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RESUMEN 

Los muros de corte de hormigón armado (RC) son de uso común, ya que proporcionan 

una alta rigidez lateral y han demostrado resistir cargas sísmicas severas. En los últimos 

años, con el creciente número de edificios altos, estos muros se han vuelto más delgados 

que nunca. Sin embargo, los típicos modelos no lineales para muros son complejos y 

computacionalmente exigentes, por lo que un modelado preciso y eficiente de estos 

elementos es absolutamente necesario para evaluar y predecir de forma rápida el 

comportamiento de los edificios a base de muros. Aprovechando el aumento de la 

esbeltez, se programó el modelo clásico de fibra y se analizó en detalle la producción de 

objetividad en los resultados dadas las condiciones de carga comunes resistidas por 

muros,  por ejemplo,  alta carga axial y diagrama trapezoidal de momento entre pisos  en 

el caso de un típico edificio residencial chileno, o cargas axiales muy bajas en muros 

ensayados en laboratorios. Además, para evaluar el corte, se añadió un modelo basado 

en la teoría de campo de compresiones modificada. Este documento muestra la 

formulación del modelo propuesto y su validación experimental con diferentes ensayos 

cíclicos descritos en la literatura. Después de extensivos análisis, se encontró que con el 

fin de obtener respuestas objetivas, las técnicas de regularización basadas en energía 

tuvieron que ser modificadas, y los efectos no lineales como el pandeo y fractura de 

barras de acero, el aplastamiento del hormigón y los efectos de penetración de 

deformaciones fueron obligatorios para replicar las curvas cíclicas experimentales. Por 

lo tanto, el modelo es muy atractivo para generar curvas de fragilidad de estos edificios. 
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ABSTRACT 

 

Reinforced concrete (RC) shear walls are of common use because they provide high 

lateral stiffness and have proven to withstand severe seismic loads. In recent years, with 

the growing number of taller buildings, these walls have become more slender than ever. 

However, common nonlinear models for shear walls are very complex and 

computationally demanding, so, an accurate and efficient modeling of these elements is 

absolute necessary to quickly assess and predict the performance of buildings based on 

RC walls. Taking advantage of the increase in slenderness, the classic fiber model was 

programmed and it was analyzed in detail the production of objective results under the 

common loading conditions underwent by walls e.g. high axial loads and trapezoidal 

moment diagram between stories in case of a typical Chilean residential building, or 

very low axial loads in some experimentally tested walls. Moreover, to account for shear 

deformations, model based on the modified compression field theory was used. This 

document shows the formulation of the proposed model and its experimental validation 

with different cyclic tests reported in the literature. It was found that in order to get 

objective responses in the cases just mentioned, the regularization techniques based on 

fracture energy had to be modified, and all kinds of nonlinearities like buckling and 

fracture of steel bars, concrete crushing and strain penetration effects were mandatory to 

replicate experimental cyclic curves. Therefore the model is very attractive for 

generating fragility curves of these buildings. 
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1. INTRODUCTION 

Reinforced concrete (RC) residential shear wall buildings are commonly used in seismic 

countries where the cost of materials and human labor still makes them very competitive 

relative to other types of structures. These structures also became well known in the 

seismic arena after their good behavior in previous earthquakes, such as the 1985, Chile 

earthquake (Wood, Wight, & Moehle, 1987). Inherited from this success, most 

residential buildings in Chile are still based on RC shear walls deployed in plan as a 

fish-bone like structure, i.e., with a couple of longitudinal central corridor walls, and a 

number of transverse RC walls separating apartments, and sometimes dividing interior 

spaces. Although most of these buildings behaved well again during the 2010 Chile 

earthquake, about 2% of the close to three thousand building taller than five stories built 

after year 2010 suffered severe structural damage (Jünemann, Hube, Llera, & Kausel, 

2010), with one complete collapse (Song, Pujol, & Lepage, 2012).   

The observed damage in these RC shear wall buildings was certainly unexpected. Some 

walls behaved in a brittle manner, with buckling and rupture of the longitudinal 

reinforcement at the wall boundaries and web, leading in some cases to settlement and 

leaning of the structures due to the vertical misalignment between the upper and lower 

portions of the damaged walls (Sherstobitoff, Cajiao, & Adebar, 2012). Indeed, no 

structural model used by the profession in design did anticipate this behavior, though 

such behavior was reported earlier in the literature (Bertero, 1980). When subjected to 

high axial stresses, shear walls do behave in a brittle manner (Alarcon, Hube, & de la 

Llera, 2014; Su & Wong, 2007; Zhang & Wang, 2000) and the role of boundary 

confinement may not be sufficient to recover a ductile behavior (Arteta, To, & Moehle, 

2014). 

Although structural models used currently in design did not anticipate this behavior, the 

use of models and software to account for the nonlinear dynamic building behavior are 
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becoming more common today in the profession. It is still a matter of research if such 

models are capable, or not, of identifying critical zones in these structures and their 

possible brittle failure modes. Modeling of detailed inelastic behavior of RC elements 

and their 3D interaction within a structure is still a difficult task, for reasons such as: 1) 

complex 3D constitutive relationships are not sufficiently validated; 2) all constitutive 

material relationships are nonlinear: concrete changes by cracking and softening, steel 

bars yield, buckle and then fracture, loss of  bonding and slippage occurs, and numerical 

convergence under these effects is difficult to guarantee; 3) the response depends on the 

history of loads and the transient problem still requires substantial computational effort; 

and 4) the validation of the results of an inelastic dynamic response is still cumbersome 

and difficult. Therefore, the complete 3D nonlinear dynamic response of a shear wall 

building with hundreds of thousands of degrees of freedom stills seems unsuitable for 

the common practice; even for research in some cases. However, since damage in these 

buildings during 2010 tended to be localized, the inelastic building response was 

controlled by a few inelastic zones within the structure, usually at walls in the lower 

levels.  

Several models to study the response of RC elements and structures have been proposed 

and implemented in available software (Diana, 2011; Soltani, Behnamfar, Behfarnia, & 

Berahman, 2011). These models need to satisfy the following conditions: 1) responses 

have to be objective, i.e., be independent on the mesh size or number of integration 

points; 2) the need for calibration has to be minimum, so that the model can be used to 

predict the behavior of non-tested structures; and 3) the computational demand has to be 

as low as possible while keeping accuracy. 

Because of its simplicity (e.g., one dimensional constitutive relationships), robustness, 

and low memory usage (typically one element per story is enough), a force based fiber 

element (FFE) is preferred in several situations. Many analysts have used the FFE to 

model shear walls (Belmouden & Lestuzzi, 2007; Brueggen, 2009; Jiang & Kurama, 

2010; Mazars, Kotronis, Ragueneau, & Casaux, 2006; R. S. Mullapudi, Ayoub, & 
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Belarbi, 2008), with special consideration of shear deformations, which is the major 

problem arising from the use of a FFE. 

Another relevant issue arising from fiber and other elements models, when softening of 

materials is present, is the localization observed in the pure axial case ((Jansen & Shah, 

1997), (Nakamura & Higai, 2001)), and in bending (Coleman & Spacone, 2001). 

Localization implies unloading of the neighboring elastic components as the inelastic 

section of an element softens. 

In order to develop a simple, efficient, and accurate model with few calibration 

requirements for analyzing reinforced concrete shear walls, a new force-based wall 

element (FWE) comprising the FFE and a shear model was developed in MATLAB. 

This thesis presents the analytical formulation of the FWE along with the inelastic force-

deformation constitutive laws of the materials used. In the analysis, the problem of 

objective responses and some algorithms for coupling shear, axial and flexure 

components are considered, and an experimental validation of the FWE is presented. 

Moreover, different analyses of shear walls described earlier in the literature are used to 

validate the results of this model, while the different computer routines, for pure fiber 

analyses were validated using OpenSees (McKenna, Fenves, & Scott, 2000). 

