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Dynamic instability in resonant tunneling
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We show that a novel instability may be present in resonant tunneling through a quantum well in one, two,
and three dimensions, when the resonance lies near the emitter Fermi level. A simple semiclassical model
which simulates the resonance and the projected density of states by a nonlinear conductor, the Coulomb
barrier by a capacitance, and the time evolution by an iterated map, is used. The model reproduces the observed
hysteresis in such devices, and exhibits a series of bifurcations leading to fast chaotic current fluctuations.

DOI: 10.1103/PhysRevB.64.201405 PACS nunfer73.40.Gk,72.15.Gd

Resonant tunneling through a double barrier, originally anear the Fermi energy. By changing the profile in the density
rather elementary academic exercise, has already shown o6 states the magnetic field enhances this coupling, and, if
be an extremely rich source of new and surprising physicéarge enough, induces the system to perform sustained oscil-
for over three decadésOne instance is the bistable region in lations. The purpose of this work is to show that, under fa-
the 1-V characteristic that some samples exhibit, leading toyorable conditions, the oscillations may also be present in
hysteresis as the curve is traced first increasing and thelie absence of a magnetic field, as well as in situations of
decreasing the bigs® This effect is currently understood as lower dimensionality such as tunneling through a quantum
caused by the interaction of the current flowing through thewire or dot.
device with the charge trapped in the well formed between We model the system by a simple circuit that captures the
the barriers. Calling Q this charge, its effect on the incoming €ssence of the system under discussion, shown in Fig. 1. As
electrons may be viewed as an increase in the local potenti#p!lows from the discussion below, it includes the following
by Q/C, where C is the capacitance, liting the resonancdeatures that appear to be essential in the description of the
level in the same amount. The latter can thus be somewh&gvice:(1) the existence of a resonance state with an associ-
above or below the emitter conduction band edge at thated lifetime, which results in a time delay between the bias
same bias, depending on whether the well is charged or ur¥oltage and the buildup or decay of the charge in the well
charged. Since in the first case there is current flow through'tunneling time”); (2) the existence of a Fermi sea on the
the well and in the second there is none, both cases afmitter side, with a density of states depending on the dimen-
physically consistent, and in fact, observed experimentallysionality of the devicebulk, planar, or lined; and on the
As an application, it has been suggested that in the bistabf@agnetic field, if preseni(3) the existence of the Coulomb
region the device may act as a THz detector and fasfepulsion between the charge trapped in the well and the
switch 910 incoming electrons. The nonlinear element in the circuit rep-

Another instance are the THz oscillations that may arisdesents transmission from the emitter side into the well, al-
in the presence of a magnetic field in the direction of thelowing a charge
current flow, which become chaotic if the field is sufficiently
strong*~** In contrast with the hysteresis effect described AQ(tt+ 1) =l o f (V) 1)
above, these oscillations are associated with passage of the
resonance across the emitter Fermi level. Assuming the res
nance is initially above the emitter Fermi sea and off reso
nance, it will eventually enter the latter as the bias is in-

creased, allowing electrons to tunnel into the well. Thus, o ) ;
transmissivity of the resonance with the number of occupied

with a certain time constant, charge begins to build up be- . i . . ;
tween the barriers. The Coulomb repulsion between thiStates in the emitter, available for tunneling. This latter quan-
ity may be written as

charge layer and the incoming electrons effectively causes Y
upward shift of the bottom of the well, and hence, also of the

0- . . . .
to leave the sourcH, in the time intervalr. The dimension-
less nonlinear functiorf(V), depending on the voltage
=Uy— U between emitter and well, is the convolution of the

resonance state. This may drive the system off-resonance }‘—V—’

again until the charge, due to the finiteness of the barrier and P
the associated finite lifetime of the resonance state, has tun- ‘
neled out again into unoccupied states on both the emitter |

X ) U - C=— R U
and collector sides. The resonance then is no longer sus- 0

tained above the Fermi energy by the decreased charge in the T \
well, the resonance falls again and a new cycle begins.
Whether this oscillation is damped away or not, is deter- FIG. 1. Model circuit for a double barrier device. The function
mined by the strength of the interaction, which in turn de-f(V) represents the response for tunneling into the well formed by
pends on the projected density of states in the emitter at ahe barriers.

