
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

A COMBINED RRT*-OPTIMAL CONTROL

APPROACH FOR KINODYNAMIC MOTION

PLANNING FOR MOBILE ROBOTS

NICOLÁS AXEL BUSCH HOPFENBLATT

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

MIGUEL TORRES TORRITI

Santiago de Chile, March 2016

c©MMXVI, NICOLÁS AXEL BUSCH HOPFENBLATT

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

A COMBINED RRT*-OPTIMAL CONTROL

APPROACH FOR KINODYNAMIC MOTION

PLANNING FOR MOBILE ROBOTS

NICOLÁS AXEL BUSCH HOPFENBLATT

Members of the Committee:

MIGUEL TORRES TORRITI

JORGE BAIER ARANDA

FERNANDO AUAT CHEEIN

GLORIA ARANCIBIA HERNÁNDEZ

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, March 2016

c©MMXVI, NICOLÁS AXEL BUSCH HOPFENBLATT

No one wants to learn by mistakes, but we cannot

learn enough from successes to go beyond the state of

the art ... Such is the nature not only of science and

engineering, but of all human endeavors.

HENRY PETROSKI

ACKNOWLEDGEMENTS

This work was supported by the National Commission for Science and Technology

Research of Chile (CONICYT) under grants Fondecyt 1110343, Fondecyt 1140575, Fonde-

quip 120141, Basal Project FB0008, and CONICYT-PCHA/MagisterNacional/2014-22141669.

Special thanks to my advisor Miguel Torres, for all the time, support and guidance

without which this work could not have been possible.

I would like to express my gratitude to the members of the review committee for their

valuable remarks.

Thanks to my friends in the Robotics and Automaton Laboratory (RAL) for provid-

ing a friendly environment, and specially to Jorge Reyes for the help on the experimental

validation of my work.

Finally, but most importantly, to my family, for their unconditional love and support.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

LIST OF TABLES . ix

ABSTRACT . x

RESUMEN . xi

1. INTRODUCTION . 1

1.1. Motivation . 1

1.2. Problem Definition . 1

1.3. Objectives . 3

1.4. Hypothesis . 3

1.5. Existing Approaches . 4

1.6. Contributions . 7

1.7. Thesis Outline . 8

2. PRELIMINARY NOTIONS . 9

2.1. Rapidly-exploring Random Tree (RRT) 9

2.2. Asymptotically Optimal RRT (RRT*) 11

2.3. Line RRT* . 15

2.4. Kinematic Model . 17

2.5. Two-point Boundary Value Problem . 18

3. PROPOSED MOTION PLANNING STRATEGY 20

3.1. Line-Corner RRT* . 20

3.2. Corner RRT* . 23

4. SIMULATIONS . 26

v

4.1. Path Tracking Controller . 26

4.2. Simulation Results . 27

5. IMPLEMENTATION AND TESTING . 38

5.1. Experimental setup . 38

5.2. Testing location . 40

6. EXPERIMENTAL RESULTS WITH A ROBOTIC SKID-STEER LOADER . 42

7. CONCLUSION . 48

7.1. Lessons Learned and Recommendations 48

7.2. Review of the Results and General Remarks 50

References . 52

APPENDIXES . 59

APPENDIX A. ADDITIONAL RESOURCES 60

A.1. Notation . 60

APPENDIX B. ROBOT COMMUNICATION PROTOCOL 62

B.1. Design Philosophy . 62

B.2. Message Structure . 62

B.3. Message List . 62

B.3.1. RCP_MSG_LOG . 63

B.3.2. RCP_HEARTBEAT and RCP_HEARTBEAT_R 63

B.3.3. RCP_SET_PWM and RCP_SET_PWM_R 64

B.3.4. RCP_GET_ENC and RCP_GET_ENC_R 65

B.3.5. RCP_SET_PWM_GET_ENC and RCP_SET_PWM_GET_ENC_R . . . 65

B.3.6. RCP_SET_PARAMETERS and RCP_SET_PARAMETERS_R 66

B.3.7. RCP_GET_PARAMETERS and RCP_GET_PARAMETERS_R 67

vi

LIST OF FIGURES

1.1 Motion Planning Problem. 3

2.1 RRT Algorithm. 12

2.2 RRT* Algorithm - Choose Parent. 14

2.3 RRT* Algorithm - Rewire. 15

2.4 L-RRT* algorithm example. 17

3.1 Corner examples for LC-RRT*. The algorithm combines lines with locally

optimal curves. Boundary conditions for the optimal control problem depend on

the tightness of the corner. 22

3.2 Corner examples for C-RRT*. Waypoints are connected with locally optimal

curves generated with a TPBVP solver. 24

4.1 Simulations for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario 1. Subfigures

(A), (D), (G) and (J) show the trajectories generated with each algorithm.

Subfigures (B), (E), (H) and (K) show the reference trajectory and the followed

trajectory. Subfigures (C), (F), (I) and (L) show the control signals for every case. 28

4.2 Simulations for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario 2. Subfigures

(A), (D), (G) and (J) show the trajectories generated with each algorithm.

Subfigures (B), (E), (H) and (K) show the reference trajectory and the followed

trajectory. Subfigures (C), (F), (I) and (L) show the control signals for every case. 29

4.3 Simulations for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario 3. Subfigures

(A), (D), (G) and (J) show the trajectories generated with each algorithm.

Subfigures (B), (E), (H) and (K) show the reference trajectory and the followed

trajectory. Subfigures (C), (F), (I) and (L) show the control signals for every case. 30

4.4 Simulations for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario 4. Subfigures

(A), (D), (G) and (J) show the trajectories generated with each algorithm.

vii

Subfigures (B), (E), (H) and (K) show the reference trajectory and the followed

trajectory. Subfigures (C), (F), (I) and (L) show the control signals for every case. 31

4.5 Instantaneous cost Cx,y;k for scenario 1. 33

4.6 Instantaneous cost Cx,y;k for scenario 2. 34

4.7 Instantaneous cost Cx,y;k for scenario 3. 35

4.8 Instantaneous cost Cx,y;k for scenario 4. 35

5.1 Compact skid-steer loader used for experimental validation. 39

5.2 System architecture diagram that shows the interaction between the main components

of the navigation system robotic skid-steer loader. 39

5.3 Field experiment for simulation scenario 2. Traffic cones mark the vertices of the

obstacles. 41

5.4 Field experiment for simulation scenario 3. Traffic cones mark the vertices of the

obstacles. 41

6.1 Experimental validation for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario

2. Subfigures (A), (D), (G) and (J) show the reference trajectory and the real

followed trajectory. Subfigures (B), (E), (H) and (K) show the control signals

for every case. Subfigures (C), (F), (I) and (L) present the tracking error and

controller effort for each algorithm. 44

6.2 Experimental validation for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario

3. Subfigures (A), (D), (G) and (J) show the reference trajectory and the real

followed trajectory. Subfigures (B), (E), (H) and (K) show the control signals

for every case. Subfigures (C), (F), (I) and (L) present the tracking error and

controller effort for each algorithm. 45

6.3 Cumulative cost vs time. It shows the evolution of the path tracker over time and

highlights the differences between the tested methods. The time is normalized to

simplify the comparison. 47

viii

LIST OF TABLES

4.1 Cost comparison for simulation. The total cost is calculated as a combination of

the tracking error and the controller effort, C = Cx,y + Cv,ω. The cost reduction

compared to RRT* is calculated as ∆C = CRRT*−Ci
CRRT* , i = L-RRT*, LC-RRT*,

C-RRT*. 36

6.1 Cost comparison for real world experiments. The total cost is calculated as a

combination of the tracking error and the controller effort, C = Cx,y +Cv,ω. The

cost reduction compared to RRT* is calculated as ∆C = CRRT*−Ci
CRRT* , i = L-RRT*,

LC-RRT*, C-RRT*. 46

B.1 RCP message structure . 63

B.2 Message Types . 63

B.3 Response Messages Types . 64

B.4 RCP_MSG_LOG - 0x11 response message structure 64

B.5 RCP_HEARTBEAT - 0x12 message structure 64

B.6 RCP_HEARTBEAT_R - 0x13 response message structure 64

B.7 RCP_SET_PWM - 0x22 message structure 65

B.8 RCP_SET_PWM_R - 0x23 response message structure 65

B.9 RCP_GET_ENC - 0x42 message structure 66

B.10 RCP_GET_ENC_R - 0x43 response message structure 66

B.11 RCP_SET_PARAMETERS - 0xf2 message structure 66

B.12 RCP_SET_PARAMETERS_R - 0xf3 response message structure 67

B.13 RCP_GET_PARAMETERS - 0xf4 message structure 67

B.14 RCP_GET_PARAMETERS_R - 0xf5 response message structure 67

ix

ABSTRACT

An important challenge in underground mining is that of motion planning for exca-

vators and hauling trucks because of the tight spaces available to maneuver and fuel con-

sumption. During the last decades several path planning strategies for mobile robots have

been developed. However, most of the existing methods only find a path that satisfies cer-

tain optimality criteria, but do not consider the feasibility of the path accordingly with the

robot’s motion dynamics. Thus in this work two motion planning strategies are proposed

that combine the RRT* path planning algorithm with the piecewise solution of an optimal

control problem over a finite number subintervals of a simpler polygonal trajectory derived

from the path found by RRT*. The proposed approaches take into account the motion

model of the robot, hence yield kinodynamically feasible trajectories. One strategy solves

a local two-point boundary value optimal control problem at the corners of the polygonal

path, while the second solves the two-point boundary value optimal control problem taking

consecutive points of the polygonal trajectory. Geometrically, the first approach connects

straight lines with curves at the turning points of the path, and the second approach yields

smooth curves. In both cases the trajectories can be tracked by the motion controller with

negligible errors compared to the trajectories that follow the RRT* path. However, an im-

portant difference between the proposed methods lies in the fact that the second one is

able to yield trajectories that can be followed with an almost constant longitudinal velocity

and gradual changes in heading turning rates. The proposed approaches were evaluated

in simulations and tested in field experiments using a robotic excavator implemented with

a Caterpillar CAT 262C2 compact loader. The results show that proposed approaches are

computationally feasible on current standard computers and reduce the combined tracking

error and controller effort criteria by 30−70 %, depending on the complexity of the path.

Keywords: motion planning, path planning, kinodynamic model, RRT*, two-point

BVP, path tracking controller.

x

RESUMEN

Uno de los desafı́os más importantes en la minerı́a subterránea es la planificación

de trayectorias para excavadoras y camiones, debido principalmente al escaso espacio

disponible para maniobrar y al consumo de combustible. Múltiples métodos para planifi-

cación de trayectorias para robots móviles han sido propuestos en las últimas décadas. Gran

parte de estos métodos calculan trayectorias que satisfacen un criterio de optimización, pero

no consideran la factibilidad de la trayectoria en términos de la dinámica de movimiento

del robot. En este trabajo se presentan dos métodos de planificación de trayectorias que

combinan el algoritmo de planificación RRT* con la solución de un problema de control

óptimo sobre un número finito de subintervalos de una trayectoria poligonal, la cual se

deriva del camino encontrado con RRT*. Los algoritmos propuestos consideran el modelo

de movimiento del robot en la etapa de planificación, por lo que las trayectorias generadas

son dinámicamente compatibles con el robot. La primera estrategia resuelve un problema

de control óptimo en la cercanı́a de los vértices de la trayectoria poligonal, mientras que

el segundo método resuelve el problema de control óptimo conectando directamente los

vértices. Geométricamente, el primer enfoque conecta lı́neas con curvas en los vértices,

mientras que el segundo genera curvas suaves. En ambos casos las trayectorias pueden

ser seguidas con un controlador de movimiento con errores insignificantes en comparación

con las trayectorias generadas con RRT*. No obstante, una diferencia importante entre los

métodos propuestos es que el segundo método es capaz de generar trayectorias que pueden

ser seguidas con una velocidad longitudinal constante y cambios graduales en la velocidad

angular. Los algoritmos propuestos se evaluaron en simulaciones y experimentos usando un

cargador frontal Caterpillar CAT 262C. Los resultados muestran una disminución del error

de seguimiento y el esfuerzo del controlador de un 30−70 %, dependiendo del escenario.

Palabras Claves: planificación de trayectorias, modelo dinámico, RRT*, BVP,

seguidor de trayectorias.

xi

1. INTRODUCTION

1.1. Motivation

The use of autonomous industrial mobile robots in outdoor environments has increased

greatly in the last decade, mainly motivated by their effectiveness, commercial viability,

and above all, safety (Seward, Pace, & Agate, 2007). Different industries benefit from the

use of mobile robots, but perhaps one of the most emblematic cases is the mining industry.

Mining is characterized for its hazardous environments, in which mobile robots not only

provide an economic advantage, but most importantly, guarantee high safety standards.

Currently there exist mines that use driverless trucks, and it is foreseeable that many more

will be developed in the next years, especially for underground mining as minerals on the

surface are being exhausted and deeper ores cannot be economically extracted by open pit

mining.

One of the fundamental challenges an autonomous mobile robot must face is the mo-

tion planning problem, i.e. how to find the best trajectory through the workspace while

avoiding obstacles and reducing the driving time, distance traveled, or fuel used. Path

planning is not a novel concept in robotics, but it is to be noted that most of the exist-

ing path planners do not consider the motion constraints imposed by the robot’s particular

kinematics and dynamics. On the other hand, the few existing approaches that consider

the kinodynamic motion constraints do not validate their results with field experiments

involving actual industrial machinery like in this work.

1.2. Problem Definition

Following the notation convention used by (Karaman & Frazzoli, 2010b; LaValle,

2006), let X ⊂ Rn and U ⊂ Rm be the set of state space and controls, respectively.

The system is described by the following equation that determines its state transition:

ẋ(t) = f(x(t), u(t)), x(0) = xinit (1.1)

1

where x(t) ∈ X , u(t) ∈ U , for all t, xinit ∈ X , and f is a continuously differentiable

function of its variables. Additionally let X denote the set of all essentially bounded func-

tions x : [0, T] → X as state space trajectories, and U denote the set of all essentially

bounded functions u : [0, T] → U as control trajectories, with T ∈ R>0 the final time.

Following this definition it is clear that a state trajectory x ∈ X , while a state x(t) ∈ X ,

for a particular time t. The same logic applies to control trajectories u and controls u(t).

The complete state space X can be divided into two open sub sets, Xfree and Xobs,

called the free space and the obstacle region, respectively, where Xfree = X \Xobs. Simi-

larly the goal region is an open subset of X , with Xgoal ⊂ Xfree.

