the contribution of information and structure in ND value, we explored a few controlled

experiences below.

A binomial tree of three stages is shown in figure B.3. In the tree are represented the nodes

that are numbered successively. The nested distribution of that tree is shown in figure B.4.

Each node is replaced by the unconditional probability of the node and its information,

in this case, a variable. In this case, probabilities are similar among branches, and the

variable’s value is also the same. Only in the initial stage, the probability of the node is

one because it is unique. The nested level of the boxes indicates the number of stages. A

reference tree similar to the shown in figure B.3 is called Tref . We keep it constant during

the three experiences. Now, we define the three experiences that we carried out.
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Figure B.4. Tree Nested distribution Example

• Experiment I: We define tree Texp, similar to Tref but for n : 2. The value of that

node will be different from 10; a sensitivity analysis is accomplished by chang-

ing the value in the range [−40%,+40%], and d(ref, exp) is determined. To

complete this first experiment, we also change the probability of n : 2, and con-

sequently n : 3. We make the sensitivity analysis for the range [−40%,+40%].

• Experiment II: We define tree Texp, similar to Tref but for n : 5. The value

of that node will be different from 10; a sensitivity analysis is accomplished

by changing the value in the range [−40%,+40%], and d(ref, exp) is deter-

mined. To complete this first experiment, we also change the probability of

n : 5, and consequently n : 4. We make the sensitivity analysis for the range

[−40%,+40%].

• Experiment III: We define tree Texp, similar to Tref but for n : 11. The value

of that node will be different from 10; a sensitivity analysis is accomplished

by changing the value in the range [−40%,+40%], and d(ref, exp) is deter-

mined. To complete this first experiment, we also change the probability of

n : 11, and consequently n : 10. We make the sensitivity analysis for the range

[−40%,+40%].

In figure B.5 the first experiment are presented. To simplify the notation, we will call a the

node that is under study. When Texp is similar to Tref , the d(ref, exp) is zero. If we keep

constant the probability in a as in Tref , according n : 2 relative change increases, also the



181

−40%−30%−20%−10% 0% 10% 20% 30% 40%
0

0.5

1

1.5

2

2.5

3

Relative change of the n : 2 in Texp

ζ r
ef

,e
x
p

pa : −40%

pa : −20%

pa : 0% (reference)
pa : +20%

pa : +40%

Figure B.5. Nested Distance for the first experiment
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Figure B.6. Nested Distribution Example

d(ref, exp) does. The curve is symmetric because the distance is the same in absolute

number. About probability, the impact is a little different. If probability in a increases,

the nested distance is more sensitive. This behavior is because the importance of the node

is greater in the tree value. If the probability of occurrence of the abnormal (considering

the pattern in Tref ) is minor, the potential effects are diluted, so the d(ref, exp) become

shorter.
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In figure B.6, the two remaining experiment results are shown. The general behavior

appears very likely to first experience. Still, the extension of d(ref, exp) is minor since

the node is to be disrupted closer to the final periods of the time horizon. It is intuitive

because the effect of the change has less time to expand its impact. In this example, we

conclude that:

• The nested distance increases according to the difference between them is earlier

• While bigger is the node value difference, the nested distance also.

• Probability impacts more if its relative change benefits the node suffering the

alteration in its value.

The experiences insight does not allow to connect the model performances with the nested

distance or even the nested distance value with the internal information. Vitali (2018) in-

dicates that the objective function value in a multistage stochastic problem is positively

correlated to the nested distance, but there is no information about more concrete relation-

ships. They go even further in Horejšová et al. (2020), and the conclusions are in the same

line. We think that there is a space for an exhaustive study of the numeric behavior of

nested distance, but it’s out of this thesis’ scope. Finally, for measure instances, ND has

proved valid and meaningful in relatives analysis in the literature.

The implementation of the algorithm for ND was made in Python 3.0, using a python

library to calculate the WD, called POT Flamary et al. (2021), where the algorithm ap-

proximates the Sinkhorn instead of WD as it’s described by Cuturi (2013).