2. FORMULATION OF THE FWE 

The FWE presented herein is based on the flexibility based structural element developed 

elsewhere (Spacone, Filippou, & Taucer, 1996), and adopted using a section nonlinear 

model aimed to evaluate the shear component, while torsion in the element is assumed 

elastic. Figure 2-1 shows constraints used to transform a 12 g.d.l. element into a 

statically supported 6 g.d.l element and for simplicity in notation, the element with 6 

g.d.l. will be used as the FWE in this thesis. Please note that the mathematical relation 

between the two elements is straightforward, i.e., ��� = �������, where ���,��  

(shown in Figure 2-1) are the nodal forces of the 12 and 6 g.d.l element respectively and 

����� is a linear transformation matrix. As stated before, the element forces for the 
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FWE, ��, will be treated simply by �. For a statically supported element, and in 

particular for the FWE, the flexibility method requires the application of 3 main 

equations in the following order; 1) the equilibrium equation (Equation 1): 

 

�(�)=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
�(�)
��(�)

��(�)
��(�)

��(�)
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⎣
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎤

⎣
⎢
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⎢
⎢
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��
�

��
�

��
�

��
�
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⎥
⎥
⎥
⎥
⎤

= �(�)� ( 1) 

 

where �(�) is the section force vector, � is the distance from the bottom along the 

element length, �, �(�) is the equilibrium matrix, � is the element force vector, 

� �,��
�,��

� represent axial and shear forces respectively, ��
�,��

�, bending moments and 

��, torsional moment—the same order than section forces �(�). 2) The force-

deformation relation (Equation 2): 

 

�(�)=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
�(�)

κ�(�)

��(�)

��(�)

��(�)

��(�)⎦
⎥
⎥
⎥
⎥
⎥
⎤
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⎣
⎢
⎢
⎢
⎢
⎢
⎡����(�)�

���

� � �

� ���(�) 0 0

� 0 ���(�) 0

� 0 0 ��(�)⎦
⎥
⎥
⎥
⎥
⎥
⎤

⋅�(�)  ( 2) 

 

 

where �(�) is the section deformation vector, �,�, and � represent the axial, curvature, 

and shear deformations of the section, ���  is the section flexibility matrix due to the 

bending-compression component; and ��� , ���, and ��  are the section shear flexibilities 

in the �- and �- directions, respectively, and the torsional flexibility. 3) the compatibility 

equation, � = ��, where � is the element displacement vector, and � =

∫ �(�)��(�)� (�)��
�

�
 is the element flexibility matrix. 
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Figure 2-1. Degrees of freedom of the FWE. 

In order to calculate the latter integral involved in this flexibility formulation, the 

element is subdivided into several control sections along its longitudinal axis �, and the 

Gauss-Lobatto quadrature rule is used. Every section is discretized in inelastic fibers, 

and the variables depending on � are simply evaluated at the quadrature points and 

treated like constant values afterwards. 

However, as opposed to a displacement based formulation, the element force 

determination is not straightforward, and an iterative procedure is required. In the 

compression and bending case, an algorithm that requires one level of iteration has been 

developed (Spacone et al., 1996). In this thesis, an additional evaluation must be 

performed to account for shear deformations. The algorithm is schematically shown in  

Figure 2-2 and goes as follows. Let us start with the known variables from the last 

iteration that reached convergence, say step �. The variables are the element stiffness 

matrix �� = ��
��; the section flexibility matrix �� ; the section deformation vector ��; 
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the corresponding section force vector � �; the element force vector �� and the new 

displacement increment vector ��� = [��� ��� ��� ��� ��� ���]� , where � 

and � represent displacement and rotation of the section. The first step of the algorithm ( 

Figure 2-2) is to compute the updated nodal element force �� due to the current 

displacement increment ���, using the last available element stiffness, ��. Once �� has 

been computed, the increment in section forces ����� is computed by equilibrium using 

the element force increment ��� and equilibrium matrix �. The increment in section 

deformations ����� is evaluated using the flexibility matrix �� computed in the previous 

step. By using the section deformations, and under the assumption of plane sections, the 

strains in each fiber are easily computed. Based on the uniaxial constitutive relationship 

for concrete and steel, the updated stress ���� and tangent stiffness  �
��

��
�
���

 are 

evaluated. The same procedure is followed for the shear stress and shear stiffness, 

though additional input variables must be provided (section deformations and forces) as 

it will be explained later in the document. The algorithm then computes the updated 

flexibility matrix ���� and resisting force � ���� of the section by integrating the stresses 

and stiffnesses from each fiber, and by directly using the values from the shear model. 

Residual or unbalanced forces for the section �����, are calculated, which lead to 

residual element deformations ���� as a result of integrating the residual section 

deformations ����� ∙ � ����� along the element of length L. The energy error is 

calculated (Figure 2-2), and if  less than the tolerance of 10�� (following the 

recommendations provided elsewhere (Spacone et al., 1996)), convergence is assumed. 

Otherwise a new correction in the force increment −�������� is applied to the element, 

and all computations are repeated. 
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� = � + 1 

�1 = �0 + �0��1 

��+1 = ��+1 �����+1�� 

� ��+1 = ��+1 − � ��+1, ��+1 = �� ∙ ���+1 ∙ � ��+1� ∙ � 

��+1
� ��+1��+1

���+1
� ��+1���+1

< ��� 

� = 0 

��+1 = ��+1 ��
��

��
�
�+1

,�
��

�� 
�
�+1

� , � ��+1 = � ��+1���+1,��+1�  

���+1 = � ∙ ���+1, ���+1 = �� ∙ ���+1 , ��+1 = � + ���+1 

��+2 = ��+1 − ��+1��+1 

��+1 = ��+1���+1,��+1,����+1� � 

��1 

 

Figure 2-2. Schematic representation of the iteration involved in the FWE algorithm. 

Moreover, in order to model strain penetration effects due for instance to bar pull-out 

and some foundation interaction at the interface between the wall and its foundation, an 

additional section accounting for these effects was placed in the nearest part to the 

foundation (Zhao & Sritharan, 2007). However, this model is not very realistic because: 

1) the model assumes a plane interface, i.e., slip is proportional to the location of bars; 

and 2) the strain penetration increases only up to the peak response and after that, the 

additional section starts unloading because one of the actual sections of the element will 

soften, and hence the pull-out effect is underestimated from peak resistance point until 

complete failure. 
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3. FIBER FORCE-DEFORMATION CONSTITUTIVE MODELS 

Steel and concrete fibers are considered in the model. In the case of concrete fibers, the 

Modified Kent & Park model without tensile strength (B. Scott, Park, & Priestley, 1982) 

was used, and the unloading-reloading curves were assumed to be straight lines without 

degradation (Karsan & Jirsa, 1969). The cyclic behavior of the model can be seen in 

Figure 3-1 where the maximum strength point is (��,��) and the residual strength is 

(��,��). Concrete fibers are divided into three categories: 1) unconfined fibers; 2) 

confined fibers; and 3) cover fibers. The first two, have a residual stress �� = 0.2�� 

while cover fibers have no residual stress due to spalling of concrete. 

Instead of using in this research the residual deformation �� as an input, its value is 

calculated from the crushing energy associated with the concrete, as it will be explained 

next. For unconfined concrete, the formula proposed elsewhere (Nakamura & Higai, 

2001) is used, and for confined concrete, the energy was extracted from the shape of the 

concrete force-deformation constitutive relation given earlier in (B. Scott et al., 1982) 

and (Legeron & Paultre, 2000) —their average was selected. Both energies have 

referential lengths; for unconfined concrete, reference (Nakamura & Higai, 2001) 

presented an equation to calculate the fracture length. However for confined concrete, 

there is no such formula although the fracture length is larger than for plain concrete. 
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Figure 3-1. Cyclic model of concrete. 

Because the number of steel fibers representing the reinforcing bars is much less than 

the concrete fibers, their model can be substantially more complex without affecting the 

numerical efficiency of the formulation. The cyclic behavior proposed for steel fibers is 

presented in Figure 3-2. In this case a path dependent cyclic stress-strain relationship 

was used for bars. It included buckling (Dhakal & Maekawa, 2002) with corrections in 

the buckling reload (Suda, Murayama, Ichinomiya, & Shimbo, 1996). This model uses a 

linear piecewise function to define the backbone curve, and the Menegotto-Pinto model 

for cyclic behavior. Although the model can effectively reproduce the Bauschinger 

effect, bar buckling, and bar fracture, it fails to account for fatigue fracture. The 

behavior also depends entirely on the backbone curve, and hence the buckling starts only 

when the backbone reaches the buckling point. The same happens for bar fracture.  
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Figure 3-2. Cyclic model of a steel fiber with some changes to improve numerical 
robustness. 

