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ABSTRACT

Accurately counting people waiting at bus stops is essential for automated bus fleet

scheduling and dispatch. Estimating the passenger demand in regular open bus stops by

means of image processing is a nontrivial problem because of the varying conditions, such

as illumination, crowdedness, people poses, to name a few. This paper presents a simple,

but very effective approach to estimate the passenger count using people density estimates.

People density is obtained from foreground segmentation using a Gaussian mixture back-

ground model. The final people count estimates is obtained using a classifier based on

linear discriminant analysis. The approach is compared to the well-known Viola-Jones de-

tector and shown to yield better people count estimates despite its simplicity, because it

is more robust to occlusions, pose changes, and due to the fact that it does not attempt to

find body parts. Additionally the algorithm shows promising results when applied to im-

ages captured using a thermal camera, as well as a omnidirectional panoramic camera. The

proposed method is general and it can be employed to count people in other public spaces,

such as crosswalks and buildings.

Keywords: Pedestrian detection, pedestrian counting, background subtraction, ex-

pectation maximization, Haar-features, density-based demand estima-

tion.

ix



RESUMEN

Con el fin de automatizar y optimizar el despacho y control de flota en sistemas moder-

nos de transporte público, es necesario medir con exactitud y en tiempo real la cantidad de

peatones esperando locomoción colectiva en paraderos de buses. Realizar esta medición

en lugares abiertos mediante procesamiento de imágenes es un problema complejo debido

a las adversas condiciones en que las imágenes son capturadas, donde influyen principal-

mente la iluminación variante e irregular en la escena, la aglomeración de personas en un

solo lugar y las distintitas posiciones que estas asumen. Este trabajo presenta un método

simple y efectivo para estimar la cantidad de pasajeros en paraderos midiendo la densi-

dad de objetos en la imagen que no pertenecen al plano de fondo de la escena. Estos

objetos son identificados mediante un proceso de segmentación de fondo en la imagen uti-

lizando un modelo probabilı́stico de distribuciones normales multimodales. Finalmente,

considerando los efectos de la perspectiva en la imagen capturada, se construye un modelo

fenomenológico para estimar la cantidad total de peatones a partir de la superficie de los

objetos que no pertenecen a la escena. Este enfoque es comparado con el popular algoritmo

de Viola y Jones para detección de objetos aplicado al problema de detección de caras y

personas en imágenes, y se demuestra que mediante este enfoque se obtienen mejores me-

didas de error. Esto se debe a que el método propuesto es más robusto ante oclusiones y

es independiente a la posición y orientación del individuo, dificultades que los enfoques

tradicionales utilizados en la detección de personas no han logrado superar. Además, este

algoritmo demuestra mantener su efectividad al utilizar imágenes capturadas con cámaras

infrarrojas y omnidireccionales. El método propuesto es general y se puede utilizar para

contar personas en distintas aplicaciones y en cualquier tipo de ambientes públicos, como

vestı́bulos de edificios o cruces peatonales.

Palabras Claves: Detección de peatones, conteo de peatones, sustracción de fondo,

maximización de la esperanza en distribuciones gaussianas, carac-

terı́sticas de Haar, estimación de demanda basada en densidad.

x



1. INTRODUCTION

Modern public transportation systems require accurate real-time information of route

conditions and demand for optimal fleet scheduling and control (Cortés, Sáez, Sáez, Núñez,

& Tirachini, 2007; Núñez, Cortés, Sáez, & Riquelme, 2008). Technologies for traffic

flow monitoring are well established, in contrast to the state of the art in real-time sensing

of passenger demand at bus stops. Traditionally demand information has been obtained

using statistical models built off-line from manually collected data. Hence, while planning,

transport system operators are constrained to assume a fixed demand in each bus stop,

disregarding short term demand fluctuations that are not considered in the statistical model.

On the other hand, modern transport control systems require real time demand information

in order to optimize short term performances regarding passengers awaiting time and travel

time, therefore, developing automated methods to reliably count passengers at bus stops

and within the buses is necessary. Current demand sensing technologies rely on passengers

to access the bus stop through a turnstile or a movement sensing threshold, making these

technologies very invasive in an urban sense. Vision-based solutions, on the other hand,

don’t require considerable infrastructure, making them an elegant and urbanistically passive

solution to the demand estimation problem. Moreover, this particular application hasn’t

been studied widely in the literature, making this problem interesting for further research.

Based on the sensing technique, current pedestrian detection technologies can be di-

vided into two categories: sensors which detect an individual person at a time, and sensors

that detect multiple pedestrians at once. The first type of sensor requires the person to be

in contact or very close to the sensing device, such as turnstiles, ultrasonic/infrared beam

based sensors or proximity RDIF card readers. The main disadvantage of these solutions

is that the bus stop area must be physically enclosed, so that passengers walk through pas-

sageways or portals equipped with any of the sensors, thus making their implementation

more expensive and very invasive as illustrated in figure 1.1a. This constraint makes the

implementation of these solutions very invasive in an urbanistic sense and carries further

constructing costs. Other variants of this solution consider enclosing the bus stop area with
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multiple portals but without any improvements in either sensing capabilities or infrastruc-

ture costs.

 

 

(A)

 

(B)

FIGURE 1.1. Different bus stops configurations for demand estimation: (1.1a) us-
ing conventional technologies and (1.1b) using a wide-view sensor.

