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A NEW H(div)-CONFORMING p-INTERPOLATION OPERATOR
IN TWO DIMENSIONS ∗

Alexei Bespalov1 and Norbert Heuer2

Abstract. In this paper we construct a new H(div)-conforming projection-based p-interpolation op-

erator that assumes only Hr(K) ∩ H̃−1/2(div, K)-regularity (r > 0) on the reference element (either
triangle or square) K. We show that this operator is stable with respect to polynomial degrees and
satisfies the commuting diagram property. We also establish an estimate for the interpolation error
in the norm of the space H̃−1/2(div, K), which is closely related to the energy spaces for boundary
integral formulations of time-harmonic problems of electromagnetics in three dimensions.
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1. Introduction and main results

This paper addresses the problem of H(div)-conforming interpolation of low-regular vector fields by high
order polynomials. Corresponding p-interpolation operators are relevant for the analysis of high order boundary
element approximations for time-harmonic problems of electromagnetics.

Aiming at high-order finite element (FE) approximations of Maxwell’s equations, Demkowicz and Babuška [19]
introduced and analysed two projection-based p-interpolation operators satisfying the commuting diagram prop-
erty (de Rham diagram). These are the H1-conforming interpolation operator Π1

p : H1+r(K) → Pp(K) and the
H(curl)-conforming interpolation operator Πcurl

p : Hr(K) ∩ H(curl,K) → PNed
p (K); here r > 0 in both cases,

K is the reference element (either triangle or square), Pp(K) is the set of polynomials of degree ≤ p on K, and
PNed

p (K) is the H(curl)-conforming (first) Nédélec space of degree p (precise definitions of all involved Sobolev
spaces and polynomial sets are given in Sect. 2.1 below).

In 2D, the operators curl and div are isomorphic. The corresponding polynomial set isomorphic to the Nédélec
space PNed

p (K) is the Raviart-Thomas (RT) space denoted by PRT
p (K). Therefore, the results of [19] related

to the operator Πcurl
p can be used also in the H(div)-conforming settings (we will denote the corresponding

H(div)-conforming projection-based interpolation operator by Πdiv
p ). In particular, given a vector field u ∈
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Hr(K) ∩ H(div,K) with r > 0, the interpolant ũp = Πdiv
p u ∈ PRT

p (K) is defined as the sum of three terms:

ũp = u1 + up
2 + ũp

3, (1.1)

where u1 is a lowest order interpolant, up
2 is the sum of edge interpolants, and ũp

3 is the interior interpolant
(a more detailed description of these interpolants is given in Sect. 2.5). As follows from [19], the following
diagram commutes:

H1+r(K) curl−→ Hr(K) ∩ H(div,K) div−→ L2(K)⏐⏐� Π1
p

⏐⏐� Πdiv
p

⏐⏐� Π0
p−1

Pp(K) curl−→ PRT
p (K) div−→ Pp−1(K)

(1.2)

where Π0
p : L2(K) → Pp(K) denotes the standard L2-projection onto the set of polynomials Pp(K).

The commuting diagram property, and the corresponding p-interpolation error estimates, have immediate
applications to the analysis of high-order FE discretisations of time-harmonic Maxwell’s equations. In particular,
these results are critical to prove the discrete compactness property, which in turn implies the convergence of FE
approximations for Maxwell’s equations, as well as for the error analysis (see [3,7–9,22]). We note that classical
Nédélec or RT interpolation operators (see, e.g., [10]) are not suitable for these purposes, as they are not stable
(with respect to the polynomial degree p) for low-regular fields and do not work equally well for triangular and
parallelogram elements.

When time-harmonic problems of electromagnetics are posed in infinite domains (e.g., outside a scatterer),
it is convenient to reformulate them as a boundary integral equation (on the surface of the scatterer). The
energy spaces for such boundary integral equations (BIE) involve Sobolev spaces of negative order for both
the vector field and its divergence (a typical example is the space H−1/2(div,Γ) in the case of a smooth
(closed) surface Γ). Then, it is common to use the H(div)-conforming boundary elements (e.g., of RT type) to
discretise these BIE. The fundamental problem is that the underlying integral operator is not coercive, and the
convergence analysis of the boundary element methods (BEM) requires a suitable regular decomposition of the
energy space into the space of divergence-free vector fields and the complementary space, cf. [11]. In the case
of Maxwell’s source problem it is possible to use a decomposition, where the complementary space is regular
enough even on non-smooth surfaces. Then, the H(div)-conforming p-interpolation operator of Demkowicz and
Babuška is applicable for the convergence and error analysis of the p- and the hp-BEM (see [5,6]). However,
when considering the boundary integral formulation for the Maxwell eigenvalue problem, the orthogonal Hodge
decomposition of the energy space (see [12,14]) must be used to prove the discrete compactness property. In
this case, the regularity issues on non-smooth surfaces affect the smoothness of the complementary space and
prevent one from using the known H(div)-conforming interpolation operators. Hence, the aim of this paper is
to introduce and analyse a new H(div)-conforming p-interpolation operator, which is stable with respect to p
and retains the commuting diagram property analogous to (1.2), but assumes less regularity than Πdiv

p (namely,

Hr(K) ∩ H̃−1/2(div,K)-regularity with r > 0). This new interpolation operator will be denoted by Πdiv,− 1
2

p ,
and is defined as follows.

Given a vector field u ∈ Hr(K) ∩ H̃−1/2(div,K) with r > 0, we define the interpolant up = Πdiv,− 1
2

p u ∈
PRT

p (K) in a similar way as the interpolant ũp = Πdiv
p u ∈ PRT

p (K) (see (1.1)):

up = u1 + up
2 + up

3. (1.3)

Here, u1 and up
2 are exactly the same as for the interpolant Πdiv

p u (see (2.15) and (2.20), respectively), whereas
up

3 ∈ PRT,0
p (K) is determined by solving the following system of equations:

〈div(u − (u1 + up
2 + up

3)), div v〉H̃−1/2(K) = 0 ∀v ∈ PRT,0
p (K), (1.4)

〈u − (u1 + up
2 + up

3), curlφ〉0,K = 0 ∀φ ∈ P0
p (K), (1.5)

where 〈·, ·〉H̃−1/2(K) and 〈·, ·〉0,K denote the H̃−1/2(K)- and the L2(K)-inner products respectively.
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Our construction of the interpolation operator Πdiv,− 1
2

p is much in the spirit of [19]. In a more recent
publication [18] Demkowicz presents a unified theory of projection-based interpolation operators and their
commuting properties. Whereas in [19] the construction of the interpolation operator is based on L2-inner
products (see (2.21) below), in [18] this technique is generalized to inner products of Sobolev spaces of order
≥ − 1

2 . We focus precisely on the H̃−1/2-inner product, used in (1.4), which is more natural than the L2-inner
product in the boundary element setting.

For the H(curl)-conforming interpolation operator Πcurl
− 1

2
, Demkowicz proves an almost optimal error es-

timate [18], Theorem 4.3, under the same regularity assumption (with curl instead of div) as in our error
estimate, Theorem 1.3 below. The operator Πcurl

− 1
2

is defined by H−1/2-projections on the element level and

needs H−1-regularity of the tangential trace of the given function (cf. [18], eq. (148) with s = 1
2 ). This limit

case of the trace theorem (cf. [18], No. (154)) causes an additional (log p)1/2-factor in the error bound. Our
operator is different in the sense that we are using different inner products in (1.4) and (1.5), namely H̃−1/2

and L2, respectively, instead of L2 [19] or H−1/2 [18]. In our setting the corresponding regularity makes the
normal trace of the given function well defined (see Lem. 2.1 below). Here, not only the different orders of
the norms are essential (which has been observed by Demkowicz [18], Nos. (154), (155)) but also the subtle
difference between H̃−1/2 and H−1/2. By this careful selection of inner products we are able to define the
operator Πdiv,− 1

2
p so that it satisfies an optimal error estimate and is uniformly stable in p (for functions in Hr

(r > 0) whose divergence is in H̃−1/2).
The H̃−1/2(K)-inner product has to be written in an appropriate explicit form. Of particular importance for

our analysis is the following property of the H̃−1/2(K)-inner product 〈u, v〉H̃−1/2(K): for a constant function v,
it reduces to the L2(K)-inner product, i.e.,

〈u, 1〉H̃−1/2(K) = 〈u, 1〉0,K ∀u ∈ H̃−1/2(K). (1.6)

An inner product satisfying this property is presented in the Appendix (see Lems. A.2 and A.3). Other discrete
inner products, being equivalent to the continuous inner products for polynomials, are analysed in [17].

