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Thermodynamics of relativistic fermions with Chem-Simons coupling
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We study the thermodynamics of the relativistic quantum field theory of massive fermions in
three space-time dimensions coupled to an Abelian Maxwell-Chem-Simons gauge field. We evaluate
the specific heat at finite temperature and density and find that the variation with the statistical
angle is consistent with the nonrelativistic ideas on generalized statistics.
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I. INTRODUCTION

Statistics plays a central role in physics, and marks
one of the main parting points between the classical and
quantum domains. In conventional phenomena, taking
place in 3+ 1 dimensions, the invariance under the in-
terchange of identical particles forces the wave function
to be either symmetric or antisymmetric. The spin-
statistics theorem in relativistic quantum field theory
then ties this symmetry to the spin, and all fundamen-
tal excitations are classi6ed as either fermions or bosons.
Through the spin the fermionic or bosonic character can
manifest itself even in one- or few-particle systems. How-
ever, it is in the thermodynamics of a system that a sym-
metric or antisymmetric wave function has a dramatic
e8'ect.

In (2+1)-dimensional phenomena new possibilities
open up, and excitations of generalized statistics inter-
polating between fermions and bosons may occur. The
role of these anyons [1] in the quantum Hall eKect is
fairly well established [2], and they may be relevant also
in the superconductivity of some materials at high tem-
perature [3]. Of course, in these and other possible
phenomenological applications in two-dimensional con-
densed matter systems, anyons are just low-energy de-
scriptions of the effective behavior of particles and in-
teractions which, although restricted to two dimensions,
exist in three-dimensional space and conform to the con-
ventional boson-fermion classi6cation.

However, the same reasons which make anyons possi-
ble at low energies, pose a challenging question. It is cer-
tainly of great theoretical interest to establish the extent
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to which anyonic excitations can exist as fundamental
objects in a truly (2+1)-dimensional world, just as ordi-
nary fermions or bosons, or if on the contrary, they are
always a low-energy illusion. Mathematically, the possi-
bility of generalized statistics has its origin in the topol-
ogy of the configuration space of a many particle system
in 2+1 dimensions. Under the double interchange of two
identical particles, zi —z2 ~ z2 —zi —+ zi —z2, the
observability of the probability density requires that the
wave function transforms as Q -+ e' g2s. In space-time
dimensions greater than three this double interchange is
just the identity operation, so we are forced to 8 = 0
(bosons) or 0 = n (fermions). In 2+1 dimensions, how-

ever, the winding of the trajectories followed by the parti-
cles as they are interchanged may be nontrivial, in which
case the operation is not connected to the identity and 8
remains unrestricted.

This, however, is only a mathematical possibility. Its
realization in a quantum theory depends on nontrivial is-
sues regarding the short distance behavior of the theory.
Indeed, the very notion of the linking of two trajectories
assumes some kind of hard core repulsive interaction be-
tween the particles (accounting for some generalized ex-
clusion principle), and this may or may not be consistent
with a forxnulation Rom 6rst principles. In a nonrela-
tivistic treatment, the transformation law of the anyonic
wave function under particle interchange provides a well-
de6ned meaning for the concept of generalized statistics.
In practice this is implemented by minimally coupling
the matter fields to an Abelian Chem-Simons gauge field.
However, the nonexistence of an ideal anyon gas, analo-
gous to the Bose and the Fermi gases, represents a major
obstacle in the understanding of anyonic thermodynam-
ics. A major tool in this respect has been the perturba-
tive expansion in the statistical angle 8, which when done
at the bosonic end exhibits the singular nature of the
statistical interaction at short distances [4]. Although at
the computational level this can be regularized with a re-
pulsive b-function contact potential, these short distance
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difficulties are beyond the scope of the non-relativistic
theory.

The physics of anyons at short distances must be for-
mulated and discussed in the framework of relativistic
quantum Geld theory. This has been done mostly in the
canonical formalism [5], where the main difhculty is again
the nonexistence of free asymptotic many-particle states.
Besides posing tech~ical diKculties which are still contro-
versial [5], this obscures somewhat the concept of general-
ized statistics in this f'ramework. To a large extent, it has
acquired in the literature a rather algebraic meaning, in
terms of the phase factor which enters generalized canon-
ical commutation relations, again interpolating between
the conventional commutator and the anticommutator
for bosons and fermions. But those algebraic relations
are rather formal, so long as there is no direct relation
with free asymptotic states, and they do not address the
relevant short distant issues, so they may or may not
turn out to be consistent with a proper regularization
procedure.