0163-1829/2001/620)/20140%4)/$20.00 64 201405-1 ©2001 The American Physical Society



RAPID COMMUNICATIONS

J. INKOFERER, G. OBERMAIR, AND F. CLARO PHYSICAL REVIEW B4 201405

N(V)=0(eV-E +Ep)[1-0(eV-E)]py(V), (2

where 6(x) is the Heaviside step functiolk, is the energy

of the resonance level at zero bias, dad, the Fermi en-
ergy. All energies and voltages are assumed to be in electron-
volts and measured with respect to the bottom of the conduc-
tion band on the emitter side. The quantity(V) represents

the number of states in the emitter side, with the component
of kinetic energy along the current flow, equal the resonance
energy shifted by the biag. It is given by

pa(V)=ay(eV+Eg—E,)4 12 3 . . .
Here a4 is a constant depending on the dimensionatity 0 20 40 60 80
=1,2, or 3 of the emitte(the well has dimensiod—1). The V(mV)

values are,a;=2,a,=2L\2m*/(wh), az=m*L?/(7h?),
whereL is the emitter width andh™ the effective mass of the
carriers.

The capacitanceC represents the Coulomb barrier. As
charge flows through the nonlinear element, entering the
well, the voltage drop/=U,—U is reduced. At the same The expression in parenthesis is a positive definite funtion of
time charge is allowed to leave the well through the collectoV resembling a hat, giving(V) such shape fod=1 since
represented by the load resistor R. These elements definetlzen py(V) is a constant; fod=2 and 3,f(V) rather re-
time constantry=RC characterizing the rate at which the sembles an asymmetric hat. For convenience we call it the
well may be emptied. With these definitions the conservatiorthat function” in what follows.
of charge provides an equation of motion for the voltage The fixed points, as determined by E§), may be found
U(t) on the output side of the device, graphically as the intersection of the straight line through the

origin, F=V, and the curve representing the right hand side

FIG. 2. The two sides of Eq6) for two values of the external
bias: Uy=35 mV and 65 mV. Symbols mark intersections deter-
mining positions of the fixed points.

C[U(t+r)—U(t)]:AQ—rU(t). (4  of that equation. Because of the inverted hat form of the
R latter one can easily verify that there are either one, or three
Defining V,=V(t+n7) one obtains from Eqs(l) and (4) fixed points, as illustrated _in Fig.- 2, depending on the ;ize of
the following iterated map, the external biad),. The figure is for thed=3 case, with
parameters as given below. When there are three solutions,
Vii1=(1=yY)Va— YRl pad (Vo) + yUg, (5) the one in the middI€MFP, square in the figujeoccurs at

the rather steep fall of the arctg function, yielding a likely
unstable fixed point according to the criterion given in Eq.
(7). The intersection furthest to the rigtRFP, triangle in the
V* =Ugp— Rlmadf (V). (6)  figure) occurs in the flat portion of the hat function and is
) ] o ] therefore stable.
Asmplg linear analysis in the neighborhood of ong.of these \we are interested in the leftmost fixed pOifitFP, the
fixed points shows that for it to be stable the condition . cjes in the figurk representing the intersection located in
df the left side of the hat function. Ad, varies and the overall
maxd—vlv*<2/y—1 (7) curve raises, the intersection closely follows the functional
form of the number of states available for tunneling, E).
must be satisfied. It follows that for either an increasing orWe first consider thel=1 case, for whictp(V) first rises
decreasing functiorf (V) at the fixed point, an instability abruptly as a step function, thereafter remaining constant in
occurs provided the local derivative is sufficiently large inthe relevant region. The LFP then traces the contour of the
absolute value for the above condition to be violated. For arctg function, whose steep variation will generally violate
sharp resonance the functio(\V) will essentially follow the  the stability condition(7). The situation is as in thd=3
profile given by Eq.(3) within the window E,—Er<V  case with magnetic field, since the latter modifies the spectra
<E,, becoming negligibly small elsewhere. The finite reso-in the emitter transforming it into a series of quasi-one-
nance width smoothens the edges defined by the top amtimensional dispersion laws, and for which the instability is
bottom of the Fermi sea. Assuming a lorentzian form for theknown to exist! Ford=2, there is a square root dependence
transmissivity T(V) =T'?/[(E—E,+eV)?+T?] one has for at the LFP intersect, and if the resonance wiBlths suffi-

