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ABSTRACT
In this article, a posteriori error analysis for space-time discretizations of
semilinear parabolic interface problems in a bounded convex domain in
R
2 is presented and analyzed. In time discretizations both the backward

Euler and the Crank-Nicolson approximations are considered whereas in
space we have considered the standard piecewise linear finite elements. A
posteriori error estimates of optimal order in time and almost optimal order
in space are derived in the L∞(L2)-norm. The main technical tools used are
the energy argument combined with the elliptic reconstruction technique.
The forcing term is assumed to satisfy the Lipschitz condition.
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1. Introduction

The study of semilinear interface problems is motivated by models of mass transfer of substances
through semipermeable membranes. Such models arise from various applications in biomedical and
chemical engineering, e.g. modeling of electrokinetic flows, solute dynamics across arterial walls, and
cellular signal transduction, for instance, see [1,2].

The focus of this work is to study L∞(L2)-norm a posteriori error analysis of semilinear parabolic
interface problems of the form

ut(x, t) − div(β(x)∇u(x, t)) = f (x, t, u) in � × (0,T] (1.1)

with the prescribed initial and boundary conditions

u(x, 0) = u0(x) in �; u = 0 on ∂� × [0,T] (1.2)

and jump conditions on the interface

[u] = 0,
[
β

∂u
∂n

]
= 0 across � × [0,T], (1.3)
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where 0 < T < +∞; ut = ∂u
∂t ; � is a bounded convex polygonal domain in R

2 with Lipschitz
boundary ∂� and�1 be a subdomain of�withC2 boundary ∂�1 := �. The interface� now divides
the domain � into two subdomains �1 and �2 := � \ �1. Here, [v] denotes the jump of a quantity
v across the interface �, i.e. [v](x) = v1(x) − v2(x), x ∈ � with vi(x) = v(x)|�i , i = 1, 2. The symbol
n denotes the unit outward normal to the boundary ∂�1 := �. The diffusion coefficient β(x) is
assumed to be positive and piecewise constant on each subdomain, i.e.

β(x) = βi for x ∈ �i, i = 1, 2.

The initial function u0(x) and the forcing term f (x, t, u) are real-valued functions and assumed to be
smooth.

Interface problems usually lead to non-smooth solutions across an interface. Due to low global
regularity and irregular geometry of the interfaces it is challenging to achieve high order accuracy by
the standard finite element methods. Despite of the efforts given to these type of problems in recent
years related to a priori error analysis, see [3–7] and references therein, the literature seems to lack
L∞(L2) a posteriori error analysis in energy method. A priori error analysis of semilinear parabolic
interface problems in H1-norm has been studied by Sinha et al. [8]. Some a posteriori error analysis
results for the semilinear parabolic problems can be found in [9,10].

For parabolic problems (in the absence of an interface), it is known that the energy method for a
posteriori error analysis of finite element discretizations yields suboptimal rates of convergence in the
L∞(L2)-norm (cf. [11]). An alternative approach for obtaining optimal rates of convergence in the
L∞(L2)-norm is based on the parabolic duality technique, see [12]. But as energy method is the most
fundamental technique in the a priori error analysis, it is therefore natural to follow thismethod in the
corresponding a posteriori error analysis to obtain optimal order error estimates in L∞(L2)-norm. To
restore optimality in the L∞(L2)-norm for parabolic problemsMakridakis et al. [13] have introduced
a novel elliptic reconstruction technique. This elliptic reconstruction so introduced may be regarded
as the dual counterpart of Wheeler’s elliptic projection method in a priori error analysis introduced
by Wheeler [14].

The aim of this paper is to follow the reconstruction technique to derive a posteriori error
estimators for problem (1.1). More precisely, for backward Euler approximation we use piecewise
linear space-time reconstruction (cf. [15]) whereas theCrank-Nicolson approximation uses quadratic
space-time reconstruction, (see, e.g. [16]) of finite element solution. A key argument of our proof
is the appropriate adaption of elliptic reconstruction operator combined with the energy technique.
Other worthmentioning technicalities for our analysis are approximation results of the Clément-type
interpolation operator [17,18] and the discrete version of Gronwall’s lemma. Optimal order estimates
in time and almost optimal order estimates in space in the L∞(L2)-norm are obtained for both the
backward Euler and Crank-Nicolson approximations.