Since one expects that the statistics obeyed by the fun-
damental excitations will have direct consequences in the
thermodynamic properties, a possible way around these
difficulties is to use the functional integral formulation
to study the theory at finite temperature, thus avoiding
such difficult issues as the lack of free asymptotic states
or the exact kinematical meaning of generalized statis-
tics in the relativistic theory. Here we adopt that point
of view, and report our first results for some thermo-
dynamic properties of massive fermions in three space-
time dimensions coupled to an Abelian Maxwell-Chern-
Simons field. In particular, we evaluate the specific heat
at finite temperature and density for difFerent values of
the statistical angle 8. The calculation is done to leading
order in the conventional loop expansion, complemented
with a low momentum approximation which allows for
further simplifications.

We should admit from the start a limitation of our ap-
proach At leas.t within the loop expansion, the theory is
not properly defined unless the Maxwell term is included
in the pure gauge action. (Note, however, that a Maxwell
term is generated anyhow by the quantum Buctuations
of the matter fields, even if absent at the classical level. )
As it happens, that term is also expected to conceal the
effect of the generalized statistic induced by the Ghern-
Simons term, at least at short distances [6]. Thus, we
do not expect to see in our results a very notorious shift,
say, Rom fermionic to bosonic properties as we vary the
statistical angle 8. To complicate matters further, in 2+1
dimensions there is no Bose-Einstein condensation, so the
specific heat does not exhibit a dramatic difference be-
tween fermions and bosons, as we are used to in 3+ 1
dimensions. Nevertheless, our results do show that the
dependence of the specific heat in the statistical angle is
consistent with a smooth transit &om a fermionic to a
bosonic behavior.

IE. THE THEORY AT ZERO CHEMICAL
POTENTIAL

We consider massive fermions in three Euclidean di-
mensions coupled to an Abelian Maxwell-Chem-Simons

where e has dimensions of mass and the statistical angle
8 is a dimensionless parameter. Our choice of p matrices
is p; = io;., with o; the usual Pauli matrices.

In order to establish conventions, describe our treat-
ment and review previous results, we shall evaluate first
the partition function at 6nite temperature and zero
chemical potential. In the following section we introduce
a nonvanishing chemical potential to discuss the thermo-
dynamics of the system at 6nite fermion density.

We carry out the finite temperature calculations as
usual, compactifying the (Euclidean) time variable into
the range 0 ( v ( P = 1/T (in our units, 5 = c = k = 1).
Then, the functional integral defining the partition func-
tion should be computed using periodic (antiperiodic)
boundary conditions (in time) for bosons (fermions). The
partition function is then de6ned as

s = Af(s) J DQVQ D'A„exp'(—s)A„]),

with

The relevance of the normalization factor JV(P) will be
discussed below. Integrating out the fermions one has

Z = JV(P)det( )(i/+ m)

x PA„exp —S A.„+Sq A„ (4)

where the subindex (—) means that the determinant has
to be evaluated using antiperiodic boundary conditions,
and

S [A„]= —lndet( ) ~
1+ .

t'

+mj
is the contribution of the fermionic quantum Buctuations
to the effective action. To one-loop order this is

8 [A„]=—tr( (6)

When computing the trace, the antiperiodic boundary
conditions are implemented in momentum space replac-
ing integrals over p by s»ms over the discrete Matsubara
frequencies:

(2n+ 1)~
p (7)

The one-loop result for Sz in Eq. (6) can be evaluated
in closed form [7]. However, to simplify the n»clerical
analysis, here we shall work to leading order in an expan-
sion in powers of the momenta. Then, following Ref. [8]
one finds

gauge field with a Lagrangian

2

g = g(i/+ m)g+ Il—2„—i c—„„pE„„Ag+e~Q, (1)
4 /k' 88
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S,[&„]= h(P) d'~! -+„'„—' e„.i+„.&&!, (8)
g6 "" 2

where the function h(P) is given by

h(P) =
2

tanh(mP/2) . (9)

b,Fp = det(+)( —(9 )

where now the (+) subindex indicates that the determi-
nant has to be evaluated using periodic boundary con-
ditions [12]. Evaluating the contribution to the deter-
minants coming &om the space-time indices and keeping
track of all temperature-dependent factors, one obtains

