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We consider the bifurcation problemi’ + Au = N(u) with two point boundary conditions where
N(u) is a general nonlinear term which may also depend on the eigenwalu&/e give a variational
characterization of the bifurcating branchas a function of the amplitude of the solution. As an
application we show how it can be used to obtain simple approximate closed formulas for the period of
large amplitude oscillations. [S0031-9007(96)01317-8]

PACS numbers: 02.30.Hqg, 02.30.Wd, 03.20+i

Different physical systems reduce to the consideratiomf perturbation theory applicable to these systems [3,5].
of a one dimensional equation of the fouth = F(u, u), An important property of the solution in the nonlinear
where the forceF depends onu and one or more problem isthat the eigenvaluedepends on the amplitude
parameterse. In these systems the energy= %u'z +  of the solution. For one dimensional systems, such as
V(u) is a constant of the motion and the qualitativethose considered here, it suffices to consider the lowest
dynamics can be understood from the analysis of th@igenvalue since higher eigenvalues can be obtained from
phase plane and the stability of the fixed points. Amonghe knowledge of the lowest one. This is not the case for
the systems that fall in this class we may cite the bucklingdther nonlinear eigenvalue problems, however.
of a thin rod, the pendulum, steady state solutions of The purpose of this Letter is to show that the lowest
the reaction diffusion equation, and numerous others [1-€igenvalue derives from a variational principle. The
4]. (Given the large number of references in this areanain tool used in the derivation of this result is a new
we refer to some of the standard textbooks only.) Wevariational characterization of the linear problem which,
shall assume that the system has an equilibrium point dor the sake of clarity, we consider first.

u = 0. For small deviations from the equilibrium point ~We wish to solve the linear problem
the behavior of the solution is determined by the linear

. o g "+ =0 2a

equationu” + Au = 0 with suitable boundary conditions. _ " " (22)

An important feature of the linear problem is that thesubject to

eige_nvalue/\ does not d_epend on the ampl@tude of the u'(0) = 0, u(1) =0, (2b)

motion. For large deviations from the equilibrium, the full N

problem, which we write as where the boundary conditions we have chosen are the
p _ 1 ones appropriate for a wide range of problems. We refer
W'+ Au=Nu,A), (1) 1o other choices at the end. We will denoi€0) =

must be considered. A solution to this equation and ther,,. The positive solution to this problem is given by
analytic determination of the eigenvalieés possible only  u,, cog7x/2) corresponding to the lowest eigenvalue
for special forms of the nonlinearity. When an analytic A = (7/2)2>. There exists a variational principle for
solution is not possible, one can resort to obtaining ahis equation, the Rayleigh-Ritz principle, which provides
numerical solution or use perturbation theory around theipper bounds onmi. This principle, however, cannot
linear problem. The eigenvalues of the linear part ofbe extended to calculate the eigenvalue of nonlinear
Eq. (1) correspond to the points where bifurcation occurproblems. We shall construct a new one whose extension
in the nonlinear problem. There exist different methodso nonlinear problems will be straightforward.
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Let g(u) be an arbitrary positive function such that a= 1 K (tm) (®)
g(0) = 0 andg’(x) > 0. Multiplying Eq. (2a) byu'g(u) T2 [y ug(u)du’
and integrating inc we obtain, after integrating by parts, \ynen will equality hold in Eq. (8)? From Eq. (7) we see

that the equality will hold wheg is chosen in such a way
that ¥ coincides withu. For thisg which we will call g
we will have

1 1 1
—5 (u')g'(u)u' dx + /\] ug(uw)u' dx =0,
0 0

where the boundary terms vanish sing&0) = 0 and
glu(1)] = g(0) = 0. From the equation and the boundary uBg' (u) = 9)
conditions it follows thai’ < 0in (0, 1), so in the second
integral we may use as the independent variable. We
obtain then the identity, valid for any admissilgle

Sinceu is a solution of the differential equation (2a), we
know that

m 1 Lop 1o 1,5
A]O ug(u)du = —%]0 W)g'wu'dx.  (3) Ut T A =E =2 Au,, (10)
Consider now, for a fixed, the functional from where it followsu'> = Auj[1 — (u/u,)’]. Replac-
L ing this in Eq. (9) we obtain
Jo[v] = ——f W)2g' (v)v'dx = —f ®(v,v')dx, R K
2Jo ') = 2 21,2 VB2
(4a) [(Au2) (1 — u?/u2)]/