The layout of the paper is as follows. In Section 2, we briefly introduce some notations and
preliminaries, present both the backward Euler and Crank-Nicolson approximations and recall some
results from the literature. In Section 3 we derive a posteriori error estimates for the backward Euler
method of semilinear parabolic problems. Section 4 discusses the related a posteriori analysis for the
Crank-Nicolson approximation. Finally, concluding remarks are presented in Section 5.

2. Preliminaries

This section introduces some standard function spaces, the finite element discretizations of the
domain � and the fully discrete backward Euler and the Crank-Nicolson finite element Galerkin
approximations to the problem (1.1)–(1.3). In addition, we recall some approximation properties of
the Clément-type interpolation operator from [17,18].
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2.1. Function spaces

Given a Lebesgue measurable set M ⊂ R
2 and 1 ≤ p ≤ ∞, we denote by Lp(M), the standard

Lebesgue spaces with the norm ‖ · ‖Lp(M). For p = 2, L2(M) is a Hilbert space with respect to the
norm induced by the inner product 〈u, v〉 = ∫

M u(x)v(x)dx. We denote the norm of L2(M) by
‖ · ‖M. For an integerm > 0,Hm(M) denotes the usual Sobolev space of real functions having their
weak derivatives of order up tom in the Lebesgue space L2(M)with the norm ‖ ·‖m,M. The function
space H1

0 (M) is a subspace of H1(M) whose elements have vanishing traces on the boundary ∂M.
For simplicity of notation, we will skip the subscript M whenever M = �. We will also use the
standard space-time function space Lp(0,T;B), 1 ≤ p < +∞ (B, Banach space) with the standard
norms.

In addition, we shall also work on the function space (X := H1
0 (�) ∩ H2(�1) ∩ H2(�2), ‖ · ‖X)

with
‖v‖X := ‖v‖H1

0 (�) + ‖v‖H2(�1) + ‖v‖H2(�2).

2.2. Space-time discretizations of the domain

Let 0 = t0 < t1 < · · · < tN = T be a partition of the time axis and set In := (tn−1, tn] with time steps
kn := tn − tn−1.

In order to describe the triangulation Tn = {K}(0 ≤ n ≤ N) of the domain �̄ at each time level tn,
wefirst approximate the domain�1 by a polygonP�1 with boundary�P such that all the vertices of the
polygon lie on the interface �. Thus, �P now splits the domain � into two subdomains P�1 and P�2 ,
where P�2 is a polygon approximating the domain�2. Let hn := max{hK | hK = diam(K), K ∈ Tn}.
We now make the following assumptions on the triangulation Tn (cf. [3,15]).

(A1) If K1,K2 ∈ Tn and K1 �= K2, then either K1 ∩ K2 = ∅ or K1 ∩ K2 share a common edge or a
common vertex. We also assume that each triangle is either in P�1 or in P�2 or intersects the
interface � in at most two vertices.

(A2) Two simplicial decompositions Tn−1 and Tn of �̄ are said to be compatible if they are derived
from the same macro triangulation T = T0 by an admissible refinement procedure which
preserves shape regularity and assures that for any elements K ∈ Tn−1 and K ′ ∈ Tn, either
K ∩ K ′ = ∅, K ⊂ K ′, or K ′ ⊂ K . There is a natural partial ordering on a set of compatible
triangulations, namely Tn−1 ≤ Tn if Tn is a refinement of Tn−1. Then for a given pair of
successive compatible triangulations Tn−1 and Tn, we define naturally the finest common
coarsening T̂n := Tn ∧ Tn−1 with local mesh sizes are given by ĥn := max{hn−1, hn}. These
conditions allow us to bound the elliptic errors which lie in two adjacent finite element
spaces, i.e. finite element spaces defined on meshes at adjacent time steps. For a more detailed
discussion on compatible triangulations, we refer to [15].

We shall also need the following notations for future use. For 0 ≤ n ≤ N , En = {E} be the set of
all edges of the triangles K ∈ Tn which do not lie on ∂�, and �n := ∪E∈EnE. Furthermore, we will
also use the sets �̂n := �n ∩ �n−1 and �̌n := �n ∪ �n−1.