Z = detR(iP + m)det~ ( 8+ M—),

where M2 is defined by

(12)

M 2 e2/8 + 4mh(P)

. 2+(4/3)h(P). '

Then, in this approximation the partition function. is
given by a Gaussian integral over the gauge 6eld, times
the partition function of &ee massive fermions:

B = A((P)dett I(i))+ee) fDA« exp( —S«[A„)),

where the eHective action Se@ ——S+ Sq is given by

S,@[A„]= — d x ! 1+ —h(P) ! F„„
(

4 p

. (e2 l—i
~

—+ 2«th(P)
~ ee„tF«„Ax) .

i2e

From the coeKcient of the Maxwell term, one sees that,
as usual, the loop expansion requires o. = e2/4m m « 1.
Similarly, &om the coeKcient of the Chem-Simons term
one would conclude that in this case the loop expan-
sion also requires 8 && 2m. Yet, &om the experience
gained with three-dimensional fermions at zero temper-
ature [9,10], one could hope that this restriction over 8
may not really apply. This, however, is controversial at
finite temperature [11].

As discussed in [12], at finite teinperature one has to
take into account the contribution &om the Faddeev-
Popov determinant arising from gauge fixing, even if the
theory is Abelian. We shall choose the Lorentz gauge
(B„A„=0) for which the Faddeev-Popov determinant is
given by

and the subindex B denotes that one xnust take the 6-
nite part of the determinants: temperature-dependent di-
vergences coxning &om these determinants and &om the
normalization factor JV(P) cancel each other [12]. Also,
following [13], in Eq. (12) we have omitted an overall
divergent factor which does not contribute to the ther-
modynamic properties of the system.

It is interesting to note that the partition function (12)
corresponds to an effective theory with a &ee massive
fermion and a &ee boson with a mass M which is re-
lated to the Chem-Simons topological mass. This mass
acquires a temperature dependence which arises &om the
fermion determinant. It should be stressed that all de-
pendence on the statistical angle e occurs through that
xIlass.

Determinants are easily evaluated. Standard finite
temperature methods [12] lead to

d2
lndet~(i/+ m) = V ln(1+ e P')j" + ),

(2m) 2

d2
1ndet~( —8 + M ) = 2V ln(1 —e Pv~ +

)(2s)2

+2pVAQR,

where AOR is the 6nite contribution to the bosonic de-
terminant coming &om the "zero-point energy:"

b,AR = —
2 gp2+ M2 = — M .d2J

2 (2n)2 „12m
The thermodynamic potential is de6ned as

1
lnZ,

so that in the present case we have

2

0 = —— ln(1+e p~~ + ')
P (2m) 2

2" »(1 —e P~™).-
P (2~)'

It should be stressed that we have not included in the
thermodyx1amic potential the zero-point energy contribu-
tion LO~, which is eliminated by an appropriate normal
ordering [14].

Now, using C = —p282(pQ)/(9p2, we get

1 X3 1 X3
C = dx + dx

47('P p cosh (x/2) 8~P2 pM sinh (x/2)

1 c)M f' P2M2 l 1 (92M
(P M in[1 —exp( —PM)]}

1 (BM& ( PsM
!PM + P iii[1 —exp—(—PM)]—

2x ), (9P) exp( —PM) —1)
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Except for being at zero chexnical potential, this result
was the goal of our calculation. It is not usual in field
theory to look at purely thermodynamic functions such
as C . But, as this calculation has illustrated, for our
purposes is important since it gives direct information
about the quant»~ excitations of the system, without
need of facing dificult issues related to the asymptotic
states. In the next section we extend this calculation to
incorporate a finite fermionic density.

III. THE THEORY AT NONZERO CHEMICAL
POTENTIAL

lation leads to the effective action

S,~[A„]= — dsz 1+ g(—P, y) F„„
4 p 3

l. t'e'
i

~

——+ 2mg()g) y) ~
e„„pF„„Ap

28

where now

p'
g(P, y) = tanh

~

—(m —y) ~16am ( 2 )
&p+tanh

~

—(m+y, ) ~

E2 ).