In order to apply the model of steel fibers in a robust way, some modifications are 

introduced into the model as shown in Figure 3-2. These modifications are defined next. 

First, as the bar fractures due to high tensile strain—fatigue is not considered—, the 

backbone curve ends with a linear descending branch of stiffness 10% of the initial 

stiffness. While unloading in this descending branch follows the rules presented 



 

 

11 

 

elsewhere (Dhakal & Maekawa, 2002), unloading slope is reduced proportionally with 

the stress level as shown in Equation 3: 

�� = ��������×
�(�)

����
 ( 3) 

 

Where �������� is the unloading stiffness—slightly less than the elastic stiffness—and 

�(�) is the current stress and ����  is the maximum historic stress in tension. This 

modification prevents the overestimation in the energy dissipation of cycles where the 

unloading stress is close to zero. Second, the degradation after buckling proposed earlier 

(Suda et al., 1996)  was modified to include a soft weighting function that reflects 

damage as a function of stress corresponding to the buckling reloading point. In the 

original model, the degradation depends on the number of cycles, parameter that is hard 

to define when there are partial loading and reloading cycles. Equation 4 shows the 

arbitrary modification implemented following experimental results (Suda et al., 1996):  

 

��=
�(�)

������
≤ 1,   � < 0 

����= min��0.18√��+ 0.82� × �(���� ),  �����_���  � 

( 4) 

 

 

Where �� is the current stress normalized by the yield stress; �����_��� is the last positive 

target stress; ���� is the current target stress; ����  is the maximum deformation in the 

loading history; and the mathematical expression �0.18√��+ 0.82� is limited to the 

range [0.9 → 1] given the range of �� [0.2 → 1], where 0.2 indicates failure because of 

buckling. The term √�� appearing in Equation 4 was chosen because a linear function or 

a bigger power, penalizes ���� excessively, while the square root makes the term 

�0.18√��+ 0.82� close to 1—model without buckling damage—and gets close to 0.9 

when the bar is severely buckled. A value 0.9 was used because it corresponds to the 

value used typically for highly buckled bars without fatigue degradation (Suda et al., 
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1996). Third, the model reaches the target stiffness ���� after buckling proposed 

elsewhere (Maekawa, Pimanmas, & Okamura, 2003) gradually. Because of the large 

differences in stiffness it was considered unrealistic to shift suddenly the target stiffness 

from the point just before buckling to the beginning of buckling. Equation 5 shows the 

proposed mathematical expressions: 

 

��� = �
4.6− 4.5��,   ��> 0.8
1                        ��≤ 0.8

; ����= ��� ×
0.9�����− �(�)�

���� − �
  ( 5) 

   

Where ��� ranges from 0.2 to 1 and it is the modifier of the target slope. Hence, if the 

point is near buckling point, ��≈ 1, ��� ≈ 0.1, and then, the target stiffness is similar 

to that of the model without buckling. On the other hand, if ��< 0.8, ��� equals 1 and 

the target slope is the one proposed earlier (Maekawa et al., 2003). 

The limit of 0.8 for �� in Equation 5, is an arbitrary value that aims to achieve a soft 

transition in behavior between the stiffness values corresponding to 0.8≤ ��≤ 1. And 

fourth, the target stiffness for the buckling zones is set equal to zero not to cause 

unrealistic compression in a buckled bar after unloading from very high tensile strain, 

e.g. 0.01 m/m. 

In order to achieve convergence and enforce equilibrium in Newton-Raphson iterations, 

a choice between secant and tangent stiffnesses was used based on previous literature 

(Dides, 2003). In summary, this algorithm states that when the slope increases abruptly, 

the tangent stiffness should be used to enforce equilibrium and, vice versa, when the 

slope decreases abruptly, the secant stiffness attains equilibrium. 
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4. MODIFIED REGULARIZATION FOR HIGH AND LOW AXIAL LOADS 

AND NEARLY CONSTANT MOMENT 

4.1 Theoretical background 

For an element subjected to uniform compression, all fibers within a section are 

subjected to the same state of strain and stress and all sections are subjected to the same 

load. Because a section is composed of concrete and steel fibers which present softening 

after maximum strength due to crushing or buckling, deformations in the element will 

tend to localize at the first section of the element reaching such a behavior (the weakest 

link), while the rest of the sections will unload to preserve the axial equilibrium of the 

element. This phenomenon is known as localization, and it is experimentally observed 

when softening materials are used, like concrete and steel in compression (Figure 4-1). 

 

 

Figure 4-1. Localization under pure axial load (L M Massone, Polanco, & Herrera, 
2014) 

The numerical manifestation of this localization behavior in flexibility based fiber 

element models is that the numerical response depends on the number of integration 

points used to evaluate the response along the element. This is because the number of 

integration points distributed over the length of the element, �, determines the length 
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associated with each section, �� = ��� (�� is the weight given from the numerical 

integration scheme). Therefore, the fracture length where the concrete crushes and bars 

buckle is one of these �� lengths. For example, given a stress-strain curve of an elastic 

material with a softening branch, which ultimate deformation is �� at zero stress, the 

ultimate global deformation �� of an element of length � will be the contribution of the 

unloading zones plus the contribution of the damaged zone, i.e.,  �� = �∑ (�� ×�

������)�������
+ �∑ (�� × ������)� �

������
= ∑ �� × 0� + ���� = ����, which clearly 

depends on the length associated with the integration point. 

In order to make the response of the numerical element objective, two regularization 

techniques have been proposed for fiber models: (1) to lump the inelasticity at both ends 

of the element (M. H. Scott & Fenves, 2006) and carry out the integration using the 

Gauss-Radau scheme that allows to choose the length of the plastic hinge; and (2) to 

modify the stress-strain relationship of RC fibers by keeping the post-peak energy 

constant (Coleman & Spacone, 2001), denoted as energy regularization, which enables 

objective global responses. A well-known drawback of the first method is the difficulty 

to handle the spread of inelasticity from the element ends, as well as its sensitivity to the 

plastic hinge length, which is usually unknown a priori. 

In theory, energy regularization techniques should not present such problem, and 

because of their more general application will be used in this investigation. However, 

energy regularization also has certain shortcomings to achieve exact objective results, or 

in some particular cases, affect convergence. Based on empirical observations three 

main situations where such undesirable behavior occurs are: (1) under the presence of 

extremely high axial loads, say axial load ratios ALR>0.35; (2) under the presence of 

very low axial loads, say ALR<5%; and (3) in regions of fairly constant bending 

moment with several integration points. In order to better understand these cases, an 

explanation for the pure axial case is first provided and followed by the bending-

compression case. 
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Under the assumption of a constant crushing energy, which has been carefully studied 

earlier (e.g., (Jansen & Shah, 1997; Nakamura & Higai, 2001)),  the energy 

regularization for the pure axial behavior is exact and can be mathematically proven—

the same observation is also valid in the case of buckling of a bar. Shown in the plot to 

the right in Figure 4-2 is the average stress-strain (� − �) modification required for an 

element of total length � given the average � − � curve for a short sub-element of length 

�� (hatched). The � − � curve in the latter consists of a linear inelastic branch followed 

by a softening branch. Let us now define the fracture energy �� = � ⋅∫ �(�)��
��

��
, which 

is represented in Figure 4-2 as the grey shaded area under the (� − �)  curve (actually, 

the shaded area is ��/�). The constant energy assumption defined by �� = �� =  

constant ≡ �� implies that the grey shaded area under the � − � curve is smaller for the 

longer element (��/��  = ��/�) relative to the shorter one, i.e., ��/��  = ��/�� > ��/

�. Please note that the energy preserved is that after reaching peak strength (shaded 

area), and not the energy before peak strength as shown by the white area under the � −

� curve (Figure 4-2). Indeed, in a pure axial behavior after reaching peak strength  

(��,��), all undamaged sections in series with the damaged ones, unload until they reach 

the residual deformation ��, while the damaged sections go beyond this point along the 

softening branch of the � − � curve. This implies that the pre-peak energy represented 

by the white area would not be conserved between two elements subjected to the same 

axial load and one longer than the other. The longer element would release more pre-

peak energy than the shorter one, while the shaded energy would be conserved by 

construction. 

