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We introduce the chemical potential in a system of two-dimensional massless fermions, confined
to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We
explore in this simple model the application of functional techniques which could be used in more

complicated situations.
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I. INTRODUCTION

The thermodynamics of hadronic matter has recently
received great attention [1], mainly in connection with
the possible occurrence of a deconfining phase transi-
tion at finite temperature. The difficulty of studying this
transition in the framework of QCD comes from the fact
that confinement has not been derived in this theoretical
context.

Consequently, effective models such as, for example,
the bag models [2,3], have been introduced to mimic the
confining properties of strong interactions. In these mod-
els, fields are confined to bounded regions and subject
to adequate boundary conditions. Finite volume effects
turn out to be relevant, and they have been studied in
the thermodynamical limit, for instance, in [4], and for a
nonvanishing chemical potential in [5].

A complete analysis of the free energy for an MIT bag
model at T > 0, with ¢ = 0, has been performed in [6].
The corrections introduced by chiral boundary conditions
have also been studied [7]. Functional methods have been
used in these papers to isolate the finite temperature-
dependent pieces from the (divergent) Casimir energy.

The aim of the present paper is to study the possibility
of introducing a nonvanishing chemical potential through
“twisted” boundary conditions in the Euclidean time di-
rection and treat it following the methods developed in
[6,8]. As a first approach to this problem we present here
the evaluation of the Gibbs free energy for the simple
model of massless (1 + 1)-dimensional fermions confined
to a segment, for 7' and p # 0.

Even though, for this toy model, the eigenvalue prob-
lem can be exactly solved, we will rather follow an alter-
native approach. We will relate differences of free ener-
gies of the system to the Green function satisfying ade-
quate (spatial and temporal) boundary conditions. This
approach is expected to be more useful in the realistic
four-dimensional case, where eigenvalues cannot be ex-
plicitly solved for. In Sec. IV, we will reobtain the re-
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sults in Sec. II, making use of the functional method
developed in [8], which is based on the evaluation of p
determinants.

II. TWO-DIMENSIONAL FERMIONS
WITH p # 0

We consider a system of two-dimensional fermions con-
fined in the segment [0, L] and subject to given boundary
conditions. As is well known, the chemical potential can
be introduced as an imaginary constant temporal gauge
field [9]. If the temperature is T = 1/ and the chemi-
cal potential is u, the Grand canonical partition function
can be expressed as

E(T, L, p) = e BG(T.L.p)

= /m? Dipexp (/01 dt/o1 dz[D(B, L)

—iH’YO]l/’) ) (1)
~ Det [D(B,L) — i/ryo] BG
where

D(B,L) = %y‘)at + %7181 for 0<t,z <1, (2)

o_ (01 1 (0 —i
7‘(10 S A

. 1 0
')’5=—-Z’YO’)’1=(0 __1) ’

and “BC” means that we must evaluate the functional
determinant of the differential operator defined on func-

with

3)
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tions satisfying the boundary conditions:

By(t,z) =0, forxz=0,1,
(4)
P(1,z) = —9(0,z).

Here B denotes an elliptic boundary condition to be sat-
isfied at the spatial edges.

So, we have the following relation for the Gibbs free
energy:

oG )
~ 52 (0, Lu) =T { 10 [D(B, ) = i) e |
(5)
= Tr{-i""Kpc(t,z;t',2")},

where Kgc(t,z;t', ') is the Green function of the prob-
lem, satisfying

[D(B,L) — ip°] Kpc(t,z;t',z') = 6(x — 2')é(t — t') ,
BKpc(t,z;t',2') =0, forz=0,1,
Kpc(1,z;t',2') = —Kgc(0,z; ', z').
(6)
This can also be expressed in terms of
D(IB’ L) - i/l"yo = e"ﬁtD(ﬂ9 L) e—“ﬁta
(7)
Kpo(t,z;t', 2') = e!Ptk(t, z; ', z') e HPY,
where k(t,z;t',z') is the Green function of the problem
D(B,L) k(t,z;t',z') = 6(z — z")o(t — t') ,
BetPtk(t,z;t' ') =0, forz=0,1, (8)
k(1,z;t', 2') + e #Pk(0,z;t',2') = 0.
This function has the development

k(t,(l?;t,,(lil) =L Z k"(m,ml) e——iﬂnﬁ(t—-t')’ (9)

n=—oo

k(t,z;t',2') =L io:

n=—oo

e‘ysQan
[2 cosh(Q2,L)