On the other hand, the second type of sensors, such as laser scanners (Fuerstenberg,

Dietmayer, & Willhoeft, 2002), long range RFID (Polivka, Svanda, Hudec, & Zvanovec,

2009), thermal (Bi, Tsimhoni, & Liu, 2009) and conventional cameras (Bu & Chan, 2005),

have a wide field of view and do not need invasive constraints on the bus stop structure

since they cover a large area. The hardware cost of most of these technologies is high com-

pared to the first category, but a considerable amount of research has been carried out in

their application to pedestrian detection, particularly in collision avoidance for intelligent

vehicles (Gavrila, 2000; Bu & Chan, 2005; Gandhi & Trivedi, 2006) and surveillance ap-

plications (Haritaoglu, Harwood, & Davis, 2000; Heikkilä & Silvén, 2004). Laser scanners
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are very expensive and in most cases limited to scanning along a single plane thus difi-

culting the people counting process. Vision based pedestrian detection using conventional

(fig. 1.2a), omnidirectional (fig. 1.2c) or thermal cameras (fig. 1.2b), provides rich informa-

tion about the surrounding environment compared to the other sensor technologies and can

be employed simultaneously for counting and surveillance purposes. Furthermore, stan-

dard and thermal cameras are becoming more accessible due to lowering prices. Consid-

ering these advantages, this paper proposes a vision-based approach to pedestrian counting

at bus stops using standard digital video cameras.

1.1. Objectives

The main objective of our research is to estimate, with reasonable accuracy and pre-

cision, the total amount of pedestrians awaiting at bus stops using a static video camera

by means of computer vision and image processing techniques. Additionally the proposed

solution must not consider the use of passageways or portals for controlling the access to

bus stops. Within the proposed solution lie the following secondary objectives:

• Implement feature extraction and registration methods to develop a probabilistic

model of the background.

• Develop methods for extracting foreground density features among predeter-

mined regions of the image.

• Develop, test and validate a set inference mechanisms based on pattern recogni-

tion for estimating the total amount of pedestrians in the scene using the density

features.

1.2. Hypothesis

The main hypothesis is that foreground (non-static) regions in each image are propor-

tional to the visible surface of people in the scene, and that this surface is correlated to

the number of pedestrians. Hence the foreground information is suitable to estimate the

total amount of people in the scene. It will be shown that this first hypothesis is valid

3



(A) (B)

(C)

FIGURE 1.2. (a) Conventional, (b) infrared and (c) omnidirectional image of peo-
ple standing at a bus stop.

because of the projective geometry of the camera system. Another assumption is that

pedestrians stand still for a short period of time, therefore it is possible to obtain accurate

foreground/background statistics by looking at a group of consecutive frames at a time.

Considering these assumptions the method should prove more accurate than color or edge

based approaches, particularily under crowded situations and scenes with irregular lighting

conditions.
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1.3. Review

The first attempts to detect pedestrians in images considered the human body as a

whole and employed shape models or edge templates. Papageorgiou and Poggio (1999)

employed Haar wavelets and a trained Support Vector Machine (SVM) for deciding if a

region of interest contains a human or not. Gavrila (2000); Gavrila and Giebel (2002);

Gavrila (2007), studied the performance of the Chamfer System for detecting pedestrians,

which consists in correlating the Distance Transform of the source image with edge tem-

plates of humans in different poses. The final classification from the correlation image

is done by SVMs or Neural Networks (NN). On a similar manner, Felzenszwalb (2001)

compares edge templates with the source image using the Hausdorff distance. These ap-

proaches have proved quite useful for detecting non-occluded objects, such as pedestrians,

faces and cars. However, detection of the whole body using holistic models often yields

poor results in practice due to the many different poses pedestrians can assume. In addition

to the lack of pose invariance, the detection of edges for proper segmentation is further

complicated by occlusions and clothing colors.

Viola and Jones (2001) proposed a different framework for object detection based on

the selection of discriminative Haar features to train a cascade of AdaBoost detectors (Fre-

und & Schapire, 1996). Their approach proved very efficient in detecting invariant objects,

particularly in the face detection problem (Viola & Jones, 2001; Viola, Jones, & Snow,

2005) reporting detection rates of about 95% and false positives rates below 1%. The main

advantage of their classification scheme is the detection of objects in real time, hence mak-

ing it very effective in practical applications. This is achieved extracting large amounts

of Haar features that are fast to compute, and using a set of simple classifiers in cascade,

rather than a single complex and time consuming classifier. However, this approach ex-

hibits a low performance when applied to the detection of deformable objects, such as

walking pedestrians. In order to overcome this problem, Viola and Jones added features
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from motion patterns (Viola et al., 2005). This technology, applied to face detection, is cur-

rently incorporated in commercial digital cameras, enabling them to detect faces in a pic-

ture and automatically adjust the camera’s focus. Regarding the people detection problem,

other researchers have decided to divide the whole body into some invariant segments, like

head-shoulders, arms, and legs, considering frontal, lateral and profile views of those parts

(Mohan, Papageorgiou, and Poggio (2001), Mikolajczyk, Schmid, and Zisserman (2004),

Wu and Nevatia (2007)). Each of these part detectors consider features built from his-

tograms of oriented gradients and AdaBoost or SVM classifiers. These authors conclude

that detecting humans by their components allows finding partially occluded pedestrians

and increases detection rates.

In many computer vision applications, the camera employed is fixed at a specific posi-

tion. This allows the identification of a scene background model which allows to identify

objects that do not belong to the scene. In the case of pedestrian counting at bus stops,

background subtraction is a useful tool since the scene is mostly invariant and the objects

that do not belong to the scene are very likely to be people.

The simplest way of modeling the scene is constructing a background image by av-

eraging a sequence of frames, subsequently the foreground objects can be identified by

thresholding the difference between the background and the input image. The main disad-

vantage of this solution is that it does not handle properly multimodal color distributions of

each pixel in the image and carries the difficulty of assigning the appropriate threshold for

each pixel (Rosin, 1998).

Wren, Azarbayejani, Darrell, and Pentland (1996) considered that each pixel color

values have a multivariate Gaussian distribution and each threshold is determined by the

Mahalanaobis distance to the pixel mean. The mean of the Gaussian distribution is esti-

mated by a running average (2.3) and the covariance matrix is determined by a running

scatter matrix. This approach proved successful results in controlled indoor environments,

but in outdoor situations, due to varying lighting conditions or dynamic background ob-

jects, the system’s performance diminishes. To cope with changing illumination conditions
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and dynamic background objects Friedman and Russell (1997) and Stauffer and Grimson

(1999) introduced a Multivariate Mixture of Gaussians (MMoG) background model, where

each parameter of the MMoG can be determined using K-Means Clustering or employing

the Expectation Maximization algorithm (Dempster, Laird, & Rubin, 1977). The main ad-

vantage of this method is that each of the parameters from the mixture are adapted through

time, evolving according to the lighting conditions.