In the following three theorems we formulate the main results of the paper – the properties of the operator
Πdiv,− 1

2
p (all proofs are given in Sect. 3 below).
The first theorem justifies the definition of the operator and states its continuity.

Theorem 1.1. For r > 0 the operator

Πdiv,− 1
2

p : Hr(K) ∩ H̃−1/2(div,K) → L2(K) ∩ H̃−1/2(div,K)

is well defined and bounded, with its operator norm being independent of p, i.e., there exists a constant C > 0
independent of p (but depending on r) such that∥∥∥Πdiv,− 1

2
p

∥∥∥
L
≤ C, (1.7)

where ‖ · ‖L is the operator norm in the space L
(
Hr(K) ∩ H̃−1/2(div,K),L2(K) ∩ H̃−1/2(div,K)

)
. Moreover,

the operator Πdiv,− 1
2

p preserves polynomial vector fields, i.e., Πdiv,− 1
2

p vp = vp for any vp ∈ PRT
p (K).

The next theorem states the commuting diagram property analogous to (1.2).

Theorem 1.2. For r > 0 the following diagram commutes:

H1+r(K) curl−→ Hr(K) ∩ H̃−1/2(div,K) div−→ H̃−1/2(K)⏐⏐� Π1
p

⏐⏐� Πdiv,− 1
2

p

⏐⏐� Π−1/2
p−1

Pp(K) curl−→ PRT
p (K) div−→ Pp−1(K)

(1.8)

where Π−1/2
p : H̃−1/2(K) → Pp(K) denotes the H̃−1/2-projector.
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The third theorem provides an error estimate for the interpolation operator Πdiv,− 1
2

p in the norm of the space
H̃−1/2(div,K), which is closely related to the energy space for the electric field integral equation (a boundary
integral formulation of Maxwell’s equations in 3D).

Theorem 1.3. If u ∈ Hr(div,K) with r > 0, then there exists a positive constant C independent of u and p
such that

‖u− Πdiv,− 1
2

p u‖H̃−1/2(div,K) ≤ C p−(r+1/2) ‖u‖Hr(div,K). (1.9)

Remark 1.1. Using similar constructions it is possible to introduce a stable H(div)-conforming p-interpolation
operator for even less regular vector fields u ∈ Hr(K) ∩ H̃s(div,K), r > 0, −1 ≤ s < − 1

2 . However, our proof
of the commuting diagram property carries over to this operator if the H̃s(K)-inner product reduces to the
L2-inner product for a constant function (cf. property (1.6)), which is an open problem. Although we note that
such an operator would be of purely theoretical interest.

Remark 1.2. Theorem 1.3 states the interpolation error estimate for sufficiently regular vector fields, for which
one can also apply the operator Πdiv

p . For BIE of electromagnetics on open surfaces, the solution is less regular
and belongs to Hr(div,Γ), where r ∈ (− 1

2 , 0) and Γ is an open surface (see [15], Sect. 4.4, and [4], Appendix A).
To obtain the error estimate for the corresponding BEM in this case, one can apply the (global) orthogonal
projection Pp with respect to the energy norm ‖ · ‖X. Then the estimate for ‖u−Ppu‖X can be reduced to the
estimate obtained in Theorem 1.3 in the same way as in [12] or [5]. Note that using the projector Pp locally does
not guarantee the conformity of approximations (i.e., the continuity of normal components across inter-element
boundaries). Moreover, the projector Pp does not satisfy the commuting diagram property in (1.8), and, thus,
it is not suitable for such purposes as the convergence analysis and the proof of the discrete compactness.

The rest of the paper is organised as follows. Section 2 gives necessary preliminaries: we introduce the
notation, recall definitions of functional spaces of scalar functions and vector fields, and collect auxiliary results.
In particular, we give a more detailed description of the interpolation operators Π1

p, Πdiv
p and summarise their

properties (see Sect. 2.5). In Section 3 we prove the main theorems formulated above. Finally, in the Appendix
we introduce some equivalent norms in the Sobolev spaces Hr(K) and H̃r(K) (r = ± 1

2 ), derive expressions for
corresponding inner products, and establish the key property (1.6) for the H̃−1/2-inner product.

2. Preliminaries

2.1. Functional spaces and polynomial sets

In what follows, p ≥ 0 will always specify a polynomial degree and C denotes a generic positive constant
which is independent of p and involved functions, unless stated otherwise. Furthermore, throughout the paper,
K is either the equilateral reference triangle T = {x = (x1, x2); x2 > 0, x2 < x1

√
3, x2 < (1 − x1)

√
3} or the

reference square Q = (0, 1)2. A generic edge of K will be denoted by �, and n denotes the outward normal unit
vector to ∂K.

We will use the standard definitions for the Sobolev spaces Hr(Ω) (r ≥ 0) of scalar functions on Ω, see,
e.g., [23] (hereafter, Ω is either the unit interval I = (0, 1) or the reference element K). The norms in these
spaces are denoted by ‖ · ‖Hr(Ω). For r ∈ (0, 1) we will also need the Sobolev spaces H̃r(Ω) which are defined
by interpolation. We use the real K-method of interpolation (see [23]) to define

H̃r(Ω) =
(
L2(Ω), Ht

0(Ω)
)

r
t ,2

(1/2 < t ≤ 1, 0 < r < t).

Here, Ht
0(Ω) (0 < t ≤ 1) is the completion of C∞

0 (Ω) in Ht(Ω) and we identify H1
0 (Ω) with H̃1(Ω). Note that

the Sobolev spaces Hr(Ω) also satisfy the interpolation property

Hr(Ω) =
(
L2(Ω), H1(Ω)

)
r,2

(0 < r < 1)

with equivalent norms.
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The L2-inner product and the corresponding L2-norm on Ω are denoted by 〈·, ·〉0,Ω and ‖ · ‖0,Ω, respectively.
For r ∈ [−1, 0) the Sobolev spaces and their norms are defined by duality with L2(Ω) = H0(Ω) = H̃0(Ω) as
pivot space:

Hr(Ω) =
(
H̃−r(Ω)

)′
, H̃r(Ω) =

(
H−r(Ω)

)′
,

‖u‖Hr(Ω) = sup
0�=v∈H̃−r(Ω)

|〈u, v〉0,Ω|
‖v‖H̃−r(Ω)

, ‖u‖H̃r(Ω) = sup
0�=v∈H−r(Ω)

|〈u, v〉0,Ω|
‖v‖H−r(Ω)

· (2.1)

Note that the Sobolev spaces Hr and H̃r on any edge � ⊂ ∂K are defined by using the definitions of the
corresponding spaces on the interval I.

In the Appendix we consider some other expressions for norms in the Sobolev spaces Hr(K) and H̃r(K)
with r = ± 1

2 . We will prove their equivalence to the norms defined above, and we will also derive expressions
for corresponding inner products.

Throughout the paper, we use boldface symbols for vector fields. The spaces (or sets) of vector fields are
denoted in boldface as well (e.g., Hr(K) = (Hr(K))2), with their norms and inner products being defined
component-wise. Similarly to the scalar case, the norm and inner product in L2(K) will be denoted by 〈·, ·〉0,K

and ‖ · ‖0,K , respectively, which should not lead to any confusion. The standard notation will be used for
differential operators ∇ = (∂/∂x1, ∂/∂x2), div = ∇·, curl = ∇×, and for the Laplace operator Δ = div∇.

Furthermore, we will use the following spaces

Hr(div,K) := {u ∈ Hr(K); div u ∈ Hr(K)}, r ≥ 0

and
H̃r(div,K) := {u ∈ H̃r(K); div u ∈ H̃r(K)}, r ∈

[
− 1,− 1

2

]
.