So we have, for the derivative of the free energy,

~ 892 (5, L, ) = Tr{—in°e"k(t, it o) )
o

with the frequencies given by

Qn = wp, — iy,
(10)
Wp = (—M forn e Z.
B
The coefficients satisfy
kn(z,2') = eIk _(0,2')
—i'yle_”n“l‘("z')H(w —z'), (11)
with
1 for z > 0,
H(z) = { 0 for z < 0. (12)

Now, we must impose the boundary conditions on the
spatial edges. We will adopt a static “baglike ” condition

(BY) (t,z) = (1 + p)¢(t,z) =0 for z=0,1, (13)
such that, at = 0,

(1 —Yka(0,2") = ( jz i ) k,(0,z’') = 0. (14)

This implies that

w0s) = (})e (5@ o). 9
On the other hand, at z =1,
(1+Hkn(1,2') =0, (16)

which means that
(1 — 'L) |:e"/59,‘La: ( 1- ) ® ( f(a:’) g(xl) )
—mle~*fs“"L<1—=’>] =0. (17)

This gives

(1 + ’Yl) e——‘y;ﬂ,.L(l—:c') _ ,Yle—'yg;ﬂ,.L(::—:c’)H(m _ :1:’)] e—iﬂ,.ﬁ(t—t')_ (18)

! ! 0_uB(t—t') < e~ Vs L(1—z—2')
= HEE— 19
L/; d:z:/o dt tr{ v"e Z 2 cosh(2, L) (19)
n=-—oo

—vsQ2n L(1+z—z') , i ,
+4t (——————e — e L) [ (g — $I)>j| e~ HInAl—t )} It 2"y =(z,t) -

2 cosh(Q2,L)

For 0 < z,z' < 1, the first term in the series converges absolutely and uniformly, even at (t,z) = (¢',z'). So it can be
summed up in any order; in particular, one can first take the trace as a matrix, obtaining a vanishing result. This is
not the case for the second term, containing the ! matrix. In fact,



7134 DE FRANCIA, FALOMIR, LOEWE, AND SANTANGELO

Z 2cosh(,L)

n=-—

oo —v5Qn L(14z—z' ,
(e s ( ) _ e—'ysQnL(m—m')H(m _ a:’)) e~ ifnB(t—t")

_ f: e—‘YEQnL(l-f-:c—z’) _ e—’stnL(z—*in’) 00 e“'innﬂ(t—t')
“~ | 2cosh(Q2.L) 01

—1 '
e—’ysQ"L(1+z—m ) s 10 X ,

E : o=V L(z—2") —iQ,8(t—t')
i n=-—oo l: 2 COSh(Q"L) ¢ ( 00 ) ¢ (20)

= s L(z—z') { —H(z —z') 0 —iQ.B(t—t")
" 2_:06 ( 0 H@-g) )¢
— H(z' —z) 0
—vsQn L(z—z") T —T —iQ,B(t—t'
+ 3 e ( . _H(m_m,))e (et

n=-—o0oo

where the first two terms in the right-hand side are absolutely convergent even at =’ = . For the last two terms in