(22)

(23)

C = vP(i/+ m —ipoy)g
2

+ F„„—i— e„„),—F„„Ap + e~g.
4 ~" 88 "" (19)

The contribution of the fermionic quantum excitations to
the e8'ective action is now

Sq[A„] = —lndet( ) ~

1+ .
(

i + m —ipoy)
(20)

Comparing this with Eq. (8) we see that the presence
of the chemical potential p, amounts to a shift of the
Matsubara frequencies po in Eq. (7) to

To describe the system at finite fermion density we
introduce a chemical potential p, so the Lagrangian in
Eq. (1) becomes

d2
n = -- P 1( 1+ e- ) ~(" +-' +~ ))

P (2m) 2

1 d2 -&(v '+ '- ) )
)9 (2s)2

2d P l (1 P/P~+M(~„)—
)P (2n )2

(24)

where now

This result holds, again, to leading order in a low mo-
xnentum expansion. Moreover, we have neglected in this
expression Lorentz noninvariant terms which are of or-
der P exp( —Pm). These terms are negligible for Pm suf-

ficiently big, which is anyway assumed by the low mo-
mentum approximation.

Following the same steps as in Sec. II, for the therxno-

dynamic potential we obtain

(2n+ 1)x
p'. = —ZP. (21)

Then, repeating the previous calculation with these
shifted &equencies, a tedious but straightforward calcu-

e2/e+ 4mg(P, y,)

. 2 + (4/3)g(P y) .
For the specific heat we now find

(25)

1 (z —Py)z2
8~P p( +„) cosh (z/2)

1 BM(„) ( O'M('„)

BP
~

exp(PM(„) ) —1
~

PM&B~)

+ dxf (z+ py)z2 zs

p( „) cosh (z/2) p~(„) sinh (z/2)

+ — (P M(„) in[1 —exp( —PM(„))])
1 B2M(„)

sM
P in[1 —exp( —PM(„))]— (26)

Similarly, for the fermion number density

p = —BO/By, , we get

d p 1P=
(27r) 2

1 + P(QP*+na~+P)

1

1 + eP(gs *+~' ))—
]. BM(„) (P

2m " By (2M(„)
" ln 2sinh

~

—M(„) (27)

This is a constraint equation which must be inverted to

deterxnine the chemical potential p, in terms of a given
density and temperature. It should be noticed that the
first two terms in this expression correspond to the &ee
fermion (relativistic) gas, with both fermions and an-
tifermions contributing to the density. Sinai&arly, in Eq.
(26), the first three terms correspond to the contribu-
tions to C„ from free fermions and antifermions of mass
m and chemical potential +p, , and &om &ee bosons of
xnass Mt„~ without a chemical potential. The m~~eri-
cal analysis of these equations is the subject of the next
section.
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IV. NUMEMCAL RESULTS

In this section we present our numerical results. For
given values of the statistical angle 8 and the fermionic
density p, we invert Eq. (27) numerically (with a precis-
sion of one part in 10 ), and then substitute the chemical
potential into Eq. (26) to obtain the specific heat C„as
a function of the temperature at different values of p and
0. Since here both e and m have dimensions of mass, we
find it useful to parametrize the theory in terms of the
dimensionless variables n = e2/4mm, p/m2, Pm, and 8.

We have performed numerical computations covering
the following domain of parameters:

Cv/m
0.3-

0.25.

0.2.

0.15-

0.05.

0.1 0.2 0.3 0.4 0.5 0.6

o. 6 (10,10 ),

2 E (10,10),

8c (10 ', 1),

FIG. 2. Specific heat as a function of temperature at
a = 9.73 x 10, p/m = 1.78 x 10, and 8 = 10

and in the temperature range

Pm e (1, 10').

There are no qualitative differences for the results over
the whole domain of parameters. Typical curves for the
specific heat as a function of the temperature are pre-
sented in Figs. 1 and 2 for 8 = 1 and 8 = 10, respec-
tively, at o; = 9.73x 10,and p/m2 = 1.78x 10 s. These
are values relevant for high-T, superconductors [15], and
correspond to m = 7.5 x 10 cm, thrice the value of
the bare electron mass, and a fine structure constant in
2 + 1 space-time dimensions obtained from that in 3+ 1
space-time dimensions dividing by the interplanar spac-
ing.

