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We consider the bifurcation problemu00 1 lu ­ Nsud with two point boundary conditions where
Nsud is a general nonlinear term which may also depend on the eigenvaluel. We give a variational
characterization of the bifurcating branchl as a function of the amplitude of the solution. As a
application we show how it can be used to obtain simple approximate closed formulas for the per
large amplitude oscillations. [S0031-9007(96)01317-8]

PACS numbers: 02.30.Hq, 02.30.Wd, 03.20+i
ti

v
t
n

lin

[
r
W
t

e
.

h
h
u

t

t

u
d

,5].
r

e
as
est
rom
for

st
e
w
h,

the
fer

y
e
r
es
t
ear
ion
Different physical systems reduce to the considera
of a one dimensional equation of the formu00 ­ Fsu, md,
where the forceF depends onu and one or more
parametersm. In these systems the energyE ­

1
2 u02 1

V sud is a constant of the motion and the qualitati
dynamics can be understood from the analysis of
phase plane and the stability of the fixed points. Amo
the systems that fall in this class we may cite the buck
of a thin rod, the pendulum, steady state solutions
the reaction diffusion equation, and numerous others
4]. (Given the large number of references in this a
we refer to some of the standard textbooks only.)
shall assume that the system has an equilibrium poin
u ­ 0. For small deviations from the equilibrium poin
the behavior of the solution is determined by the lin
equationu00 1 lu ­ 0 with suitable boundary conditions
An important feature of the linear problem is that t
eigenvaluel does not depend on the amplitude of t
motion. For large deviations from the equilibrium, the f
problem, which we write as

u00 1 lu ­ Nsu, ld , (1)

must be considered. A solution to this equation and
analytic determination of the eigenvaluel is possible only
for special forms of the nonlinearityN . When an analytic
solution is not possible, one can resort to obtaining
numerical solution or use perturbation theory around
linear problem. The eigenvalues of the linear part
Eq. (1) correspond to the points where bifurcation occ
in the nonlinear problem. There exist different metho
0031-9007y96y77(14)y2847(4)$10.00
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of perturbation theory applicable to these systems [3
An important property of the solution in the nonlinea
problem is that the eigenvaluel depends on the amplitud
of the solution. For one dimensional systems, such
those considered here, it suffices to consider the low
eigenvalue since higher eigenvalues can be obtained f
the knowledge of the lowest one. This is not the case
other nonlinear eigenvalue problems, however.

The purpose of this Letter is to show that the lowe
eigenvalue derives from a variational principle. Th
main tool used in the derivation of this result is a ne
variational characterization of the linear problem whic
for the sake of clarity, we consider first.

We wish to solve the linear problem

u00 1 lu ­ 0 (2a)

subject to

u0s0d ­ 0, us1d ­ 0 , (2b)

where the boundary conditions we have chosen are
ones appropriate for a wide range of problems. We re
to other choices at the end. We will denoteus0d ­
um. The positive solution to this problem is given b
um cosspxy2d corresponding to the lowest eigenvalu
l ­ spy2d2. There exists a variational principle fo
this equation, the Rayleigh-Ritz principle, which provid
upper bounds onl. This principle, however, canno
be extended to calculate the eigenvalue of nonlin
problems. We shall construct a new one whose extens
to nonlinear problems will be straightforward.
© 1996 The American Physical Society 2847
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Let gsud be an arbitrary positive function such tha
gs0d ­ 0 andg0sud . 0. Multiplying Eq. (2a) byu0gsud
and integrating inx we obtain, after integrating by parts,

2
1
2

Z 1

0
su0d2g0sudu0 dx 1 l

Z 1

0
ugsudu0 dx ­ 0 ,

where the boundary terms vanish sinceu0s0d ­ 0 and
gfus1dg ­ gs0d ­ 0. From the equation and the bounda
conditions it follows thatu0 , 0 in s0, 1d, so in the second
integral we may useu as the independent variable. W
obtain then the identity, valid for any admissibleg,

l
Z um

0
ugsud du ­ 2

1
2

Z 1

0
su0d2g0sudu0 dx . (3)

Consider now, for a fixedg, the functional

Jgfyg ­ 2
1
2

Z 1

0
sy0d2g0sydy0 dx ;

1
2

Z 1

0
Fsy, y0d dx ,

(4a)

defined for functionsy which satisfy

ys0d ­ um, ys1d ­ 0, and y0 , 0 in s0, 1d .