Given the state space X , the obstacle region Xobs, an initial state xinit ∈ Xfree, a goal

region Xgoal ⊂ Xfree, a state transition function f that describes the kinodynamical con-

straints of the robot, and a cost functional to be minimized J : X × U → R, the optimal

kinodynamic motion planning problem is to find a control trajectory u ∈ U with domain

[0, T] for some T ∈ R>0 such that the generated trajectory x ∈ X ,

(i) avoids all the obstacles, i.e. x(t) /∈ Xobs ∀t ∈ [0, T]

(ii) reaches the goal region, i.e. x(T) ∈ Xgoal

(iii) satisfies the kinodynamical model of the robot: Σ
def
= {ẋ(t) = f(x(t), u(t))∧u ∈

U , ∀t ∈ [0, T]},

(iv) minimizes the cost functional J(x, u) =

∫ T

0

g(x(t), u(t)) dt

The motion planning problem is represented in Figure 1.1, which shows the free space

Xfree in white, the obstacle regionXobs in gray, and the goal regionXgoal as a black disc. The

robot can execute different feasible trajectories that comply with its kinodynamic model,

however only one of the trajectories is optimal and minimizes the cost functional.

It is to be noted that this problem is more complex than the path planning problem, in

which only a geometrical path that connects start and end points while avoiding obstacles

is sought without consideration of the control commands nor constraints imposed by the

kinematics and dynamics of the robot. On the other hand, the motion planning problem in-

volves determining which motions and associated control signals are necessary to generate

2

Xfree

Xobs

Xobs

Xgoal

FIGURE 1.1. Motion Planning Problem.

a trajectory that reaches the goal region without colliding into obstacles (LaValle, 2006). If

additionally the motion model and constraints given by Equation (1.1) are simultaneously

kinematic and dynamic, then the problem is referred to as a kinodynamic motion planning

problem (Donald, Xavier, Canny, & Reif, 1993).

1.3. Objectives

The main objective is to design a motion planner capable of generating kinodynamic

trajectories that can be followed by a real mobile robot. The motion planner must optimize

the trajectory based on a specific objective function, e.g., minimizing time, distance trav-

eled, or fuel used, while avoiding the obstacles of the environment and complying with the

kinodynamic constraints that bound the movement of the robot.

1.4. Hypothesis

A motion planner that combine the sampling-based RRT* path planning algorithm with

the piecewise solution of an optimal control problem over a finite number subintervals of a

simpler polygonal trajectory, derived from the path found by RRT*, can improve the quality

of the trajectory, compared to existing approaches. The quality of the planned trajectory

is defined as the ability of the robot to properly follow it, which is highly dependent on

3

the kinodynamic characteristics of the robot, and it is here measured as a combination of

trajectory tracking error and controller effort.

1.5. Existing Approaches

Although the focus of this thesis is in motion planning, path planning will be discussed

first because it is an essential part of many motion planning strategies. Path planning is one

of the fundamental problem in robotics (Latombe, 1999). As a result, in the last decades

numerous approaches have been proposed. Path planning methods can be divided into

two groups: exact methods and sampling-based methods. Exact methods consider math-

ematical approaches such as Potential Fields (Barraquand, Langlois, & Latombe, 1991;

Khatib, 1985), graph traversal and grid pathfinding strategies such as A* (Hart, Nilsson,

& Raphael, 1968) and D* (Stentz, 1994), and geometric approaches such as Voronoi Dia-

grams (Canny, 1985) and Visibility Graphs (Lozano-Pérez & Wesley, 1979). On the other

hand, the classic sampling-based planning algorithms include the Probabilistic Roadmap

Method (PRM) (Kavraki, Svestka, Latombe, & Overmars, 1996) and Rapidly-exploring

Random Trees (RRT) (LaValle & Kuffner, 1999).

Potential Fields (Khatib, 1985) represent the world as a field of forces, the goal state

generates attractive forces while obstacles generate repulsive forces, hence the robot moves

as a result of these forces. Although this approach is simple and elegant, the robot may

get trapped when the forces cancel each other out. Grid-based algorithms decompose the

workspace into small cells, where each cell has a traversing cost associated. A* (Hart et

al., 1968) uses an heuristic approach to find the minimum length collision-free path in a

connectivity graph, whereas D* (Stentz, 1994) is tailored to dynamic graphs. Graph search

methods are efficient for low dimensional scenarios, since the grid representation is not

appropriate for large environments. The Voronoi Diagram (Canny, 1985) is formed by

lines that maximize the clearance to obstacles. The path found is equidistant to the nearest

obstacles, allowing the robot to follow a safe path through the obstacle free space. Another

geometric approach is the Visibility Graph (Lozano-Pérez & Wesley, 1979), which attempts

to capture the connectivity of the configuration space by joining the vertices of the obstacles

4

with collision free lines. Once the roadmap is built, the shortest path is calculated using

simple graph search techniques. The complexity grows with the number of vertices, hence

this approach is best suited for environments with a low number of obstacles (Kunchev,

Jain, Ivancevic, & Finn, 2006).

Sampling based path planning methods attempt to capture the connectivity of the con-

figuration space by sampling it (Elbanhawi & Simic, 2014). These approaches provide fast

solutions for difficult problems, e.g., high dimensional or with kinodynamic constraints.

However the solutions found are generally suboptimal, and if they offer some degree of

optimality, then a very large or infinite amount of time is needed to reach the optimal so-

lution. Two of the most well known sampling-based algorithms are Probabilistic Roadmap

Method (PRM) (Kavraki et al., 1996) and Rapidly-exploring Random Trees (RRT) (LaValle

& Kuffner, 1999). PRM first samples the configuration space to generate a map of connec-

tions between valid states. Then the start and end points are connected to the respective

closest available states in the map. The path from the start to the end that has been created

is then followed through the map. The same map can be used to solve different instances of

the problem in the same environment, and for this reason it is referred as a multi-query plan-

ner. RRT also samples the configuration space, but instead of generating a map, it grows

a search tree starting from the initial state that densely covers the configuration space. As

opposed to PRM, RRT is a single-query planner, i.e. it will find a path from an initial state

to a final state faster than PRM, but the RRT tree is not as adaptable to other problems in

the same environment as the PRM map is (Elbanhawi & Simic, 2014).

The main drawback of RRT and PRM is the quality of the generated solution. For RRT,

once the goal region is reached additional samples will not improve the quality of the path,

and in fact, it has been shown that the RRT algorithm converges to a non-optimal solution

with probability one (Karaman & Frazzoli, 2010a). The work of Karaman and Frazzoli

(2011) introduced a new family of planners which guaranteed asymptotic optimality, i.e.

the probability of converging to the optimal solution approaches almost surely to one as

the number of iterations goes to infinity. RRT* and PRM* are the asymptotically optimal

counterparts of RRT and PRM, respectively. One of the main drawbacks of RRT* is its

5

slow rate of convergence to the optimal path. This rate is characterized by being fast at the

beginning, but the improvement made on each iteration becomes smaller as the number of

iterations grows, needing an infinite amount of time to converge to an optimal solution.

Post processing techniques allow a sampling-based algorithms to converge to a smooth

path in a finite amount of time, however the optimality of the solution cannot be guaranteed.

Path smoothing consists on using a curve to interpolate or fit a set of waypoints. Different

methods have been applied to path smoothing, such as cubic polynomials (Thrun et al.,

2006), Bezier curves (Jolly, Sreerama Kumar, & Vijayakumar, 2009; Yang & Sukkarieh,

2010) and B-splines (Kanayama & Hartman, 1997; Maekawa, Noda, Tamura, Ozaki, &

Machida, 2010; Shan, Dai, Song, & Sun, 2009; Yang et al., 2014). Smoothed paths comply

with simple kinodynamic models, as the generated paths have continuous first and second

order derivatives. This approach, however, does not find the optimal path between way-

points.

In practice it is necessary that the planner takes into account the kinematic and dynamic

constraints of the robot, but most of the basic path planners do not consider them, which

may result in trajectories that cannot be properly followed by the robot (De Oliveira Vaz,

Inoue, & Grassi, 2010). Besides, as stated in (LaValle, 2006), the only known methods for

exact planning under differential constraints in the presence of obstacles are for the double

integrator system in R and R2. For this reason, the majority of solution techniques are

sampling-based. However, embedding a kinodynamic model in the RRT* algorithm is not

trivial, because numerous two-point Boundary Value Problems (TPBVP) must be solved

for every iteration. Therefore, most cases found in the literature use simple kinodynamic

models, or no models at all. Simple models have an exact solution to the TPBVP, e.g., the

Dubins’ Vehicle (Dubins, 1957), and thus the amount of time required to solve the planning

problem is manageable. For more complex kinodynamic models there is no exact solution,

so numerical approaches must be used to solve the TPBVP.

In the last decade there have been important advances in numerical optimal control

and optimization to solve TPBVP, which has open the possibility of embedding numerical

6

solvers into asymptotically optimal motion planning algorithms (Xie, van den Berg, Patil,

& Abbeel, 2015). The main drawback of this approach is the time needed to solve a large

number of TPBVP. For every iteration the computation time is small, but the total compu-

tation time becomes unmanageable as the number of iterations grows. Other approaches,

such as Bath Informed Trees (BIT*) (Gammell, Srinivasa, & Barfoot, 2014a), Fast March-

ing Trees (FMT*) (Janson, Schmerling, Clark, & Pavone, 2015), Kinodynamic RRT* with

linear differential constraints (Webb & van den Berg, 2012), Stable Sparse RRT* (Li, Lit-

tlefield, & Bekris, 2014), and Sucessive Approximation RRT* (SA-RRT*) (Ha, Lee, &

Choi, 2013) have tried to address the problem of using any kinodynamic model with a

RRT*-based approach, with different degrees of success. These algorithms usually use

variations of the original RRT*.

Additionally, most of the published motion planning algorithms are only tested in

simulated environments and not experimentally validated. Some exceptions are found

in (Ardiyanto & Miura, 2011; De Oliveira Vaz et al., 2010; Gammell et al., 2014a; Stenning,

McManus, & Barfoot, 2013), which conduct experimental validation with small to medium

size robots. Although this provides an experimental verification of the theoretical concepts,

it is desirable from the application perspective to validate the planning algorithms with full

size industrial machinery, as in (Karaman, Walter, Perez, Frazzoli, & Teller, 2011).

1.6. Contributions

The contributions of this work can be summarized as:

(i) Two new algorithms, LC-RRT* and C-RRT*, that combine in a novel way the

best characteristics of sampling-based methods, i.e. the fast rate of convergence

to a quasi-optimal solution, with the benefits of a TPBVP, i.e. the compatibility

between the trajectory and the kinodyamics of the robot.

(ii) The experimental validation of the proposed algorithms with a full-size indus-

trial machinery, hence demonstrating the applicability of the algorithms with real

robots.

7

(iii) A new communication protocol, the Robot Communication Protocol (RCP).

RCP is a fast, simple, and minimal binary protocol for communicating between

computers and robots.

1.7. Thesis Outline

This thesis is organized as follows. Chapter 2 lays the ground in terms of notation,

problem formulation, and basic notions necessary for understanding the proposed algo-

rithms. In Chapter 3 the new proposed algorithms are presented. Simulations are provided

in Chapter 4, where the new algorithms are compared against traditional approaches in

different scenarios, then advantages/disadvantages are discussed and analyzed. Details of

implementation and field-testing are provided in Chapter 5. Chapter 6 presents the re-

sults obtained from experimental validation with a large-size industrial machinery. Finally,

Chapter 7 contains the lessons learned and conclusions of this work.

8

2. PRELIMINARY NOTIONS

The proposed method is based on the well known RRT algorithm and its globally

asymptotically optimal variant, the RRT* algorithm. Since these algorithms are an essential

part of this work, this section covers a basic introduction to the sampling-based RRT and

RRT* planning algorithms.

Sampling-based planning algorithms have been widely used in the last years to solve

difficult problems, with certain geometric o kinodynamic constraints, that would be prac-

tically impossible to solve using other techniques. These algorithms sample the configura-

tion space (C-space or C) to capture its connectivity, in order to find a path that can safely

cross it.

The notion of completeness for sampling-based planning algorithms is essential and is

important to introduce. A deterministic planning algorithm is considered complete if in a

finite amount of time it is capable of returning a solution. If no solution exists it must report

this situation. Unfortunately this notion of completeness cannot be achieved by sampling-

based planning algorithms, and a weaker notion of completeness must be introduced. A

sampling-based algorithm will be called probabilistically complete if the probability of

finding a solution converges to one, as the number of sampling points increases to infinity.

If there is no solution the algorithm may run forever (LaValle, 2006).

Similarly, the notion of optimality does not exist for sampling-based methods. Instead

the notion of asymptotic optimality must be introduced, i.e. the probability of converging

to the optimal solution approaches almost surely to one as the number of iterations goes to

infinity (Karaman & Frazzoli, 2011).

2.1. Rapidly-exploring Random Tree (RRT)

Rapidly-Exploring Random Trees, or RRT, is a sampling-based path planning algo-

rithm, and it was first proposed by LaValle and Kuffner (1999). This algorithm was de-

veloped to cover the need for a path planner able to consider complicated kinodynamical

9

constraints and generate feasible trajectories. The basic idea is to incrementally construct

a search tree that densely covers the configuration space. With uniform sampling, the

probability of expanding towards a given region is proportional to the size of its Voronoi

Region, which assures the tree will grow towards large unsearched areas. The algorithm is

also capable of considering the kinodynamic constraints of the robot, while maintaining a

low computational overhead. These characteristics have made of RRT one the most used

sampling-based planning algorithms in the last decade (Karaman & Frazzoli, 2013).

The total path x is subdivided in states qi. These states correspond to the path evaluated

at discrete time steps Ti, such that qi = x(Ti). Each of these states will be called a vertex,

or node, of the tree. The algorithm builds a tree G = (V,E) and stores every vertex in V

and every edge between vertices in E.

As seen in Algorithm 1, the procedure starts by initializing the treeGwith values for V

andE. In every iteration it selects a random point with Sample, which returns independent

and identically distributed samples from Xfree. To achieve a faster rate of convergence the

algorithm is biased toward the destination point. This is done by making the Sample

procedure return the final state with probability p, and other random state with probability

(1− p).

Algorithm 1: RRT
input: qinit, N
V ← {qinit};E ← ∅; i← 0;1

while i ≤ N do2
qrand ← Sample(i); i← i+ 1;3

qnearest ← Nearest(V,E, qrand);4

(xnew, unew, Tnew)← Steer(qnearest, qrand);5

qnew ← xnew(Tnew);6

if ObstacleFree(xnew) then7
V ← V ∪ {qnew};8

E ← E ∪ {(qnearest, qnew)};9

return G = (V,E)10

The Nearest method finds the nearest neighbor of a given state. Let the state be qrand

and the nearest neighbor be qnearest. In this case the Nearest(V,E, qrand) method solves

10

the problem arg minqnearest∈V d(qnearest, qrand), where d(q1, q2) returns the euclidian distance

between the two points.

The next step is to go from the nearest vertex, qnearest, to the given state qrand. This is

done by the Steer(qnearest, qrand) method. It calculates the trajectory xnew, the control sig-

nals unew and the time Tnew, such that arg minunew∈U d(xnew(Tnew), qrand), while complying

with the kinodynamic constraints of the robot. This means xnew(Tnew) is the closest state to

qrand that can be reached from qnearest and satisfies the kinodynamic constraints.