These spaces are equipped with their graph norms ‖ · ‖Hr(div,K) and ‖ · ‖H̃r(div,K), respectively. For r = 0 we
drop the superscript in the above notation: H0(div,K) = H(div,K).

Finally, we will need two sub-spaces incorporating homogeneous boundary conditions for the trace of the
normal component on ∂K. By H0(div,K) (resp., H̃−1/2

0 (div,K)) we denote the subspace of elements u ∈
H(div,K) (resp., u ∈ H̃−1/2(div,K)) such that for all v ∈ C∞(K) there holds

〈u,∇v〉0,K + 〈div u, v〉0,K = 0. (2.2)

We note that if u ∈ H̃−1/2
0 (div,K), then identity (2.2) holds for any v ∈ H3/2(K) by density. In particular,

H̃−1/2
0 (div,K) is a closed subspace of H̃−1/2(div,K).
Let us now introduce the polynomial sets we need. By Pp(I) we denote the set of polynomials of degree ≤ p

on the interval I, and P0
p(I) denotes the subset of Pp(I) which consists of polynomials vanishing at the end

points of I. In particular, these two sets will be used for any edge � ⊂ ∂K.
Further, P1

p (T ) denotes the set of polynomials on T of total degree ≤ p, and P2
p1,p2

(Q) is the set of polynomials
on Q of degree ≤ p1 in x1 and of degree ≤ p2 in x2. For p1 = p2 = p we denote P2

p (Q) = P2
p,p(Q), and we will

use the unified notation Pp(K), which refers to P1
p (T ) if K = T and to P2

p(Q) if K = Q. The corresponding
set of polynomial (scalar) bubble functions on K is denoted by P0

p (K).
Let us denote by PRT

p (K) the RT-space of order p ≥ 1 on the reference element K (see, e.g., [10,25]), i.e.,

PRT
p (K) = (Pp−1(K))2 ⊕ xPp−1(K) =

⎧⎨⎩(P1
p−1(T ))2 ⊕ xP1

p−1(T ) if K = T ,

P2
p,p−1(Q) × P2

p−1,p(Q) if K = Q.

The subset of PRT
p (K) which consists of vector-valued polynomials with vanishing normal trace on the boundary

∂K (vector bubble-functions) will be denoted by PRT,0
p (K).



260 A. BESPALOV AND N. HEUER

2.2. Auxiliary lemmas

First, let us formulate the following result, which will be used frequently in what follows.

Lemma 2.1. The normal trace mapping u �→ u · n defines a linear and continuous operator from Hs(K) ∩
H̃−1+s(div,K) to H−1/2+s(∂K) for s ∈ [0, 1

2 ).

Proof. Let us denote by γtr the standard (scalar) trace operator with γtr : H1−s(K) → H1/2−s(∂K) for
s ∈ [0, 1

2 ), and let γ−1
tr : H1/2−s(∂K) → H1−s(K) be a right inverse of γtr. Let u ∈ Hs(K) ∩ H̃−1+s(div,K).

Taking an arbitrary v ∈ H1/2−s(∂K) we integrate by parts to obtain∫
∂K

(u · n) v dσ =
∫
K

(div u) γ−1
tr v dx +

∫
K

u · ∇(γ−1
tr v) dx

≤ ‖div u‖H̃−1+s(K) ‖γ
−1
tr v‖H1−s(K) + ‖u‖Hs(K) ‖∇(γ−1

tr v)‖H−s(K)

≤ C
(
‖u‖Hs(K) + ‖divu‖H̃−1+s(K)

)
‖v‖H1/2−s(∂K).

Hence, u · n ∈ H−1/2+s(∂K) and we prove the continuity of the normal trace mapping:

‖u · n‖H−1/2+s(∂K) = sup
0�=v∈H1/2−s(∂K)

|
∫

∂K
(u · n) v dσ|

‖v‖H1/2−s(∂K)

≤ C
(
‖u‖Hs(K) + ‖div u‖H̃−1+s(K)

)
.

�
We will also need the following p-approximation result in 2D (see [1], Lem. 4.1).

Lemma 2.2. Let K be the reference triangle or square. Then there exists a family of operators {πp},
p = 1, 2, . . . , πp : Hr(K) → Pp(K) such that for any f ∈ Hr(K), r ≥ 0 there holds

‖f − πpf‖Ht(K) ≤ Cp−(r−t)‖f‖Hr(K), 0 ≤ t ≤ r.

Moreover, πp preserves polynomials of degree p, i.e., πpf = f if f ∈ Pp(K).

We use this result, in particular, to prove the next lemma, which provides an optimal error estimate for the
H̃−1/2-projector Π−1/2

p : H̃−1/2(K) → Pp(K).

Lemma 2.3. Let φ ∈ Hr(K), r > − 1
2 . Then for any p ≥ 0 there holds

‖φ− Π−1/2
p φ‖H̃−1/2(K) ≤ C(p+ 1)−(1/2+r)‖φ‖Hr(K). (2.3)

Proof. If p = 0 then (2.3) is trivial. Let p ≥ 1. First, we assume that r > 0. Using the standard duality argument
and the p-approximation result of Lemma 2.2, we estimate the error of the L2-projection Π0

p : L2(K) → Pp(K)
in the H̃−1/2-norm:

‖φ− Π0
pφ‖H̃−1/2(K) ≤ ‖φ− Π0

pφ‖0,K sup
ϕ∈H1/2(K)\{0}

inf
ϕp∈Pp(K)

‖ϕ− ϕp‖0,K

‖ϕ‖H1/2(K)

≤ ‖φ− Π0
pφ‖0,K sup

ϕ∈H1/2(K)\{0}

‖ϕ− Π0
pϕ‖0,K

‖ϕ‖H1/2(K)

≤ C (p+ 1)−(1/2+r) ‖φ‖Hr(K).

This estimate yields (2.3) due to the minimization property of the H̃−1/2-projection.
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Now, let r ∈ (− 1
2 , 0]. Assuming that φ ∈ Hs(K) = H̃s(K) with some s ∈ (0, 1

2 ) and using the first part of
the proof, we have

‖φ− Π−1/2
p φ‖H̃−1/2(K) ≤ C (p+ 1)−(1/2+s) ‖φ‖Hs(K).

On the other hand, it is trivial that

‖φ− Π−1/2
p φ‖H̃−1/2(K) ≤ ‖φ‖H̃−1/2(K).

Therefore, we prove by interpolation that

‖φ− Π−1/2
p φ‖H̃−1/2(K) ≤ C (p+ 1)−(1/2+r) ‖φ‖H̃r(K)

≤ C(r) (p + 1)−(1/2+r) ‖φ‖Hr(K) ∀φ ∈ Hs(K).

Hence, by density of regular functions in Hr(K), we obtain (2.3), and the proof is finished. �

The following lemma states the inverse inequality for polynomials on the reference element K.

Lemma 2.4. Let vp ∈ Pp(K). Then for any s, r ∈ [−1, 1] with s ≤ r there holds

‖v‖Hr(K) ≤ C p2(r−s) ‖v‖Hs(K),

where C is a positive constant independent of p.

For r ≥ 0, s = 0 the proof is based on Schmidt’s inequality and given in [20] for both types of reference
elements (see Lem. 5.1 and its proof therein). By using interpolation arguments and induction, this result has
been extended in [21] to the full range of parameters s, r ∈ [−1, 1].

2.3. The regularized Poincaré integral operators

In [16], Costabel and McIntosh studied a regularized version of the Poincaré-type integral operator acting on
differential forms in R

n. They proved, in particular, that this operator is bounded on a wide range of functional
spaces including the whole scale of Sobolev spaces Hr(Ω) (r ∈ R) on a bounded Lipschitz domain Ω which is
star-like with respect to an open ball. Moreover, the essential polynomial preserving property of the classical
Poincaré map is retained by its regularized version. Thus, the results of [16] have immediate applications to
the analysis of high-order elements (see, e.g., [3,6,22]).