Although the curves in Figs. 1 and 2 seem almost iden-
tical, the specific heat in Fig. 1 (8 = 1) is slightly larger
than that in Fig. 2 (8 = 10 4). This is a characteristic
feature, which we find to hold in the entire parameter
range, although the actual difference depends on the val-
ues of o, and p. We think it is a very interesting result,
since it is consistent with the (n~impressive) di8'erence
between the &ee bosonic and fermionic specific heats in
2 + 1 dimensions. This is illustrated in more detail in
Figs. 3 and 4. In Fig. 3 we present the difference of the

Cv/m (free boson) - CY/m (free fermion)
2. 5.

1.5.

0.5.

0.2 0.4 0.6 0.8

FIG. 3. Difference of the speci6c heats C (bosonic) and
C„(fermionic) for the free relativistic (charged) boson and/or
fermion gases, both at p/m = 0.01.

Cvlm
0.3-

Cv/m (e=&)-Cv/m2 (e=iQ )2. 5

0.25-

0.2 1.5-

0.15.

0.1.

0.05. 0.5-

0.1 0.2 0.3 0.4 0. 5 o. s Tlrn 0.2 0.4 0.6 0.8

FIG. 1. Speci6c heat as a function of temperature at
o = 9.73 x 10, p/m = 1.78 x 10, and 8 = 1.

FIG. 4. Difference of the speci6c heats C„(8 = 1) and
C„(8= 10 ), both at a = 0.01 and p/m = 0.01.
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speci6c heats C„(bosonic) —t „(fermionic) for the free rel-
ativistic (charged) boson and/or fermion gases, both at
p/mz = 0.01. This is to be compared with Fig. 4, where
we present the difference C„(e = 1) —C (8 = 10 4),
both at a = 0.01 and p/mz = 0.01. Although this is not
a proof of a shift &om fermionic towards bosonic statis-
tics (whatever that means in this relativistic system), it
is certainly consistent with that intuitive picture: since
we start &om a fermionic system at 8 = 0, one expects a
transition towards a bosonic behavior as 8 is increased,
provided the nonrelativistic ideas about Chem-Simons-
generalized statistics hold in this case.

In connection with the curves shown in Figs. 1—4, it
is worthwhile noticing that their apparent. violation of
the classical Dulong-Petit law is not so. For a (2+1)-
dimensional nonrelativistic classical ideal gas one finds
C = p. In our case, however, p stands for the Abelian
charge density, and therefore is the density of particles
minus the density of antiparticles, as shown by the first
terms in Eq. (27) in the case of fermions. Hence, one can
indeed reach large values of C without a corresponding
increment of p.

We have studied also the fermion density as a func-
tion of the chemical potential. We obtained a smooth
function which does not exhibit the step structure found
in [16] where it is interpreted as a signal of a critical be-
havior. Note, however, that that reference considers a
high temperature range (opposite from ours) and starts
&ozn a pure Chem-Simons system, without a Maxwell
term.

ing order in the loop expansion and in the low momen-
t»m approximation. In doing so, we have shown that it
is possible to obtain physical information of the system
without having to give an explicit answer to such difficult
issues as the lack of free asymptotic states or the exact
kinematical meaning of generalized statistic in relativis-
tic quantum field theory.

Our main result, the specific heat as a function of tem-
perature and density [Eqs. (26) and (27)], was analyzed in
a wide range of parameters within the low-temperature
regime. This limitation to low temperatures arises in
part &om the low momentum expansion, which we here
adopted for simplicity but can be avoided [7]. However,
to move to higher temperatures one will also have to
face the contribution of Lorentz noninvariant terms which
here we have discarded. We hope to come back to this
point in a future work.

As we ourselves had expected, the specific heat has
only a mild dependence on the statistical angle 8. How-
ever, this dependence is consistent with what one expects
&om the nonrelativistic picture of generalized statistics,
thus suggesting that those ideas may still be applicable,
to some extent, in the relativistic domain.

As we pointed out earlier, a more marked dependence
on the statistical angle 8 may be expected in a pure
Chem-Simons theory without Maxwell term. That, how-
ever, will possibly require a nonperturbative treatment.
In this respect it may be of interest to consider other
thermodynamic functions which may be more sensible to
the long distance properties, and therefore more immune
to the presence of the Maxwell term.

V. CONCLUSIONS

We have analyzed at finite temperature and density
a system of massive fermions in three space-time dimen-
sions coupled to an Abelian Maxwell-Chem-Simons field.
In particular, we evaluated the specific heat for diferent
values of the statistical angle 8. This was done to lead-
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