this equation we have, for =’ # =z,

(THE g0y e

_ = —vsQ2n L(z—a')
S+—§;Oe 7 0 H(z' — z)
e(iu—w/ﬁ)[L(z—z')+iﬁ‘(t—t')]
—H(z — ') 0
1- exp(——g‘—;E [L(z — )L +iB(t — t’)])
= e(ip,—w/ﬂ)[L(z'—z)L—f—iﬂ(t——-t')] ?
0 H(z' — )
1- eXp(—‘% [L(z' — z)L + B (t — t’)])
(21)
and
-1
_ s L(e—ar) [ H(z' — ) 0 —iQ, B(t—t")
§-= _Z_ e’ ( 0 —-H@z-z) ) °
(22)
e——(iu+1r/ﬁ)[L(:c'-—z)—iﬂ(t—t')]
H(z' — ) " - 0
~ 1- exp(——F" [L(z! — z) —iB (t — t’)])
- e—(iu+7r/ﬂ)[L(x—z’)—iﬁ(t—t’)] ’
0 —H(z—z')
1- exp(—%’£ [L(x —z') —iB(t — t’)])
which are singular at (t',z') = (¢, ). Calling z = L(z — z') + i8(t — t'), 2= L(x — z') —iB(t — t'), we have
g L+in+n/BlHE —2) - Hz - )] +O(z/5) 0
S+ + S._ = - z 1 .
2m 0  —ip+n/BH(2' - 2) - H(z - 2)] + O(2/87)
(23)
Now, we can evaluate
4 iLB 4 1 1 )
L {yrettp (s, + 5} = —Lese {1 Lauroz) /)
(24)

— -Iif—ﬂ+0(|z—x'|L2/ﬁ).

t'—t
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This corresponds to the following (finite) contribution to —ﬂ%%(T, L) :

1 1
L / dz / dt tr {°e#8¢—y1 (5, +5.)} ~ P (25)
0 0

(t'e)=(t,x) T

For the remaining terms in Eq. (20), we can put t' =t and &’ = z, and take the matrix trace inside the sum:

L fy dz [y dt tr{v"“rl niw [gfj;%%‘;% - (H(wno_ ) H(ng 1/2) )] }

(26)
= il iw {tanh(Q,L) — sgn(n +1/2)} .
We finally get
820 (6,1, = E1p it nf:w {sanh [(wn — i) ] — sgn(n +1/2)} (27)

Notice that, while the first term in the right-hand side (RHS) of (27), coming from the singular behavior of the Green
function, is linear in u, the second one, a w-periodic function of pL, contains the finite size effects (vanishing for
L — o00). It is easy to see from this expression that, in the 8 — oo limit, the mean value of the particle number is

ﬁlim N= [%] , (28)
—00
where [z] means the integer part of z.
Now, (27) can be integrated to obtain
2 oo .
_ _ _ M cosh[(wp, —ip) L] .
B{G(B,L,p) — G(B,L,0)} = L+ n:z_:w In { cosh o] Tim Lsen(n+1/2)p. (29)

Taking into account that w_, = —w(,_1) we have, for the piece of the free energy which depends on u, the (finite)
result

> (1 + 2cos(2ul)e 2wl 4 g—4wnL
( cos(2uL) ) (30)

2
—B{ G, ~ G(B,L,0) =1+ In {H L o

0

03(/"‘-[/3 e_ZWL/ﬁ) }

u2
= ﬂLﬂﬂ-ln{ 03(0’6—2‘"’[4/[3)

where 63(u, g) is the Jacobi theta function [10].

III. THE FREE ENERGY FOR =0

In order to have the complete Gibbs function, we will evaluate in this section the free energy of our system of
two-dimensional fermions as a function of temperature, for u = 0. We take
9 =1 { 200,k (t, 25t !
% n Det [D(8,L)]ge = Tr Ez—’y wk(t,z;t',z') 3, (31)

where the Green function of the operator is given by (18) with u = 0:
eYswnLz

ol W — g 1 1\ ,—vswnL(l—2') _ 1 —'15w,,L(a:—-:c')H o —iw,,ﬂ(t—-t'). 2
koot ) ZL,;—:OO Seosh(w,D) L TY)e ve (2—af)) e (32)

As in Sec. I, the term in the RHS of Eq. (31) which does not contain ! gives a vanishing contribution. For
the remaining, we get two contributions to the trace: the first coming from the absolutely convergent series (for
0O<z,z' <1)
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e~ Yswnl

n=—oo

L > . ’ '
ET&. s Z wne——zwnﬁ(t—t )e-—'yyd,,L(a:—m) [

Loo

2 cosh(wn, L)
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- ( H(_no— Y2 H(n?— 1/2) )] }

(33)