The kinodynamic model used for the Steer method is usually represented by a state

transition equation of the form ẋ(t) = f(x(t), u(t)), equivalent to equation (1.1). Solving

this problem is equivalent to solve a two-point Boundary Value Problem, which is not

trivial, as it will be explained in Section 2.5. Therefore, many of the RRT kinodynamic

implementations use a shooting method with random control inputs instead of finding the

control input, unew, that minimizes the distance between qnew and qrand.

The ObstacleFree method is used to check if the trajectory xnew avoids all the

obstacles, i.e. xnew(t) ∈ Xfree for all t ∈ [0, Tnew]. If xnew is collision free, then the node

qnew is added to V and the edge between qnearest and qnew is added to E. The main procedure

(Lines 2-9) is repeated for a pre-specified number of iterations.

The steps for Sample, Nearest, and Steer can be seen in Figure 2.1. For the sake

of simplicity, a holonomic robot model has been used for the Steer procedure, although

the method can use other kinodynamic models as well.

The main drawback of the RRT algorithm is the quality of the generated solution. Once

the goal region is reached, additional samples will not improve the quality of the path, and

in fact, it has been showed that the RRT algorithm converges to a non-optimal solution with

probability one (Karaman & Frazzoli, 2010a).

2.2. Asymptotically Optimal RRT (RRT*)

This section describes the RRT* path planning algorithm. RRT* is an improved ver-

sion of RRT, and it was introduced in (Karaman & Frazzoli, 2011). The main advantage

11

q
init

(A) Original Tree

q
init

q
rand

(B) Sample Procedure

q
init

q
rand

q
nearest

(C) Nearest Procedure

q
init

q
rand

q
nearest q

new

(D) Steer Procedure

FIGURE 2.1. RRT Algorithm.

of RRT* over RRT is its globally asymptotically optimal quality, i.e. the probability of

converging to the optimal path approaches almost surely to one as the number of iterations

goes to infinity (Karaman & Frazzoli, 2010a). RRT* is capable of finding asymptotically

optimal solutions by combining the basic ideas of RRT, such as using a random tree to

explore rapidly the state space, with an optimal tree rewiring procedure.

The basic structure is the same as in RRT, and the methods Sample, Nearest,

Steer, and ObstacleFree are identical to the ones explained in Section 2.1. In or-

der to achieve the global asymptotic optimality of RRT*, the Steer method must return

the optimal sub-trajectory between the two given points. The additional methods needed

for RRT* are explained next, and the complete procedure is summarized in Algorithm 2.

The NearVertices(V,E, qnew) method (Line 10) finds all the vertices in V that are

in the neighborhood of qnew, the size of the neighborhood is parametrized by n. It returns

Qnearby, which corresponds to any qnear ∈ V that is inside a ball of radius ln centered at qnew.

The value of ln is chosen in such a way that the volume of the ball is γ log(n)/n, where γ

is a constant.

12

Algorithm 2: RRT*
input: qinit, N
V ← {qinit};E ← ∅; i← 0;1

while i ≤ N do2
qrand ← Sample(i); i← i+ 1;3

qnearest ← Nearest(V,E, qrand);4

(xnew, unew, Tnew)← Steer(qnearest, qrand);5

qnew ← xnew(Tnew);6

if ObstacleFree(xnew) then7
V ← V ∪ {qnew};8

qmin ← qnearest; cmin ← Cost(qnew);9

Qnearby ← NearVertices(V,E, qnew);10

foreach qnear ∈ Qnearby do11
(xnear, unear, Tnear)← Steer(qnear, qnew);12

if ObstacleFree(xnear) and xnear(Tnear) = qnew then13
if Cost(qnear) + J(xnear) < cmin then14

cmin ← Cost(qnear) + J(xnear);15

qmin ← qnear;16

E ← E ∪ {(qmin, qnew)};17

foreach qnear ∈ Qnearby \{qmin} do18
(xnear, unear, Tnear)← Steer(qnew, qnear);19

if ObstacleFree(xnear) and xnear(Tnear) = qnear then20
if Cost(qnear) > Cost(qnew) + J(xnear) then21

qparent ← Parent(qnear);22

E ← E \{(qparent, qnear)};23

E ← E ∪ {(qnew, qnear)};24

return G = (V,E)25

The next step is to choose the parent node of qnew (Lines 11-16). RRT does this by

selecting the closest node, but this procedure leads towards non-optimal solutions. Instead,

RRT* searches in all the nearby vertices inQnearby for the node with the smallest cumulative

cost. For each qnear ∈ Qnearby the method steers towards qnew. If the resulting trajectory is

obstacle free and reaches the state qnew, then the total cost from the root vertex to the final

state is calculated, i.e. Cost(qnear)+J(xnear). Cost(q) is defined as the total cost from the

root vertex to the state q and J(xi) as the cost along the sub-trajectory xi. If this new cost

13

q
init

(A) Original Tree

q
init

q
rand

(B) Nearby nodes

q
init
q

init

(C) Shortest cumulative path

q
init

(D) Add node with parent

FIGURE 2.2. RRT* Algorithm - Choose Parent.

is smaller than the previously stored one, then the cost and the vertex are updated. When

this procedure is over, the parent of qnear is set as qmin and the tree is updated. Figure 2.2

depicts the steps needed to choose the parent node of qnew.

The final part of the algorithm corresponds to the rewire procedure (Lines 18-24). The

procedure optimizes the path by rewiring vertices in the vicinity of the new vertex. This

is done as follows: the algorithm steers from qnew to each vertex qnear ∈ Qnearby \qmin. If

the trajectory xnear is obstacle free and xnear(Tnear) = qnear, it calculates the total cumulative

cost from the root vertex to the near vertex using a new edge, i.e. Cost(qnew) +J(xnear). If

this cost is smaller than the total cumulative cost using the old edges, i.e. Cost(qnear), then

the parent of qnear is replaced by qnew. All the steps of the rewire procedure are presented in

Figure 2.3.

The RRT* algorithm is globally asymptotically optimal as proven in (Karaman & Fraz-

zoli, 2010a), as long as the local solution found by the Steer procedure is optimal. An

14

q
init

q
rand

(A) Nearby nodes

q
init
q

init

(B) Shortest cumulative path

q
init
q

init

(C) New shortest cumulative path

q
init

(D) Rewire parent node

FIGURE 2.3. RRT* Algorithm - Rewire.

optimal solution only will be found in an infinity time, though the algorithm will be able

to find a near-optimal trajectories in reasonable times. Because of its global optimality, the

RRT* algorithm is very useful for practical applications. One of the main advantages of

this method over other path planner is the ability to generate a path that is kinodynamically

compatible with the robot, i.e. the robot will be able to properly follow the trajectory. If a

kinodynamic model is used, then RRT* can be used as a motion planner instead of a path

planner, which means that the algorithm will not only return the path x ∈ X , but also the

control signals u ∈ U for the trajectory.

2.3. Line RRT*

Line RRT*, or L-RRT*, optimizes the path found by RRT* based on the well known

triangle inequality, which basically states that a one-line path is a shorter than a two-line

path.

15

Given a quasi-optimal trajectory x generated with the RRT* algorithm and the set of

nodes qi ∈ V , such that qi = x(Ti), the line optimization algorithm directly connects nodes

visible to each other. As seen in Algorithm 3, the method starts at the final node, qfinal, and

iteratively moves towards the root of the tree, qinit, trying to make collision free connections

with successive parents of each node (Lines 5-7). If the process fails, the last successful

connection is established and the process starts again from the last successfully connected

node (Lines 8-11). This procedure is repeated until the root node is reached, and then the

optimized path L is returned.

Algorithm 3: Line Optimization
input: G = (V,E)
L← {qfinal};1

q ← qfinal;2

qparent ← Parent(q);3

while q 6= qinit do4
if ObstacleFree(qparent, q) then5

qlast ← qparent;6

qparent ← Parent(qlast);7

else8
L← L ∪ {qlast};9

q ← qlast;10

qparent ← Parent(qlast);11

return L12

Figure 2.4 depicts a comparison between the trajectories generated with RRT* and L-

RRT*. The Line Optimization procedure reduces the total length of the path by reducing the

number of edges with a low computational overhead. All new edges between vertices are

collision free, and the new path shares the principal properties of RRT*, i.e. probabilistic

completeness and asymptotic optimality.

As can be seen, L-RRT* effectively reduces the cost of the path found by RRT* with

a low additional computational overhead. The main drawback is that the path is not com-

patible with the kinodynamic constraints, at least for most non-holonomical kinodynamic

models.

16

qinit

qfinal

FIGURE 2.4. L-RRT* algorithm example.

L-RRT* is based on the work presented in (Islam, Nasir, Malik, Ayaz, & Hasan, 2012),

which introduced Smart-RRT*. Smart-RRT* is an extension of RRT*, and it accelerates

the convergence rate by two means: path optimization and intelligent sampling. First it

reduces the path to a minimum number of states, based on the same principle used in L-

RRT*, and then uses these states as biases for further sampling. As stated in (Gammell,

Srinivasa, & Barfoot, 2014b), the biased sampling procedure violates the RRT* assumption

of uniform sampling, thus Smart-RRT* loses the asymptotic optimality property of the

original RRT* algorithm. For this reason, line RRT*, or L-RRT*, is introduced here as a

simplified version of Smart-RRT* that only uses the path optimization procedure, hence

preserving the probabilistic convergence properties of RRT*.

2.4. Kinematic Model

The kinodynamic model is considered as part of the motion planning problem in or-

der to produce trajectories that satisfy the kinodynamic constraints. For simplicity and to

reduce the computational burden, the model employed here considers the kinematic equa-

tions of a popular differential-drive robot given by Σ,

17

Σ :


xk+1

yk+1

θk+1

 =


xk

yk

θk

+


λvvk cos(θk)∆t

λvvk sin(θk)∆t

λwwk∆t

 (2.1)

where [xk yk θk] is the state of the mobile robot at time instant k consisting of the global

position and orientation, vk and wk are the longitudinal and angular velocities, λv and

λw are longitudinal and angular slippage factors, and ∆t is the sampling time. For the

kinematic model of the differential drive robot, the inputs are the left- and right-wheel ve-

locities, which are related to the longitudinal and rotational velocity by vk =
vφr+vφl

2
and

ωk =
vφr−vφl

W
, where W is the width of the robot. This model is also a good approximation

to kinematic model of skid-steer mobile bases. If the control inputs are directly the lon-

gitudinal and angular velocities vk and wk, then the equations correspond to those of the

kinematic model for a unicycle.

2.5. Two-point Boundary Value Problem

Generally speaking, a boundary value problem (BVP) is a differential equation with a

set of additional constraints, called the boundary conditions (LaValle, 2006). In the field of

motion planning a TPBVP solves the optimal trajectory through a state space that connects

a given initial state with a given final state while satisfying differential constraints. A mo-

tion planner also has to avoid the obstacles of the environment, but unfortunately TPBVPs

are not designed to handle obstacles, and thus it is necessary to combine the BVP solver

with a motion planning algorithm that avoids the obstacles of the environment.

Given the recent advances in numerical optimal control and nonlinear optimization, it

is feasible to solve the TPBVPs in a systematic way for arbitrary kinodynamic systems,

and integrate these methods with existing sampling-based optimal planning methods (Xie

et al., 2015).

18

The optimal control problem can be stated as,

min
u,x,T

J(x, u) (2.2)

ẋ(t) = f(x(t), u(t)) ∀t ∈ [0, T] (2.3)

x(0) = xinit (2.4)

x(T) = xfinal (2.5)

u(t) ∈ U ∀t ∈ [0, T] (2.6)

T > 0 (2.7)

where the state transition function given by f : X × U → X describes the kinodynamical

constraints of the robot, xinit ∈ Xfree and xfinal ∈ Xfree are the initial and final state, respec-

tively, T ∈ R>0 is the final time, and J : X × U → R is the cost functional to minimize.

The final time T is not known in advance so it is introduced as another variable in the sys-

tem. In this stage no obstacles are considered, since TPBVPs are not well suited to handle

obstacle regions, thus it is fundamental to check if the solution found is collision-free.

19

3. PROPOSED MOTION PLANNING STRATEGY

Asymptotically optimal sampling-based methods, such as RRT*, need an infinite amount

of time to converge to an optimal solution. Therefore, the trajectories generated in finite

time will never be smooth enough for a path tracking controller to follow without gen-

erating an oscillatory behavior in the control signals, as will be shown in Chapter 4. On

the other hand, the simplified path obtained with the L-RRT* method is not kinodynami-

cally compatible with most real robots because of the polygonal trajectory, that produces

tracking errors that the path tracking controller cannot handle especially at tight polygonal

turns.

These facts motivate the development of two algorithms that are built upon RRT* and

L-RRT*, but include the solution of an optimal control two-point boundary value problem

at specific turning points in the trajectory, thus reducing the tracking error and controller

effort. The approach yields a trajectory that is kinodynamically compatible with the motion

model, and thus its realization by the real robot is feasible.

3.1. Line-Corner RRT*

There exist kinodynamic models where the optimal trajectory is the combination of

straight lines and curves. For example, the optimal trajectory between two states for the

Dubins’ Vehicle is the combination of straight lines and turns with constant curvature, as

shown in (Dubins, 1957). For some types of models the optimal solution for sections of the

trajectory are straight lines, e.g., a car-like robot going in straight line, an airplane flying, a

submarine, but as opposed to the Dubins’ Vehicle the turn section may have a non-constant

curvature. In these scenarios the problem consists of identifying which sections of the

optimal trajectory are straight lines and which are turns.

Line-Corner RRT*, or LC-RRT*, combines lines with locally optimal curves to create

kinodynamically compatible trajectories as shown in Figure 3.1. The line segments qi−1qi

and qiqi+1 are based on the path connecting qi−1, qi and qi+1 obtained with L-RRT*, while

the curves are generated with a TPBVP solver to guarantee the trajectory complies with the

20

robot’s motion model. Transition points qin and qout between lines and curves will depend

on the tightness of the corner. The tighter the corner, the more space it will be needed to

generate a smooth curve. This means that as the robot approaches the corner, it will at some

point qin deviate from the line to make a smooth turn. Figure 3.1 illustrates a tight and an

open turn, and the corresponding circular zones (indicated by dotted lines around a corner

qi) in which the turning maneuver is executed. The intersection of the circle centered at a

corner point qi and the line segments qi−1qi and qiqi+1 yields points qin and qout that are the

boundary values for the TPBVP.

The radius r of the circular zone around a corner depends on the internal angle of the

corner α, and is defined in terms of the logistic funciton:

r : α ∈ [0, π]→ (rmax − rmin)

(
1

1 + ek(α−α0)

)
+ rmin,

where rmin and rmax are the minimum and maximum radius of the zone around the corner in

which the turning maneuver is implemented, k determines the steepness of the curve and α0

the angle of the midpoint value at which r = (rmax +rmin)/2. The values of rmin and rmax are

chosen according to the motions that can be performed by the robot. For a car-like robot,

the value of rmax has to be at least the car’s turning radius because this is the distance that

would be required to perform a U-turn around the corner in an extreme maneuver for which

α ≈ 0. On the other hand, as the internal angle α approaches π, the maneuver approaches

the rectilinear motion, thus rmin could be zero. As shown in Figure 3.1, corners with small

internal angles require a larger zone to complete the turning maneuver than corners with

large internal angles.