Let us formulate some results of [16] in two particular cases. Namely, we will define two Poincaré-type
integral operators: one operator acts on scalar functions, and the other one acts on divergence-free vector fields.
In both cases the functions and vector fields are defined on the reference element K. Denoting by B an open
ball in K, let us consider a smoothing function

θ ∈ C∞(R2), supp θ ⊂ B,

∫
B

θ(a) da = 1, a = (a1, a2).

Then the first regularized Poincaré-type integral operator R : C∞(K̄) → (C∞(K̄))2 (i.e., the operator acting
on scalar functions) is defined as Rψ = (R1, R2), where

Ri(x) :=
∫
B

θ(a) (xi − ai)

1∫
0

tψ(a + t(x − a)) dt da, i = 1, 2.
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The second operator acting on vector fields is defined as follows:

A : (C∞(K̄))2 → C∞(K̄),

Au(x) :=
∫
B

θ(a)
(

(x2 − a2)

1∫
0

u1(a + t(x − a)) dt− (x1 − a1)

1∫
0

u2(a + t(x − a)) dt
)

da,

where u = (u1, u2).
The following properties of the operators R and A are easy to check directly (see also [16], Prop. 4.2):

(R1) R is a right inverse of the div operator, i.e.,

div(Rψ) = ψ ∀ψ ∈ Hr(K), r ≥ 0;

(A1) if u is divergence-free, then A is a right inverse of the vector curl, i.e.,

curl(Au) = u ∀u ∈ Hr(div0,K) = {u ∈ Hr(K); div u = 0 in K}, r ≥ 0.

The operators R and A satisfy the following continuity properties (see [16], Cor. 3.4):

(R2) the mapping R defines a bounded operator Hr−1(K) → Hr(K) for any r ≥ 0;
(A2) the mapping A defines a bounded operator Hr(K) → Hr+1(K) for any r ≥ 0.

Furthermore, the operators R and A preserve polynomials:

(R3) R maps Pp(K) into PRT
p+1(K);

(A3) A maps PRT
p (K) into Pp(K).

We will use the operators R and A to prove the following auxiliary lemma.

Lemma 2.5. Let r > 0 and s ≥ r − 1. If u ∈ Hr(K) and div u ∈ Hs(K), then there exist a function
ψ ∈ Hr+1(K) and a vector field v ∈ Hs+1(K) such that

u = curlψ + v. (2.4)

Moreover,

‖v‖Hs+1(K) ≤ C ‖divu‖Hs(K) and ‖ψ‖Hr+1(K) ≤ C ‖u‖Hr(K). (2.5)

Proof. The proof is exactly the same as for Lemma 2.3 in [3]. We use the operators R and A to define ψ and v:

v := R(div u) ∈ Hs+1(K), ψ := A(u −R(div u)) ∈ Hmin{r,s+1}+1(K) = Hr+1(K).

Hence, due to properties (R1) and (A1), the vector field u can be decomposed as in (2.4):

u = (u−R(div u)) +R(div u) = curlψ + v.

Inequalities (2.5) are then obtained by using the continuity properties of the Poincaré-type operators and the
boundedness of the divergence operator as a mapping Hr(K) → Hr−1(K) for r ≥ 0 (cf. [3], Lem. 2.3). �

Remark 2.1. Note that u ∈ Hr(K) implies that div u ∈ Hr−1(K) for r > 0. That is why, it is assumed in
Lemma 2.5 that s ≥ r − 1.
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2.4. Discrete Friedrichs inequalities

In this subsection we improve the discrete Friedrichs inequalities of [19], Theorem 1. This improvement has
also become possible due to the properties of the regularized Poincaré integral operators which were established
in [16] and summarised in the previous subsection.

Lemma 2.6. There exist positive constants C1, C2 independent of p such that:

(i) for any u ∈ PRT,0
p (K) satisfying 〈u, curlϕ〉0,K = 0 for all ϕ ∈ P0

p (K), there holds

‖u‖0,K ≤ C1 ‖div u‖H̃−1(K); (2.6)

(ii) for any u ∈ PRT
p (K) satisfying 〈u, curlϕ〉0,K = 0 for all ϕ ∈ Pp(K), there holds

‖u‖0,K ≤ C1 ‖div u‖H−1(K). (2.7)

Proof. Following the idea of [19], Theorem 1, the proof reduces to finding a continuous right inverse of the
divergence operator within appropriate polynomial spaces. In particular, in order to prove the first statement
of the lemma one needs to construct an operator T mapping P̊p−1(K) := {ψ ∈ Pp−1(K);

∫
K ψ dx = 0} into

PRT,0
p (K) and satisfying the following properties:

div (T ψ) = ψ ∀ψ ∈ P̊p−1(K), (2.8)

‖T ψ‖0,K ≤ C ‖ψ‖H̃−1(K) ∀ψ ∈ P̊p−1(K). (2.9)

Then, given any u ∈ PRT,0
p (K) such that 〈u, curlϕ〉0,K = 0 for all ϕ ∈ P0

p (K), we prove (2.6):

‖u‖0,K = min
ϕ∈P0

p(K)
‖u− curlϕ‖0,K ≤ ‖u− (u − T (div u))‖0,K

= ‖T (div u)‖0,K

(2.9)

≤ C ‖div u‖H̃−1(K).

Here, div u ∈ P̊p−1(K) and the existence of ϕ ∈ P0
p (K) satisfying curlϕ = u−T (div u) follows from two facts:

u− T (div u) ∈ PRT,0
p (K)

and

div(u − T (div u))
(2.8)
= div u − div u = 0.

Let us construct the operator T satisfying (2.8), (2.9). Let ψ ∈ P̊p−1(K). Applying the regularized Poincaré
operator R we define v := Rψ. Then v ∈ PRT

p (K), due to property (R3) of this operator. Moreover, using
property (R1) and the fact that

∫
K
ψ dx = 0 we conclude that v · n has zero average along ∂K:∫

∂K

v · n dσ =
∫
K

div v dx =
∫
K

div(Rψ) dx =
∫
K

ψ dx = 0.

Hence, there exists a continuous piecewise polynomial φ defined on ∂K such that φ|� ∈ Pp(�) for any edge
� ⊂ ∂K and ∂φ

∂σ = v · n on ∂K. Therefore, applying the polynomial extension result of Babuška et al. [2],
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we find a polynomial φ̃ ∈ Pp(K) such that φ̃|∂K = φ and there holds

‖curl φ̃‖0,K ≤ ‖φ̃‖H1(K) ≤ C ‖φ‖H1/2(∂K)/R

≤ C
∥∥∥ ∂φ

∂σ

∥∥∥
H−1/2(∂K)

([19], Lem. 2)

= C ‖v · n‖H−1/2(∂K) (∂φ
∂σ = v · n)

≤ C (‖v‖0,K + ‖div v‖H̃−1(K)) (Lem. 2.1 with s = 0)

= C (‖Rψ‖0,K + ‖div(Rψ)‖H̃−1(K)) (v = Rψ).

Hence, using properties (R1) and (R2) of the operator R, we obtain

‖curl φ̃‖0,K ≤ C ‖ψ‖H̃−1(K). (2.10)

Now we can define the desired operator T as T ψ = Rψ − curl φ̃. It is easy to check that T : P̊p−1(K) →
PRT,0

p (K) and (2.8) holds. Making use of (2.10) and the continuity of the operator R : H−1(K) → L2(K)
(see (R2)), we also prove (2.9).

The proof of statement (ii) is analogous. In this case we can use the operator R : H−1(K) → L2(K) for the
desired continuous right inverse of div. Then R ≡ T maps Pp−1(K) into PRT

p (K) and (2.7) is derived similarly
as above. �

2.5. H1- and H(div)-conforming interpolation operators

Let us briefly sketch the definitions and summarise the properties of the H1-conforming interpolation oper-
ator Π1

p and the H(div)-conforming interpolation operator Πdiv
p from [19].

Let g ∈ H1+r(K), r > 0. To define the interpolant Π1
p g, one starts with the standard linear interpolation

of g at the vertices of K:
g1 ∈ P1(K), g1 = g at each vertex of K.