Other authors embrace the concept of Eigen-Backgrounds (Oliver, Rosario, & Pent-

land, 2000; Rymel, Renno, Greenhill, Orwell, & Jones, 2004; Zhang & Zhuang, 2007),

that consists in building a representative subspace of the image space by Principal Compo-

nent Analysis (PCA). This method consists in calculating the eigenvalues and eigenvectors

of the covariance matrix of a sequence of sample images and building a transformation ma-

trix with a subset of eigenvectors (or eigen-backgrounds) with higher eigenvalues. Finally

the foreground area is detected by comparing the captured image to a generated eigen-

background. Since each sample is conformed by the intensity values of the pixels from

the whole image, the final classification of each individual pixel is done with information

from the entire image rather than with information from the pixel alone. In the foreground

segmentation task this method shows good results but, because of the high dimensional-

ity of the feature space and the amount of samples needed, the memory requirements for

PCA in this application are very high making this method often impracticable. However,

once the eigen-backgrounds are obtained the segmentation processing time is smaller than

that of MMoG according to Oliver et al. (2000). Another drawback of this approach is

that the eigenspace must be obtained from a representative set of samples (Rymel et al.,

2004), or calculated incrementally (Zhang & Zhuang, 2007), such that it can represent dif-

ferent backgrounds over time. In either case, the latter adds complications to the practical

implementation.

Other methods consider building a non-parametric model formed by kernels built from

a set of samples that are most likely to be background (Elgammal, Harwood, & Davis,

2000). The main disadvantage is that there is no certainty on which samples should be

added to the model, but using simple rules, e.g. low variance over time, some certainty
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is gained while considering a given sample. Authors also consider the use of short and

long term models, the first for sensitive detection and the second to gain a more stable

background representation. Other authors consider optical flow components in order to

identify still objects that can be regarded as background (Mittal & Paragios, 2004).

Another line of work considers modeling each pixel according to color and/or gra-

dient histograms in a bounding region (Noriega & Bernier, 2006). The main drawback

of this solution is that the feature space must be reduced in order to restrict the size of

the histograms, hence diminishing the sensibility of the classification scheme, but the ap-

proach shows good results in cases where there is significant contrast between foreground

and background (Panahi, Sheikhi, Hadadan, & Gheissari, 2008). Other authors propose

the use of energy or entropy functions in terms of color and contrast information in a re-

gion (Sun, Zhang, Tang, & Shum, 2006) to model the background, but relying on a proba-

bilistic model, such as MMoG, to calculate entropies.

In general, all foreground segmentation algorithms have different advantages depend-

ing on the application and on the background properties. For example, some backgrounds

have considerable noise, adding complexity to the segmentation algorithms, while other

backgrounds are stable over time and only require a simple classifier. A recent evaluation

of the most popular background subtraction algorithms under different type of scenarios

can be found in Panahi et al. (2008).

1.4. Contribution

This work proposes an approach based on computer vision techniques to count passen-

gers waiting at regular bus stops without any sort of passageway sensors. This method can

be applied to a sequence of images captured from either conventional perspective cameras

(fig.1.2a), infrared cameras (fig.1.2b) or omnidirectional cameras (fig.1.2c). Infrared cam-

eras have the advantage of being able to detect pedestrians on nighttime, since it detects

the thermal emissions of objects, rather than visible light. This makes them the appropriate

sensor when there are no adequate lighting conditions for using a normal camera or when a

8



considerable amount of passengers are awaiting in a bus stop during nighttime. Omnidirec-

tional cameras, on the other hand, have a larger field of view compared to other cameras,

allowing a 360◦ × 80◦ field of view. This permits a panoramic view of the scene and lays

aside the need of mounting the camera far from the bus stop, as illustrated in figure 3.2.

As described extensively in the next chapter, the novelty of this approach lies in the fact

that the people counting process is done using foreground pixel density estimates. This ap-

proach will be referred to as PDM (People Density Method). It is shown that despite PDM’s

simplicity, it is more accurate and reliable than an alternative solution based on the well-

known Viola-Jones (VJ) detection scheme applied to foreground regions. This is mainly

because PDM does not require to solve a recognition problem with strong assumptions

of object shape-invariance (non-deformability), as is implicit in the VJ approach. On the

other hand, shape extracted from contours is often lost in crowded scenes. The advantage

of PDM is that no special assumptions on the pose or motion of people is required. This

method can be applied in either conventional perspective cameras, infrared cameras or om-

nidirectional cameras. The only two basic assumptions required are i) that the background

can be modeled with reasonable accuracy, and ii) that all foreground pixels correspond to

people. Both of these assumptions are fulfilled most of the time because background sub-

traction can effectively be solved using the approach presented in section 2.2. On the other

hand, most of the time foreground pixels are generated by pedestrians, and even if some-

times small pets or people carrying large objects may produce larger foreground areas, the

additional foreground pixels introduce negligible errors.

The proposed approach consists on a two stage process, as described in figure 1.3. The

first stage implements a foreground segmentation algorithm that uses a MMoG distribution

to model the background using the color and gradient information of each pixel. The second

stage consists in testing pattern recognition algorithms in the task of estimating the total

amount of pedestrians in the scene using only foreground information.

The contribution of this work can be summarized in a simple and novel method for

pedestrian counting at bus stops (or any open environment) based on area computations.
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Capture Image
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FIGURE 1.3. Outline of the proposed method.

The approach does not require people to walk through a portal. The thesis shows that the

proposed is more accurate than the method based on a combined action of a background

subtraction process and Viola-Jones approach. Both approaches are tested using image

sequences from a real bus stop.
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2. PROPOSED APPROACH

2.1. System Overview

The proposed approach and the reference method are implemented as a two-stage pro-

cess (see fig. 2.1). First the foreground is extracted as the complement to the background,

which is modeled as a mixture of Gaussians. In the second stage, foreground pixel densities

are employed to estimate the people count. To make the comparison with the Viola-Jones

approach valid, the body-parts detected with this method are selected only if they belong

to the foreground in order to remove false detections.