This equation can be integrated to yield (omitting overall

defined for functions which satisfy multiplicative constants)

v(0) =u,, v(l)=0 and v'<0 in (0,1). "
(4b) 8 = T /T

Then J,[v] = 0 and for fixedg it has a unique mini- Our final result for the linear problem is then the follow-
mum attained atv = ©. A rigorous proof will be ing variational characterization for the lowest eigenvalue,
given elsewhere. The minimizing functiansatisfies the

(11)

Euler-Lagrange equation fof,. Since ®(v,v’) does A= maxl K () (12)
not depend onx the Euler-Lagrange equations can be 2 Jo" ugu)du’
integrated once to yiel® — v'9®/dv’ = const. Since where the maximum is taken over all positive functions
d(v,v)) = —%ng/(v) we get g such thatg(0) = 0, g’ > 0. The maximum is attained
N3 ) wheng = g.

@) g'(®) = - ) It is straightforward to evaluate the integrals for= 3
Then, giveng, we may determiné by integrating Eq. (5) and verify that we obtain the correct result. Solving
subject to the boundary conditions (4b) . We have theny”*3’ = —K with v(0) = u,, v(1) = 0 we obtaink =
for fixed g, (/2% and [ ug(u) du = (1/2)(r /2)u’,, and the exact

value for A is obtained.
We now consider the nonlinear problem

where the dependence &fon u,, is obtained through the W+ du = N(u) (13a)
boundary conditions o#.
Before going any further, conS|der for example, Subject to
g(v) = v. Then the minimizingv, v, satisfiest’(x) = W' (0) = 0, u(1) = 0. (13b)
—K'3. Imposing the boundary condmons we get
# = K'/3(1 — x) provided thatk = u3. For this choice As before we denote(0) = u,. Again multiplying by
of g, therefore,J, = u,/2. Now we go back to the u "g(u), whereg is as before, we obtain, after integrating

J[v] = minJy[v] = J,[5] = %K(um), (6)

problem under conS|derat|on We have from Egs. (3), iy,
(4a), and (6), /\j;) ug(u)du =f0 N(u)g(u)du
Uy, 1 1 5 1
A fo ug(u)du = —> fo (u')*g'(w)u' dx - % ]0 (u')g' (' dx,  (14)
1 1 . . . . .
= J[§]l= —= 5NVl (5)5 d where in the term involvingd and the nonlinearity we
7] 2 ] (@) g ()7 dx have used: as the independent variable. The second term

1 on the right side is just the linear term considered above,
= 5 K(um), (7)  sowe have
which gives a lower bound oh. We have shown that for y= Lo o' Nw)g(u)du + K(u,) (15)
any giveng(u) [with g(0) = 0, g’(u) > 0], — 2 [0 ug(u) du
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and as before the maximum is attained wiheis chosen 3.0
in such a way thatt = u. Now the equation forg
becomes 237
1 20
¢ () = ————, 16
where V(u) is the potential. Here the potentidl = 5 137
1 1 m
szz - ng(y)dy and E = zAu%l - [ N(y)dy. 10l
This expression forg cannot be integrated in general
due to the nonlinear terms Vi(«) that arise fromv (u). 05 |
However, as in the linear case, the maximizingxists
and we obtain our main result 000 22 24 26 28 30 32 34
1 [y"N du + K A
A = max s Lo Mg Klun) g FIG. 1. _Bifurcation di for the nonli -
2 Jom ug(u) du . 1. Bifurcation diagram for the nonlinear term(u)

. , i . u?>—Tu*/5 + u*/2. The solid line corresponds to the exact
where the maximum is taken over all positive functionssg|ytion, the dashed line to the variational estimate.

g such thatg(0) = 0 and g’(x) > 0. The maximum is
attained forg = 2.
Since in general we will not be able to integrate

Eq. (16), the above principle gives lower bounds Whichf.rom the equilibr_ium. This i$ an _exactly solvaple equa-
can be arbitrarily close to the exact value. It is worth!ion: and the period can be given in terms of elliptic func-

noticing that in obtaining the variational principle we tions. When the nonlinearity is s_maII, perturbation theory
have keptu fixed and considered functions af as the =~ ©@" be used to calculate thg period or frequen_cy of oscil-
variational quantities. A physical interpretation for the lations. The frequency obtained assumigs 1 is

function ¢ is still lacking. 2 15

3 2 2 4
As an example we shall use as a trial function the @pert = —— = 1+ §5“ ~ 256 6%a
function g which gives the correct eigenvalue for the .
linear problemg(u) = u/x/T — (u/u,)?. With this trial + higher order terms
function we obtain from (17) the lower bound wherea is the amplitude of the oscillations. In order to
L= <7T>2 N 4 U N(u)u J " make use of the variational result we recall that since the
= il Jo YT = i2ju, u, (18) potential has the symmetry — —x we may consider

a quarter period of the solution which we choose as

which is valid for anyN (u). _ the lower right quadrant in phase spagex). In this