Then, for each edge � ⊂ ∂K, we define a polynomial g2,� by using the projection

g2,� ∈ P0
p (�) : ‖(g − g1)|� − g2,�‖H̃1/2(�) → min. (2.11)

Extending g2,� by zero onto the remaining part of ∂K (and keeping its notation), using some polynomial
extension Ep from the boundary, and summing up over all edges we define

gp
2 :=

∑
�⊂∂K

Ep(g2,�) ∈ Pp(K). (2.12)

Finally, we define the polynomial bubble gp
3 by projection in the H1-semi-norm

gp
3 ∈ P0

p (K) : |g − (g1 + gp
2 + gp

3)|H1(K) → min. (2.13)

Then the interpolant Π1
p g is defined as the sum

Π1
p g := g1 + gp

2 + gp
3 ∈ Pp(K). (2.14)
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Now we proceed to the H(div)-conforming interpolation operator. Given a vector field u ∈ Hr(K)∩H(div,K)
with r > 0, the interpolant ũp = Πdiv

p u ∈ PRT
p (K) is also defined as the sum of three terms:

ũp = u1 + up
2 + ũp

3.

Here, u1 is a lowest order interpolant defined as

u1 =
∑

�⊂∂K

⎛⎝∫
�

u · n dσ

⎞⎠ φ�, (2.15)

where φ� are the standard basis functions (associated with edges �) for PRT
1 (K) such that

φ� · n =

{
1 on �,
0 on ∂K\�.

For any edge � ⊂ ∂K one has ∫
�

(u − u1) · n dσ = 0. (2.16)

Hence, there exists a function ψ, defined on the boundary ∂K, such that

∂ψ

∂σ
= (u − u1) · n, ψ = 0 at all vertices. (2.17)

Then, for each edge �, we define ψ�
2 ∈ P0

p (�) by projection

〈ψ|� − ψ�
2, φ〉H̃1/2(�) = 0 ∀φ ∈ P0

p (�) (2.18)

(see Rem. A.1 for the expression of 〈·, ·〉H̃1/2(�)). Extending ψ�
2 by zero from � onto ∂K (and keeping its notation),

we denote by ψ�
2,p ∈ Pp(K) a polynomial extension of ψ�

2 from ∂K onto K, i.e.,

ψ�
2,p ∈ Pp(K), ψ�

2,p|� = ψ�
2, ψ�

2,p|∂K\� = 0. (2.19)

Then we set
up

2 =
∑

�⊂∂K

up
2,�, where up

2,� = curlψ�
2,p. (2.20)

The interior interpolant ũp
3 is a vector bubble function living in PRT,0

p (K) and satisfying the following system
of equations:

〈div(u − (u1 + up
2 + ũp

3)), div v〉0,K = 0 ∀v ∈ PRT,0
p (K), (2.21)

〈u− (u1 + up
2 + ũp

3), curlφ〉0,K = 0 ∀φ ∈ P0
p (K). (2.22)

These interpolation operators satisfy the following properties.

Proposition 2.1. (cf. [19], Props. 1–3).
(1) For r > 0 the operators Π1

p : H1+r(K) → H1(K) and Πdiv
p : Hr(K)∩H(div,K) → H(div,K) are well

defined and bounded, with corresponding operator norms independent of the polynomial degree p.
(2) The operators Π1

p and Πdiv
p preserve scalar polynomials in Pp(K) and polynomial vector fields in PRT

p (K),
respectively.

(3) For r > 0, the diagram in (1.2) commutes.
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The next proposition gives optimal interpolation error estimates for the operators Π1
p and Πdiv

p . These
estimates are proved in [3] (see Thms. 4.1 and 4.2 therein).

Proposition 2.2.

(i) Let g ∈ H1+r(K), r > 0. Then there exists a positive constant C independent of p and g such that

|g − Π1
p g|H1(K) ≤ C p−r ‖g‖H1+r(K).

(ii) Let u ∈ Hr(div,K), r > 0. Then there exists a positive constant C independent of p and u such that

‖u− Πdiv
p u‖H(div,K) ≤ C p−r ‖u‖Hr(div,K).

3. Proofs of theorems

In this section we prove the main results of the paper.

Proof of Theorem 1.1. Let u ∈ Hr(K)∩ H̃−1/2(div,K), r > 0. We will study each term on the right-hand side
of (1.3). Throughout the proof we denote by s a small parameter such that 0 < s < min { 1

2 , r} for given r > 0.

Step 1. Fixing an edge � ⊂ ∂K and using a function

φ� ∈ H1−s(K), φ� =

{
1 on �,
0 on ∂K\�

as a test function, we integrate by parts to obtain∫
�

u · n dσ =
∫

∂K

(u · n)φ� dσ =
∫
K

(div u)φ� dx +
∫
K

u · ∇φ� dx

≤ ‖div u‖H̃−1+s(K) ‖φ�‖H1−s(K) + ‖u‖Hs(K) ‖∇φ�‖H−s(K)

≤ C(φ�, s)
(
‖u‖Hr(K) + ‖divu‖H̃−1/2(K)

)
.

Note that if div u ∈ H−1+s(K) then an extension to div u ∈ H̃−1+s(K) exists but is not unique. However,
by assumption divu ∈ H̃−1/2(K) ⊂ H̃−1+s(K), which is a unique extension (see [24] for details). Thus, u1

in (2.15) is well defined. Moreover, since u1 is a lowest order interpolant, we find by the equivalence of norms
in finite-dimensional spaces that

‖u1‖H(div,K) ≤ C
∑

�⊂∂K

∣∣∣ ∫
�

u · n dσ
∣∣∣ ≤ C

(
‖u‖Hr(K) + ‖divu‖H̃−1/2(K)

)
.

Hence, due to the finite dimensionality of u1, we obtain by using Lemma 2.1

‖(u − u1) · n‖H−1/2+s(∂K) ≤ C
(
‖u− u1‖Hs(K) + ‖div(u− u1)‖H̃−1+s(K)

)
≤ C

(
‖u‖Hs(K) + ‖div u‖H̃−1+s(K) + ‖u1‖H(div,K)

)
≤ C

(
‖u‖Hr(K) + ‖divu‖H̃−1/2(K)

)
. (3.23)
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Step 2. From the construction of u1 and from the result of Step 1 we conclude that

(u − u1) · n ∈ H−1/2+s(∂K),
∫

∂K

(u − u1) · n dσ = 0.

Therefore, due to the isomorphism (see [19], Lem. 2)

∂

∂σ
: H1/2+s(∂K)/R → H

−1/2+s
∗ (∂K) = {φ ∈ H−1/2+s(∂K); 〈u, 1〉0,∂K = 0},

the function ψ in (2.17) is well defined, ψ ∈ H1/2+s(∂K), ψ|� ∈ H̃1/2(�) for any edge � ⊂ ∂K, and∑
�⊂∂K

‖ψ|�‖H̃1/2(�) ≤ C
∑

�⊂∂K

‖ψ|�‖H
1/2+s
0 (�)

≤ C ‖ψ‖H1/2+s(∂K) ≤ C ‖(u− u1) · n‖H−1/2+s(∂K). (3.24)

Hence, (2.18) is uniquely solvable and

‖ψ�
2‖H̃1/2(�) ≤ C ‖ψ|�‖H̃1/2(�). (3.25)

Furthermore, applying the polynomial extension result of Babuška et al. [2], we find the desired polynomial
ψ�

2,p ∈ Pp(K) (see (2.19)) satisfying
‖ψ�

2,p‖H1(K) ≤ C ‖ψ�
2‖H̃1/2(�). (3.26)

Thus, up
2 in (2.20) is well defined. Putting together (3.24)–(3.26) we find

‖up
2‖0,K ≤ C

∑
�⊂∂K

‖curlψ�
2,p‖0,K ≤ C

∑
�⊂∂K

‖ψ�
2,p‖H1(K) ≤ C ‖(u− u1) · n‖H−1/2+s(∂K).

Hence, making use of (3.23), we obtain

‖up
2‖H(div,K) = ‖up

2‖0,K ≤ C
(
‖u‖Hr(K) + ‖div u‖H̃−1/2(K)

)
. (3.27)

Step 3. The vector bubble function up
3 is uniquely defined by (1.4)–(1.5). To estimate the norms of up

3 and
div up

3 we use the discrete Helmholtz decomposition

up
3 = vp + curlφp, (3.28)

where φp ∈ P0
p (K) and vp ∈ PRT,0

p (K) is such that 〈vp, curlϕ〉0,K = 0 for all ϕ ∈ P0
p (K).