2.3. The fully discrete finite element approximations

For the purpose of the finite element approximation of the interface problem (1.1)–(1.3), we begin
by writing the problem in weak form: Find u ∈ L∞(0,T;H1

0 (�)) such that

〈ut(t),ϕ〉 + a(u(t),ϕ) = 〈f (x, t, u),ϕ〉 ∀ϕ ∈ H1
0 (�), a.e. t ∈ (0,T], (2.1)

where a(·, ·) is a bilinear form on H1
0 (�) defined by

a(v,w) = 〈β(x)∇v,∇w〉 ∀v,w ∈ H1
0 (�).
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Note that the bilinear form a(·, ·) is bounded and coercive on H1
0 (�), i.e. ∃α0, γ0 > 0 such that

|a(v,w)| ≤ α0 ‖v‖1‖w‖1 and a(v, v) ≥ γ0‖v‖21 ∀v,w ∈ H1
0 (�). (2.2)

We assume that f : �̄ × [0,T] × R −→ R satisfies the Lipschitz condition in the third argument,
i.e. there exists a constant CL > 0 such that

|f (x, t, v) − f (x, t,w)| ≤ CL|v − w| ∀v,w ∈ R. (2.3)

For the existence, uniqueness and regularity of the solution of the semilinear parabolic interface
problems, one may refer to Feng and Shen [19].

For each n = 0, . . . ,N , we consider the finite element space S
n corresponding to the triangulation

Tn as follows:

S
n := {

χ ∈ H1
0 (�) | χ |K ∈ P1(K) for all K ∈ Tn

}
,

where P1(K) is the space of polynomials of degree less than or equal to 1 on K . For v ∈ S
n, let

f n(v) := f (x, tn, v). Henceforth, we shall use the following shorthand notations: For 1 ≤ n ≤ N ,

f n−
1
2 (vn−

1
2 ) := f n(vn) + f n−1(vn−1)

2
, vn−

1
2 := vn + vn−1

2
and ∂vn := vn − vn−1

kn
.

Since both the backward Euler and the Crank-Nicolson approximations will be analyzed, we first
state these two methods below.

The fully discrete backward Euler approximation:
The standard backward Euler approximation for problem (1.1)–(1.3) may be stated as follows: Given
U0 = I0hu(0), seek U

n ∈ S
n ( 1 ≤ n ≤ N) such that

〈
Un − Un−1

kn
,χn

〉
+ a(Un,χn) = 〈

f n(Un),χn
〉 ∀χn ∈ S

n. (2.4)

Here, the operator I0h is a suitable projection from H1
0 (�) into the finite-dimensional subspace S

0.

The fully discrete Crank-Nicolson approximation:
The fully discrete Crank-Nicolson approximation of the problem (1.1)–(1.3) is stated as follows: Let
U0 = I0hu(0), where I0h is a suitable projection operator from H1

0 (�) into the finite-dimensional
subspace S

0. Then, for 1 ≤ n ≤ N , find Un ∈ S
n such that

〈
Un − Un−1

kn
,χn

〉
+ a

(
Un− 1

2 ,χn

)
=
〈
f n−

1
2 (Un− 1

2 ),χn

〉
∀χn ∈ S

n. (2.5)

We now recall the following projection operators for our subsequent use.

Discrete elliptic operator: The discrete elliptic operator associated with the bilinear form a(·, ·)
and the finite element space S

n is the operator An
h : H1

0 (�) −→ S
n such that for v ∈ H1

0 (�) and
0 ≤ n ≤ N ,

〈An
hv, χn〉 = a(v,χn) ∀χn ∈ S

n. (2.6)
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L2-projection operator: The L2-projection operator is a map �n
0 : L2(�) −→ S

n such that for
v ∈ L2(�) and 0 ≤ n ≤ N ,

〈�n
0v,χn〉 = 〈v, χn〉 ∀χn ∈ S

n. (2.7)

Using the above projections, (2.5) can be expressed in distributional form as

Un − �n
0U

n−1

kn
+ 1

2
(An

h)U
n + 1

2
(An

h)U
n−1 = �n

0 f
n− 1

2 (Un− 1
2 ).