In the case of constant bending, or in cases of simultaneous bending and compression, 

the example of a uniform axial stress state is no longer valid, and the strains increase in 

the fibers farther away from the rotation axis. Thus, though some fibers at the edge of 

the section soften first, the section as a whole may still not degrade. This leads to a more 

complex mix situation of localization, with some non-degrading sections with degrading 

fibers, which introduces subjectivity into the global response. It is only after reaching 
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global peak strength that the softening behavior of fibers becomes consistent with that of 

the sections. 

 

Figure 4-2. Schematic representation of the homogenization (regularization) of the � − � 
curve for an element under uniform axial load; softening branch gets steeper for a longer 

element. 

 

Schematically shown in Figure 4-3 is a typical lateral pushover analysis curve for a shear 

wall that presents three distinctive zones in the response: (1) an essentially linear elastic 

response with neither softening nor yielding, but with cracking in concrete, which is 

assumed not to affect the response relative to other nonlinearities; (2) an intermediate 

region with non-localized sections, but with some concrete fiber softening due to high 

axial loads (shown in black in the element sections), and/or some steel fibers yielding 
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(shown in grey in the element sections) in one or more sections; and (3) the localization 

region, characterized by a single section softening, while the rest of the sections and 

fibers unload. Results presented in Figure 4-3 correspond to the wall section indicated to 

the right (for further details on the wall, see (Alarcon et al., 2014)) and the  � − � curve 

has been presented keeping the right proportions. Furthermore, the cross section showed 

has a light, medium and dark gray zones representing cover, unconfined and confined 

concrete respectively. The latter has jagged borders trying to achieve the effective form 

(Mander, Priestley, & Park, 1988)—a parabola between reinforcing bars (shown inside 

the encircled zone). The concrete parameters ��,��,�� in the effective confined area 

inside the boundary bars has been modified so that, ��� ⋅��
(��)+ ���� ⋅��

(���)
= ���� ⋅

��
(���)

  (and the same goes for ��,��) where “un”, “con”, and “eff” refers to the 

unconfined, confined and effectively confined areas. The confined area is the rectangular 

area inside boundary bars and its parameter are the one explained earlier in this 

document. The unconfined area is formed by the remaining triangular areas inside 

boundary bars. For simplicity, the confined area outside boundary bars has been 

assigned the same effective parameters. 
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Figure 4-3. Localization behavior zones during a typical pushover (all dimensions in 
mm) 

Interpretation of Figure 4-3 is key in understanding the problem with energy 

regularization in shear walls, i.e. the spread of inelasticity in the intermediate region 

before any section softens as a whole does not represent localized behavior. The 

rationale behind of our proposed procedure does not impose energy regularization in this 

intermediate zone where there is still non-localized behavior. The existence of an 

intermediate region implies that extreme fibers would fail in two or more sections, 

which is consistent with a non-localized behavior. Consequently, the energy 

regularization should start later, and together with the localized behavior at the section 
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level. Results in Figure 4-3 qualitatively shows the predicted spreading of inelasticity for 

high and low axial loads. For high axial loads, fiber crushing tends to spread beyond the 

localized section, which is a spurious effect introduced by the assumption of plane 

sections. Because this effect is limited, it can be corrected by the modification explained 

in the next paragraph. Furthermore, for low axial loads, steel yielding and hardening 

spread more than concrete crushing or bar buckling, and matches with what is observed 

in reality. Please note that the worst case scenario for this analysis would be for a 

constant bending moment, since all the sections will present softening, yielding, and/or 

hardening of fibers before the response localizes in a single section. Because no method 

can discriminate what section will start softening, a small perturbation needs to be 

introduced to artificially weaken slightly a section to avoid numerical problems, say, by 

reducing the section area in 1/1000th. 

The proposed simplified technique to account for the non-localized behavior in the 

intermediate region aims to find a common strain to all fibers, ����, from which the 

regularization is needed. Fibers will behave as if no localization happens before reaching 

����, and from there on will be regularized to account for localization. The 

simplification of using a single ���� for all fibers can be justified because fibers leading 

to the problem in this intermediate zone, which are the farthest from the bending axis, 

are the ones that control the global behavior of the section because their larger 

contribution to the resisting moment. Essentially, they control the peak strength and 

failure behavior of the wall section.  

In general, for high axial loads, ���� lies within the softening branch of the � − � curve 

for concrete, while, for low axial loads, ���� lies within the yielding or hardening zone 

of the � − � curve for steel which will be explained thoroughly in the next paragraph. 

Figure 4-4 shows an example of the modification of a � − � curve for (a) concrete in 

compression, and (b) steel in tension. In both cases, the � − �  curves are unique up to 

����, but from there on, energy regularization takes place as shown by the different 

slopes for the different element lengths. In case of concrete modification, it usually 
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improves the quality of the regularization. Thus, as will be shown later, when axial loads 

are high and/or bending moment is almost constant between sections, the regularization 

leads to greatly improved results. However, when axial loads are low and the 

modification is not needed, the response results are essentially the same. The same 

principle is applicable for accounting for buckling in the � − � curve of a steel bar in 

compression. The same ���� used for concrete must be used for steel in compression 

even when the initial portion of the steel constitutive curve doesn’t degrade which is 

seen for cases where the slenderness ratio �/� is small (L stands for the free length of 

the reinforcing bar and D is its diameter). 

 

 

Figure 4-4. Regularization of the � − � of RC fibers with fixed behavior up to ���� 
for (a) concrete in compression, and (b) steel in tension. 

As the � − � constitutive curves of RC fibers in compression are modified by the 

conservation of fracture energy, steel fibers in tension also need to be modified, 

especially for low axial loads; contrarily, the higher the axial load, the less significant is 

the effect of this modification. The steel fibers should use the same reference length than 
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concrete fibers in order to make the response consistent and invariable under the 

assumption of plane sections. However, there are two issues in doing so: (1) The 

reference length for concrete of 1300/���′ (in mm and MPa) established earlier 

(Nakamura & Higai, 2001) is for plain concrete cylinders and is not necessarily 

consistent with the plastic hinge length for a wall subjected to bending moment and 

moreover, the reference length for confined concrete is different from that of unconfined 

concrete; and (2) the plane sections and perfect bonding would reduce the reference 

length since under lack of bonding, a larger section of steel could be subjected to the 

same stress, and hence the actual length that would soften in compression need not 

match the failure length in tension, i.e., plane section would not apply. For these reasons, 

the steel reference length is calibrated with values larger than the reference length for 

concrete, and a heuristically recommended value lies in the range between 25 and 50 

cm. This recommendation comes after extensive numerical simulations; a high reference 

length, or high associated energy, results in a low maximum strength because steel bars 

require high deformations to reach the hardening zone but in those cases, concrete fibers 

have already begun to soften. Moreover, for cases of fracture because of high tensile 

strain (e.g. (Dazio, Beyer, & Bachmann, 2009)), the global lateral displacement of a 

failing wall, strongly depends on the reference length, therefore, the higher the reference 

length,  the more ductile a wall behaves. 

In cases of low ALR, it is common to see yielding and hardening of steel bars within the 

zone between yield and ultimate moment, which usually involves two or more sections. 

Deformations localize in a single section when exterior steel fibers harden and exceed in 

other sections yielding (see spread of grey in sections of Figure 4-3). Therefore, finding 

���� in this well spread behavior is more difficult than for concrete fibers since ���� 

spans over a larger range of deformations, i.e. 0 ≤ ���� ≤ 0.06 (an example can be seen 

in Figure 4-4(b)), and depends on the axial load. For this reason, even if this method 

greatly corrects the subjectivity under low constant axial load, it is not recommended for 

highly varying low axial loads, e.g., ALR ranging from 0 to 10% since it could lead to 

worse results given by the regularization of the complete � − � curve if the fracture 
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because of high tensile strain is studied. For higher axial loads, there is no such problem, 

since the spreading of yielding is very limited and the modified regularization for 

concrete must be used which delivers good results for a big range of ALR (typically 

ALR from 5% to 40% depending on ����). 