(4b)

Then Jgfyg $ 0 and for fixedg it has a unique mini-
mum attained aty ­ ỹ. A rigorous proof will be
given elsewhere. The minimizing functioñy satisfies the
Euler-Lagrange equation forJg. Since Fsy, y0d does
not depend onx the Euler-Lagrange equations can b
integrated once to yieldF 2 y0≠Fy≠y0 ­ const. Since
Fsy, y0d ­ 2

1
2 y03g0syd we get

sỹ0d3g0sỹd ­ 2K . (5)

Then, giveng, we may determinẽy by integrating Eq. (5)
subject to the boundary conditions (4b) . We have th
for fixed g,

Jgfyg $ minJgfyg ­ Jgfỹg ­
1
2

Ksumd , (6)

where the dependence ofK on um is obtained through the
boundary conditions oñy.

Before going any further, consider, for exampl
gsyd ­ y. Then the minimizingy, ỹ, satisfiesỹ0sxd ­
2K1y3. Imposing the boundary conditions we g
ỹ ­ K1y3s1 2 xd provided thatK ­ u3

m. For this choice
of g, therefore,Jg $ u3

my2. Now we go back to the
problem under consideration. We have from Eqs. (
(4a), and (6),

l
Z um

0
ugsud du ­ 2

1
2

Z 1

0
su0d2g0sudu0 dx

$ Jgfỹg ­ 2
1
2

Z 1

0
sỹ0d2g0sỹdỹ0 dx

­
1
2

Ksumd , (7)

which gives a lower bound onl. We have shown that for
any givengsud [with gs0d ­ 0, g0sud . 0],
2848
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l $
1
2

KsumdRum

0 ugsud du
. (8)

When will equality hold in Eq. (8)? From Eq. (7) we se
that the equality will hold wheng is chosen in such a way
that ỹ coincides withu. For thisg which we will call ĝ
we will have

u03ĝ0sud ­ 2K . (9)

Sinceu is a solution of the differential equation (2a), w
know that

1
2

u02 1
1
2

lu2 ­ E ­
1
2

lu2
m , (10)

from where it followsu02 ­ lu2
mf1 2 suyumd2g. Replac-

ing this in Eq. (9) we obtain

ĝ0sud ­
K

fslu2
md s1 2 u2yu2

mdg3y2 .

This equation can be integrated to yield (omitting over
multiplicative constants)

ĝsud ­
u

f1 2 suyumd2g1y2 . (11)

Our final result for the linear problem is then the follow
ing variational characterization for the lowest eigenvalu

l ­ max
1
2

KsumdRum

0 ugsud du
, (12)

where the maximum is taken over all positive functio
g such thatgs0d ­ 0, g0 . 0. The maximum is attained
wheng ­ ĝ.

It is straightforward to evaluate the integrals forg ­ ĝ
and verify that we obtain the correct result. Solvin
y03ĝ0 ­ 2K with ys0d ­ um, ys1d ­ 0 we obtainK ­
spy2d3u3

m and
R

ugsud du ­ s1y2dspy2du3
m, and the exact

value forl is obtained.
We now consider the nonlinear problem

u00 1 lu ­ Nsud (13a)

subject to

u0s0d ­ 0, us1d ­ 0 . (13b)

As before we denoteus0d ­ um. Again multiplying by
u0 gsud, whereg is as before, we obtain, after integrating

l
Z um

0
ugsud du ­

Z um

0
Nsudgsud du

2
1
2

Z 1

0
su0d2g0sudu0 dx , (14)

where in the term involvingl and the nonlinearity we
have usedu as the independent variable. The second te
on the right side is just the linear term considered abo
so we have

l $
1
2

Rum

0 Nsudgsud du 1 KsumdRum

0 ugsud du
(15)
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and as before the maximum is attained wheng is chosen
in such a way thatỹ ­ u. Now the equation forĝ
becomes

ĝ0sud ­
1

fE 2 V sudg3y2
, (16)

where V sud is the potential. Here the potentialV ­
1
2 lu2 2

Ru
0 Nsyd dy and E ­

1
2 lu2

m 2
Rum

0 Nsyd dy.
This expression forĝ cannot be integrated in gene
due to the nonlinear terms inV sud that arise fromNsud.
However, as in the linear case, the maximizingg exists
and we obtain our main result

l ­ max
1
2

Rum

0 Nsudgsud du 1 KsumdRum

0 ugsud du
, (17)

where the maximum is taken over all positive functio
g such thatgs0d ­ 0 and g0sud . 0. The maximum is
attained forg ­ ĝ.

Since in general we will not be able to integra
Eq. (16), the above principle gives lower bounds wh
can be arbitrarily close to the exact value. It is wo
noticing that in obtaining the variational principle w
have keptu fixed and considered functions ofu as the
variational quantities. A physical interpretation for t
function ĝ is still lacking.