2.2. Background Identification

Background identification is an essential preliminary step whose purpose is to reduce

the search for pedestrian contours or their extremities to non-background regions. This re-

duced search area does not only saves valuable processing time, but also allows to increase

detection certainty because it should be easier to identify mostly static backgrounds than

trying to find directly the many different dynamic objects there might be in the foreground.

The background identification can be achieved using different methods, such as texture

analysis, edge extraction, color and intensity filters. Texture and edge based methods are

more robust to brightness changes. However, texture segmentation requires computation-

ally demanding calculations, while edges alone may provide insufficient information to

bound the background regions. On the other hand, color and intensity filters are more vul-

nerable to brightness variations or confusion in the presence of foreground objects with

colors that closely resemble those of the background.

In this work background segmentation is performed using a Multivariate Mixture of

Gaussians (MMoG) probability distribution in the color & gradient feature space. The

feature vector is defined as a five component vector f = [r, g, b, go, gm]T containing the red,

green and blue color values, gradient orientation and gradient magnitude at a given pixel.
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Viola-Jones Method People Density Method

FIGURE 2.1. Detection scheme.

The gradient magnitude and orientation at pixel (u, v) is calculated as

gm =
√

g2
u + g2

v

go = arctan (gu, gv) (2.1)
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where

gu = Iu+1,v − Iu−1,v

gv = Iu,v+1 − Iu,v−1 (2.2)

and Iu,v denotes the image intensity value at pixel (u, v).

The background subtraction approach provides one of the simplest techniques to detect

objects of interest in urban scenes, such as pedestrians and cars, using static cameras. This

approach relies on the assumption that the background does not change significantly from

one video frame to the other, and hence, computing the difference between frames would

yield the moving foreground objects. If the foreground objects are also static, the subtrac-

tion of contiguous frames will evidently not reveal the foreground objects. This problem

can be avoided if the difference is computed between the current frame and a reference

background (free from foreground elements). However, obtaining a reference background

is a challenging problem because real backgrounds are not constant due to illumination

changes during the day, sudden appearance of clouds, presence of reflecting objects, cam-

era oscillations, high-frequency background variations like rain or moving leaves.

There are many approaches to model the background for background subtraction pur-

poses (Piccardi, 2004). The simplest method is to employ a first order IIR running average

filter to compute the background model Bk at instant k in terms of the previous background

model Bk−1 and the new image frame Ik as:

Bk = (1 − α)Bk−1 + αIk (2.3)

where α is the filter update or learning rate. This method requires a small amount of mem-

ory and is fast to compute, however it does not consider the fact that each pixel may have

different intensity variations and that background colors can have multimodal distributions

over time.

An approach that copes with multimodal distributions is the method by Stauffer and

Grimson (1999), which models each pixel as a mixture of L Gaussians with parameters

13



μl
k ∈ R

n, Σl
k ∈ R

n×n, l = 1, 2, . . . , L at time k. More specifically, the probability of

observing a feature vector fk at a given pixel is given by:

P (fk) =

L∑
l=1

ωlP (fk|μl,Σl) (2.4)

where ωl = P (l) are the priors weighting the Gaussian distributions:

P (fk|μl,Σl) =
1

(2π)n/2|Σl| 12 e−
1
2
(fk−μl)T Σl−1

(fk−μl) (2.5)

that form the mixture.

It is to be noted that the mixture models both the foreground and background without

distinction. Hence, L is not the number of background classes, but the number of all

possible pixel distributions. Because of this, the choice of L should be L ≥ B + 1, if

there are B background classes. In practice, B ≥ 2 to model at least two background

classes, hence L ≥ 3. The current literature reports values of L ≤ 7, however, significant

improvements are unlikely for values beyond L = 5. Following Stauffer and Grimson

(1999) and Cheng, Yang, Zhou, and Cui (2006), B is chosen as the smallest number of

modes with representative weight, i.e.

B = argmin
b

(
b∑

l=1

ωl > δb

)
(2.6)

where each Gaussian is sorted in decreasing order according to ωl
k/
∥∥Σl

k

∥∥, and δb is a

thresholding parameter related to the overall background probability.

A pixel is declared to match one of the L Gaussian distributions, if√
(fk − μl

k)
TΣl

k
−1

(fk − μl
k) < λ (2.7)

for some l, where λ represents the number of standard deviations from the mean that defines

the matching threshold (λ = 2.5 in Stauffer and Grimson (1999)). The pixel is declared to

belong to the background whenever it matches one of the first B distributions.
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If a pixel matches one of the L possible distributions, the parameters of the correspond-

ing probability density function are updated using an incremental form of the Expectation

Maximization algorithm (Dempster et al., 1977) applied to MMoG:

μl
k =

Sk−1

Sk
μl

k−1 +
1

Sk
ω̃l (2.8)

Σl
k =

Sk−1

Sk

Σl
k−1 +

1

Sk

ω̃l
(
fk − μl

k

) (
fk − μl

k

)T
(2.9)

ωl
k =

1

k
Sk−1 +

1

k
ω̃l

k (2.10)

where

Sk = min
{
Sk−1 + ω̃l

k, α
}

(2.11)

ω̃l
k =

P
(
fk
∣∣μl,Σl

)
ωl

k∑L
c=1 P (fk |μc,Σc ) ωc

k

(2.12)

where α is the fixed learning rate used upon convergence. Since Sk increases over time,

each class parameter becomes stiff, insensitive to incoming data, hence the upper bound α

guaranties flexibility once the parameters of the model converged. If a pixel does not match

any of the L distributions, the least probable distribution (i.e. the one with lowest ωl) is

replaced by a distribution with the current pixel value as its mean, an initially high variance

and a low prior ωl. This step allows to update the background model without degrading the

model as in the case of the unimodal distribution, because when some new object appears

in the scene, the background parameters are not lost until one of them becomes the L least

likely distribution, i.e. when the background class weight wl becomes the smallest of the

L weights. The algorithm is initialized with a predetermined number of classes L, each

with random class means, all with equal covariances and equal class probabilities. Once

the MMoG parameters have converged, those modes that do not satisfy ωl > ωmin are

eliminated from the set, and each remaining ωl is renormalized such that
∑Lnew

l=1 ωl = 1.