From (1.4) one has by using the result of Step 1

‖divup
3‖H̃−1/2(K) ≤ C ‖div(u − u1)‖H̃−1/2(K) ≤ C

(
‖divu‖H̃−1/2(K) + |div u1|

)
≤ C

(
‖u‖Hr(K) + ‖divu‖H̃−1/2(K)

)
. (3.29)

Then, applying Lemma 2.6(i) and recalling that div vp = div up
3, we find

‖vp‖0,K ≤ C ‖divvp‖H̃−1(K) ≤ C ‖divup
3‖H̃−1/2(K). (3.30)

Since 〈vp, curlφp〉0,K = 0, we estimate the norm of curl φp by using (1.5) and by employing the results of the
first two steps:

‖curlφp‖0,K ≤ ‖u− u1 − up
2‖0,K ≤ C

(
‖u‖Hr(K) + ‖divu‖H̃−1/2(K)

)
. (3.31)
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Combining (3.29)–(3.31) and applying the triangle inequality we obtain, by making use of decomposition (3.28),

‖up
3‖0,K + ‖div up

3‖H̃−1/2(K) ≤ C
(
‖u‖Hr(K) + ‖div u‖H̃−1/2(K)

)
.

The boundedness of the operator Πdiv,− 1
2

p (and inequality (1.7)) now follows by putting together the results of
the three individual steps and by applying the triangle inequality.

The polynomial-preserving property of the operator Πdiv,− 1
2

p easily follows from its definition. �

It is essential for the proof of Theorem 1.2 given below that the H̃−1/2(K)-inner product satisfies (1.6)
(i.e., reduces to the L2(K)-inner product for a constant function). As it follows from Lemma A.3 in the
Appendix, the H̃−1/2(K)-inner product given by (A.12) satisfies this property.

Proof of Theorem 1.2. To prove the first part of the diagram, we consider u = curl g, g ∈ H1+r(K). Let us

decompose Π1
pg and Πdiv,− 1

2
p u as in (2.14) and (1.3), respectively. Then it follows from the definitions of these

interpolation operators that u1 = curl g1 and up
2 = curl gp

2 (cf. [19]). Hence, div u = div u1 = div up
2 = 0 and

it follows from (1.4) that div up
3 = 0. Therefore, decomposing up

3 as in (3.28) and comparing (1.5) with (2.13),

we conclude that up
3 = curl gp

3 . Thus, Πdiv,− 1
2

p (curl g) = curl(Π1
pg).

Let us prove the second part of the diagram. For any ϕ ∈ Pp−1(K) there exists vp ∈ PRT
p (K) such that

div vp = ϕ. Therefore, decomposing Πdiv,− 1
2

p u as in (1.3), we need to show that for all vp ∈ PRT
p (K) there

holds 〈
div

(
u − Πdiv,− 1

2
p u

)
, div vp

〉
H̃−1/2(K)

= 〈div(u − (u1 + up
3)), div vp〉H̃−1/2(K) = 0. (3.32)

Let us also decompose vp = Πdiv,− 1
2

p vp ∈ PRT
p (K) as in (1.3):

vp = v1 + vp
2 + vp

3 , div v1 = const., div vp
2 = 0, vp

3 ∈ PRT,0
p (K).

Then, recalling (1.4), applying Lemma A.3, and integrating by parts, we prove (3.32):〈
div

(
u − Πdiv,− 1

2
p u

)
, div vp

〉
H̃−1/2(K)

= 〈div(u − u1 − up
3), const.〉H̃−1/2(K) +

〈
div

(
u− Πdiv,− 1

2
p u

)
, div vp

3

〉
H̃−1/2(K)

= 〈div(u − u1 − up
3), const.〉0,K = const.

∫
∂K

(u− u1 − up
3) · n dσ = 0.

For the last step we used the fact that up
3 · n|∂K = 0 and then applied (2.16). �

For the proof of Theorem 1.3 we will need two auxiliary results regarding the new H(div)-conforming in-

terpolation operator Πdiv,− 1
2

p . These results are formulated in the next two lemmas: the first one concerns the

normal trace of the interpolant Πdiv,− 1
2

p u on the boundary ∂K, and the second one states some auxiliary error

estimates for Πdiv,− 1
2

p .

Lemma 3.1. Let u ∈ Hr(K) ∩ H̃−1/2(div,K) with r > 0, and let up = Πdiv,− 1
2

p u ∈ PRT
p (K). Then for any

edge � ⊂ ∂K there holds

‖(u− up) · n‖H̃−1(�) ≤ C p−1/2 ‖(u− up) · n‖H−1/2(∂K). (3.33)
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Proof. If u ∈ Hr(K) ∩H(div,K) with r > 0, then it was proved in [5], Lemma 3.3, that

‖(u− Πdiv
p u) · n‖H̃−1(�) ≤ C p−1/2 ‖(u− Πdiv

p u) · n‖H−1/2(∂K).

We note, however, that Πdiv
p u · n = Πdiv,−1/2

p u · n = (u1 + up
2) · n on the boundary ∂K, and, as it follows from

the proof of Theorem 1.1 above, u1 and up
2 are in fact well defined for u ∈ Hr(K) ∩ H̃−1/2(div,K), r > 0.

Therefore, the proof of Lemma 3.3 in [5] carries over to the case considered in this paper and inequality (3.33)
is valid. �

Lemma 3.2. Let r > 0 and s > max{− 1
2 , r − 1}. If u ∈ Hr(K) and div u ∈ Hs(K), then

‖div(u − Πdiv,− 1
2

p u)‖H̃−1/2(K) ≤ C p−(1/2+s) ‖div u‖Hs(K) (3.34)

and for any ε > 0 there holds

‖u− Πdiv,− 1
2

p u‖0,K ≤ C
(
p−r ‖u‖Hr(K) + ε−1 p−(s+1/2−ε)‖div u‖Hs(K)

)
. (3.35)

The positive constants C in (3.34) and (3.35) are independent of u and p.

Proof. Estimate (3.34) is an immediate consequence of the commuting diagram property (1.8) and Lemma 2.3:

‖divu − div(Πdiv,− 1
2

p u)‖H̃−1/2(K) = ‖divu − Π−1/2
p−1 (div u)‖H̃−1/2(K) ≤ C p−(1/2+s) ‖div u‖Hs(K).

Let us now prove (3.35). For p = 1 this estimate follows trivially from Theorem 1.1. Let p ≥ 2. Using Lemma 2.5
we decompose u as follows:

u = curlψ + v, ψ ∈ Hr+1(K), v ∈ Hs+1(K). (3.36)

Moreover, the norms of v and ψ are bounded as in (2.5). Then, applying the interpolation operator Πdiv,− 1
2

p

and using its commutativity with Π1
p (see (1.8)), we write

Πdiv,− 1
2

p u = Πdiv,− 1
2

p (curlψ) + Πdiv,− 1
2

p v = curl(Π1
pψ) + Πdiv,− 1

2
p v. (3.37)

Since Πdiv,− 1
2

p is a bounded operator preserving polynomials (see Thm. 1.1), one has for any polynomial vp ∈
(Pp−1(K))2 ⊂ PRT

p (K):

‖v − Πdiv,− 1
2

p v‖0,K = ‖v − vp − Πdiv,− 1
2

p (v − vp)‖0,K

≤ C inf
vp∈(Pp−1(K))2

(
‖v − vp‖Hε̃(K) + ‖div(v − vp)‖H̃−1/2(K)

)
≤ C ε−1 inf

vp∈(Pp−1(K))2
‖v − vp‖H1/2+ε(K), (3.38)

where ε̃ ∈ (0, 1
2 ) is fixed, ε > 0 is arbitrarily small, and for the last step we used Lemma 5 of [21] as well as the

boundedness of the divergence operator to estimate

‖div(v − vp)‖H̃−1/2(K) ≤ ‖div(v − vp)‖H̃−1/2+ε(K)

≤ C ε−1 ‖div(v − vp)‖H−1/2+ε(K) ≤ C ε−1 ‖v − vp‖H1/2+ε(K).
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Applying now Lemma 2.2 component-wise and using the first inequality in (2.5), we deduce from (3.38) that

‖v − Πdiv,− 1
2

p v‖0,K ≤ C ε−1 (p− 1)−(s+1/2−ε) ‖v‖Hs+1(K) ≤ C ε−1 p−(s+1/2−ε) ‖div u‖Hs(K). (3.39)

On the other hand, applying Proposition 2.2(i) and the second inequality in (2.5) we obtain

‖curl(ψ − Π1
pψ)‖0,K = |ψ − Π1

pψ|H1(K) ≤ C p−r ‖ψ‖H1+r(K) ≤ C p−r ‖u‖Hr(K). (3.40)

Combining (3.39) and (3.40) we prove (3.35) by making use of decompositions (3.36), (3.37) and the triangle
inequality. �

Now we are in a position to prove the main interpolation error estimate.