LC-RRT* is presented in Algorithm 4. The algorithm iteratively connects each pair

of nodes with a combination of lines and curves. The inputs are the path L, found with

L-RRT*, and the kinodynamic model Σ. The path L is a set of consecutive states qi that

go from qinit to qfinal, where each state qi ∈ X . The position (xi, yi) associated to each state

qi is readily obtained from L-RRT*, but the orientation θi must be calculated as the mean

of the orientations of the segments qi−1qi and qiqi+1, where the orientation of each segment

21

qin

qout

qi−1

qi+1

qi

xin

xout

(A) Tight turn

qin

qout

qi−1

qi+1

qi
xin

xout

(B) Open turn

FIGURE 3.1. Corner examples for LC-RRT*. The algorithm combines lines with
locally optimal curves. Boundary conditions for the optimal control problem de-
pend on the tightness of the corner.

Algorithm 4: LC-RRT*
input: L,Σ
x∗ ← ∅;u∗ ← ∅;T ∗ ← 0;1

foreach qi ∈ L \{qinit, qfinal} do2
(θi, αi)← Angle(qi−1, qi, qi+1);3

Update θi in qi;4

ri ← Radius(αi);5

(qin, qout)← Intersect(qi−1, qi, qi+1, ri);6

(xin, uin, Tin)← BVPSolver(qin, qi,Σ);7

(xout, uout, Tout)← BVPSolver(qi, qout,Σ);8

if ObstacleFree(xin) and ObstacleFree(xout) then9
x∗ ← {x∗, xin, xout};10

u∗ ← {u∗, uin, uout};11

T ∗ ← T ∗ + Tin + Tout;12

return (x∗, u∗, T ∗)13

is defined as the angle between the segment and the horizontal axis (Line 3). The new

orientation θi is assigned to the state qi, which is then used as a boundary condition for the

TPBVP solver (Line 4). Next, the function Radius(qi−1, qi, qi+1) calculates the radius ri

in terms of the angle αi between the segments qi−1qi and qiqi+1 (Line 5). The circle with

center at qi and radius ri is intersected with the segments qi−1qi and qiqi+1 to find the states

qin and qout (Line 6).

22

The first part of the turning maneuver is a trajectory xin generated with BVPSolver,

using qin as the initial condition and qi as the final condition (Line 7). The output is a

locally optimal trajectory xin : [0, Tin] → X compatible with the kinodynamic model Σ of

the robot, with boundary conditions xin(0) = qin and xin(Tin) = qi, the control trajectories

uin : [0, Tin]→ U , and the final time Tin. The BVPSolver procedure is repeated using qi as

the initial condition and qout as the final condition, to generate the second part of the turning

maneuver, yielding the trajectory xout : [0, Tout] → X , uout : [0, Tout] → U and Tout. The

vertex qi is used as a mid-point to ensure the trajectories xin and xout found as the solution

of the TPBVPs do not collide with obstacles. Hence the turning problem is separated into

two consecutive TPBVPs, where the final point of the first TPBVP, xin(Tin) = qi, is the

initial point of the second TPBVP, xout(0) = qi.

If both trajectories xin and xout are obstacle free, i.e. xin(t) ∈ Xfree ∀t ∈ [0, Tin] and

xout(t) ∈ Xfree ∀t ∈ [0, Tout] (Line 9), then xin and xout are concatenated into the global

trajectory x∗ ∈ X , and uin and uout are concatenated into u∗ ∈ U (Lines 10-11). The output

of LC-RRT* is a global trajectory x∗ : [0, T ∗]→ X , with x∗(0) = qinit and x∗(T ∗) = qfinal,

the control trajectories u∗ : [0, T ∗] → U , and the total time T ∗. In Algorithm 4, the

trajectories along the line segments qi−1qin and qoutqi+1 before passing qin and after leaving

qout, respectively, are executed at constant velocity and have been omitted for the sake of

simplicity.

It is to be noted that even if LC-RRT* method does not generate a globally optimal

trajectory, its suboptimality is bounded because L-RRT* retains the asymptotic optimality

of RRT* and the number of intermediate states qi obtained from L-RRT* is finite.

3.2. Corner RRT*

Instead of connecting consecutive nodes qi−1, qi and qi+1 of the line path L with lines

and corners as the previous LC-RRT* approach does, it is possible to directly connect nodes

qi by curves calculated with a TPBVP solver in two steps using first boundary conditions

qi−1 and qi, and then qi, qi+1 as shown in Figure 3.2. This new method is called Corner

23

qi−1

qi+1

qi

xi

xi+1

(A) Tight turn

qi−1

qi+1

qi

xi

xi+1

(B) Open turn

FIGURE 3.2. Corner examples for C-RRT*. Waypoints are connected with locally
optimal curves generated with a TPBVP solver.

RRT*, or C-RRT*, and it is based on the same kinodynamic principle used in LC-RRT*,

where the kinodynamic model of the robot is embedded in the motion planning stage.

However, C-RRT* does not require the definition of a turning maneuver zone nor the entry

and exit points as LC-RRT* (compare Figure 3.1 and Figure 3.2).

The C-RRT* approach is summarized in Algorithm 5. C-RRT* is initialized with the

path L found with L-RRT* and iteratively connects successive nodes with locally optimal

kinodynamically compatible curves. As for LC-RRT*, the orientation θi of every node

qi must be calculated. The function Angle(qi−1, qi, qi+1) calculates the mean of the ori-

entations of the segments qi−1qi and qiqi+1 (Line 3). The orientations, together with the

positions, define states qi = [xi yi θi], used as boundary conditions for the TPBVP.

For each node qi in the path L the algorithm solves a TPBVP between the node qi and

the previous node qi−1 (Line 6). The output of BVPSolver is a trajectory xi : [0, Ti]→ X

compatible with Σ, with xi(0) = qi−1 and xi(Ti) = qi, the control signals ui : [0, Ti]→ U ,

and the time Ti that takes the robot to follow the trajectory. If the trajectory is obstacle free,

i.e. xi(t) ∈ Xfree ∀t ∈ [0, Ti] (Line 7), then xi is concatenated into the global trajectory

x∗ ∈ X and ui is concatenated into u∗ ∈ U (Lines 8-9). Figure 3.2 shows the trajectories

generated by C-RRT* for tight and open turns. In both cases C-RRT* yields a smooth path

that deviates from the path L generated by L-RRT*.

24

Algorithm 5: C-RRT*
input: L,Σ
x∗ ← ∅;u∗ ← ∅;T ∗ ← 0;1

foreach qi ∈ L \{qinit, qfinal} do2
θi ← Angle(qi−1, qi, qi+1);3

Update θi in qi;4

foreach qi ∈ L \{qinit} do5
(xi, ui, Ti)← BVPSolver(qi−1, qi,Σ);6

if ObstacleFree(xi) then7
x∗ ← {x∗, xi};8

u∗ ← {u∗, ui};9

T ∗ ← T ∗ + Ti;10

return (x∗, u∗, T ∗)11

Like LC-RRT*, the C-RRT* method does not yield a globally optimal trajectory, but

its suboptimality is bounded because it inherits the asymptotic optimality of RRT* through

L-RRT* and the number of intermediate states qi in the path L is finite. Furthermore, the

trajectory is built from the piecewise solution of an optimal control problem.

25

4. SIMULATIONS

4.1. Path Tracking Controller

In order to evaluate the performance of the different motion planning algorithms a path

tracking controller based on the methodology presented in (Cheein & Scaglia, 2014) was

implemented. The work of Cheein and Scaglia proposes a path tracking controller for bi-

cycle platforms, though it can be easily adjusted to work with other platforms, such as a

simple unicycle or a differential drive robot. Furthermore, it was shown to yield lower

trajectory tracking errors than other path tracking controllers proposed in the recent litera-

ture. Using the kinematic model of a unicycle described in Section 2.4, Equation (2.1), the

following control law was obtained,
vk =

1

λv∆t

[∆x cos(θez,k) + ∆y sin(θez,k)]

ωk =
θez,k+1 − kθ (θez,k − θk)− θk

λω∆t

with kθ < 1 (4.1)

where ∆x = xref,k+1 − kx(xref,k − xk)− xk, ∆y = yref,k+1 − ky(yref,k − yk)− xk, and θez is

the value of θ that satisfies Equation (4.2).

sin(θk)

cos(θk)
=

∆y

∆x

(4.2)

The values of kx, ky and kθ define the behavior of the controller. To find adequate values

for the control constants, a given cost function must be optimized.

The performance of the trajectory tracking controller is measured as a combination of

the total positional error cost, defined as the summation Cx,y =
∑
k

Cx,y;k of instantaneous

positional errors Cx,y;k = (xref,k − xk)
2 + (yref,k − yk)

2, and the total effort of the control

law, defined as the summation Cv,ω =
∑
k

Cv,ω;k of instantaneous controller efforts Cv,ω =

v2
k +ω2

k, where vk and ωk are control inputs for the translational and angular velocity of the

26

robot. Therefore, the controller performance is calculated as:

C =
∑
k

(xref,k − xk)
2 + (yref,k − yk)

2 +
∑
k

v2
k + ω2

k (4.3)

A Monte Carlo experiment was performed to find the values of kx, ky and kθ that

minimize the cost function given by Equation (4.3). To ensure zero error convergence of

the path tracker the values of the constants must be bounded, i.e. 0 ≤ kx, ky, kθ ≤ 1. The

values found with a 5000 iterations Monte Carlo experiment were kx = 0.98, ky = 0.98,

and kθ = 0.92. For more details about the implementation of the controller the reader is

referred to (Cheein & Scaglia, 2014).

4.2. Simulation Results

Simulations were carried out to show the advantages and drawbacks of the proposed

algorithms, and evaluate their ability to plan kinodynamically compliant trajectories while

achieving global quasi-optimality, i.e. the trajectories are suboptimal by a bounded factor.

Four different scenarios were considered. The first two shown in Figure 4.1 and Figure 4.2

correspond to tunnels with open and sharp turns. These were created to test the algorithms

in situations similar or more complex that encountered in underground mining tunnels. In

both cases, there is only one possible route to the goal, so these scenarios are intended to

generate situations in which maneuvering and generating kinodynamically feasible paths is

the main challenge. The third scenario has two possible paths to the goal, while the fourth

scenario has more than three possible paths to the goal. The third and fourth scenarios,

shown in Figure 4.3 and Figure 4.4, represent other situations encountered in industrial

environments and were conceived to test the capacity of the approaches to find a globally

optimal solution. The fourth scenario was purposefully made similar to a loop-closing test

to evaluate possible cumulative path tracking errors.

The obstacles in the different scenarios are constructed with polygons for simplicity

and to keep a low computational overhead. A considerable amount of computation time

27

qinit

qfinal

(A) RRT* Path

Ref
RRT*

(B) RRT* Tracked
Path

Time [s]
0 20 40 60 80

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 20 40 60 80

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(C) RRT* Controls

qinit

qfinal

(D) L-RRT* Path

Ref
L-RRT*

(E) L-RRT* Tracked
Path

Time [s]
0 20 40 60 80

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 20 40 60 80

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(F) L-RRT* Controls

qinit

qfinal

(G) LC-RRT* Path

Ref
LC-RRT*

(H) LC-RRT*
Tracked Path

Time [s]
0 20 40 60 80

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 20 40 60 80

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(I) LC-RRT* Con-
trols

qinit

qfinal

(J) C-RRT* Path

Ref
C-RRT*

(K) C-RRT* Tracked
Path

Time [s]
0 20 40 60 80

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 20 40 60 80

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(L) C-RRT* Controls

FIGURE 4.1. Simulations for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario
1. Subfigures (A), (D), (G) and (J) show the trajectories generated with each al-
gorithm. Subfigures (B), (E), (H) and (K) show the reference trajectory and the
followed trajectory. Subfigures (C), (F), (I) and (L) show the control signals for
every case.

28

qinit

qfinal

(A) RRT* Path

Ref
RRT*

(B) RRT* Tracked
Path

Time [s]
0 20 40 60 80 100

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 20 40 60 80 100

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(C) RRT* Controls

qinit

qfinal

(D) L-RRT* Path

Ref
L-RRT*

(E) L-RRT* Tracked
Path

Time [s]
0 20 40 60 80 100

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 20 40 60 80 100

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(F) L-RRT* Controls

qinit

qfinal

(G) LC-RRT* Path

Ref
LC-RRT*

(H) LC-RRT*
Tracked Path

Time [s]
0 20 40 60 80 100

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 20 40 60 80 100

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(I) LC-RRT* Con-
trols

qinit

qfinal

(J) C-RRT* Path

Ref
C-RRT*

(K) C-RRT* Tracked
Path

Time [s]
0 20 40 60 80 100

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 20 40 60 80 100

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(L) C-RRT* Controls

FIGURE 4.2. Simulations for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario
2. Subfigures (A), (D), (G) and (J) show the trajectories generated with each al-
gorithm. Subfigures (B), (E), (H) and (K) show the reference trajectory and the
followed trajectory. Subfigures (C), (F), (I) and (L) show the control signals for
every case.

29

qinit

qfinal

(A) RRT* Path

Ref
RRT*

(B) RRT* Tracked
Path

Time [s]
0 10 20 30 40 50 60 70

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 10 20 30 40 50 60 70

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(C) RRT* Controls

qinit

qfinal

(D) L-RRT* Path

Ref
L-RRT*

(E) L-RRT* Tracked
Path

Time [s]
0 10 20 30 40 50 60 70

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 10 20 30 40 50 60 70

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(F) L-RRT* Controls

qinit

qfinal

(G) LC-RRT* Path

Ref
LC-RRT*

(H) LC-RRT*
Tracked Path

Time [s]
0 10 20 30 40 50 60 70

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 10 20 30 40 50 60 70

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(I) LC-RRT* Con-
trols

qinit

qfinal

(J) C-RRT* Path

Ref
C-RRT*

(K) C-RRT* Tracked
Path

Time [s]
0 10 20 30 40 50 60 70

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 10 20 30 40 50 60 70

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(L) C-RRT* Controls

FIGURE 4.3. Simulations for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario
3. Subfigures (A), (D), (G) and (J) show the trajectories generated with each al-
gorithm. Subfigures (B), (E), (H) and (K) show the reference trajectory and the
followed trajectory. Subfigures (C), (F), (I) and (L) show the control signals for
every case.