The parameter ωmin should be near zero, so that only the modes that practically never occur

are eliminated. This allows the algorithm to automatically choose the number of modes in

each of the pixels, thus reducing the computational load and processing time.
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2.3. Pedestrian Count Using Density Estimates

For clarity of exposition the basic notation will be introduced first. The pinhole camera

model (Hartley & Zisserman, 2004) relates a point in space x with homogeneous coordi-

nates [ x y z 1 ]T to its projection in the optical plane (e.g. CCD, CMOS array) xcam

with homogeneous coordinates [ u v 1 ]T according to:

λ

⎡
⎢⎢⎢⎣

u

v

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

fρx 0 u0 0

0 fρy v0 0

0 0 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 −hcam

0 −1 0 0

1 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎥⎦ (2.13)

where f is the focal length of the camera, ρx and ρy are the scale factors in each of the

optical plane axes, u0 and v0 are the vertical and horizontal offsets that relate the origin

of the global coordinate frame to the image plane origin, and hcam is the height of the

camera’s stand-pole. The global and image plane coordinate systems are disposed as shown

in figure 2.2, where x is the distance from the stand-pole, y and z are the horizontal and

vertical distances respectively, u and v are the vertical and horizontal coordinates in the

image plane which are coplanar with the plane formed by y and z. The 4 × 4 matrix in

(u0, v0)

y

x

u
v

zhcam

Focal
Center

Focal
Plane

f

FIGURE 2.2. Coordinates systems in the global frame and in the image plane.

equation (2.13) is a rotation and translation operator that transforms global coordinates to
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the cameras local coordinates and the 3 × 4 matrix is the pinhole projection matrix that

maps local coordinates to focal plane pixel coordinates. Combining the two operations, the

transformation can be stated as:

λxcam = Hx (2.14)

where H is a 3 × 4 projection matrix.

It is possible to estimate the total amount of pedestrians in the scene by measuring the

foreground area that each of these individuals produce considering their relative position

from the camera. Assuming that people on the scene are standing in a upward position,

x1 x2

x3x4

h

w

FIGURE 2.3. Foreground elements divided into rectangular sections.

the projected surface of each individual can be approximated by the sum of small vertical

rectangular surfaces as illustrated in figure 2.3. The relationship between the area of each

rectangle and the foreground area in the image plane can be formulated considering that

each of these rectangles is at a distance x from the stand-pole and is defined by its four

corners in homogeneous coordinates:

x1 =
[

x y0 z0 1
]T

(2.15)

x2 =
[

x y0 + w z0 1
]T

x3 =
[

x y0 + w z0 + h 1
]T

x4 =
[

x y0 z0 + h 1
]T
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where h and w are the rectangle’s height and width respectively and y0 and z0 is the horizon-

tal and vertical distances from the global coordinate system origin. Each point is projected

on the focal plane at λix
cam
i = Hxi, i = 1 . . . 4.

In the optical plane, the area of the projected quadrilateral can be calculated as (Beyer,

1987):

ΔAp =
1

2

4∑
i=1

uivi+1 − ui+1vi [pixels2] (2.16)

Replacing (2.14) and (2.15) in equation (2.16), the area of a projected quadrilateral can be

stated as:

ΔAp = ρxρyf
2ΔA

x2
[pixels2] (2.17)

where ΔA = hw is the original area of the rectangle. It follows from (2.17) that the

projected area of each rectangle is proportional to the original surface and inversely pro-

portional to the squared distance from the stand-pole. Hence the area projected on the

image plane by a pedestrian is proportional to its real visible surface.

The vertical position in the image plane of an object of height l measured from the

ground is given by

u = u0 +
1

2

fρx(l − 2hcam)

x
[pixels] (2.18)

In the context of our work, x represents the distance at which pedestrians stand from the

camera, whereas l represents the height of the pedestrians. Since the variations in x are

much larger than those in l, then l in equation (2.18) can be replaced with the objects’

mean height l0. Since the objects in the image are mainly people it is valid to assume the

existence of l0. Solving for x in (2.18), and replacing in (2.17) yields:

Ap =
4ρy

ρx(l0 − 2h)2
(u − u0)

2A [pixels2] (2.19)

The area of a segmented object in the image is proportional to the amount of objects.

Therefore, if a scene contains n pedestrians, the total area of a foreground region will be
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given by:

Ap = kA0(u − u0)
2n [pixels2] (2.20)

where k = 4ρy

ρx(l0−2hcam)2
, A0 is the average visible area of an individual and n is the amount

of pedestrians in the analyzed foreground region.

xi xi+1 xi+2 xi+3 x

z

Focal
Plane

f
Focal
Center

ui

ui+1

ui+2

ui+3

FIGURE 2.4. Horizontal sections in the focal plane representing different distance
intervals.

It is to be noted that equation (2.20) is valid for pedestrians standing at a given distance

x from the camera. However, since in a real bus stop pedestrians may stand at different

locations, their projected areas will be dependent on x. It is therefore convenient to divide

the image into N horizontal sections. Figure 2.4 shows that for each distance interval

[xi, xi+1] there is a horizontal section with coordinates [ui, ui+1] in which (2.20) can be

assumed to hold. In each of these sections the count of persons can be computed as:

ni = ηiAi [individuals] (2.21)

where ηi = 1
k(ui−u0)2

is the pedestrian density coefficient for each vertical section located

at ui.