 

4.2 Validation of the proposed regularization 

In order to validate the proposed regularization, different schemes of regularization, 

using only one FWE, were compared against each other for two extreme cases of axial 

loading: (1) high axial load (ALR=34%) with nearly constant bending moment (moment 

to shear ratio, �/��� = 6, where � is the bending moment, �  is the shear and �� is the 

wall width); and (2) very low axial load (ALR= 1%) with �/��� = 3.2. The two 

extreme cases are studied under the following regularization assumptions: (a) no 

regularization by using the original � − � curves; (b) energy regularization in the loaded 

section; (c) energy regularization in all sections; and (d) regularization based on using 

���� in all sections. 

The high axial load case was based on the loading condition of a damaged shear wall 

during the 2010 Maule, Chile earthquake (using the complete section, without 

accounting for the irregularity, shown later in Figure 6-5(a) and (c)). The element was 

analyzed using displacement control with constant axial load until static equilibrium is 

no longer satisfied, which occurs just after the peak strength. Then the pushover curve 

continues by applying constant axial deformation using the one at last convergence, and 

incremental steps of lateral deformation. In order to quantify the importance of the 

regularization of concrete fibers only, steel fibers were assumed elasto-plastic which is 

indifferent to any regularization. The wall force-deformation results achieved by the 

proposed regularization schemes can be observed in Figure 4-5. 

It is apparent from the figure that schemes (a)-(c) cannot reach in this case a regular 

overall response, and values after peak response are sensitive to the number of 
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integration points used. However, the same response using a constant value ���� =

0.00295 and the regularization scheme proposed enables regularization of the response. 

Moreover, Figure 4-6 shows analogous results under very low axial load of a U-shaped 

shear wall introduced later in Figure 6-1 (wall (b)). Again, results of the conventional 

regularization schemes (a)-(c) lead to inconsistent results with different number of 

integration points. Differences are very clear in this case of low axial load. The proposed 

method corrects well this inconsistency by using a fixed ���� = 0.0052 in this case. 
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Figure 4-5. Comparison of different regularization schemes and different number of 
integration points for test shear wall at ALR=34%: (a) without regularization; (b) with 
regularization in a single section; (c) with regularization in all sections; and (d) with 

proposed regularization at fixed ���� = 0.00295. 
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Figure 4-6. Comparison of different regularization schemes and different number of 
integration points for test shear wall at ALR=1%: (a) without regularization; (b) with 
regularization in a single section; (c) with regularization in all sections; and (d) with 

proposed regularization at fixed ���� = 0.052. 

In order for the energy regularization scheme to apply to cyclic behavior, other � − � 

paths and variables need to be modified to achieve an objective response. For concrete, 

the only possible remaining � − � path to modify is the one for the unloading-reloading 

cycle, which does not need to be modified since it depends on the strain of the unloading 
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point along the monotonic backbone curve, which is already regularized. However, such 

is not the case in the reloading situation of a buckled steel fiber, where the reloading 

slope depends on the stress only. Therefore, for this case the reloading stiffness must be 

modified by using the same energy principle as shown earlier in Figure 4-2. Something 

similar happens also with the transition phase between the Menogotto-Pinto cycle and 

the � − � backbone curve from the model used (Dhakal & Maekawa, 2002). The 

originally proposed length of transition between Menogoto-Pinto cycles and the 

backbone curve is 5��  with ��  the yield deformation of steel. This length was assumed 

to change linearly with the length associated with the integration points. Thus for short 

lengths of integration, where the � − � curve is very stretched, the transition phase will 

be much more than 5�� , and vice versa. 

Please note that ���� must be calibrated in order for the regularization to take effect over 

a certain range of axial loads. Moreover, this also depends on the geometric and 

mechanical characteristics of the studied wall, however, as a recommendation, a good 

starting point for ����  in compression, is around �� + 0.0005 for ALR≈ 10− 30%, 

and for traction, �� + 0.02 for ALR≈ 1− 5%,  where �� is the unit deformation at peak 

concrete strength and ��  is the yielding unit strain. 

5. SECTION SHEAR MODEL 

In the FWE formulation, the flexibility matrix of the section couples the axial and 

flexural components but shear and torsion remain completely uncoupled at the section 

level. However element forces become coupled at the element level through the force 

interpolation matrix �—Timoshenko beam theory—as shown earlier in Equation 2. 

Several researchers have proposed solutions to the coupling problem of cyclic loading of 

fiber models. For instance, the fiber method has been integrated with the concrete 

softened membrane method (CSMM) (R. Mullapudi & Ayoub, 2009), (Li, Li, & Xie, 

2011), thus, coupling consistently all effects but requiring more computational effort 

than a global shear model. Among several types of models, a compilation of strut-and-tie 



 

 

27 

 

models to couple shear to the other effects is presented in (Ceresa, Petrini, & Pinho, 

2007), which main shortcomings reside on the need for experimental calibration, 

additional iterations, and lack of experimental validation in some cases. On the other 

hand, there are efficient ways to account for shear coupling that still lack a theoretical 

validation (Belmouden & Lestuzzi, 2007)  and need to be carefully calibrated due to the 

use of an elasto-plastic behavior. Also, a model has been developed to couple shear in a 

displacement based element (Mazars et al., 2006), but it less efficient computationally 

than the one used earlier (Belmouden & Lestuzzi, 2007). 

In order to achieve computational efficiency required for the analysis of a complete 3D 

building with hundreds of thousands degrees of freedom, a simple 2D global model in 

each direction is proposed which includes coupling effects incorporated externally. This 

simple shear model is justified in this case because the walls considered are not short, 

�/��� > 2, and the bending-compression behavior is dominated. Regarding the shear 

uncoupling in the two principal directions, it is justified since for common T-,L- and U-

shapes most of the shear is carried by the web of the wall parallel to the direction of 

elastic shear flow—though this is a very bad approximation for square sections. To 

improve model consistency, and given that the bending-compression behavior is 

dominant, the following assumptions are needed in the backbone � − � curve (Figure 

5-1): 1) the axial force affects the shear behavior, but not viceversa; (2) the point of 

shear cracking (���,���) is corrected in a very simple way due to bending, and the peak 

bending strength is transferred in real time to the shear model to identify when the 

bending-compression behavior triggers failure (�����,�����); (3) the shear reinforcement 

remains elastic because the bending-compression failure (�����,�����) forces the shear 

resisting force below the yielding point (��,��); and (4) the critical sections for shear are 

the same as the critical sections for bending-compression failure. 
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Figure 5-1. Monotonic � − � constitutive curve for average stress-strain taking into 
account bending failure. 

The 2D monotonic � − � constitutive relation for average shear stresses and shear 

deformations is based on a simplified model (Gérin & Adebar, 2009) for elements 

subjected to shear without bending. Therefore, in principle, the shear failure mechanism 

behind this model is different from the one considered here, which is driven by bending. 

A typical macro model with no failure consists of two points (Figure 5-1): the cracking 

point (���,���) and the yielding point (��,��), or equivalently, the peak shear strength.  

However in a bending-compression dominant behavior, the yielding point in this curve 

is not reached, and failure begins at (�����,�����). After that, the section is assumed to 

degrade until it reaches complete failure (��,��). The initial section stiffness is the 

classic elastic one, say � = 0.4�, and the cracked stiffness, ���, is estimated using the 

Modified Compression Field Theory (MCFT) (Vecchio & Collins, 1986) assuming that 

there is no shear-flexure interaction, and that the longitudinal reinforcement is uniformly 
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distributed over the shear area, which is a reasonable assumption in practice. Following 

the ACI recommendation, the shear section area is 5/6 of the gross area for rectangular 

sections, and corresponds to the section of the wall parallel to the loading direction of T 

and U shaped walls. Therefore, for typical wall sections, the shear area will always be 

rectangular. The cracked stress ��� is obtained from the expression for columns in the 

ACI provisions (ACI Committee 318, 2005), where the cracking stress depends on the 

average axial stress �/�� and ��′ as provided by Equation 6. 

 

��� = 0.17�1 −
�

14��
����′   ,       �/��,��′ �� ��� ( 6) 

 

This formula was found adequate because: (1) it does not overestimate the axial effect 

on shear resistance (MacGregor & Hanson, 1969); and (2) the shear resisted by concrete, 

which corresponds to the shear cracking stress without axial load, takes into account 

bending when subjected to shear—the cracking stress is overestimated if no bending is 

considered. 