As a first example consider the equation region of phase space we havé) = 0, x(0) = a, and

" , 71T 5 1y x(T/4) = 0. Then introducing the scaled time variable
Wit Au =t = st o T = 2wt/ 7 we obtain
with u(0) = u,,, u'(0) = 0, u(1) = 0. The integral in d2x T \2 5
Eqg. (18) can be done easily. We obtain g2 <%> (x +6x7) =0,
2
2 7 \3 825 215 .

In Fig. 1 we show a plot ofi,,(A). The solid line cor- x(0) = a, x(0) =0, x(1)=0.
responds to the exact value obtained from the numericalVe identify A = (7/2w)?, N(x) = —8Ax>?, and apply
integration of the equation. The dashed line correspondgq. (18). We obtain the bound
to the lower bound given by the formula above. As can 7\ 3
be seen in the figure, the lower bound gives a very accu- A= <—> — = 81d?,
rate value for amplitudes up t@, =~ 2. For larger val- _ . _ 2 _ 4
ues there is a small discrepancy which can be minimizedhich written in terms ofw gives
by a more adequate choice for The formula given in 3
any case is a close enough lower bound even at larger Wyar = \/1 g da’. (19)
amplitudes. ) ) , o )

As a second example we consider the unforced Duffin hIS. bound is valid for oscillations of any amplltgde.
equation n Fig. 2 we show the results fof = 0.1. The solid

. N line gives the exact solution, the dot-dashed line the
X4+ ox”=0. variational bound, and the dashed line the perturbation

For this equationr = 0 is a stable equilibrium point, and result including terms up to orde$?. Again we see

we search for the period of oscillation of perturbationsthe close agreement up to fairly large amplitude of the
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in the derivation of this result is a new variational for-
mulation of the linear problem. The variational principle
may be used to calculate the eigenvalues as accurately as
desired by suitable choice of trial functions. A simple es-
timate, using as a trial function the optimal trial function
for the linear problem, gives reasonably accurate results
for small to medium amplitude solutions, and it gives a
good rigorous bound for larger amplitudes. The method
that we have used here can be applied to other problems.
In particular it can be shown to be a reformulation in real
space of the method used previously by us [6,7] to obtain
the speed of fronts of a reaction-diffusion equation in one
dimension for arbitrary nonlinearities. Because of the na-
FIG. 2. Amplitude versus frequency for the unforced Duffing tyre of the front problem, though, its formulation directly
equation. The solid line corresponds to the exact solution, thg, a5 space is simpler. It is an open question whether
dot-dashed line to the variational estimate, and the dashed “nt?‘lis a h b ded L )
to a second order perturbation result. | pproach can be extended to treat limit cycles of non
linear oscillators.
This work has been partially supported by Fondecyt
roject 1960450. R.B. was supported by a Catedra
residencial en Ciencias.

variational expression. As in the previous example {
different trial function would give a close estimate at
larger amplitudes.

In this last example we were able to reduce to a
quarter period of the solution due to the symmetry of the
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consider half the period, that is the lower half of the phase  (Springer-Verlag, New York, 1991).
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Subject to New York, 1973)
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u'(0) =0, w(l) =0. nowitz (Academic Press, New York, 1977).
One can obtain a similar variational principle in this case [5] N. Minorsky, Nonlinear Oscillations (Van Nostrand,
too. The details are slightly more involved but entirely Princeton, New Jersey, 1962).
similar to what we have shown. [6] R.D. Benguria and M.C. Depassier, Commun. Math.

an.  Phys.175 221-227 (1996).
To conclude, we have shown that the lowest eigen [7] R.D. Benguria and M. C. Depassier, Phys. Rev. Lé®.

yalue of nor_1I|near one d_|m_enS|ona_1I Hamlltonlan systems” " 171711173 (1996).
is characterized by a variational principle. The main tool
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