=-3 > wy {tanh(w,L) —sgn(n +1/2)} = 2% ngoln{l + e 2wnll,

n=-—oo

the second one turns out to be divergent, and therefore a regularization procedure is required. We will use a “point-

splitting” prescription to get

iL =~  _; ) o (g

n=—oo

5 ( H(z' — z)H(—n — 1/2)0—

ﬁg/ dz/ d”mat{

:z:-—a;)z

n=0

n=0

H(z—z')H(n+1/2)

0

H(z' —xz)H(n+1/2) — H(x — 2')H(—n — 1/2) )}

oo
(z — ') Ze—(2n+1)g[L(z—x')Hg(t—t')]

(2n+1) L(a:'—m)—l—iﬁ(t-t')]} l(t',z'):(t,m) (34)

_mL cosh(me/B) 8 {_L,B wL
>t B2 [sinh(ne/B)]2 OB

1 1
o Jo sinh (% [L|z—a | +iB(t — t’)])

ra 5 HOE},

2 =(t,2)

for e = L | ' — = |< B, which shows a singular piece proportional to L.

So, we have, for the free energy at u = 0,

L C
F(B,L) = ——Zoln{1+ e2enl} 4 F__::ﬂz +3
1 _2nL 1 _axLn L wL c
z_ﬁln{eli(oye s )}‘*’Bn}::lln(l_e B )+7r_52—3ﬂ2+5’ (35)

with C an integration constant.
The Casimir energy is obtained through the limit of
this expression for vanishing temperature:

Blim F(B,L) = Ecas(L)

_ 1 *° —2wL L
= /0 dvln{1+ e }+;—€3 (36)

T
e + L
24L = we?’

where one can see that the singular O(e™2) part can be
eliminated through a renormalization of the vacuum en-

ergy density. The finite part of Ecas(L), — , coincides

™
. , 24L° "
with the result obtained in Ref. [11], and gives rise to an
attractive force between the edges of the segment where
the fermions are confined.

Then, we get the finite result

F(B,L) — Ecas(L) = —% 1,1{93 (0, —T) }

ég( e ")

L C T
B R 7
332 + B + 24L (37)

The undetermined constant C can be evaluated by im-

posing the vanishing of entropy at zero temperature.
Since

8
S = ,@Z%F(ﬁ, L), (38)

for 8 — oo the Poisson formula for the previous series
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allows us to write

s=5% {% + ow—Z)} —_cto(Y), (39)

implying that C = 0.
We finally get, for the free energy as a function of
B, L, p,

G(ﬁa L7 ’-l’) - ECBS(L)

L 1 ATk
=—’;—W—Eln{03<pL,e B )} (40)

1 _4rnLn L T
23 m(1-e" B ) - X+
*s n( ¢ ) 337 T 2L

IV. THE CHEMICAL POTENTIAL THROUGH
A BOUNDARY VALUE PROBLEM

In this section, we will show how the result in Sec. I can
alternatively be obtained with the methods developed in
Ref. [8], by introducing the chemical potential through
suitable boundary conditions.

As before, we will consider the differential operator

D(B,L) = %'Yoat + %7153, (41)

with the dimensionless variables ¢, z taking values in the
segment [0,1]. We will take D(3,L) to act on differen-
tiable functions satisfying the boundary conditions

(A(m)x) () = x(t = 1,z) + " (t = 0,z) = 0,

(Bx) (t,z) = [1 + p]x(t,z) =0, for z=0,1,

(42)

and call this operator [D(3, L)] 4,5 -

The method requires a basis in the kernel of the dif-
ferential operator, ker D(B,L). The calculation can be
greatly simplified by choosing a complete system of func-
tions satisfying the boundary conditions at the spatial
edges. Such basis can be constructed from the eigen-
functions of the Hermitian operator (—iys4%) 5 in [0,1]:

'—i'75 %Xn (w) = Aan(‘l:),

(Bxn) (0) = 0 = (Bxx) (1),

(43)
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which are given by

> 1
— pim(n+1/2)zy
X'n(m) =€ 5 ( i ) )

(44)
with A\, =7(n+1/2), n € Z.
Now, a basis in ker D(3, L) is

oty 7) = e HI/DE BriLave] ( ! ) with n € Z. (45)

The following step is to get the projected boundary values
of 9,,(¢t,z) through the boundary operators A(n) and B:

(A(m)Yn)(z) hn(z5m)
H, (t, ; 77) = (B"/"n) (, 0) = 0 )
(Bn) (t,1) 0
ho(z;m) = Yu(t =1,z) + ei"d)n(t =0,z) (46)

= [etmrr/amprn | gin] gintmst/zrons ( ! ) .