Proof of Theorem 1.3. For simplicity of notation we denote up := Πdiv,− 1
2

p u ∈ PRT
p (K). Let us consider an

auxiliary problem: find u0 ∈ H(div,K) such that

〈u − u0,v〉0,K + 〈div(u − u0), div v〉0,K = 0 ∀v ∈ H0(div,K), (3.41)

u0 · n = up · n on ∂K.

Then, using Lemma 4.8 in [12] and applying Lemmas 3.1 and 2.1, we estimate for t = −1, − 1
2

‖u− u0‖H̃t+1/2(div,K) ≤ C ‖(u− up) · n‖Ht(∂K) ≤ C pt+1/2 ‖(u − up) · n‖H−1/2(∂K)

≤ C pt+1/2
(
‖u−up‖0,K + ‖div(u−up)‖H̃−1/2(K)

)
. (3.42)

By the triangle inequality one has

‖u− up‖H̃−1/2(div,K) ≤ ‖u− u0‖H̃−1/2(div,K) + ‖u0 − up‖H̃−1/2(div,K). (3.43)

For the first term on the right-hand side of (3.43) we have by using (3.42) with t = −1:

‖u− u0‖H̃−1/2(div,K) ≤ C p−1/2
(
‖u− up‖0,K + ‖div(u− up)‖H̃−1/2(K)

)
. (3.44)

Now, we consider the second term on the right-hand side of (3.43) and prove that

‖u0 − up‖H̃−1/2(div,K) ≤ C
(
p−1/2 ‖u− up‖0,K + ‖div(u − up)‖H̃−1/2(K)

)
. (3.45)

Denote X := H̃−1/2
0 (div,K), and let X′ be the dual space of X (with L2(K) as pivot space). From [13],

Section 6, we know that any w ∈ X′ can be decomposed as follows:

w = ∇ f + curl g, f ∈ H1/2(K)/R, g ∈ H1
0 (K) ∩H3/2(K),

and
‖f‖H1/2(K)/R + ‖g‖H3/2(K) ≤ C ‖w‖X′ . (3.46)

Hence, recalling that u0 − up ∈ H0(div,K) ⊂ X, we have

‖u0 − up‖H̃−1/2(div,K) = sup
0 �=w∈X′

〈u0 − up,w〉0,K

‖w‖X′
= sup

0 �=w∈X′

〈u0 − up,∇ f + curl g〉0,K

‖w‖X′

= sup
0 �=w∈X′

−〈div(u0 − up), f〉0,K + 〈u0 − up, curl g〉0,K

‖w‖X′
· (3.47)
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Let gp ∈ P0
p (K). Using (1.5) with φ = gp and (3.41) with v = curl gp, we find that

〈u0 − up, curl gp〉0,K = 〈u− up, curl gp〉0,K − 〈u − u0, curl gp〉0,K = 0 ∀gp ∈ P0
p (K).

Therefore, selecting gp := Π1
pg ∈ P0

p (K) and using Proposition 2.2(i), we obtain from (3.47)

‖u0 − up‖H̃−1/2(div,K)

≤ sup
0 �=w∈X′

‖div(u0 − up)‖H̃−1/2(K) ‖f‖H1/2(K)/R + ‖u0 − up‖0,K |g − Π1
pg|H1(K)

‖w‖X′

≤ sup
0 �=w∈X′

‖div(u0 − up)‖H̃−1/2(K) ‖f‖H1/2(K)/R + C p−1/2 ‖u0 − up‖0,K ‖g‖H3/2(K)

‖w‖X′

(3.46)

≤ C
(
‖div(u0 − up)‖H̃−1/2(K) + p−1/2 ‖u0 − up‖0,K

)
. (3.48)

Both norms on the right-hand side of (3.48) are estimated by applying the triangle inequality and inequali-
ties (3.42) (with t = −1 and t = − 1

2 , respectively):

‖div(u0 − up)‖H̃−1/2(K) ≤ ‖u− u0‖H̃−1/2(div,K) + ‖div(u − up)‖H̃−1/2(K)

≤ C
(
p−1/2 ‖u− up‖0,K + ‖div(u− up)‖H̃−1/2(K)

)
(3.49)

and

‖u0 − up‖0,K ≤ ‖u− up‖0,K + ‖u− u0‖H(div,K)

≤ C
(
‖u− up‖0,K + ‖div(u− up)‖H̃−1/2(K)

)
. (3.50)

The desired inequality in (3.45) then follows from (3.48)–(3.50).
Now, collecting (3.44) and (3.45) in (3.43), we obtain

‖u− up‖H̃−1/2(div,K) ≤ C
(
p−1/2 ‖u− up‖0,K + ‖div(u − up)‖H̃−1/2(K)

)
.

Hence, recalling that up = Πdiv,− 1
2

p u and applying Lemma 3.2 with s = r and ε = 1
2 , we arrive at

estimate (1.9). �

Appendix A: Some equivalent norms and corresponding inner products
in the Sobolev spaces Hr and H̃r for r = ±1

2

In this appendix we consider the Sobolev spaces Hr and H̃r on the reference element K for r = ± 1
2 . We will

derive expressions for norms which are equivalent to those defined in Section 2.1. First, let us introduce some
notation.

(1) We denote by D the polyhedron (cube or triangular prism) such that D = K × (0, 1). Thus ∂D =
∪I

i=1Γ̄i (I = 5 if K = T and I = 6 if K = Q). Let K = Γ1 = {(x1, x2, 0); (x1, x2) ∈ K}, ΓI =
{(x1, x2, 1); (x1, x2) ∈ K}, and denote K̃ = ∂D\Γ̄I . Note that K̃ is an open surface. We will denote
by ν the outward normal unit vector to ∂D, and we will use the standard notation for the gradient ∇
and for the Laplace operator Δ, both acting on scalar functions of three variables.
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(2) Given u ∈ H−1/2(K), we denote by ũK the solution of the mixed problem: find ũK ∈ H1(D) such that

ΔũK = 0 in D, ∂ũK

∂ν = u on K, ũK = 0 on ∂D\K.

If u ∈ H−1/2(K̃), then we will use the same notation as above with K replaced by K̃.
(3) Given u ∈ H1/2(∂D), we denote by ˜̃u its harmonic extension, i.e., the solution of the Dirichlet problem:

find ˜̃u ∈ H1(D) such that
Δ˜̃u = 0 in D, ˜̃u = u on ∂D. (A.1)

(4) Given u ∈ H̃1/2(K), we denote by u◦ the extension of u by zero onto ∂D. Thus, u◦ ∈ H1/2(∂D).
We make use of standard definitions for the norm and the semi-norm in H1(D):

‖u‖H1(D) =
(
‖u‖2

0,D + |u|2H1(D)

)1/2

, |u|H1(D) = ‖∇u‖0,D.