For cyclic behavior, a simple secant path has been adopted, as proposed earlier (Gérin & 

Adebar, 2009) which allows axial load variations from step to step. Other multi-purpose 

shear macro models like Takeda and SINA (Saiidi & Sozen, 1979) impose several rules 

before yielding (considering the cyclic paths), and for each of these rules, an assumption 

is made as the axial load varies. In the secant model, just a few physically meaningful 

assumptions are needed (Figure 5-2). Please note that even if the actual walls show 

pinching (Beyer, Dazio, & Priestley, 2012; Leonardo M Massone & Wallace, 2004), 

such effect cannot be predicted by the MCFT assumptions under a non-yielding 

situation. 
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Figure 5-2. Shear backbone � − � curve with loading and unloading path for variable 
axial load. 

As axial load varies in Figure 5-2, which is a common case under cycles due to 

earthquakes, shear resistance is affected, and for high axial loads, one gets larger shear 

strength, and vice versa. To implement this effect, the backbone curve was described as 

a function of the axial load by using the MCFT, and hence, there is one backbone curve 

for each different axial load. The concept of multiple backbone curves is shown in 

Figure 5-2, and the cracked slopes ��� as a function of the current axial load �  are 

evaluated at each step with an algebraic expression derived with the following 

algorithm: (1) calculate the � − � curve by using the MCFT under an axial load � ∗; (2) 

identify the cracked zone and compute its slope ���(�
∗) by means of a linear regression; 

(3) Repeat (1) and (2) for different values of axial loads; and (4) calculate the cracked 

slope as a function of any axial load � by using a linear regression on the data 

accumulated by repetitions of step (2). Please note that all this numerical computations 

are calculated just once, at the beginning of the analysis. The schematic cycle shown in 

Figure 5-2, consists of an increasing value of � along with an increasing axial load (from 
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�� to ��) followed by unloading with a reduction of axial load and shear deformations. 

As presented earlier in  

Figure 2-2, before entering the � − � constitutive law of shear, at the current ��� 

integration sub-step, an axial load (from ����) and a shear deformation (from ����) have 

already being estimated, so the proposed shear coupling method evaluates the current 

shear stress ���� �����,����,�������� on the right curve given by the estimated axial 

load, and the secant slope �
��

��
�
���

= �����
(���)− �(�)�/�����

(���)− �(�)�, where � refers to 

the integration step. This assumes that there is neither degradation of resistance nor 

stiffness. The only point where the tangent stiffness could be used, depending on the 

rules proposed elsewhere (Dides, 2003), is at the origin, during transition from 

unloading to reloading. The only path yet to be explained is the softening branch, and its 

consequences. 

The softening branch of the shear model (Figure 5-1) is difficult to define because it 

requires a complex analysis of the complete coupled problem, or otherwise experimental 

data on shear deformations as the element softens. Consequently a slope equal to the 

elastic one, but opposite in sign, has been assumed independent of the axial load for a 

square element with the same shear section for each direction and length equal to its 

width, i.e., a geometric slenderness ratio of 1. This is equivalent to state that the failure 

of the square element is brittle for all axial loads, but not brittle enough to produce a 

snap back. A geometric slenderness ratio of 1 was chosen for simplicity to represent the 

diagonal struts that would match that of the element if the crack angle was 45°—angle 

formed under no axial load. The selection of slope choice is justified because of the low 

sensitivity of this slope in the global response of elements dominated by flexo-

compression as shown later in Figure 6-4. Moreover, more than 80% of the lateral 

deformation in our case studies—�/��� > 2— is due to bending as it has been 

reported earlier (Beyer et al., 2012). This could make the model simpler, because one 

could be tempted to follow an unloading path in the shear model after peak resistance 

instead of following a softening path, however, this would blind the analyst regarding 
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shear deformations after peak strength, and if these deformations happen to be around 

20% the analyst would be completely underestimating shear deformations and hence the 

global ductility of the wall would be reduced since all that 20% should be taken into 

account by flexural deformations. 

Because the shear behavior shows a degrading zone localized at the most loaded section, 

the global response depends on the number of integration points as it was shown earlier 

in this document for the element without shear deformations. In other words, the energy 

associated with the softening slope just discussed has to be distributed over the length of 

the element, in order for the global response to be objective. Thus, the slope was as 

befeore energy-regularized, but in this case, calculations are a bit cumbersome since the 

unloading slopes of the non-failing sections are not straight lines due to variability of the 

axial load (Figure 5-3). Shown in Figure 5-3 is a schematic � − � constitutive relation 

with definition of the softening and unloading paths for the case of variable axial load. 

Stresses increase to reach maximum strength, and then decrease toward the origin, or 

through a descending branch modified to make the response objective given the initial 

assumed slope for the square element. 

 

 

Figure 5-3. Regularized softening branch under variable axial load. 
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Finally, in order to numerically stabilize and make more robust the inelastic analyses, 

the possible � − � loading and unloading paths between the different backbone curves 

need to be restrained as shown in Figure 5-4. This happens in situations near the onset of 

softening, where the increase in shear deformation is very small or even negative in the 

sub-iterations and the axial load increases. To avoid these undesirable situations, the 

possible slopes where limited to the range [0− �] when loading and to [��� − �] when 

unloading. This means that if the path is modified, the original equilibrium is not 

achieved because the actual axial load increment has to be partially applied in the 

current step in order to keep the path inside the shaded region shown in Figure 5-4. This 

heuristic criterion has very low effect in real applications because, as it was mentioned 

before, it generally happens in the vicinity of the maximum lateral strength only. 

 

 

Figure 5-4. Qualitative description of the allowable paths for loading and unloading 
conditions. 
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6. VALIDATION WITH EXPERIMENTAL DATA 

In this section proposed model is tested using four different wall configurations and only 

one FWE. The first three tests compare analytical and experimental results of cyclic tests 

aimed to validate the inelastic behavior of fibers together with the shear and strain 

penetration models for three different wall shapes. The fourth test aims to reproduce the 

damage observed in several walls of a building after the 2010, Chile earthquake. The 

geometry of the first three walls is presented in Figure 6-1 and the fourth’s is presented 

in Figure 6-5(a).  

 

6.1 Validation with laboratory experiments 

The studied walls are denoted as WSH2 for the rectangular wall, USW1 for the U 

shaped-wall, NTW1 for the T shaped-wall and WL for the L shaped-wall. Some of their 

general geometric characteristics are summarized in Table 6-1 and Table 6-2. The 

variables are self-explanatory but ��′ is the cylindrical strength of plain concrete; ����
�  is 

the strength of concrete in confined zones along the local Z axis (Figure 6-1); and ����
�  is 

the strength of concrete in confined zones along the local Y axis. Note that in the case of 

USW1, the confined concrete zone in corners was labeled as Z. The same nomenclature 

applies for the crushing energy ��,���. The computation of these energies and more 

detail in fibers used can be seen in appendix A. 

Table 6-1. Geometric characteristics and axial load of the sample walls. 

Wall Thickness 
[cm] 

Area 
[��] 

ALR 
[%] 

Shear 
span [m] 

Loading 

WSH2 15 0.300 5.70 4.56 2D 
USW1 25 0.875 10.00 3.90 2D 
NTW1 15.25 0.602 2.75 7.93 3D 

WL 17 1.170 33.00 ± 13.00 3.38 2D 
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Table 6-2. Mechanical properties of walls.  