In order to estimate the total amount of pedestrians, the problem of counting people is

solved by measuring foreground pixels areas per section and finding the model parameters

i.e. the density coefficients ηi, that minimize the estimation error for the total amount of
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pedestrians is given by:

n = f(n1, . . . , nN , θ) [individuals] (2.22)

where n is the total amount of pedestrians and θ is the vector of parameters that describe the

model. A reasonable expression of (2.22) is to consider n as the summation of individuals

in each region, which by (2.21) is given by:

n =

N∑
i=1

ni =

N∑
i=1

ηiAi [individuals] (2.23)

where the parameters to be found are θ = [η1, . . . , ηN ]. Note that since the pedestrian count

depends on Ai it is not necessary to obtain explicitly the camera parameters because they

are taken into account by the coefficients ηi, which can be found by linear regression from

available training data.

Considering that the total amount of pedestrians per frame is subject to continuity

constraints, the model takes into account past measurements to limit the amount of instan-

taneous change in the estimated number of pedestrians. The output of the fitted model at

frame k is thus of the form:

n̂(k) =

N∑
i=1

η̂iAi(k) +

P∑
p=1

β̂pn̂(k − p) [individuals] (2.24)

The previous equation is commonly known as a linear regression model (LRM). Each

of the elements of θ are found as those that minimize the overall root mean square error

(RMSE):

θ̂ = argmin
θ

√√√√ 1

K

K∑
k=1

‖n̂ (k, θ) − n (k)‖ (2.25)

where K is the total amount of training samples, n(k) is the real amount of pedestrians at

sample k and θ̂ = [η̂1, . . . , η̂N , β̂1, . . . , β̂P ].
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2.4. Other Classification Schemes

In addition to LRM, three other approaches are considered concerning the structure

of the function f in (2.22) relating Ai to n. These approaches are Linear Discriminant

Analysis (LDA), Probabilistic Neural Network (PNN) and k-Nearest Neighbors (KNN).

Each model is trained and tested with the same training and testing samples and cross-

validated for tolerance analysis in the same fashion.

The LDA approach consists in projecting the feature vector to a subspace of lower

dimension. In contrast to PCA, the objective of LDA is to find a subspace in which classes

are more distinguishable, rather than finding a subspace in which samples have maximum

variance. Following the methodology described extensively in (Duda, Hart, & Stork, 2001),

this is done by finding a linear transformation matrix that describes the features subspace

in which the Fisher Discriminant is maximum. If A = [A1, . . . , AN ] is the original sample,

then its subspace representation A⊂ is:

A⊂ = W TA (2.26)

where W ,
{
W : A ⊂ R

N → A⊂ ⊂ R
M , M < N

}
, is the subspace transformation matrix

(N × M), found while maximizing the interclass separability function (or Fisher discrimi-

nant):

W = argmax
w

∣∣wTSBw
∣∣

|wTSW w| (2.27)

where SB and SW are the between-class and within-class covariance matrices. In this

application, each class is defined as the number of pedestrians, where C is the maximum

number of pedestrians plus one. If Nj is the number samples in class j, Ā is the mean value

of the feature vectors on the training set and Āj is the mean value of the feature vectors

belonging to class j in the training set, then SB is given by:

SB =
C∑

j=1

Nj(Āj − Ā)(Āj − Ā)T (2.28)
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The within-class covariance matrix SW is the sum of the covariance matrices of each

class Sj :

SW =
C∑

j=1

Sj (2.29)

where Sj is given by:

Sj =
∑

A(k)∈classj

(A(k) − Āj)(A(k) − Āj)
T (2.30)

The optimization problem enunciated in 2.27 is solved by finding the generalized

eigenvectors and eigenvalues (wi and λi, i = 1, . . . , N), of SW and SB , i.e. solving:

SBw = λSWw (2.31)

W is the collection of the M eigenvectors with larger eigenvalues as described in (Duda

et al., 2001). For purposes of pedestrian counting, the subspace dimension is chosen to be

M = 1, so that the final classification is done over a single variable.

If each sample in the new subspace is A⊂(k) = W TA(k), the class means A⊂
j =

W T Āj and the class scatter is S⊂
j = WSjW

T , then the amount of pedestrians on the scene

at sample k given sample A(k) is approximated by:

n̂LDA(k) = argmin
j

[
A⊂(k) − A⊂

j

]
S⊂

j
−1 [

A⊂(k) −A⊂
j

]T
(2.32)

Once the classification process is completed, the filtering process is carried out using

the following time series:

n̂(k) = b0n̂LDA(k) +

P∑
p=1

bpn̂(k − p) (2.33)

where n̂(k) is the final output and the parameters b0, ..., bP are found by a simple linear

regression.
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The PNN approach (Duda et al., 2001) consists in a non-parametric model that can be

represented as a two layer network, as shown in figure 2.5. The first layer after the input

layer is composed of one radial basis neuron (Rbj) for each training sample. If A is the

input and At(j) is the training sample corresponding to neuron Rbj , then the output of this

neuron is:

yj = e
− ‖A−At(j)‖2

σ2
j (2.34)

Each of the neurons that correspond to a sample of a given class k are connected to one

neuron (Sk) on the second layer, where there is one neuron for each class. Each of these

neurons simply average their inputs, i.e.

gk =
1

Nk

∑
j∈Ck

yj (2.35)

The final output is the neuron number in the second layer with highest output:

n̂ = argmax
k

gk (2.36)

This kind of network resembles a voting scheme, where each training sample votes

according to its similarity with respect to the input feature vector. For further references on

this particular type of network see Wasserman (1993) and Duda et al. (2001).

A1

Ai

AN

Rb1

Rbj

RbM

S1

Sk

SC

η̂

Output
Layer

Input
Data

Input
Layer

Radial Basis
Layer

Summation
Layer

A1

Ai

AN

O

y1

g1

gC

gkyj

yM

FIGURE 2.5. Probabilistic Neural Network for PDM
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The last type of model evaluated, the KNN approach (Duda et al., 2001), is also a

non-parametric technique that is widely used in many pattern recognition applications. It

consists on finding the K most similar training samples to a given sample using an Eu-

clidean distance. The final output can be either the most frequent output from those K

samples or a weighted sum of the outputs.
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3. TESTING METHODOLOGY

3.1. Data Acquisition

Video sequences using conventional, omnidirectional and thermal cameras were cap-

tured late in the afternoon when the sun was close to the horizon and a few ours after sunset,

thus involving challenging lighting conditions.