30

qinit

qfinal

(A) RRT* Path

Ref
RRT*

(B) RRT* Tracked
Path

Time [s]
0 50 100 150 200 250 300

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 50 100 150 200 250 300

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(C) RRT* Controls

qinit

qfinal

(D) L-RRT* Path

Ref
L-RRT*

(E) L-RRT* Tracked
Path

Time [s]
0 50 100 150 200 250 300

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 50 100 150 200 250 300

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(F) L-RRT* Controls

qinit

qfinal

(G) LC-RRT* Path

Ref
LC-RRT*

(H) LC-RRT*
Tracked Path

Time [s]
0 50 100 150 200 250 300

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 50 100 150 200 250 300

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(I) LC-RRT* Con-
trols

qinit

qfinal

(J) C-RRT* Path

Ref
C-RRT*

(K) C-RRT* Tracked
Path

Time [s]
0 50 100 150 200 250 300

v
[m

/s
]

0

0.2

0.4 v

Time [s]
0 50 100 150 200 250 300

ω
 [r

ad
/s

]

-0.2

0

0.2
ω

(L) C-RRT* Controls

FIGURE 4.4. Simulations for RRT*, L-RRT*, LC-RRT*, and C-RRT* in scenario
4. Subfigures (A), (D), (G) and (J) show the trajectories generated with each al-
gorithm. Subfigures (B), (E), (H) and (K) show the reference trajectory and the
followed trajectory. Subfigures (C), (F), (I) and (L) show the control signals for
every case.

31

corresponds to obstacle collisions checking, thus an efficient obstacle representation is cru-

cial. As with most path planning algorithms, the size of the robot is not considered, which

can cause collisions since the optimal paths will tangentially approach the obstacles. In or-

der to avoid these type of collisions the obstacles are dilated by half the width of the robot

plus a security factor. The motion model considered in the simulations is a simplified ver-

sion of the kinodynamic model of the CAT 262 skid-steer loader developed in (Aguilera,

Torres-Torriti, & Auat, 2014, 2015). Here the arm of the excavator is assumed to be fixed,

thus its dynamics is not taken into account. On the other hand, only planar motion of the

mobile platform on a 2D flat surface is considered without the wheel-ground interaction

dynamics nor variations in terrain slope. More details are available in Section 2.4.

The simulation results presented in Figures 4.1–4.4 show the trajectories generated by

motion planning algorithms in subfigures (A), (D), (G), (J) for RRT*, L-RRT*, LC-RRT*

and C-RRT*, respectively. The corresponding trajectories resulting from the application of

the path tracking controller are shown in subfigures (B), (E), (H), (K) for each of the four

scenarios. The third column in each figure shows the longitudinal and angular velocity

command signals computed by path tracking controller with the reference trajectory gen-

erated by each algorithm in subfigures (C), (F), (I), (L). In all scenarios, the subfigure (A)

shows the trajectory planned with RRT* and the tree spanning from the start node after a

maximum of 5000 iterations or less if the improvement between iterations is below the stop-

ping threshold. Additionally, the total instantaneous cost for each scenario, corresponding

to the combined tracking error and controller performance, are shown in Figures 4.5–4.8,

respectively.

The results for the first scenario is presented in Figure 4.1 show that since no kinody-

namic model is considered by RRT*, the controller is unable to make the robot correctly

follow the path, which has a large tracking error (see the comparison between the planned

and executed trajectory in Figure 4.1B). Furthermore, due to its random nature, RRT* only

converges to a smooth path in an infinite number of iterations, thus the resulting control

signals are more oscillatory, as shown in Figure 4.1C. L-RRT* improves the quality of

the RRT* path by connecting nodes with collision free lines, as depicted in Figure 4.1D.

32

Time [s]
0 10 20 30 40 50 60 70 80

T
ot

al
 C

os
t

0

0.5

1 RRT*
L-RRT*
LC-RRT*
C-RRT*

FIGURE 4.5. Instantaneous cost Cx,y;k for scenario 1.

This solution eliminates the oscillatory behavior of RRT* and smooths the control signals,

as seen in Figure 4.1F. Nevertheless, the incompatibility between the trajectory and the

kinodynamic model generates tracking errors in the followed trajectory, clearly visible in

Figure 4.1E. LC-RRT* further improves the quality of L-RRT* by replacing the corners

with kinodynamically compatible turns, as depicted in Figure 4.1G. As a result the track-

ing error in the corners is clearly reduced, as seen in Figure 4.1H. Figure 4.1I shows the

control signals for the LC-RRT* case. The combination of lines and curves generates a

forced behavior on the controller in the turning sections, causing a decrease in the longi-

tudinal velocity v and a small oscillation in the angular velocity ω. Finally, it is possible

to see in Figure 4.1K that the trajectory produced by C-RRT* is tracked without any ap-

preciable errors. In contrast to LC-RRT*, C-RRT* control signals are smoother and show

no oscillation in longitudinal velocity, as can be seen from the comparison of Figure 4.1I

and Figure 4.1L. A comparison of the instantaneous cost Cx,y;k between the algorithms can

be seen in Figure 4.5. The effects of the tracking errors in RRT* and L-RRT* are clearly

visible, generating a high cost. On the other hand LC-RRT* and C-RRT* maintain a low

cost during the trajectory.

Comparing the second scenario in Figure 4.2 and that of the first scenario in Fig-

ure 4.1, it is possible to observe that the tracking errors are larger, particularly for RRT* in

Figure 4.2B. Once again, RRT* without any path smoothing strategy nor any kinodynamic

model produces an oscillatory trajectory and controls as seen in Figure 4.2C. In comparison

33

Time [s]
0 20 40 60 80 100

T
ot

al
 C

os
t

0

0.5

1

1.5 RRT*
L-RRT*
LC-RRT*
C-RRT*

FIGURE 4.6. Instantaneous cost Cx,y;k for scenario 2.

to RRT*, major improvements can be obtained with L-RRT*, Figure 4.2D, regarding the

oscillations of the control signals; see Figure 4.2F. Nevertheless, a considerable tracking

error is still present, as shown in Figure 4.2E. Figure 4.2G presents the trajectory generated

with LC-RRT*. As for the first scenario, in this case LC-RRT* also reduces the tracking er-

ror considerably; see Figure 4.2H. Figure 4.2K shows that once again C-RRT* produces no

visible tracking errors. It is possible to see in Figure 4.2L that the longitudinal velocity sig-

nal is also constant and only changes in the angular velocity control occur for every turning

maneuver along the path. Once again, the costs of LC-RRT* and C-RRT* are significantly

lower than the ones of RRT* and L-RRT*, as seen in Figure 4.6.

For the third scenario presented in Figure 4.3, RRT* shows an oscillatory behavior

and a significant tracking error like in the previous cases; see Figure 4.3C. The oscillatory

behavior is reduced with L-RRT* (see Figure 4.3F), but the tracking error is still present

(see Figure 4.3E). LC-RRT* and C-RRT* reduce the tracking error to a negligible amount,

as can be seen in Figure 4.3H and Figure 4.3K. The results show that C-RRT* finds a path

with very few turning maneuvers and constant velocity, as can be observed in Figure 4.3L.

The total cost is very small and practically constant, compared to RRT* and L-RRT* as in

Figure 4.7.

Finally, in spite of the obstacles and different possible paths in the fourth scenario,

all algorithms converge to the almost optimal solution thanks to the global asymptotic op-

timality of the underlying RRT* as shown in Figure 4.4. As for the previous cases, the

34

Time [s]
0 10 20 30 40 50 60 70

T
ot

al
 C

os
t

0

0.2

0.4

RRT*
L-RRT*
LC-RRT*
C-RRT*

FIGURE 4.7. Instantaneous cost Cx,y;k for scenario 3.

Time [s]
0 50 100 150 200 250 300

T
ot

al
 C

os
t

0

0.5

1

1.5

RRT*
L-RRT*
LC-RRT*
C-RRT*

FIGURE 4.8. Instantaneous cost Cx,y;k for scenario 4.

executed trajectory for RRT* and L-RRT* has overshoots where tight turning maneuvers

must be performed, which leads to significant tracking errors as shown in Figure 4.4B and

Figure 4.4E. This problem is corrected by LC-RRT* and C-RRT*, as seen in Figure 4.4H

and Figure 4.4K. As with the previous scenarios, the proposed methods effectively reduce

the total cost, as depicted in Figure 4.8.

Table 4.1 summarizes trajectory tracking performance results obtained with RRT*, L-

RRT*, LC-RRT* and C-RRT* for each scenario. The performance index is calculated as

explained in Section 4.1. For every case the total cost for each algorithm is provided to-

gether with the relative cost reduction. The cost reduction is calculated relative to the RRT*

approach taken as base method. As expected, RRT* has the highest cost in all scenarios be-

cause it does not take into account the motion model of the robot and because convergence

to a smooth solution requires a infinite number of iterations. L-RRT* shows in average a

35

TABLE 4.1. Cost comparison for simulation. The total cost is calculated as a com-
bination of the tracking error and the controller effort, C = Cx,y + Cv,ω. The
cost reduction compared to RRT* is calculated as ∆C = CRRT*−Ci

CRRT* , i = L-RRT*,
LC-RRT*, C-RRT*.

Algorithm Scenario 1 Scenario 2 Scenario 3 Scenario 4
C ∆C C ∆C C ∆C C ∆C

RRT* 206.0 - 440.7 - 120.9 - 839.2 -
L-RRT* 147.9 −28.2 % 287.2 −34.8 % 98.0 −18.9 % 489.1 −41.7 %
LC-RRT* 67.9 −67.0 % 99.7 −77.4 % 59.1 −51.1 % 268.6 −68.0 %
C-RRT* 62.4 −69.7 % 97.8 −77.8 % 55.8 −53.8 % 289.2 −65.5 %

30.9 % cost reduction, compared to RRT*. This improvement in the tracked path can be

attributed to the smoothening of the path, which significantly reduces the oscillatory be-

havior of the path tracking controller. However, the controller still cannot make the robot

follow precisely the path at tight corners. The motion planners that consider the kinody-

namic constraints, LC-RRT* and C-RRT*, in the planning stage generate trajectories that

can be properly followed by the real robot, thus reducing the tracking error. On average

a 65.9 % and 66.7 % reduction is respectively achieved with LC-RRT* and C-RRT*, com-

pared to RRT*. The differences between planners are highlighted in scenarios with tight

corners, such as scenario 2 (Figure 4.2), where the cost reduction of LC-RRT* and C-

RRT* is 77.4 % and 77.8 %, respectively. In a simpler scenario with no tight curves, such

as scenario 3 (Figure 4.3), the cost reduction is less significant, 51.1 % for LC-RRT* and

53.8 % for C-RRT*, but nevertheless is still noteworthy. It is to be noted that both proposed

algorithms LC-RRT* and C-RRT* outperform L-RRT* and RRT* in every scenario by a

significant margin. Thus highlighting the importance of considering the motion model in

the trajectory planning strategy.

Concerning the optimilaty of each path measured in term of its length, the differences

between the approaches are negligible and less than 1 % on average for the different scenar-

ios because all are based on RRT* algorithm to generate the base path. It must be stressed

that the proposed LC-RRT* and C-RRT* approaches refine the RRT* path making it com-

patible with the motion model and without compromising the path lenght of the base path

solved by RRT*. In terms of execution time, the path computed with the C-RRT* approach

36

is executed 8−10 % faster than the path produced by RRT* or L-RRT*. This is explained

by the reduction in oscillations and overshoots that is possible to achieve with the C-RRT*

approach.

The ability of LC-RRT* and C-RRT* to generate paths that are compatible with the

motion model of the robot is not only a desirable feature, but an aspect that can make a

big difference between avoiding and running into possible collisions. An example of the

importance of the ability to foreseeing unfeasible motions and ensuring that motions can

be tracked by the controller is found in the first and second scenarios, where RRT* and

L-RRT* generate paths that are not tracked precisely and the trajectories slightly cuts the

safe zones, as seen Figure 4.1B, Figure 4.1E and Figure 4.2B. In these scenarios with tight

passages, LC-RRT* and C-RRT* do not have problems to generate a feasible and safe

trajectory.

37

5. IMPLEMENTATION AND TESTING METHODOLOGY

5.1. Experimental setup

Experiments were conducted using a CAT262C skid-steer compact loader, shown in

Figure 5.1, in order to validate the proposed motion planning algorithms. A system im-

plementation diagram showing the interactions between the different parts of the system is

depicted in Figure 5.2. The GPS system is directly connected to the navigation computer,

while the encoders signals are processed by our custom made signal conditioning and com-

munication circuitry, indicated in the figure as MasterBoard R3, which passes the odometry

to the navigation computer and sends the control signals to the machine.

The CAT262C loader is not designed for research purposes, and thus it is not easy

to modify or manipulate as most research experimental platforms, however it provides

a more realistic approach to the industrial world. To manually control the machine an

operator handles the joysticks, which through the duty-cycle of a PWM signal adjust the

power delivered to the actuators. To conduct the experiments a computer-machine interface

was needed. For this purpose an electrical board, MasterBoard R3, was design by the

Robotics & Automation Laboratory (RAL) PUC research team to emulate the PWM signals

generated by the joysticks, among other tasks.

In order to establish a reliable communication between the computer and the Master-

Board R3 a new communication protocol was designed, the Robot Communication Proto-

col (RCP). RCP is a fast, simple, and minimal binary protocol for communicating between

computers and robots. It can be used to transmit control signals to the robot, and retrieve

information from the sensors in a fast and reliable way. The message structure allows

variable payload size, making it suitable for a wide range of message types. Includes a

Cycle Redundancy Check (CRC) for error detection, thus improving the security standards

needed for operating industrial machinery. Details about RCP can be found in Appendix B.

A SwitfNav Piksi real-time kinematic (RTK) GPS was used. RTK systems use two

units, base and rover, for achieving centimeter level accurate relative position. In order to

38

(A) Front view (B) Back view

FIGURE 5.1. Compact skid-steer loader used for experimental validation.

Masterboard R3

CAT 262C2

Odometry
Navigation Computer

Motion Planner+Path Tracker

Encoders GPS

GPS position

Sensors

Actuator

Signals

Motion

Commands

FIGURE 5.2. System architecture diagram that shows the interaction between the
main components of the navigation system robotic skid-steer loader.

achieve this level of accuracy the base station sends observation data to the rover, used to

correct its position. The information is used for two purposes, first allows to minimize the

error induced by the earth’s atmosphere as long as the rover is close to the base, and second

uses the difference in phase of the two carrier waves to reduce the error to a few centime-

ters. The internal encoders of the machine were used for position correction when the GPS

signal was lost. The internal encoders of the CAT262C are coupled to one wheel of each

side, producing 680 pulses per revolution, which is equivalent to 0.5294 degrees per count.

Even with the high accuracy of the RTK system data filtering is highly recommended, so

39

an Extended Kalman Filter was implemented to reduce the variability of the GPS measure-

ments. The kinematic model a differential robot, stated in Equation (2.1), was used for the

EKF.

The RCP protocol and low level controllers for the MasterBoard R3 were implemented

on the onboard microcontroller, an Atmel SAM3X8E ARM Cortex-M3 CPU running with

a 84 kHz clock and capable of sending encoder measurements and maneuvering commands

every 40 ms. The middle level path tracking controller and the EKF were implemented

in the navigation computer with an Intel Core i7 2.6 GHz processor. The computer was

directly connected to the MasterBoard R3, and all the communications between the devices

used the RCP protocol. Middle level algorithms for path tracking were implemented in

C++, taking advantage of the extensive use of this language in robotics applications and

its real time capabilities. High level motion planning algorithms were implemented in

MATLABr on the same navigation computer. To solve the numerous TPBVPs with a low

computational overhead a numerical solver is used, the ACADO Toolkit (Houska, Ferreau,

& Diehl, 2011). The toolkit is implemented in C++, which makes it suitable for almost

real-time implementations. The amount of time needed by the solver to find a solution

depends highly on the problem type, the accuracy needed, and the initial solution.