Wall ��′ 
[MPa] 

����
�  

[MPa] 

���
�
�
 

[MPa] 

��    
[MPa-m] 

���� 

[MPa-m] 

���� 

[MPa-m] 
WSH2 40.50 - 47.8 0.056 - 0.323 
USW1 23.73 31.87 33.0 0.043 0.314 0.332 
NTW1 50.00 60.42 63.4 0.062 0.526 0.730 

WL 20.00 - - 0.039 - - 
 

The studied walls were chosen among plenty of available specimens in the literature in 

order to show the inelastic capacity of the model to represent buckling and fracture of 

bars and concrete crushing under 2D and 3D loading conditions. The first wall is a 

rectangular specimen (WSH2) tested earlier (Dazio et al., 2009), it was selected among 

the 6 wall specimens tested by the authors mainly because several bars ruptured in 

tension. In order to reproduce some of the experimental failures, the steel reference 

length had to be calibrated to 0.45m, and the ultimate strain, ���, used for the steel was 

the one from LVDT measurements (Dazio et al., 2009). Furthermore, the length of the 

element was shortened to 4.4m from 4.56m, since its failure happened about 0.17m 

above the base—this was not the case other walls from the same authors. The second 

wall considered for validation was a U-shaped wall (USW1) tested earlier (Pegon, 

Plumier, Pinto, Molina, Gonzalez, Colombo, et al., 2000; Pegon, Plumier, Pinto, Molina, 

Gonzalez, Tognoli, et al., 2000). One of the main features of this wall was that the 

stirrups within the confined area were spaced enough vertically to cause a notorious 

buckling between two adjacent stirrups (�/� = 7.5). No parameter of our model was 

calibrated in this case. The third wall was a T-shaped (NTW1) element that was 

subjected to simultaneous biaxial lateral loads. Unlike the U-shaped wall, stirrups were 

closely spaced (�6.4 @50 mm and L/D≈ 3) which slowed the onset of buckling. This 

wall was selected to test the hypothesis of plane sections in an unfavorable case because 

of the long flange (Figure 6-1) which produces the well-known shear lag phenomenon 

(Hassan & El-Tawil, 2003) as the flange is in tension, and causes the section not to 

remain plane. 



 

 

36 

 

Shown in Figure 6-2 is a comparison between the experimental behavior in the Y-

direction and the predicted behavior using the proposed model. Letters (a), (b), and (c) 

correspond to the WSH2, USW1, NTW1 specimens of Figure 6-1. The first row of plots 

shows the full inelastic behavior; the second row includes three different conditions, no 

fracture for WSH2, without reduced buckling slope for USW1, and 2D-loading for 

NTW1; the third row of plots checks on the relevance of the shear deformations and 

strain penetration effects. 

 

Figure 6-1. Experimentally tested wall shapes used to validate the proposed model: (a) 
WSH2 (Dazio et al., 2009); (b) USW1 (Pegon, Plumier, Pinto, Molina, Gonzalez, 

Tognoli, et al., 2000); (c) NTW1 (Brueggen, 2009) 
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Figure 6-2. Comparison between the analytical and experimental lateral response of the 
(a) WSH2, (b) USW1, and(c) NTW1 wall specimens subjected to the following 
assumptions: (a1),(b1), and (c1), complete inelastic model; (a2) without fracture of bars 
in tension, (b2) without buckling of bars in compression, and (c2) 2D-loading of the 
wall; and (a3),(b3), and (c3), specimens without shear deformations and strain 
penetration. 
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Figure 6-3. Comparison of the lateral response between the predicted and experimental 
model for the NTW1 specimen and three modeling assumptions: (a) full inelastic; (b) 

2D-loading; and (c) without shear deformations and strain penetration. 

 

As shown by the results of Figure 6-2, aspects such as buckling and fracture of a bar, 

strain penetration, shear deformations, and loading conditions are essential to reproduce 

the actual behavior in tested wall specimens. For the case of full inelastic behavior 

identified by subindex (1), results of loading and reloading stiffnesses, wall ductility, 

and maximum strength are well captured by the model. In the second row of plots, a 

selected inelastic behavior has been chosen (subindex (2)). For instance, when the 

fracture of a bar is not modeled (a1), the drop in resistance of later cycles cannot be 

reproduced correctly by the model; analogously, when the buckling behavior does not 

account for the reduced slope as proposed elsewhere (Suda et al., 1996), the analysis 

overestimates the released energy and the reloading slopes in the USW1 wall are far 

from reality; also for the NTW1 element, if the section is loaded in the Y-direction (c2), 
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there are no major differences in  the local Y-direction. That is not the case for the Z-

direction as shown in Figure 6-3.The third row of plots shows the analyses with no shear 

deformation and no penetration effects. They show low ductility in general, and they 

tend to fail sooner than the actual observed behavior.  

Although several inelastic behaviors have been included in the proposed model, there 

are still some differences between the experimental and analytical results. The most 

relevant are: (1) a marked pinching effect shown by the WSH2 and USW1 models, 

which is mainly due to the assumption of plane sections because all the concrete in 

tension to one side of the neutral axis begins to resist compressive stress as the section 

moment changes in sign; (2) some differences in the last reloading cycles of the USW1 

and NTW1 walls due to the fracture of bars after intensive buckling which is not taken 

into account by the model since the steel depends entirely on the backbone curve and 

cannot fracture in the middle of a cycle; and (3) predicted cycles in the NTW1 wall tend 

to release more energy than the observed in the experiment while testing, which is again 

due to the plane section assumption and also, due to the fixed buckling length in the 

model. First, the whole prediction could have been less accurate due to the shear lag 

effect—neglected by assumption of plane sections—and second, the buckling length in 

the model was set as the spacing between stirrups, while in the experiment, at earlier 

stages, bars behaved as if a short buckling length was used (probably close to the one 

chosen), however when the buckling occurred in late cycles the “actual buckling length” 

was much larger because the core concrete was completely crushed and the wall buckled 

as a whole. 
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Figure 6-4. Ratio of shear to flexural displacements at the peaks for WSH2. 

 

Although the shear model is very simple relative to the fiber model, it can predict 

reasonably well the observed shear deformations as shown in Figure 6-4. Given that the 

walls studied have an aspect ratio larger than 2, shear deformations are a small 

proportion of the global deformation, thus making the eventual shear model errors less 

significant. Indeed Figure 6-4 shows the comparison between real and predicted 

measured ratios of shear to flexural displacements including strain penetration effects for 

the rectangular wall, WSH2. All models are very similar and the maximum error was 

31% relative to the experimental behavior with ����� = −�, found in the last cycle at 

�= 6cm. The overestimation at the peaks of the first cycles is probably due to the 

uncertainty in the cracking point and the cracking extension over the length of the 

specimens; in the model, the cracked stress provided by Equation 5 was possibly smaller 

than the actual cracking stress, which caused higher cracked shear deformations, and 
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moreover, this cracked behavior spread over the entire length, while in the experiments, 

the cracking behavior not always reaches the zone of small bending moment due to 

shear-bending interaction. The underestimation in the final cycles is probably due to the 

close interrelation between shear and bending which is neglected by the model, and the 

lack of damage caused by repetitive cycles assumed in the model.  To reflect the 

maximum differences between analyses, the displacement � =  8cm was chosen to show 

the actual percentage values predicted by the shear model with different softening slopes 

at complete failure. This means, that for the model without shear softening, the residual 

ratio of shear to flexural displacement is zero at complete failure, while for two other 

models is between 2% and 5%. This reflects the low sensitivity of the shear softening 

behavior as stated earlier. A decrease in the softening slope of one order of magnitude 

results in just twice the shear deformation at complete failure. 

 

6.2 Damage reproduction of a real RC building 

A question arises if the FWE would be capable of reproducing or anticipating damage in 

real shear wall structures. Let us consider the wall shown in Figure 6-5(a), an irregular 

L-shaped shear wall that suffered severe damage during the 2010, Chile earthquake. The 

wall was analyzed statically along the Z axis with sufficient length to avoid diagonal 

cracks (�/��� = 6), which were not present after visual inspection of the damaged 

building. Moreover, the presence of a beam which transforms into a wall in the upper 

stories, shown in Figure 6-5 (b), was considered in the model by modifying the size of 

the wall sections around that zone.  

To calculate the size of each section in the irregularity zone just mentioned, a linear 

elastic frame element with variable section was analyzed in Sap2000 and calibrated 

against the response obtained from shell elements using the same software. The analysis 

consisted of a lateral force at the bottom of the model of the studied wall (Figure 6-5(c)). 

The result of this calibration was that the width of the frame element has to form a 25° 

straight line from the beginning of the irregularity as shown in Figure 6-5(c). The 
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inclusion of the rigid bar in the position shown was done in order to replicate the 

trapezoidal moment distribution from linear analyses of the building, which is consistent 

with the location of damage—in the zone with the highest bending moment. 