For parabolic problems, Bänsch et al. [16] has observed that the discrete elliptic operator An
h on

the finer mesh when applied to the coarse grid function Un−1 in the above may lead to oscillation
during refinement. The same behavior is naturally expected for the parabolic interface problems as
well. Therefore, following the discussion of [16], we consider the followingmodified Crank-Nicolson
approximation.

Modified Crank-Nicolson approximation: Given U0 = I0hu(0), for 1 ≤ n ≤ N seek Un ∈ S
n such

that

1
kn

(Un − Pn1U
n−1) + 1

2
(An

hU
n) + 1

2
Pn2 (An−1

h Un−1) = �n
0 f

n− 1
2 (Un− 1

2 ), 1 ≤ n ≤ N , (2.8)

where Pn1 ,P
n
2 : S

n−1 −→ S
n be any suitable projection operators.

Representation of elliptic operator: Let v ∈ S
n(0 ≤ n ≤ N). Then, the bilinear form a(·, ·) can be

rewritten using the Green’s formula as

a(v,ϕ) =
∑
K∈Tn

〈−div(β(x)∇v),ϕ〉K +
∑
E∈En

〈j[βv],ϕ〉E (2.9)

= 〈(v)el,ϕ〉 + 〈j[βv],ϕ〉�n ∀ϕ ∈ H1
0 (�), (2.10)

where (v)el in (2.10) denotes the regular part of the distribution −div(β∇v), and is defined as a
piecewise continuous function such that

〈(v)el,ϕ〉 =
∑
K∈Tn

〈−div(β∇v),ϕ〉K ∀ϕ ∈ H1
0 (�).

The quantity j[βv] denotes the spatial jump of β∇v across an element side E ∈ En and is defined as

j[βv]|E(x) = lim
ε→0

(
β∇v(x + εηE) − β∇v(x − εηE)

) · ηE ,

where ηE is an arbitrary unit normal vector to E at the point x.

2.4. Clément-type interpolation estimates

Aresidual-basedaposteriori error estimatesmainlyuses the approximationproperties of theClément-
type interpolation operator introduced by Scott and Zhang [17]. The approximation properties for
such type of operator are established in [17, Theorem 4.1] under needed regularity assumptions on
functions. However, in the present case, due to the discontinuity of the diffusion coefficient β along
the interface�, the solution has a lower regularity in the entire domain�, usually one has only u ∈ X.
Thus, the existing approximation results do not apply directly. Therefore, new approximation results
obtain in [18] yield nearly optimal order convergence up to | log hn| factor with u ∈ X. We now recall
the following approximation properties of the Clément-type interpolation operator from [17,18].
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Proposition 2.1: Let Jn : X −→ S
n be the standard Clément-type interpolation operator as intro-

duced in [17]. Then, for the finite element polynomial space of degree ≤ 1, the following interpolation
estimates hold: For v ∈ H1

0 (�), we have

{‖v − Jnv‖ ≤ CI ,1 hn ‖v‖1,
‖v − Jnv‖�n ≤ CI ,2 h

1
2
n ‖v‖1,

(2.11)

and for v ∈ X, {‖v − Jnv‖ ≤ CI ,3 h2n | log hn| 12 ‖v‖X ,
‖v − Jnv‖�n ≤ CI ,4 h

3
2
n | log hn| 12 ‖v‖X ,

(2.12)

where the constants CI ,k, k ∈ {1, 2, 3, 4} depend only on the shape-regularity of the family of triangula-
tions.

Next,we state theClément-type interpolation inequalities relative to the finest commoncoarsening
of Tn and Tn−1 which reflects the mesh change behavior.
Proposition 2.2: Let Ĵn : X −→ S

n∩S
n−1 be the Clément-type interpolation operator with respect

to the finest common coarsening of Tn and Tn−1, i.e. T̂n := Tn∧Tn−1 corresponding to the finite element
space S

n ∩ S
n−1 with mesh size ĥn := max{hn, hn−1}. Then, for the finite element polynomial space of

degree ≤ 1, the following is true for v ∈ X:

‖v − Ĵnv‖�̌n\�̂n
≤ CI ,5 ĥ

3
2
n | log ĥn| 12 ‖v‖X ,

where the constant CI ,5 depends on the shape regularity of the family of triangulations and on the
number of steps required to move from Tn−1 to Tn.