5.2. Testing location

Field tests were performed to evaluate the motion planning algorithms’ performance in

practice. The tests were conducted on an empty parking lot, with enough space to perform

the same trajectories that were used for simulations. Two of the simulated scenarios were

used for the real world experiments, scenario 2 and scenario 3, shown in Figure 5.3 and

Figure 5.4, respectively. Traffic cones were used to mark the vertices of the obstacles,

which were positioned with the RTK GPS system to match the scenario used in simulations.

40

qinit

qfinal

0 5 10 15
0

5

10

15

(A) Map (B) Real world layout

FIGURE 5.3. Field experiment for simulation scenario 2. Traffic cones mark the
vertices of the obstacles.

qinit

qfinal

0 5 10 15
0

5

10

15

(A) Map (B) Real world layout

FIGURE 5.4. Field experiment for simulation scenario 3. Traffic cones mark the
vertices of the obstacles.

41

6. EXPERIMENTAL RESULTS WITH A ROBOTIC SKID-STEER LOADER

This section presents the experimental results of implementing the proposed motion

planning algorithms in an automatized industrial compact loader. To minimize the effects

of noise in the different parts of the systems, three repetitions were performed for each one

of the tested algorithms.

The results obtained from the field experiments corresponding to the simulation sce-

narios 2 and 3 are presented in Figure 6.1 and Figure 6.2, respectively. For each planning

strategy (RRT*, L-RRT*, LC-RRT*, and C-RRT*), the reference planned trajectory (la-

beled Ref) and three repetitions of the executed trajectory (labeled Exp 1, Exp 2 and Exp 3)

are shown in the first column of the plots. The similitude between repetitions demonstrates

the consistent behavior of the controller over time. The control signals corresponding to the

longitudinal velocity v and angular velocity ω are presented in the second column of Fig-

ure 6.1 and Figure 6.2 (blue curves labeled ref). The control signals illustrate the effort of

the controller. The same graphs also include the measured longitudinal and angular veloci-

ties (purple curves labeled meas). The instantaneous tracking error of the trajectory Cx,y;k

and the controller effort Cv,ω;k are plotted in the last column of Figure 6.1 and Figure 6.2

to compare the differences between algorithms.

The first field experiment that implements the simulation scenario 2 poses the most

challenging situation because of the tighter turns through a narrow zig-zagging passage,

more complex than standard underground mining tunnels. Comparing Figure 4.2 and Fig-

ure 6.1, it is possible to confirm that the experimental results obtained are consistent with

simulations. RRT* is able to find a path, but the path tracker is unable to follow the path

during tight corners because it is not kinodynamically compatible. Furthermore, the os-

cillatory behavior of RRT* in simulations is also appreciable in real world experiments,

as depicted in Figure 6.1A and Figure 6.1B. L-RRT* solves part of the oscillatory prob-

lem, but is equally unable to generate trackable turns at the tight corners, as can be seen in

Figure 6.1D. On the other hand, LC-RRT* and C-RRT* generate trajectories that comply

with the motion model of the robot, thus the robot is able to properly follow the trajectory,

42

as seen in Figure 6.1G and Figure 6.1J. Comparing the instantaneous tracking errors and

controller efforts, Cx,y;k and Cv,ω;k, of the different algorithms, it is possible to observe that

LC-RRT* and C-RRT* yield low tracking errors below 0.3-0.5, while RRT* exceeds 1.0

and L-RRT* reaches 0.75 at the cornering points. It is also to be noted that LC-RRT* and

C-RRT* yield lower controller efforts compared to RRT* or L-RRT*, as the executed paths

follow a feasible trajectories in the case of LC-RRT* and C-RRT*.

Similar conclusions can be drawn from the second field experiment corresponding to

simulation scenario 3, presented in Figure 6.2. Once again, the trajectories exectued using

the RRT* approach present an oscillatory behavior, as seen in Figure 6.2A, consequently

generating oscillatory control signals, depicted in Figure 6.2B. Even with a simple smooth-

ing procedure, such as L-RRT*, the oscillatory behavior can be significantly reduced, as

shown in Figure 6.2D and Figure 6.2E. However, despite being smoother, the L-RRT*

trajectory has overshoots at the turns, which are negligible in the case of LC-RRT* and

C-RRT*, as shown in Figure 6.2G and Figure 6.2J, because of the compatibility between

the planned trajectory and the robot’s motion model. The LC-RRT* paths are formed with

lines and curves, thus the increases in the controller effort at the corners of the trajectory,

whereas C-RRT* paths are formed using only curves, which distributes the controller effort

throughout the duration of the trajectory. Although the magnitudes of the control signals

for LC-RRT* and C-RRT* shown in Figure 6.2H and Figure 6.2K look similar, the fact

that C-RRT* produces a trajectory that can be followed without reducing the longitudinal

velocity and maintaining an angular velocity with less number of sudden changes, C-RRT*

yields a trajectory that can be followed in a shorter time, almost 13 seconds less than that

produced by LC-RRT*. This fact can also be observed from the figures for the first field

experiment shown in Figure 6.1, for which C-RRT* produces a trajectory that can be com-

pleted almost 15 seconds faster than LC-RRT*, because C-RRT* is able to maintain and

almost constant longitudinal velocity and reduces the variations in angular velocity. This is

an important advantage of C-RRT*.

The total path tracking error and controller efforts as cost C explained in Section 4.1

obtained for the field experiments are summarized in Table 6.1. As in simulations, RRT*

43

Ref
Exp 1
Exp 2
Exp 3

(A) RRT* Path

Time [s]
0 20 40 60 80 100

v
[m

/s
]

0

0.2

0.4

ref
meas

Time [s]
0 20 40 60 80 100

ω
 [r

ad
/s

]

-0.2

0

0.2

ref
meas

(B) RRT* Controls

Time [s]
0 20 40 60 80 100

T
ra

ck
in

g
E

rr
or

0

0.5

1

C
x,y;k

Time [s]
0 20 40 60 80 100

C
on

tr
ol

le
r

E
ffo

rt

0

0.1

C
v,ω;k

(C) RRT* Cost

Ref
Exp 1
Exp 2
Exp 3

(D) L-RRT* Path

Time [s]
0 20 40 60 80 100

v
[m

/s
]

0

0.2

0.4

ref
meas

Time [s]
0 20 40 60 80 100

ω
 [r

ad
/s

]

-0.2

0

0.2

ref
meas

(E) L-RRT* Controls

Time [s]
0 20 40 60 80 100

T
ra

ck
in

g
E

rr
or

0

0.5

1

C
x,y;k

Time [s]
0 20 40 60 80 100

C
on

tr
ol

le
r

E
ffo

rt

0

0.1

C
v,ω;k

(F) L-RRT* Cost

Ref
Exp 1
Exp 2
Exp 3

(G) LC-RRT* Path

Time [s]
0 20 40 60 80 100

v
[m

/s
]

0

0.2

0.4

ref
meas

Time [s]
0 20 40 60 80 100

ω
 [r

ad
/s

]

-0.2

0

0.2

ref
meas

(H) LC-RRT* Con-
trols

Time [s]
0 20 40 60 80 100

T
ra

ck
in

g
E

rr
or

0

0.5

1

C
x,y;k

Time [s]
0 20 40 60 80 100

C
on

tr
ol

le
r

E
ffo

rt

0

0.1

C
v,ω;k

(I) LC-RRT* Cost

Ref
Exp 1
Exp 2
Exp 3

(J) C-RRT* Path

Time [s]
0 20 40 60 80 100

v
[m

/s
]

0

0.2

0.4

ref
meas

Time [s]
0 20 40 60 80 100

ω
 [r

ad
/s

]

-0.2

0

0.2

ref
meas

(K) C-RRT* Controls

Time [s]
0 20 40 60 80 100

T
ra

ck
in

g
E

rr
or

0

0.5

1

C
x,y;k

Time [s]
0 20 40 60 80 100

C
on

tr
ol

le
r

E
ffo

rt

0

0.1

C
v,ω;k

(L) C-RRT* Cost

FIGURE 6.1. Experimental validation for RRT*, L-RRT*, LC-RRT*, and C-RRT*
in scenario 2. Subfigures (A), (D), (G) and (J) show the reference trajectory and the
real followed trajectory. Subfigures (B), (E), (H) and (K) show the control signals for
every case. Subfigures (C), (F), (I) and (L) present the tracking error and controller
effort for each algorithm.

44

Ref
Exp 1
Exp 2
Exp 3

(A) RRT* Path

Time [s]
0 10 20 30 40 50 60 70

v
[m

/s
]

0

0.2

0.4

ref
meas

Time [s]
0 10 20 30 40 50 60 70

ω
 [r

ad
/s

]

-0.2

0

0.2

ref
meas

(B) RRT* Controls

Time [s]
0 20 40 60

T
ra

ck
in

g
E

rr
or

0

0.5

C
x,y;k

Time [s]
0 20 40 60

C
on

tr
ol

le
r

E
ffo

rt

0

0.1

C
v,ω;k

(C) RRT* Cost

Ref
Exp 1
Exp 2
Exp 3

(D) L-RRT* Path

Time [s]
0 10 20 30 40 50 60 70

v
[m

/s
]

0

0.2

0.4

ref
meas

Time [s]
0 10 20 30 40 50 60 70

ω
 [r

ad
/s

]

-0.2

0

0.2

ref
meas

(E) L-RRT* Controls

Time [s]
0 20 40 60

T
ra

ck
in

g
E

rr
or

0

0.5

C
x,y;k

Time [s]
0 20 40 60

C
on

tr
ol

le
r

E
ffo

rt

0

0.1

C
v,ω;k

(F) L-RRT* Cost

Ref
Exp 1
Exp 2
Exp 3

(G) LC-RRT* Path

Time [s]
0 10 20 30 40 50 60 70

v
[m

/s
]

0

0.2

0.4

ref
meas

Time [s]
0 10 20 30 40 50 60 70

ω
 [r

ad
/s

]

-0.2

0

0.2
ref
meas

(H) LC-RRT* Con-
trols

Time [s]
0 20 40 60

T
ra

ck
in

g
E

rr
or

0

0.5

C
x,y;k

Time [s]
0 20 40 60

C
on

tr
ol

le
r

E
ffo

rt

0

0.1

C
v,ω;k

(I) LC-RRT* Cost

Ref
Exp 1
Exp 2
Exp 3

(J) C-RRT* Path

Time [s]
0 10 20 30 40 50 60 70

v
[m

/s
]

0

0.2

0.4

ref
meas

Time [s]
0 10 20 30 40 50 60 70

ω
 [r

ad
/s

]

-0.2

0

0.2

ref
meas

(K) C-RRT* Controls

Time [s]
0 20 40 60

T
ra

ck
in

g
E

rr
or

0

0.5

C
x,y;k

Time [s]
0 20 40 60

C
on

tr
ol

le
r

E
ffo

rt

0

0.1

C
v,ω;k

(L) C-RRT* Cost

FIGURE 6.2. Experimental validation for RRT*, L-RRT*, LC-RRT*, and C-RRT*
in scenario 3. Subfigures (A), (D), (G) and (J) show the reference trajectory and the
real followed trajectory. Subfigures (B), (E), (H) and (K) show the control signals for
every case. Subfigures (C), (F), (I) and (L) present the tracking error and controller
effort for each algorithm.

45

TABLE 6.1. Cost comparison for real world experiments. The total cost is calcu-
lated as a combination of the tracking error and the controller effort, C = Cx,y +

Cv,ω. The cost reduction compared to RRT* is calculated as ∆C = CRRT*−Ci
CRRT* , i =

L-RRT*, LC-RRT*, C-RRT*.

Algorithm Scenario 2 Scenario 3
C ∆C C ∆C

RRT* 447.8 - 254.8 -
L-RRT* 360.6 −19.5 % 214.0 −16.0 %
LC-RRT* 223.1 −50.2 % 174.4 −31.6 %
C-RRT* 247.1 −44.8 % 178.9 −29.8 %

has the highest cost C for both tested scenarios, followed by L-RRT*, with an average

decrease of 17.7 %. LC-RTT* and C-RRT* achieve the best performance, with an aver-

age decrease, compared to RRT*, of 40.9 % and 37.3 %, respectively. Is worth mentioning

that in simulations C-RRT* outperformed LC-RRT* by a close margin, a result that was

inverted in the experimental tests. Average percentage decreases of the cost C in the simu-

lations for L-RRT*, LC-RRT*, and C-RRT* are 30.9 %, 65.9 %, and 66.7 %, respectively.

Meanwhile, the decreases observed for the field experiments are on average 17.7 %, 40.9 %,

and 37.3 %, respectively. In spite of the differences between the simulations and experi-

ments, the proposed algorithms achieved the best performance in both cases and notably

C-RRT* yields a trajectory that can be executed in shorter time at almost constant velocity.

The difference between simulations and experiments is explained mainly due to mea-

surement delays in the real sensors, actuator delays and the fact that the full dynamics of

the skid-steer machine is more difficult to accurately describe, especially due to varying

traction on uneven terrain with changes between compacted soil and loose gravel. An ef-

fort was made to replicate sensor and actuator noise and delays in the simulations, but the

stochastic wheel-terrain interaction dynamics was neglected as the optimal control TPBVP

was solved as a deterministic problem for practical reasons. The existence of delays and

inevitable model uncertainty, which explain some of the differences between simulations

and experiments, can be observed in the difference between the reference and measured

velocities shown in Figure 6.1(B)(E)(H)(K) and Figure 6.2(B)(E)(H)(K).

46

Time [%]
0 20 40 60 80 100

T
ot

al
 C

os
t

0

100

200

300

400

500
RRT*
L-RRT*
LC-RRT*
C-RRT*

(A) Cumulative cost for scenario 2
Time [%]

0 20 40 60 80 100

T
ot

al
 C

os
t

0

100

200

300
RRT*
L-RRT*
LC-RRT*
C-RRT*

(B) Cumulative cost for scenario 3

FIGURE 6.3. Cumulative cost vs time. It shows the evolution of the path tracker
over time and highlights the differences between the tested methods. The time is
normalized to simplify the comparison.

Finally, the total cumulative costC = Cx,y+Cv,ω versus time for each of the algorithms

are presented in Figure 6.3A and Figure 6.3B for the first and second field experiment

corresponding to simulation scenarios 2 and 3, respectively. Since each trajectory takes a

different amount of time to complete, the time here was normalized in order to simplify

the comparison between algorithms. The lowest cost is achieved by LC-RRT*, closely

followed by C-RRT* in both experiments. L-RRT* follows with a higher cost and RRT*

has the highest cost. The cumulative cost curves can be misleading as they do not reflect the

fact that C-RRT* yields trajectories that can be completed in shortest time, as mentioned

earlier. Thus C-RRT* is the most convenient approach despite having a cost C slightly

higher than LC-RRT* in practice. These results also show that combining RRT* with

an optimal control solution between intermediate points of the path can provide a good

practical solution that to overcome the fact that the plain RRT* is asymptotically optimal,

requiring an infinite time to converge, and that it does not consider the feasibility of the

path with respect to the motion dynamics of the robot. Therefore, LC-RRT* and C-RRT*,

provide practical alternatives that yield significant improvements in the quality of the path

considering the ability of the robot to properly follow the trajectory.