Since H1/2(∂D) is the trace space of H1(D), the norm and the semi-norm in H1/2(∂D) can be equivalently
written as follows

‖u‖H1/2(∂D) � inf
U∈H1(D)

U|∂D=u

‖U‖H1(D),

|u|H1/2(∂D) � inf
U∈H1(D)

U|∂D=u

|U |H1(D) = ‖∇˜̃u‖0,D. (A.2)

Now we can define equivalent norms in H̃1/2(K) and H1/2(K):

‖u‖H̃1/2(K) � |u◦|H1/2(∂D) �
∥∥∥∇˜̃

u◦
∥∥∥

0,D
, (A.3)

‖u‖H1/2(K) � inf
U∈H̃1/2(K̃)

U|K=u

‖U‖H̃1/2(K̃), (A.4)

where ‖ · ‖H̃1/2(K̃) is defined as in (A.3), because K̃ is an open surface.
From (A.3) one can easily derive the expression for the corresponding H̃1/2(K)-inner product. In fact,

applying the parallelogram law twice, integrating by parts, and recalling notations (3)−(4), we find (see also [19])

〈u, v〉H̃1/2(K) =
〈
∇˜̃u◦,∇˜̃v◦ 〉

0,D
=

〈∂˜̃
u◦

∂ν
, ˜̃v◦ 〉

0,∂D

=
〈∂˜̃

u◦

∂ν
, v

〉
0,K

=
〈
u,
∂
˜̃
v◦

∂ν

〉
0,K

∀u, v ∈ H̃1/2(K). (A.5)

The space H−1/2(K) is the dual space of H̃1/2(K). We prove the following result regarding an equivalent
norm in H−1/2(K).

Lemma A.1. For any u ∈ H−1/2(K) there holds

‖u‖H−1/2(K) � ‖∇ũK‖0,D. (A.6)

The H−1/2-inner product corresponding to the norm on the right-hand side of (A.6) reads as

〈u, v〉H−1/2(K) = 〈u, ṽK〉0,K = 〈ũK , v〉0,K ∀u, v ∈ H−1/2(K). (A.7)
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Proof. Using notations (2)−(4), we integrate by parts to obtain for any u ∈ H−1/2(K) and any v ∈ H̃1/2(K)

〈
∇ũK ,∇˜̃

v◦
〉

0,D
=

〈∂ũK

∂ν
,
˜̃
v◦

〉
0,∂D

=
〈∂ũK

∂ν
,
˜̃
v◦

〉
0,K

+
〈∂ũK

∂ν
,
˜̃
v◦

〉
0,∂D\K

= 〈u, v〉0,K .

Hence, we find from (2.1) and (A.3)

‖u‖H−1/2(K) = sup
0�=v∈H̃1/2(K)

∣∣∣〈∇ũK ,∇˜̃
v◦

〉
0,D

∣∣∣
‖v‖H̃1/2(K)

� sup
0�=v∈H̃1/2(K)

∣∣∣〈∇ũK ,∇˜̃
v◦

〉
0,D

∣∣∣∥∥∥∇˜̃v◦ ∥∥∥
0,D

· (A.8)

Let w := ũK |K . One has w ∈ H̃1/2(K) because ũK = 0 on ∂D\K. Moreover, w◦ = ũK |∂D and, due to the

uniqueness of the solution to the Dirichlet problem (A.1), we conclude that ˜̃
w◦ = ũK . Therefore,

sup
0�=v∈H̃1/2(K)

∣∣∣〈∇ũK ,∇˜̃
v◦

〉
0,D

∣∣∣∥∥∥∇˜̃
v◦

∥∥∥
0,D

≥

∣∣∣〈∇ũK ,∇˜̃
w◦

〉
0,D

∣∣∣∥∥∥∇˜̃
w◦

∥∥∥
0,D

= ‖∇ũK‖0,D· (A.9)

On the other hand, it is easy to see that

sup
0�=v∈H̃1/2(K)

∣∣∣〈∇ũK ,∇˜̃
v◦

〉
0,D

∣∣∣∥∥∥∇˜̃v◦ ∥∥∥
0,D

≤ ‖∇ũK‖0,D. (A.10)

Now (A.6) immediately follows from (A.8)–(A.10).
Using (A.6) together with the parallelogram law we find

〈u, v〉H−1/2(K) =
〈
∇ũK ,∇ṽK

〉
0,D

∀u, v ∈ H−1/2(K).

Hence, integrating by parts and using notation (2), we derive (A.7). �

The following lemma states an analogous result for the space H̃−1/2(K) which is the dual space of H1/2(K).

Lemma A.2. For any u ∈ H̃−1/2(K) there holds

‖u‖H̃−1/2(K) �
∥∥∥∇(̃u◦)K̃

∥∥∥
0,D

. (A.11)

The H̃−1/2-inner product corresponding to the norm on the right-hand side of (A.11) reads as

〈u, v〉H̃−1/2(K) =
〈
u, (̃v◦)K̃

〉
0,K

=
〈
(̃u◦)K̃ , v

〉
0,K

∀u, v ∈ H̃−1/2(K). (A.12)
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Proof. Let u ∈ H̃−1/2(K). Then u◦ ∈ H̃−1/2(K̃) ⊂ H−1/2(K̃). Using (2.1) and (A.4) we have

‖u◦‖H−1/2(K̃) = sup
0�=w∈H̃1/2(K̃)

|〈u◦, w〉0,K̃ |
‖w‖H̃1/2(K̃)

= sup
0�=w∈H̃1/2(K̃)

|〈u,w〉0,K |
‖w‖H̃1/2(K̃)

= sup
0�=v∈H1/2(K)

sup
V ∈H̃1/2(K̃)

V |K=v

|〈u, V 〉0,K |
‖V ‖H̃1/2(K̃)

= sup
0�=v∈H1/2(K)

|〈u, v〉0,K |
inf

V ∈H̃1/2(K̃)

V |K=v

‖V ‖H̃1/2(K̃)

� sup
0�=v∈H1/2(K)

|〈u, v〉0,K |
‖v‖H1/2(K)

= ‖u‖H̃−1/2(K).

Hence, using (A.6) with u replaced by u◦ and with K replaced by K̃, we prove (A.11):

‖u‖H̃−1/2(K) � ‖u◦‖H−1/2(K̃) �
∥∥∥∇(̃u◦)K̃

∥∥∥
0,D

∀u ∈ H̃−1/2(K).

Then, applying the parallelogram law, integrating by parts, and making use of notations (2), (4), we
derive (A.12). �

Remark A.1. The same arguments as above can be used to find equivalent norms and corresponding inner
products in the Sobolev spaces on any edge � ⊂ ∂K. In particular, using the notation analogous to (3) and (4),
we have (cf. (A.3), (A.5))

‖u‖H̃1/2(�) �
∥∥∥∇˜̃

u◦
∥∥∥

0,K
∀u ∈ H̃1/2(�),

〈u, v〉H̃1/2(�) =
〈∂˜̃

u◦

∂n
, v

〉
0,�

=
〈
u,
∂
˜̃
v◦

∂n

〉
0,�

∀u, v ∈ H̃1/2(�).

The next lemma states the fact that for a constant function v in (A.12) the H̃−1/2(K)-inner product reduces
to the L2(K)-inner product.

Lemma A.3. For any u ∈ H̃−1/2(K) there holds

〈u, 1〉H̃−1/2(K) = 〈u, 1〉0,K .

Proof. We have by (A.12)
〈u, 1〉H̃−1/2(K) = 〈u, ϕ|K〉0,K , (A.13)

where ϕ(x) (x = (x1, x2, x3) ∈ D = K×(0, 1)) solves the following mixed problem (see (A.12) and notations (1),
(2), (4)): find ϕ ∈ H1(D) such that

Δϕ = 0 in D, ∂ϕ
∂ν = 1 on Γ1 = K, ∂ϕ

∂ν = 0 on Γi (i = 2, . . . , I − 1), ϕ = 0 on ΓI .

It is easy to see that ϕ = 1 − x3. Then ϕ|K = ϕ|x3=0 = 1 and the assertion follows from (A.13). �
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Zürich, Switzerland (2008) arXiv:0901.0761.
[23] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York

(1972).
[24] S.E. Mikhailov, About traces, extensions and co-normal derivative operators on Lipschitz domains, in Integral Methods in

Science and Engineering: Techniques and Applications, C. Constanda and S. Potapenko Eds., Birkhäuser, Boston (2008)
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