Further, the approximation properties (2.11) and (2.12) hold true in the finite element space S
n ∩

S
n−1 with ĥn replacing hn.

3. Abstract backward Euler error analysis

In this section, we first introduce the elliptic reconstruction operator and then discuss the related a
posteriori error analysis for the backward Euler approximation.

Definition 3.1 (Elliptic reconstruction): For a fully discrete finite element solution Un ∈ S
n

obtained from (2.4), we define the elliptic reconstruction Rn
bU

n ∈ H1
0 (�) ofUn ∈ S

n as the solution
of the following elliptic problem

a(Rn
bU

n,ϕ) = 〈f̃ n,ϕ〉 ∀ϕ ∈ H1
0 (�), (3.1)

where

f̃ n :=
{

A0
hU

0, n = 0,
f n(Un) − k−1

n (Un − Un−1) , 1 ≤ n ≤ N .

Note that the operatorRn
b satisfies theGalerkin orthogonality property.Wenow state the following

elliptic reconstruction error bound in the L2-norm. For a proof, we refer the reader to [18, Lemma
5.1 ] for details.
Lemma 3.1: For a finite element approximation Un ∈ S

n of the elliptic Equation (3.1), the following
is true for 0 ≤ n ≤ N:

‖(Rn
b − I)Un‖ ≤ CI ,6 h2n | log hn| 12 ‖f̃ n − (Un)el‖ + CI ,7 h

3
2
n | log hn| 12 ‖j[βUn]‖�n ,
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where CI ,6 := CI ,3CR and CI ,7 := CI ,4CR.
In order to derive the a posteriori error bound, we split the total error e(t) := u(t) − U(t) by

considering the reconstruction �̃(t) as an intermediate object as follows:

e(t) := ρ̃(t) + ε̃(t), t ∈ In where ρ̃(t) := u(t) − �̃(t), ε̃(t) := �̃(t) − U(t), (3.2)

whereU(t) and �̃(t) , t ∈ In (piecewise linear interpolant of the solution and reconstructionoperator)
are defined by

U(t) := ln−1(t)Un−1 + ln(t)Un, t ∈ In (n = 1 . . . ,N), (3.3)
�̃(t) := ln−1(t)Rn−1

b Un−1 + ln(t)Rn
b U

n, t ∈ In (n = 1 . . . ,N), (3.4)

with

ln−1(t) := tn − t
kn

and ln(t) := t − tn−1

kn
for t ∈ In. (3.5)

With ρ̃(t) (parabolic error) and ε̃(t) (elliptic reconstruction error) as above, for 1 ≤ n ≤ N and
for each ϕ ∈ H1

0 (�), t ∈ In, we have by simple calculation the following parabolic error equation:

〈ρ̃t(t),ϕ〉 + a(ρ̃(t),ϕ) = −〈ε̃t(t),ϕ〉 − a(�̃(t) − �̃n,ϕ) + 〈
f (t, u) − f n(Un),ϕ

〉
. (3.6)

Now we define the following residual-based error estimators which will be used in the subsequent
analysis of the fully discrete backward Euler approximation.

The elliptic reconstruction error estimator:

For 0 ≤ n ≤ N ,

OBE,n := CI ,6 h2n | log hn| 12 ‖f̃ n − (Un)el‖ + CI ,7 h
3
2
n | log hn| 12 ‖j[βUn]‖�n . (3.7)

The space-mesh error estimator:

For 1 ≤ n ≤ N ,

MBE,n := CI ,6 ĥ2n | log ĥn| 12 ‖∂R̂n‖ + CI ,7 ĥ
3
2
n | log ĥn| 12 ‖∂ Ĵn‖�̂n

+ CI ,8 ĥ
3
2
n | log ĥn| 12 ‖∂ Ĵn‖�̌n\�̂n

, CI ,8 = CI ,7CR, (3.8)

where

R̂0 := (U0)el − (A0
hU

0) and R̂n := k−1
n (Un − Un−1) + (Un)el − f̃ n, for 1 ≤ n ≤ N

denote the element residuals and Ĵn := j[βUn], for 0 ≤ n ≤ N refers to the jump residual.