47

7. CONCLUSION

7.1. Lessons Learned and Recommendations

The recommendations and lessons learned during the development and testing of the

proposed motion planning strategies can be summarized in:

(i) Combining a spatial sampling approach like RRT* with a strategy to simplify the

path and solve a finite number of two-point boundary optimal control problems

is possible in practice with the standard computational power of current CPUs.

The proposed LC-RRT* and C-RRT* approaches allow to generate feasible tra-

jectories that comply with the motion model of the robot and simultaneously

obtain the control signals. Thus the resulting trajectory can be executed without

the oscillatory behaviour nor the overshoots induced by RRT* or L-RRT*.

(ii) Initially, LC-RRT* was developed believing that the solution of shorter TPB-

VPs located at the corners of a polygonal path would be faster than solving only

TPBVPs piecewise between points of the polygonal trajectory. In simulation

and in practice, the results showed that processing time was not affected signif-

icantly by the choice of strategy. The observation that LC-RRT* was producing

trajectories that would take more time to execute than RRT* and L-RRT*, mo-

tivated the development of C-RRT*, which produced nice control signals in the

sense that controls have less variations. In several cases the manipulated variable

for the longitudinal velocity was kept almost constant and only gradual changes

in the manipulated variable for the angular rate (trapezoidal transitions) were

performed. Because of this, trajectories generated by C-RRT* can be executed

faster than those generated by the other approaches. The limitation of LC-RRT*

is in that is causes the longitudinal velocity to drop every time the straight mo-

tion switches into a curve, and both the manipulated variables for the longitudinal

and angular velocities become a combination of trapezoidal signals. During the

development, having trapezoidal shaped control inputs did not seem terrible, as

48

many robots use this type of velocity profiles. However, solving optimal control

problems piecewise grouping three consecutive points of the polygonal trajec-

tory revealed that the longitudinal velocity should be kept as constant as possible

and only changes in heading should be executed. In retrospect, this seems an

obvious way of driving the robot to its goal considering its dynamics is simi-

lar to that of a car with Ackermann steering. Certainly, the motion dynamics

imposes optimal ways of steering. If the robot would not be underactuated and

could be capable of instantaneously producing a velocity in any direction of its

configuration space like a holonomic omnidirectional robot, then other control

trajectories could arise. This aspect possibly deserves further investigation, and

was not treated here because the focus was on industrial skid-steer excavators

and similar machines.

(iii) A practical issue that has to be considered in the implementation of all the mo-

tion planning strategies is the separation of points in the trajectory and how fast

the reference trajectory is passed to the controller. Finely sampled spaces in-

creases the computational burden and do not provide any gains if the resolution

of the navigation sensors is comparatively low. On the other hand, limitations

in the velocity of the robot, especially of slow heavy machinery, imply that the

planner and controller have to be synchronized in some way that ensures that the

planner waits for the controller to complete part of the motion before sending

a new reference point of the trajectory. See (Auat Cheein, 2015) for a in depth

discussion about this issue.

(iv) We also tested a strategy in which the two-point boundary value problem (TP-

BVP) solver was embedded into the RRT* algorithm in an attempt to consider

also the costs of traversing terrains with different terramechanical properties, but

this approach of generating a trajectory and obtaining the control inputs proved

to be impractical for operation in real-time due to the great computational bur-

den.

49

7.2. Review of the Results and General Remarks

Two motion planning strategies, LC-RRT* and C-RRT*, were proposed in this paper.

The proposed approaches combine the sampling-based path planning strategy of RRT*

with the solution of an optimal control problem that takes into account the motion model of

the robot, thus yielding kinodynamically feasible trajectories and the corresponding con-

trol inputs. The novel contribution can be summarized in that the proposed approaches

provide a way to simplify the RRT* path and solve piecewise over a finite number of dis-

crete intervals a two-point boundary optimal control problem. The proposed strategy is

computationally feasible and can be implemented for operation in real-time, as it does not

require to wait a large number of iterations for RRT* to converge to a smoother path, nor

to solve a large optimal control problem with constraints at once.

LC-RRT* and C-RRT* yield trajectories that can be executed more accurately by the

trajectory tracking controller. As a consequence, this approaches ensure that the trajectory

will avoid maneuvers that can cause collisions that cannot be foreseen by RRT* or L-RRT*.

Moreover, C-RRT* produces motion plans that reduce the variability of the manipulated

variables. In the simulations and experiments, the longitudinal velocity was kept almost

constant and variations in the angular velocity occurred gradually. This in turn means that

the trajectory generated by C-RRT* can be accomplished in less time than with the other

approaches.

The proposed strategies were first evaluated in simulations and then tested in field

experiments using a robotic skid-steer excavator implemented by modifying a Caterpillar

CAT 262C2 compact loader. The results obtained in simulations and the experiments are

consistent. In both cases, the proposed approaches LC-RRT* and C-RRT* reduce the cost

index composed of the tracking error and controller effort between 30−70 % with respect

to RRT* because the paths are smoother and comply with the motion model of the robot.

The major benefits of using the proposed approaches can be obtained in situations that

involve narrow passages with tight turns. The results also show that C-RRT* can reduce by

10−15 % the time required to execute the planned trajectory.

50

The approaches were developed considering the maneuvering challenges of under-

ground mining, but can also be employed for navigation in agricultural environments that

have obstacles, like tree groves. In these applications, the planning of feasible collision free

trajectories that can be executed rapidly is very important for safety and economic reasons.

51

References

Aguilera, S., Torres-Torriti, M., & Auat, F. (2014, Sept). Modeling of skid-steer

mobile manipulators using spatial vector algebra and experimental validation with

a compact loader. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ

International Conference on (p. 1649-1655). doi: 10.1109/IROS.2014.6942776

Aguilera, S., Torres-Torriti, M., & Auat, F. (2015, Dec.). General dynamic model for

skid-steer mobile manipulators with wheel-ground interactions. Submitted to IEEE

Trans. on Mechatronics, 1-8.

Ardiyanto, I., & Miura, J. (2011). Heuristically arrival time field-biased (heat) ran-

dom tree: An online path planning algorithm for mobile robot considering kinody-

namic constraints. In ROBIO (p. 360-365). IEEE. Retrieved from http://dblp

.uni-trier.de/db/conf/robio/robio2011.html#ArdiyantoM11

Auat Cheein, F. (2015). Intelligent sampling technique for path tracking controllers.

Control Systems Technology, IEEE Transactions on, PP(99), 1-1. doi: 10.1109/TCST

.2015.2450180

Barraquand, J., Langlois, B., & Latombe, J.-C. (1991, June). Numerical potential

field techniques for robot path planning. In Advanced Robotics, 1991. ’Robots in

Unstructured Environments’, 91 ICAR., Fifth International Conference on (p. 1012-

1017 vol.2). doi: 10.1109/ICAR.1991.240539

Canny, J. (1985, Mar). A Voronoi method for the piano-movers problem. In Ro-

botics and Automation. Proceedings. 1985 IEEE International Conference on (Vol. 2,

p. 530-535). doi: 10.1109/ROBOT.1985.1087297

Cheein, F. A., & Scaglia, G. (2014). Trajectory tracking controller design for un-

manned vehicles: A new methodology. Journal of Field Robotics, 31(6), 861–887.

52

http://dblp.uni-trier.de/db/conf/robio/robio2011.html#ArdiyantoM11
http://dblp.uni-trier.de/db/conf/robio/robio2011.html#ArdiyantoM11

Retrieved from http://dx.doi.org/10.1002/rob.21492 doi: 10.1002/

rob.21492

De Oliveira Vaz, D. A. B., Inoue, R. S., & Grassi, V. (2010). Kinodynamic mo-

tion planning of a skid-steering mobile robot using RRTs. Proceedings - 2010 Latin

American Robotics Symposium and Intelligent Robotics Meeting, LARS 2010, 73–78.

doi: 10.1109/LARS.2010.27

Donald, B., Xavier, P., Canny, J., & Reif, J. (1993, November). Kinodynamic motion

planning. J. ACM, 40(5), 1048–1066. Retrieved from http://doi.acm.org/

10.1145/174147.174150 doi: 10.1145/174147.174150

Dubins, L. E. (1957). On curves of minimal length with a constraint on average

curvature, and with prescribed initial and terminal positions and tangents. American

Journal of Mathematics, 79(3), pp. 497-516. Retrieved from http://www.jstor

.org/stable/2372560

Elbanhawi, M., & Simic, M. (2014). Sampling-based robot motion planning: A re-

view. IEEE Access, 2, 56-77. Retrieved from http://dblp.uni-trier.de/

db/journals/access/access2.html#ElbanhawiS14

Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014a). BIT*: Batch in-

formed trees for optimal sampling-based planning via dynamic programming on im-

plicit random geometric graphs. CoRR, abs/1405.5848. Retrieved from http://

arxiv.org/abs/1405.5848

Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014b). Informed RRT*: Optimal

incremental path planning focused through an admissible ellipsoidal heuristic. CoRR,

abs/1404.2334. Retrieved from http://arxiv.org/abs/1404.2334

53

http://dx.doi.org/10.1002/rob.21492
http://doi.acm.org/10.1145/174147.174150
http://doi.acm.org/10.1145/174147.174150
http://www.jstor.org/stable/2372560
http://www.jstor.org/stable/2372560
http://dblp.uni-trier.de/db/journals/access/access2.html#ElbanhawiS14
http://dblp.uni-trier.de/db/journals/access/access2.html#ElbanhawiS14
http://arxiv.org/abs/1405.5848
http://arxiv.org/abs/1405.5848
http://arxiv.org/abs/1404.2334

Ha, J.-S., Lee, J.-J., & Choi, H.-L. (2013). A successive approximation-based ap-

proach for optimal kinodynamic motion planning with nonlinear differential con-

straints. In CDC (p. 3623-3628). IEEE. Retrieved from http://dblp.uni

-trier.de/db/conf/cdc/cdc2013.html#HaLC13

Hart, P., Nilsson, N., & Raphael, B. (1968, July). A formal basis for the heuris-

tic determination of minimum cost paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2), 100-107. doi: 10.1109/TSSC.1968.300136

Houska, B., Ferreau, H., & Diehl, M. (2011). ACADO Toolkit – An Open Source

Framework for Automatic Control and Dynamic Optimization. Optimal Control Ap-

plications and Methods, 32(3), 298–312.

Islam, F., Nasir, J., Malik, U., Ayaz, Y., & Hasan, O. (2012, Aug). RRT*-Smart:

Rapid convergence implementation of RRT* towards optimal solution. In Mecha-

tronics and Automation (icma), 2012 International Conference on (p. 1651-1656).

doi: 10.1109/ICMA.2012.6284384

Janson, L., Schmerling, E., Clark, A., & Pavone, M. (2015). Fast marching tree:

A fast marching sampling-based method for optimal motion planning in many di-

mensions. The International Journal of Robotics Research, 34(7), 883-921. Re-

trieved from http://ijr.sagepub.com/content/34/7/883.abstract

doi: 10.1177/0278364915577958

Jolly, K. G., Sreerama Kumar, R., & Vijayakumar, R. (2009, January). A bezier

curve based path planning in a multi-agent robot soccer system without violating the

acceleration limits. Robot. Auton. Syst., 57(1), 23–33. Retrieved from http://

dx.doi.org/10.1016/j.robot.2008.03.009 doi: 10.1016/j.robot.2008

.03.009

Kanayama, Y. J., & Hartman, B. I. (1997, June). Smooth local-path planning

for autonomous vehicles. Int. J. Rob. Res., 16(3), 263–284. Retrieved from

54

http://dblp.uni-trier.de/db/conf/cdc/cdc2013.html#HaLC13
http://dblp.uni-trier.de/db/conf/cdc/cdc2013.html#HaLC13
http://ijr.sagepub.com/content/34/7/883.abstract
http://dx.doi.org/10.1016/j.robot.2008.03.009
http://dx.doi.org/10.1016/j.robot.2008.03.009

http://dx.doi.org/10.1177/027836499701600301 doi: 10.1177/

027836499701600301

Karaman, S., & Frazzoli, E. (2010a, June). Incremental sampling-based algorithms

for optimal motion planning. In Proceedings of Robotics: Science and Systems.

Zaragoza, Spain.

Karaman, S., & Frazzoli, E. (2010b, Dec). Optimal kinodynamic motion planning

using incremental sampling-based methods. In Decision and Control (CDC), 2010

49th IEEE Conference on (p. 7681-7687). doi: 10.1109/CDC.2010.5717430

Karaman, S., & Frazzoli, E. (2011, June). Sampling-based algorithms for

optimal motion planning. Int. J. Rob. Res., 30(7), 846–894. Retrieved

from http://dx.doi.org/10.1177/0278364911406761 doi: 10.1177/

0278364911406761

Karaman, S., & Frazzoli, E. (2013). Sampling-based optimal motion planning for

non-holonomic dynamical systems. In IEEE International Conference on Robot-

ics and Automation. Karlsruhe, Germany. Retrieved from http://ares.lids

.mit.edu/papers/Karaman.Frazzoli.ICRA13.pdf

Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., & Teller, S. J. (2011).

Anytime motion planning using the RRT. In ICRA (p. 1478-1483). IEEE.

Retrieved from http://dblp.uni-trier.de/db/conf/icra/icra2011

.html#KaramanWPFT11

Kavraki, L., Svestka, P., Latombe, J.-C., & Overmars, M. (1996). Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. In IEEE In-

ternational Conference on Robotics and Automation (pp. 566–580).

Khatib, O. (1985, Mar). Real-time obstacle avoidance for manipulators and mobile

robots. In Robotics and Automation. Proceedings. 1985 IEEE International Confer-

ence on (Vol. 2, p. 500-505). doi: 10.1109/ROBOT.1985.1087247

55

http://dx.doi.org/10.1177/027836499701600301
http://dx.doi.org/10.1177/0278364911406761
http://ares.lids.mit.edu/papers/Karaman.Frazzoli.ICRA13.pdf
http://ares.lids.mit.edu/papers/Karaman.Frazzoli.ICRA13.pdf
http://dblp.uni-trier.de/db/conf/icra/icra2011.html#KaramanWPFT11
http://dblp.uni-trier.de/db/conf/icra/icra2011.html#KaramanWPFT11

Kunchev, V., Jain, L., Ivancevic, V., & Finn, A. (2006). Path planning and obstacle

avoidance for autonomous mobile robots: A review. In B. Gabrys, R. Howlett, &

L. Jain (Eds.), Knowledge-Based Intelligent Information and Engineering Systems

(Vol. 4252, p. 537-544). Springer Berlin Heidelberg. Retrieved from http://dx

.doi.org/10.1007/11893004 70 doi: 10.1007/11893004 70

Latombe, J.-C. (1999). Motion planning: A journey of robots, molecules, digital

actors, and other artifacts. International Journal of Robotics Research, 18, 1119–

1128.