Forman’s operator, ®(n’,7), is defined as

Hn(tvx;"],) = é(’r]l’ 7]) Hn(t,IE,T]), (47)

for any basis in ker D(8, L). Since the operator B does
not depend on the parameter 7, ®(’,7) has the form

s = (TG0 D) @

and our election of basis allows us to determine ®(7’,7)
from

ho(z;n') = @(n',n) ha(z;n)
(49)

_ e(n+1/2)1rﬂ/L +ei'r]l N )
T\ e(n+1/2)7B/L 4 gin n(37).
Note that the h,(z;1) ~ xn(z), for n € Z, constitute a

complete system in L?(0,1), and ®(7’,7n) is diagonal in
this basis:

, 1 +einl—-(n+1/2)1rﬁ/L .
[®(7'sD)]nm = Onm ( 1+ ein—(n+1/2)7B/L ) - (50)

In what follows, we will need the quotient of ®’s for two
sets of parameters (3, L) and (o, Lo) respectively;

1+ ei'r)l—('n.-{—l/2)1r[3/L

’ —1¢, 1 1 4+ en—(n+1/2)mBo/ Lo
[‘I’(U an) QO (77 ’n)]n,m = Jn,m ( 14 ein—(n+1/2)1rﬂ/L ) (1 + ei"’"("+1/2)7’ﬂo/Lo) . (51)

It is easy to see that [®(n',n) ®5(n',n) — 1] is a trace class operator, so the determinant det; [®(n',n) &5 (7,7
0 0

exists:

1 + ein'—(n+1/2)xB/L |

1+ ein—(n+1/2)1rﬂo/Lo

2

dety [®(n',n) @57 (', m)] = IOI 11 o= GFi/2mh/T

1+ ein!— (n+1/2)xBo/Lo

(52)

8 (

! — L
(5.7 gy (g e
7, e-mB/2L) 0, (92_', e—-rrBo/ZLo)
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The result established in Ref. [8] is

dety { (D(B, L)) o), (D (Bo, LO))Z(ln'),B

X (D(Bos Lo)) a(ny,5 (D(B, L));?n),B} (53)

= dety (‘I’(n'ﬂl) (p(—l—l(nla 77))

Now, we choose the parameter ' = iy/'8, n = iu O
and noticing that

(D(B, L)) gtmy. = (€™ D(B, L)e™) 4 () 5
(54)

— 08 + — ’)’13 _E,YO) ,
(ﬂ L B ) a),B

we can write
—B G(B, L, ') + BoG(Bo, Lo, 1’ B/ Bo)
—Bo G(Bos Lo, 1 B/Bo) + B G(B, L, )

05 (zuﬁ e—wﬁ/2L) 63 (i_}l-z_@’e—ﬂ',@o/2Lo)
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For y' = 0 this reduces to
ﬂ [G(IB7 Ly /"') - G(ﬂv Lv 0)]
_ﬁO [G(ﬂ07 LOa M ﬂ/IBO) - G(ﬁO’ L07 O)]

05 (0,e~78/2L) O (i_ﬂz_é,e—wﬂo/uo)
03 (iﬂzﬁ’ e——wﬁ/ZL) 03 (O, 8_77,30/2[/0) s
(56)

and we are still free to choose the parameters By and Lo
conveniently.
Notice that, for 3/8 <« 1, we can write

=In

,30 [G(ﬁo,Lmﬂ )6/»@0) - G(ﬂo, LO’O)]
- ﬂo’;f gG (Bo> Lo, pto) = —1 B N (Bo, Lo, o), (57)

for 0 < po < p B/Bo, and N(Bo, Lo, po) the mean value
of the particle number. So

Bo [G(Bo, Lo, 1 B/Bo) = G(Bo, Lo, 0)] ;= 0. (58)