 

 

Figure 6-5. Description of wall WL: (a) detailing of the section, (b) schematic elevation 
inside building and (c) model of the studied zone. 
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Table 6-3. Loading steps for WL 

Step Direction of ����
��� Axial Load, N Axial deformation, �� 

(0) Free 0 → 1.4�� Free 
(1) Loading (+) 1.4�� Free 
(2) Loading (+) Free The last from Step (2) 
(3) Unloading (-) �� Free 
(4) Free �� → 0.6�� Free 
(5) Loading (-) 0.6�� Free 
(6) Loading (-) Free The last from Step (5) 

 

 

In order to make a more realistic analysis, instead of carrying out two different pushover 

analyses with constant axial load, the shear wall was subjected to half a cycle taking into 

account different axial loads derived from linear elastic modal analysis. Table 6-3 shows 

the load history of shear wall WL (Table 6-1and Table 6-2) which is divided into 7 steps 

denoted as (0) to (6), all of them constrained to have zero bending moment at the bottom 

of the rigid bar. The variables controlled in the half cycle analysis were: (1) top lateral 

displacement, ����
���; (2) Axial load, N; and (3) Axial deformation, ��. Before the 

applying of any lateral displacement, an axial load was applied (steps (0) and (4)) to 

simulate the effect on the axial load because of the earthquake. These loads, 1.4�� and 

0.6��, were the maximum and minimum axial loads extracted from elastic modal 

analysis using typical load combinations ((INN), 2010). Although these limits come 

from linear analyses, an error in their magnitude is accepted since the major factor to 

evaluate in this case is the geometric irregularity. For the two directions, loading was 

applied in two steps: first, with axial load fixed ((1) and (5)); and second, with axial 

deformation fixed ((2) and (6)). This separation in two steps was because after reaching 

peak strength in one direction, static equilibrium is not possible if lateral deformation 

continues to increase (snapback behavior), or in other words, the wall would start to 

accelerate. 
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Shown in Figure 6-6 are the force-deformation results from the half cycle analysis 

described above. (a) shows the axial load, N, as a function of  lateral deformation, �, 

measured at the at the top of the studied wall—3.38m above ground— and (b) shows the 

lateral force, F, versus �. 

One of the key features of the analysis is that the wall is forced to fail, as seen in steps 

(2) and (6) (Figure 6-6) where the axial load drops because the wall cannot longer 

withstand the initial axial load. 

 

 

Figure 6-6. Load history with variable axial load for WL. 
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Figure 6-7. Damage reproduction of the reinforced concrete wall WL. a) Actual damage, 
b) calculated damage (in black). 

As shown in Figure 6-7, the inclusion of the right geometry—the irregularity of the 

wall— allows the model to reproduce the location of damage because if the wall had not 

had an irregularity, then, it would’ve failed in the most loaded section—at the end of the 

element. Figure 6-7(a) shows the actual damage after the 2010, Chile earthquake, while 

Figure 6-7(b) presents the predicted damage in darker grey or black, according to if the 

strain in cover concrete of the wall face shown, is more than �� > 0.004, twice the 

amount of the �� used. 

 

7. CONCLUSIONS 

This thesis presented a FWE model aimed to capture the cyclic response of slender shear 

walls similar to those that underwent damage in the 2010, Chile earthquake. These walls 

were subjected to a wide range of axial loads characterized by ALR=1% to ALR=50%. 
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In general the analyses showed good agreement between measured and predicted 

responses and in terms of initial stiffness, peak strength, unloading and reloading 

stiffness, and ductility. Measured responses were obtained from several walls 

(rectangular, U-shaped, and T-shaped) tested by different authors under 2D and 3D 

conditions. It was observed that the pinching phenomenon was accentuated in the 

predicted response. Based on the good results obtained, the following conclusions can be 

drawn: 

 The FWE element is capable of reproducing the complex cyclic behavior of 

reinforced concrete shear walls up to a failure condition but shear deformations, bar 

pull-out, bar fracture in tension, and bar buckling are absolutely necessary to be 

considered by the model to capture the global cyclic behavior shown by experiments. 

 The FWE only requires a-priori calibration of internal parameters when bars fracture 

in tension, and can give objective responses for a large range of loading conditions 

with the proposed modification of energy regularization. 

 The energy regularization proposed for the bending and shear model enables 

objective responses in bending and shear, which allows the use of this element for 

different axial load ratios (ALR) and bending-compression conditions. 

 The FWE is numerically efficient even though it includes some shear-coupling 

effects. Therefore, it is a very attractive choice for 3D inelastic analysis of reinforced 

concrete shear wall buildings; its application to complete shear wall structures is 

underway. 

 Model assumptions like plane section remaining plane, perfect bond between steel 

and concrete along the element, and the use of secant unloading-reloading stiffnesses 

for the shear model, only play a fundamental role in the pinching behavior of the 

element, which is deemed a small drawback of the proposed model relative to its 

several other advantages.  

 Finally, the FWE can be referred as an improved fiber element since it accounts for 

shear deformations, can deliver objective results for a high range of axial loads and 

even for extreme cases where a classic fiber element would fail to converge. 
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Appendix A: Mechanical parameters for WSH2 

Figure A-1 shows a graphical user interface (GUI) developed for this thesis, where a 

triangular mesh used for the rectangular wall WSH2 is displayed. For clarity, only the 

left part of the walls is shown. The triangular mesh was achieved by using the PDE 

toolbox from MATLAB. Triangles were chosen because it’s the simplest polygon 

capable of fitting into any other polygon. Cover, unconfined and confined concrete 

fibers are indicated in yellow, light blue and green (steel bars are shown in red) and the 

number of fibers used for this wall were 1349, 2772 and 464 respectively 

 

Figure A-1. GUI showing the mesh of the wall WSH2 

In this case, the peak concrete strength is ��
� = 40.5 ���, the yield stress of stirrups is 

��� = 485 ��� and the spacing between stirrups is 75 ��. 



 

 

55 

 

The unconfined concrete energy was calculated by using the formula proposed by 

(Nakamura & Higai, 2001), ��� = 8.8⋅���� = 56 ����� = 0.056 ����. The 

cover concrete energy was computed from a typical � − � curve, so that the deformation 

at peak strength is �� = 0.002 and the deformation where � = 0.2��′ is �� = 0.007 for a 

30 cm tall cylinder. Therefore, the cover concrete energy was 0.041 ��� −�. 

Finally, for the confined concrete peak strength and the corresponding deformation, the 

Kent & Park model was used, while for the fracture energy, the average between results 

from (B. Scott et al., 1982) and (Légeron & Paultre, 2003) was selected. This is because 

fracture energy plays an important role in ductility of elements. 

For the Kent&Park model the volumetric ratio of transverse reinforcement is �� =
��

��
=

0.0119, where �� is the total volume of stirrups and �� is the volume of core concrete 

which was calculated from center to center of stirrups in all directions. Following the 

typical formulas, the new peak strength and its corresponding deformation are ��� =

46.25 ��� and ��� = 0.0023 respectively. Then the area under the confined � − � 

curve up to  �� is 0.59 ���  and then the fracture energy is ��� = 0.23 ����.  

Once the fracture energy is computed, it is necessary to transform that energy into 

effective parameters as explained in the section 4. The total area of unconfined concrete 

inside the core is ��� =
��

�
⋅4+

��.��

�
= 45 ���. Please note that there are only 5 light 

blue triangles inside the core as seen in Figure A-1 because on side is confined due to 

the concrete of the wall in that direction. The total core area is ����= 184.7 ��� then 

the effective confined area inside the core is �� = 139.7 ���. Hence: 

 

���
���

=
��� ⋅�� + �� ⋅���

��
= 0.292 ��� −� ( 7) 

   

The green area outside the core was assigned the same energy. For other properties such 

as ��� and ��� it was followed the same procedure. 
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Now, the energy from Légeron & Paultre is a bit more cumbersome, but some key 

parameters are the reference length which was assume to be the one from unconfined 

concrete (Nakamura & Higai, 2001) : �� =
����

����
⋅

�

���
= 20.43 ��, the geometrical 

effectiveness coefficient �� =
��
���

����
=

���.��

���
= 0.72 and the transverse volumetric ratio 

�� = 0.0142. Please note that some values are different depending on how the 

properties were measured. Moreover, ��
���

 is different from �� since the latter is the one 

using triangles instead of parabolas. With all this data, the deformation where � = 0.5��′ 

is ��� = 0.0404. With the length associated the confined energy is 0.28��� −�. 

However this is for the whole core, then, using Equation 7 this value increases up to 

0.35 ��� −�. Finally the average value for fracture energy is ��� = 0.323 ��� −�. 
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