LaValle, S. M. (2006). Planning algorithms. Cambridge, U.K.: Cambridge Univer-

sity Press. (Available at http://planning.cs.uiuc.edu/)

LaValle, S. M., & Kuffner, J. J. (1999). Randomized kinodynamic planning. In

Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference

on (Vol. 1, p. 473-479 vol.1). doi: 10.1109/ROBOT.1999.770022

Li, Y., Littlefield, Z., & Bekris, K. E. (2014). Asymptotically optimal sampling-

based kinodynamic planning. CoRR, abs/1407.2896. Retrieved from http://

arxiv.org/abs/1407.2896

Lozano-Pérez, T., & Wesley, M. A. (1979, October). An algorithm for planning

collision-free paths among polyhedral obstacles. Commun. ACM, 22(10), 560–570.

Retrieved from http://doi.acm.org/10.1145/359156.359164 doi: 10

.1145/359156.359164

Maekawa, T., Noda, T., Tamura, S., Ozaki, T., & Machida, K.-i. (2010, April).

Curvature continuous path generation for autonomous vehicle using b-spline curves.

Comput. Aided Des., 42(4), 350–359. Retrieved from http://dx.doi.org/

10.1016/j.cad.2009.12.007 doi: 10.1016/j.cad.2009.12.007

Noble, F. (2011-2014). SBP: Swift Navigation Binary Protocol. https://

github.com/swift-nav/libsbp.

56

http://dx.doi.org/10.1007/11893004_70
http://dx.doi.org/10.1007/11893004_70
http://arxiv.org/abs/1407.2896
http://arxiv.org/abs/1407.2896
http://doi.acm.org/10.1145/359156.359164
http://dx.doi.org/10.1016/j.cad.2009.12.007
http://dx.doi.org/10.1016/j.cad.2009.12.007
https://github.com/swift-nav/libsbp
https://github.com/swift-nav/libsbp

Seward, D. W., Pace, C., & Agate, R. (2007). Safe and effective navigation of

autonomous robots in hazardous environments. Auton. Robots, 22(3), 223-242.

Retrieved from http://dblp.uni-trier.de/db/journals/arobots/

arobots22.html#SewardPA07

Shan, E., Dai, B., Song, J., & Sun, Z. (2009, Dec). A dynamic RRT path planning

algorithm based on B-spline. In Computational Intelligence and Design, 2009. ISCID

’09. Second International Symposium on (Vol. 2, p. 25-29). doi: 10.1109/ISCID.2009

.155

Stenning, B. E., McManus, C., & Barfoot, T. (2013). Planning using a network of

reusable paths: A physical embodiment of a rapidly exploring random tree. Jour-

nal of Field Robotics, 30(6), 916–950. Retrieved from http://dx.doi.org/

10.1002/rob.21474 doi: 10.1002/rob.21474

Stentz, A. T. (1994, May). Optimal and efficient path planning for partially-known

environments. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA ’94) (Vol. 4, p. 3310 - 3317).

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., . . .

Mahoney, P. (2006, September). Stanley: The robot that won the darpa grand chal-

lenge: Research articles. J. Robot. Syst., 23(9), 661–692. Retrieved from http://

dx.doi.org/10.1002/rob.v23:9 doi: 10.1002/rob.v23:9

Webb, D. J., & van den Berg, J. (2012). Kinodynamic RRT*: Optimal motion

planning for systems with linear differential constraints. CoRR, abs/1205.5088. Re-

trieved from http://arxiv.org/abs/1205.5088

57

http://dblp.uni-trier.de/db/journals/arobots/arobots22.html#SewardPA07
http://dblp.uni-trier.de/db/journals/arobots/arobots22.html#SewardPA07
http://dx.doi.org/10.1002/rob.21474
http://dx.doi.org/10.1002/rob.21474
http://dx.doi.org/10.1002/rob.v23:9
http://dx.doi.org/10.1002/rob.v23:9
http://arxiv.org/abs/1205.5088

Xie, C., van den Berg, J. P., Patil, S., & Abbeel, P. (2015). Toward asymptoti-

cally optimal motion planning for kinodynamic systems using a two-point bound-

ary value problem solver. In IEEE International Conference on Robotics and Au-

tomation, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015 (pp. 4187–4194). Re-

trieved from http://dx.doi.org/10.1109/ICRA.2015.7139776 doi:

10.1109/ICRA.2015.7139776

Yang, K., Moon, S., Yoo, S., Kang, J., Doh, N., Kim, H., & Joo, S. (2014). Spline-

based RRT path planner for non-holonomic robots. Journal of Intelligent & Robotic

Systems, 73(1-4), 763-782. Retrieved from http://dx.doi.org/10.1007/

s10846-013-9963-y doi: 10.1007/s10846-013-9963-y

Yang, K., & Sukkarieh, S. (2010, June). An analytical continuous-curvature

path-smoothing algorithm. Trans. Rob., 26(3), 561–568. Retrieved from

http://dx.doi.org/10.1109/TRO.2010.2042990 doi: 10.1109/TRO

.2010.2042990

58

http://dx.doi.org/10.1109/ICRA.2015.7139776
http://dx.doi.org/10.1007/s10846-013-9963-y
http://dx.doi.org/10.1007/s10846-013-9963-y
http://dx.doi.org/10.1109/TRO.2010.2042990

APPENDIXES

APPENDIX A. ADDITIONAL RESOURCES

A.1. Notation

X Set of state space

x(t) state, belongs to X

X Set of state space trajectories

x trajectory, belongs to X

U Set of allowed controls

u(t) control, belongs to U

U Set of control trajectories

u control trajectory, belongs to U

C Configuration Space

Xfree Free space

Xobs Obstacle region, Xobs = X\Xfree

Xgoal Goal region, Xgoal ⊂ Xfree

V Vertex structure

E Edge structure

Q Set of vertices

qi Vertex

xi Trajectory between vertices

L Path formed by vertices qi

Σ Kinodynamic model of the robot

qi State [xi yi θi]

x Position in the X axis

y Position in the Y axis

θ Orientation with respect to the X axis

v Longitudinal velocity

ω Angular velocity

60

Cx,y Total error cost,
∑
k=0

(xref,k − xk)
2 + (yref,k − yk)

2

Cv,ω Effort of the control law,
∑
k=0

v2
k + ω2

k

C Total cost, Cx,y + Cv,ω

61

APPENDIX B. ROBOT COMMUNICATION PROTOCOL

B.1. Design Philosophy

The Robust Real-Time Robot Communication Protocol (RCP) is the communication

protocol for RAL’s robots. The main features of RCP are:

(i) Simplicity: Simple protocol structure.

(ii) Real-Time Operation: Light-weight messages with adjustable time-out settings.

(iii) Robustness: Error detection through cyclic-redundancy codes and watchdog

timers.

(iv) Modularity: Settable parameters and open architecture for additional user-defined

functions.

The design of RCP is inspired in the SwiftNav Binary Protocol (SBP) (Noble, 2011-

2014), developed by Swift Navigation Inc. for the communication of the Piksi GPS devices.

B.2. Message Structure

The RCP message consists of a 4 byte header section, a variable size data field, and a

16-bit CRC value1. Table B.1 summarizes the message structure.

B.3. Message List

The complete message list to date can be found in the following tables. The messages

are divided into 2 categories: messages going from the PC to the MasterBoard R3, Ta-

ble B.2, and messages going from the MasterBoard R3 to the PC, Table B.3. For every

message from the PC there will be a corresponding response message.

Messages with EVEN ID are messages going from the PC to the MasterBoard R3.

Messages with ODD ID are messages going from the MasterBoard R3 to the PC.

1CCITT 16-bit CRC implementation is used. More implementation details can be found in the source code.

62

TABLE B.1. RCP message structure

Offset
(bytes)

Size
(bytes)

Name Description

0 2 Start Denotes the start of the message. First
byte = 0x55. Second byte = 0x33

2 1 Message Type Identifies the data contents.
3 1 Length Data contents length in bytes. The

length is a number N ∈ [0, 255].
4 N Data Binary message contents of lengthN .
4+N 2 CRC Cyclic redundancy check of the data

from the Message Type up to the end
of the Data (does not include the mes-
sage Start bytes).

N + 8 Total message length.

TABLE B.2. Message Types

Name ID Size
(bytes)

Description

RCP_HEARTBEAT 0x12 0 System heartbeat message
RCP_SET_PWM 0x22 4 Set control signals
RCP_GET_ENC 0x42 0 Get encoder’s readings
RCP_SET_PWM_GET_ENC 0x62 4 Set control signals and get en-

coder’s readings with the same
message

RCP_SET_PARAMETERS 0xf2 5 Set parameters of the system
RCP_GET_PARAMETERS 0xf4 1 Get parameters of the system

B.3.1. RCP_MSG_LOG

This message contains a human-readable payload string from the device containing

errors, warnings and informational messages.

B.3.2. RCP_HEARTBEAT and RCP_HEARTBEAT_R

The heartbeat message is used to check if the system is still running. The response

message contains the program running time in milliseconds.

63

TABLE B.3. Response Messages Types

Name ID Size
(bytes)

Description

RCP_MSG_LOG 0x11 N Plaintext logging messages
RCP_HEARTBEAT_R 0x13 4 System heartbeat message
RCP_SET_PWM_R 0x23 4 Set control signals
RCP_GET_ENC_R 0x43 8 Get encoder’s readings
RCP_SET_PWM_GET_ENC_R 0x63 8 Set control signals and get

encoder’s readings with the
same message

RCP_SET_PARAMETERS_R 0xf3 N Set parameters of the system
RCP_GET_PARAMETERS_R 0xf5 N Get parameters of the system

TABLE B.4. RCP_MSG_LOG - 0x11 response message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 N string text Human-readable message

N Total message length.

TABLE B.5. RCP_HEARTBEAT - 0x12 message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 Total message length.

TABLE B.6. RCP_HEARTBEAT_R - 0x13 response message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 4 u32 ms info System time

4 Total message length.

B.3.3. RCP_SET_PWM and RCP_SET_PWM_R

Set the duty cycle of the 4 PWMs that control the movement of the CAT. Each value

must be in the range 20% − 80% of [0, 255] to be a valid, i.e. [52, 203]. Conversion of

64

bytes to duty cycles is straight forward following the Arduino conveniton 0 = 0% duty

cycle, 255 = 100% duty cycle. Beware that the R3 robot only considers duty cycles values

between 20% to 80% to be valid. If the user sends a duty cycle value out of this range, the

robot automatically stops.

The response message contains the values to which the PWMs were set.

TABLE B.7. RCP_SET_PWM - 0x22 message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 1 u8 pmw1 Forward/backward control sig-
nal

1 1 u8 pmw2 Left/right control signal
2 1 u8 pmw3 Arm up/down control signal
3 1 u8 pmw4 Bucket up/down control signal

4 Total message length.

TABLE B.8. RCP_SET_PWM_R - 0x23 response message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 1 u8 pmw1 Forward/backward control sig-
nal

1 1 u8 pmw2 Left/right control signal
2 1 u8 pmw3 Arm up/down control signal
3 1 u8 pmw4 Bucket up/down control signal

4 Total message length.

B.3.4. RCP_GET_ENC and RCP_GET_ENC_R

Get the readings of both encoders. The response message contains 2 floats with

the values. Use the function rcp_get_enc_callback() to cast these values to a

msg_get_enc_t struct.

B.3.5. RCP_SET_PWM_GET_ENC and RCP_SET_PWM_GET_ENC_R

Combines the RCP_SET_PWMmessage with the response message RCP_GET_ENC_R.

65

TABLE B.9. RCP_GET_ENC - 0x42 message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 Total message length.

TABLE B.10. RCP_GET_ENC_R - 0x43 response message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 4 float rad s−1 wl Left side wheels speed
4 4 float rad s−1 wr Right side wheels speed

8 Total message length.

B.3.6. RCP_SET_PARAMETERS and RCP_SET_PARAMETERS_R

Set one of the parameters of the device to a desired value. To date the available system

parameters are:

(i) PARAM_TIMEOUT: Max allowed time without messages before stopping the

machine. Initially set to 100 ms.

(ii) PARAM_PWM: Sets the response for the RCP_SET_PWMmessage, 1 for response

and 0 for no response. Initially set to 1.

(iii) PARAM_ENC: Time interval between encoder’s readings. Not implemented.

(iv) PARAM_HEARTBEAT: Time interval between hearbeat messages. Not imple-

mented.

TABLE B.11. RCP_SET_PARAMETERS - 0xf2 message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 1 u8 id Parameter ID
1 4 u32 value Value to change, it can be type

casted

5 Total message length.

66

TABLE B.12. RCP_SET_PARAMETERS_R - 0xf3 response message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 N string text Human-readable message

N Total message length.

B.3.7. RCP_GET_PARAMETERS and RCP_GET_PARAMETERS_R

Get one of the device parameters in a human-readable string.

TABLE B.13. RCP_GET_PARAMETERS - 0xf4 message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 1 u8 id Parameter ID

1 Total message length.

TABLE B.14. RCP_GET_PARAMETERS_R - 0xf5 response message structure

Offset
(bytes)

Size
(bytes)

Format Units Name Description

0 N string text Human-readable message

N Total message length.

67

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	1.1. Motivation
	1.2. Problem Definition
	1.3. Objectives
	1.4. Hypothesis
	1.5. Existing Approaches
	1.6. Contributions
	1.7. Thesis Outline

	2. PRELIMINARY NOTIONS
	2.1. Rapidly-exploring Random Tree (RRT)
	2.2. Asymptotically Optimal RRT (RRT*)
	2.3. Line RRT*
	2.4. Kinematic Model
	2.5. Two-point Boundary Value Problem

	3. PROPOSED MOTION PLANNING STRATEGY
	3.1. Line-Corner RRT*
	3.2. Corner RRT*

	4. SIMULATIONS
	4.1. Path Tracking Controller
	4.2. Simulation Results

	5. IMPLEMENTATION AND TESTING
	5.1. Experimental setup
	5.2. Testing location

	6. EXPERIMENTAL RESULTS WITH A ROBOTIC SKID-STEER LOADER
	7. CONCLUSION
	7.1. Lessons Learned and Recommendations
	7.2. Review of the Results and General Remarks

	References
	APPENDIXES
	APPENDIX A. ADDITIONAL RESOURCES
	A.1. Notation

	APPENDIX B. ROBOT COMMUNICATION PROTOCOL
	B.1. Design Philosophy
	B.2. Message Structure
	B.3. Message List
	B.3.1. pucthesis_template-1.cpt
	B.3.2. pucthesis_template-3.cpt
	B.3.3. pucthesis_template-6.cpt
	B.3.4. pucthesis_template-9.cpt
	B.3.5. pucthesis_template-12.cpt
	B.3.6. pucthesis_template-13.cpt
	B.3.7. pucthesis_template-16.cpt