On the other hand
by (352, =ron/ai)

=1In — . _
05 (y%ﬁj’e—wﬁ/u) 05 (w2ﬂ,e_1rgo/2Lo) ﬁ(}gnw s (0,0 7P /PLe) 1, (59)
(55) for any value of %ﬁ Then, we have
J
63 (0, e*"ﬁ/%) — 2L 6 (0,e~27L/8)
ﬂ G ﬂ? Ly ) L 0 = 1 T
[&( w =GB = ( e—-rrﬁ/zL) o 03 (uL,e—27L/B) |’ (60)

where we have used the inversion formula for the Jacobi
f3function:

0, (u;ﬂ,e—wﬂ/ZL) = "3 0, (uL,e’z"L/ﬁ) . (61)

This result coincides with the one obtained in Eq. (30).

We have seen that the chemical potential can be in-
troduced through an analytic extension in the parame-
ter defining the twisted boundary conditions in the Eu-
clidean time direction. From this point of view, the pres-
ence of Jacobi theta functions should not be surprising
since these functions appear in the study of conformally
invariant Dirac operators (see, for example, [12]).

In fact, in Ref. [13] the problem of massless two-
dimensional fermions at T' > 0, satisfying twisted bound-
ary conditions in the spatial direction, has been consid-
ered using the techniques employed in the present paper.
Taking into account that, for this simple model, baglike
(local) boundary conditions imply the antiperiodicity of
the Hamiltonian eigenfunctions in the segment z € [0, 2]

[see Eqs. (43), (44)], it is not difficult to reobtain from
Eq. (60) the results in [13], by changing 8 — L, L — 3/2.

V. CONCLUSIONS

In this paper, we studied the possibility of simulat-
ing the presence of a chemical potential by imposing
“twisted” boundary conditions in the Euclidean time di-
rection. This mechanism allowed us to relate the free
energy of a system of massless confined fermions to a
functional determinant of the Dirac operator.

To study such determinant, we made use of two ap-
proaches. The first one is based on the knowledge of the
Green function satisfying adequate boundary conditions.
The other relies on functional techniques [8] which allow
to perform the calculation starting from boundary values
of functions in the kernel of the Dirac operator.

In Sec. II, the difference between Gibbs free energies
with and without chemical potential was written in terms
of the p integral of a trace involving the Green function.
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A careful treatment of this trace (which is not absolutely
convergent), through point-splitting regularization, put
in evidence the presence of a u?-dependent term.

For completeness, in Sec. III, the Helmholtz free en-
ergy was computed by a similar method, employing this
time the 3 derivative. The constant of integration was
fixed from the vanishing of entropy at zero temperature.
Moreover, the 3 — oo limit allowed us to identify the
Casimir energy of the system.

Although the results of Sec. IT and III, i.e., the Gibbs
free energy of this simple model, could also have been ob-
tained directly from the eigenvalues of the Dirac Hamil-
tonian (which, in this case, can be exactly evaluated),
the method developed in those sections can be applied to
more complicated and realistic situations, e.g., the (3+1)-
diniensional bag model. In fact, as mentioned in Sec. I,
in Refs. [6,7] a hybrid chiral bag model with 4 = 0 and
T # 0 in 3 + 1 dimensions has been studied. The Green
function (for a spherical bag) can be determined through
the extension to the T # 0 case of the results in [14],
where one must take into account that the symmetry
of the boundary conditions corresponds to the diagonal
subgroup of SU(2);otational ® SU(2)isospin- It should be
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noticed that, in this model, the eigenvalue problem of
the Dirac Hamiltonian leads to transcendental equations.
So, the evaluation of the y-dependent contribution to the
Gibbs free energy could be performed following the Green
function approach developed in the present paper, task
which is in progress.

In Sec. IV, we made an alternative calculation follow-
ing the techniques introduced in [8]. Starting from an ad-
equately selected basis in the kernel of the Dirac operator,
the Fredholm determinant of quotients of Forman’s op-
erators could be easily constructed. Through an analytic
extension in the parameter defining the twisted tempo-
ral boundary condition, we reobtained the pu-dependent
piece of the Gibbs free energy of the system.
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