The camera employed, for both normal and omnidirectional sensing is a standard

Firewire� camera with a 1024x768 pixels 1/2” CCD and a Tamron varifocal lens with focal

distances in the range 6-12 mm, corresponding to a field of view in the range 30.4◦× 23.1◦

(telephoto) – 58.7◦ × 44.4◦ (wide). The regular camera camera was located at 3[m] from

the bus stop at a height of 3.2[m] above the ground, as shown in fig. 3.1. This configuration

allows to cover an area in which pedestrians would normally stand (see fig. 1.2).

FIGURE 3.1. Bus stop and camera configuration.

An ACCOWLE hyperbolic mirror with a 360◦ × 80◦ field of view was employed for

omnidirectional sensing. The camera is facing towards the mirror as shown in figure 3.2a

while the mirror is facing upward with it principal axis vertically oriented and coinciding

with the camera’s focal axis. One advantage of this sensor is that, because of its large

field of view, it can be mounted in the bus stop area rather than outside, as illustrated on

figure 3.2b.

The thermal camera employed was an Electrophysics PV320L with a 2-14[μm] spec-

tral sensitivity band, a resolution of 320 × 240 pixels and a 50mm F1 lens. The field of

view of this camera is 18◦×13◦ and has thermal sensitivity of 0.08◦C. The thermal camera
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(B) Bus Stop and camera configuration

FIGURE 3.2. Omnidirectional camera configuration

is oriented as shown in figure 3.1, but 10m away from the bus stop rather than 3[m] as the

regular camera because of its narrower field of view.

3.2. Results Analysis and Validation

Each of the classification schemes was trained and tested with randomly generated

partitions of a data set. Table 3.1 shows the amount of samples available for each type of

camera. In each experiment 70% of the samples were used for training and the remaining

30% for testing.

The validation experiments were repeated Ne = 1000 times. The results so obtained

were averaged in order to obtain a mean statistic and its respective confidence interval in
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TABLE 3.1. Number of available samples for training and testing.

Type of camera Number of available samples
Conventional 3490

Omnidirectional 4493
Infrared 5400

term of its standard deviation. Given a confidence level c, the interval of confidence (IoC)

of a set of data with standard deviation σ, is calculated as:

IoC = Φ−1

(
1 + c

2

)
σ√
Ne

(3.1)

where Φ−1 is the inverse normal cumulative distribution. In this application the selected

confidence level is of 95%, i.e. c = 0.95, so the interval of confidence is simplified to

1.96 σ√
Ne

.

Mean error, false positives and false negatives are calculated and tabulated for each

classifier and type of camera with their respective interval of confidence. Estimated count

versus real amount of people are illustrated using error bars with its corresponding standard

deviation.

The proposed method, using conventional perspective cameras is compared to the ob-

ject detection scheme proposed by Viola and Jones (2001) applied to face and human body

recognition. The VJ approach employed relies on the OpenCV implementation of the al-

gorithm with previously trained classifiers. The VJ scheme is aided with the background

subtraction process in order to reduce the amount false positives in each frame. The perfor-

mance of this approach is measured using the same criteria as for the proposed approach.
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4. EXPERIMENTAL RESULTS

Figure 4.1 shows the background removal results for frames 100, 700, 1500, 1900,

2600 and 3400, in which white pixels correspond to background. Similar results were

achieved using the omnidirectional and thermal cameras. People correctly or wrongly de-

tected with the VJ approach are indicated by boxes surrounding the face or around the

body (whenever upper/lower extremities were detected). As may be seen in fig. 4.1e, sev-

eral false detections occur when there is a crowd of people. The VJ approach failed most

of the time to detect some people facing to the side or wearing caps. The full-body detector

would only find people standing far away in less crowded areas of the scene. The face

detector employed both frontal and lateral face detectors, but performed poorly when the

intensity differences of features within the face (eyes, nose, mouth) was small or whenever

there were dominant light-shadow effects.

Using a simple classifier, the PDM method exhibits a monotonically decreasing error

rate (see fig. 4.2) as the number of horizontal sections N increases. An appropriate selection

of the number of regions is N = 5, since there is only a 1% or less error reduction when

employing 6 or more regions.

TABLE 4.1. Summary of detection results using conventional perspective camera.

VJ PDM-LRM PDM-LDA PDM-PNN PDM-KNN
RMSE 4.11 ± 0.12(1) 2.94 ± 0.01 2.55 ± 0.05 3.29 ± 0.15 2.99 ± 0.36
FP 3.97 ± 0.11 2.52 ± 0.05 2.25 ± 0.10 1.56 ± 0.10 2.78 ± 0.83
FN 2.64 ± 0.12 2.32 ± 0.06 1.41 ± 0.05 2.95 ± 0.13 1.90 ± 0.57

(1) c = 95%
VJ: Viola-Jones LRM: Linear Regression Model PNN: Probabilistic Neural Network
PDM: People Density Method LDA: Linear Discriminant Analysis KNN: K Nearest Neighbors

The performance statistics of the PDM and VJ methods are summarized in table 4.1,

which presents the RMSE, false positives (FP ) and false negative (FN). In terms of

the RMSE, it is clear from table 4.1 that PDM-LDA performs better than the approach

based on VJ detector with RMSE values of 2.55 against 4.11 pedestrians, respectively. The

better performance of the PDM may also be appreciated from fig. 4.3, which illustrates the

evolution over time of the pedestrian count estimates and the real value.
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(A) Frame 100 (B) Frame 700

(C) Frame 1500 (D) Frame 1900

(E) Frame 2600 (F) Frame 3400

FIGURE 4.1. Pedestrian detection results for different frames using the VJ ap-
proach aided with background subtraction.