where y=7/7, and we assume thaiy> 7 holds. The map
has fixed points given by

—1<RI

I<Eg," ciently small the diverging local derivative will cause the
VoE +E V_E stability condition again to be violated near the edt®e
evV—E+Ef ev—Ek, Fermi energy.
fV)=pa(V) arcti r arcti r ) ) ' Thed=3 case needs closer attention because of the linear

(80  form of p5(V). Calculating the total emitter current flowing
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through the resonance and relating the time constamith
the resonance width through-2 7% /1" one gets, away from 501 (@
the hat edges,

- df e’m*D, © > i
maxgy v eegh’y , 0l ‘ _
200 ' ' ' o

whereD, is the separation between the barriers, arg are

the dielectric constants of the enclosed material and the
vacuum, respectively. Using the values appropriate for GaAs
(m*=0.068 me=12.5), one gets front7) the simple sta-
bility condition

100

Current (arb.units)

1.3D,(nm)<2— 7y, (10

where the distanc®, is to be given in nanometers. This
condition is easily violated in actual samples.

We have done numerical studies in order to verify the
presence of the instability, and have found it to occur in all ;
three cases discussed above. Figure 3 shows the I-V curves ]

for the(a) d=1, (b) d=2 and(c) d=3 cases, in the absence 0 20 40 60 80 100
of a magnetic field. The parameters used in the figureyare
—0.5, I'=1 meV, E;=20 meV, E,=43 meV, andD, Voltage (mV)

=13 nm, appropriate for typical devices based on
AlxGa _,As. It is also necessary to specify some short crosg
sectional dimensions in casés and (b), chosen ad,D,

=100 nnf andD,=10 nm in the figure, respectively. For

these values, at low external biak, the device is always |5 symmary, we have shown that an instability induced by

stable. Yet, as the voltage increases and current starts to floye interaction of the current with the trapped charge may
due to the entrance of the resonance in the Fermi sea, thghear in resonant tunneling through constrictions in one,

iteration(5) does not settle to a fixed point but rather fluctu- +vo and three dimensions. when the resonance is close to

ates in steps, first regularly(bifurcations region in Fig. B the Fermi level. Instead of integrating the quantum mechani-
and then, at larger bias, in a chaotic fashion. This shows that,, equations of motion as done previously for the3 case
the system becomes unstable'. At still Iarger'voltages the _t)livith magnetic field we have used a circuit model with the
furcation process unfolds until the system is stable againagyantage of mathematical simplicity and the possibility of
The data shown are for an increasing bias. If the externaly analytical discussion of the stability in all three dimen-
voltage is then decreased, the system remains in thgons, Experimental accessibility of the instability may re-
RFP stable state(triangle in Fig. 2 for as long as guire testing emission or absorption of THz radiation. Usual
there are three solutions to E@). The values of the critical  g|ectronics will normally just register a time average of the
bias at which these solutions decrease in number fromyggijjations because of the small value of their typical period,

three to one for panelg), (b), and(c) of Fig. 2 are 49 mV,60 \yhich, for a resonance of 1 meV width in a GaAs quantum
mV, and 53 mV, respectively. The case with magnetic fielde| would be of the order of 4 ps.

and d=3, not shown, produces a similar figure for large )
enough field, as expected from results reported This research was supported in part by deCea Presi-

FIG. 3. Current-voltage iterates for a quantum well embedded in
(@) one-dimensional, (b) two-dimensional and(c) three-
dimensional conductor.
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