As an example we shall use as a trial function
function g which gives the correct eigenvalue for t
linear problemgsud ­ uy

p
1 2 suyumd2. With this trial

function we obtain from (17) the lower bound

l $

µ
p

2

∂2

1
4

pu3
m

Z um

0

Nsudup
1 2 u2yu2

m

du , (18)

which is valid for anyNsud.
As a first example consider the equation

u00 1 lu ­ u2 2
7
5

u3 1
1
2

u4 ,

with us0d ­ um, u0s0d ­ 0, us1d ­ 0. The integral in
Eq. (18) can be done easily. We obtain

l $

µ
p

2

∂2

1
4
p

µ
2
3

um 2
3
8

p

2
7
5

u2
m 1

1
2

8
15

u3
m

∂
.

In Fig. 1 we show a plot ofumsld. The solid line cor-
responds to the exact value obtained from the nume
integration of the equation. The dashed line correspo
to the lower bound given by the formula above. As
be seen in the figure, the lower bound gives a very a
rate value for amplitudes up toum ø 2. For larger val-
ues there is a small discrepancy which can be minim
by a more adequate choice forg. The formula given in
any case is a close enough lower bound even at la
amplitudes.

As a second example we consider the unforced Duf
equation

ẍ 1 x 1 dx3 ­ 0 .

For this equationx ­ 0 is a stable equilibrium point, an
we search for the period of oscillation of perturbatio
l
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FIG. 1. Bifurcation diagram for the nonlinear termNsud ­
u2 2 7u3y5 1 u4y2. The solid line corresponds to the exa
solution, the dashed line to the variational estimate.

from the equilibrium. This is an exactly solvable equ
tion, and the period can be given in terms of elliptic fun
tions. When the nonlinearity is small, perturbation the
can be used to calculate the period or frequency of os
lations. The frequency obtained assumingd ø 1 is

vpert ­
2p

T
­ 1 1

3
8

da2 2
15
256

d2a4

1 higher order terms,

wherea is the amplitude of the oscillations. In order
make use of the variational result we recall that since
potential has the symmetryx ! 2x we may consider
a quarter period of the solution which we choose
the lower right quadrant in phase spaces Ùx, xd. In this
region of phase space we haveÙxs0d ­ 0, xs0d ­ a, and
xsTy4d ­ 0. Then introducing the scaled time variab
t ­ 2vtyp we obtain

d2x
dt2

1

µ
p

2v

∂2

sx 1 dx3d ­ 0 ,

with

xs0d ­ a, Ùxs0d ­ 0, xs1d ­ 0 .

We identify l ­ spy2vd2, Nsxd ­ 2dlx3, and apply
Eq. (18). We obtain the bound

l $

µ
p

2

∂2

2
3
4

dla2,

which written in terms ofv gives

vvar #

s
1 1

3
4

da2 . (19)

This bound is valid for oscillations of any amplitud
In Fig. 2 we show the results ford ­ 0.1. The solid
line gives the exact solution, the dot-dashed line
variational bound, and the dashed line the perturba
result including terms up to orderd2. Again we see
the close agreement up to fairly large amplitude of
2849
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FIG. 2. Amplitude versus frequency for the unforced Duffi
equation. The solid line corresponds to the exact solution,
dot-dashed line to the variational estimate, and the dashed
to a second order perturbation result.

variational expression. As in the previous example
different trial function would give a close estimate
larger amplitudes.

In this last example we were able to reduce to
quarter period of the solution due to the symmetry of
potential. In the absence of such symmetry we sho
consider half the period, that is the lower half of the ph
plane. The relevant bifurcation problem to be conside
in this case is

u00 1 lu ­ Nsud

subject to

u0s0d ­ 0, u0s1d ­ 0 .

One can obtain a similar variational principle in this ca
too. The details are slightly more involved but entire
similar to what we have shown.

To conclude, we have shown that the lowest eig
value of nonlinear one dimensional Hamiltonian syste
is characterized by a variational principle. The main t
2850
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in the derivation of this result is a new variational fo
mulation of the linear problem. The variational princip
may be used to calculate the eigenvalues as accurate
desired by suitable choice of trial functions. A simple e
timate, using as a trial function the optimal trial functio
for the linear problem, gives reasonably accurate res
for small to medium amplitude solutions, and it gives
good rigorous bound for larger amplitudes. The meth
that we have used here can be applied to other proble
In particular it can be shown to be a reformulation in re
space of the method used previously by us [6,7] to obt
the speed of fronts of a reaction-diffusion equation in o
dimension for arbitrary nonlinearities. Because of the n
ture of the front problem, though, its formulation direct
in phase space is simpler. It is an open question whe
this approach can be extended to treat limit cycles of n
linear oscillators.
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