The estimated pedestrian count versus the real amount of pedestrians is shown in

figs. 4.4a and 4.4b. Results using different classifiers are illustrated in A.1. These re-

sults show that the PDM is more accurate and precise, since the average standard deviation
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FIGURE 4.2. Error rate for different number of foreground subdivisions.

of the VJ method is 3.02 pedestrians, while the standard deviation for PDM is only 1.15

pedestrians per frame on average. Furthermore, the mean error per class for the PDM is on

average 2% lower than the real value, while the VJ approach overestimates the real value

by 24% on average. Considering the results presented in table 4.1, the precision of the

PDM and its low averaged percentual error, it is possible to conclude that PDM provides

a very effective solution. On the other hand, the VJ approach shows more false positives

over time than the PDM. It is to be noted that the PDM also yields a smaller number of

false negatives on average.

In many frames detection rates achieved with the Viola-Jones approach are very low

compared to those found in the literature. This is because the testing conditions are more

challenging than those usually reported in the literature, which often consider sample im-

ages of pedestrians in scenes that are not very crowded or taken under controlled lighting

conditions.

30



500 1000 1500 2000 2500 3000
0

5

10

15

20

25

Sample

C
ou

nt

 

 
Real
PDM−LDA
VJ

FIGURE 4.3. Pedestrian estimation over time

The loss of actual resolution due to the larger field of view of the omnidirectional

mirror significantly limits the applicability of the VJ approach, which performed poorly.

On the other hand, the PDM approach applied to the omnidirectional images maintains

similar levels of performance to those obtained using conventional cameras, as shown in

table 4.2. In this case the number of circular regions was kept the same, i.e. N = 5.

In contrast to the results obtained using a conventional camera, in which the PDM-LDA

yielded the best performance, the PDM-LRM turned out to be the best approach when

using omnidirectional images. The estimated pedestrian count versus the real amount of

pedestrians is shown in fig 4.6, where a persistent error of 2 individuals can be noticed.

Results using different classifiers are illustrated in A.3.

Finally the application of the PDM to infrared images revealed that slightly more ac-

curate pedestrian counts can be achieved because of the robustness of the background seg-

mentation process, which due to the fact that the thermal camera is insensitive to varying

lighting conditions and because it is easier to distinguish warm objects from the colder
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FIGURE 4.4. Pedestrians counted versus the real number of pedestrians using a
normal camera: (a) VJ approach and (b) PDM-LDA.

FIGURE 4.5. Detail of omnidirectional image of people standing at a bus stop, .

TABLE 4.2. Results of the PDM on omnidirectional images using different classifiers.

PDM-LRM PDM-LDA PDM-PNN PDM-KNN
RMSE 2.01 ± 0.01 2.52 ± 0.06 3.02 ± 0.08 2.41 ± 0.59
FP 1.72 ± 0.02 1.26 ± 0.03 1.99 ± 0.09 1.72 ± 0.67
FN 1.71 ± 0.03 2.69 ± 0.12 2.49 ± 0.10 2.04 ± 0.66

background. Table 4.3 shows that the PDM-LRM once again yields the smallest RMS er-

ror. However, even if this error is on average of only 2 pedestrians, fig. 4.7 shows that using

the thermal camera may yield very inaccurate results when only one person is waiting at

the bus stop. Results using different classifiers are illustrated in A.2.
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FIGURE 4.6. Pedestrians counted by PDM versus the real value using employing
omnidirectional images.

TABLE 4.3. Results of the PDM on thermal images using different classifiers.

PDM-LRM PDM-LDA PDM-PNN PDM-KNN
RMSE 1.89 ± 0.01 2.01 ± 0.04 3.05 ± 0.07 2.37 ± 0.46
FP 1.60 ± 0.02 1.43 ± 0.03 1.82 ± 1.71 2.23 ± 1.39
FN 1.16 ± 0.01 1.03 ± 0.03 2.50 ± 0.33 1.54 ± 0.41
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FIGURE 4.7. Pedestrians counted by PDM versus the real value using employing
thermal images.
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5. CONCLUSION AND FUTURE RESEARCH

An algorithm for pedestrian counting was presented based on the analysis of fore-

ground areas and the estimation of density coefficients. The approach yields good count

estimates despite challenging illumination and crowdedness conditions. The count esti-

mates are more accurate than those obtained with the VJ approach using a conventional

camera. Minor improvements are possible if an infrared camera is employed instead. Re-

sults show that also an omnidirectional camera can be employed with similar levels of

accuracy. Although in principle this camera can capture panoramic 360◦ view of the area

surrounding the bus stop, the practical advantage is unclear due to the loss of resolution

which must be sacrificed in exchange for a larger field of view.

Our experiments demonstrated that full-body and body-parts identification using the

VJ method is a much more difficult task because people may be wearing clothes having

colors similar to the background or stand in positions that differ from the set of training

poses. This lack of invariance, especially in real outdoor settings, limits significantly the

performance of the VJ classifier and motivates the development of approaches that incor-

porate ways to remove the background and focus-of-attention mechanisms.

The PDM is more robust to occlusions and pose changes because it does not attempt

to find body parts. The results presented in the previous section are quite encouraging

considering that the final goal of the algorithm is to obtain the total number of pedestrians

waiting at bus stops rather than identifying each person individually.

Ongoing research aimed at improving the robustness and accuracy of the current de-

tection system considers the use of body-parts detection and tracking based on histograms

of oriented gradients as proposed in (Wu & Nevatia, 2007). In order to improve the back-

ground removal process the use of texture and stereo disparity analysis is also being inves-

tigated.
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APPENDIX A. ADDITIONAL RESULTS
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(C) PNN
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(D) KNN

FIGURE A.1. Pedestrians counted by PDM with different classification ap-
proaches versus the real value using conventional perspective camera.
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(D) KNN

FIGURE A.2. Pedestrians counted by PDM with different classification ap-
proaches versus the real value using thermal camerea.
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(C) PNN
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(D) KNN

FIGURE A.3. Pedestrians counted by PDM with different classification ap-
proaches versus the real value using omnidirectional camerea.
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