The temporal error estimator:

For 1 ≤ n ≤ N ,

Te,BE,n :=
{ 1

2 ‖A0
hU

0 − f 1(U1) + ∂U1‖, n = 1,
1
2 kn ‖∂ (f n(Un) − ∂Un) ‖, 2 ≤ n ≤ N .

(3.9)
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The data approximation error estimators:

For 1 ≤ n ≤ N , {
DBE,n,1 := √

CL max{‖ε̃n‖, ‖ε̃(n−1)‖},
DBE,n,2 := 1

kn

∫ tn
tn−1

‖f (t,U) − f n(Un)‖dt. (3.10)

A posteriori error bound for the parabolic error ρ̃(t) relies on a sequence of auxiliary lemmas.
Below, we shall state Lemmas 3.2–3.3 without proofs. The proof of the Lemma 3.2 is immediate from
[18, Lemma 5.4 ]. Following the idea of [15], the proof of the Lemma 3.3 follows.We therefore, refrain
from giving the details.

Lemma 3.2 (Space-mesh error estimate): With MBE,n as in (3.8), let In,1 represent the space-mesh
error term and be given by

In,1 :=
∫ tn

tn−1

|〈ε̃t(t), ρ̃(t)〉| dt.
Then we have

In,1 ≤ kn MBE,n max
t∈Īn

‖ρ̃(t)‖.

Lemma 3.3 (Temporal error estimate): With Te,BE,n as in (3.9), let In,2 denote the temporal error
term and be defined by

In,2 :=
∫ tn

tn−1

∣∣∣a (�̃(t) − �̃n, ρ̃(t)
)∣∣∣ dt.

Then we have
In,2 ≤ kn Te,BE,n max

t∈Īn
‖ρ̃(t)‖.

Lemma 3.4 (Data approximation error estimate): WithDBE,n,1 andDBE,n,2 as in (3.10), let the data
approximation error term be represented by In,3 and be defined as

In,3 :=
∫ tn

tn−1

∣∣〈f (t, u) − f n(Un), ρ̃(t)
〉∣∣ dt.

Then we have

In,3 ≤
√

CL
2ε

kn max
t∈Īn

‖ρ̃(t)‖2 + ε
√

CL
2

∫ tn

tn−1

‖ρ̃(t)‖21dt + kn DBE,n,1 max
t∈Īn

‖ρ̃(t)‖
+ knDBE,n,2 max

t∈Īn
‖ρ̃(t)‖.

Proof: We rewrite In,3 as

In,3 ≤
∫ tn

tn−1

∣∣∣〈f (t, u) − f (t, �̃(t)), ρ̃(t)
〉∣∣∣ dt +

∫ tn

tn−1

∣∣∣〈f (t, �̃(t)) − f (t,U(t)), ρ̃(t)
〉∣∣∣ dt

+
∫ tn

tn−1

∣∣〈f (t,U(t)) − f n(Un), ρ̃(t)
〉∣∣ dt

:= Tn,1 + Tn,2 + Tn,3. (3.11)

Using the Cauchy–Schwarz inequality, (2.3) and the Young’s inequality (with ε > 0), we obtain∣∣∣〈f (t, u) − f (t, �̃(t)), ρ̃(t)
〉∣∣∣ ≤ ‖f (t, u) − f (t, �̃(t))‖‖ρ̃(t)‖

≤ √
CL

{‖ρ̃(t)‖2
2ε

+ ε

2
‖ρ̃(t)‖21

}
.



560 J. S. GUPTA AND R. K. SINHA

Thus,

Tn,1 ≤
√

CL
2ε

kn max
t∈Īn

‖ρ̃(t)‖2 + ε
√

CL
2

∫ tn

tn−1

‖ρ̃(t)‖21dt. (3.12)

To estimate the second term in (3.11), we use the Cauchy–Schwarz inequality and (2.3) to obtain

∣∣∣〈f (t, �̃(t)) − f (t,U(t)), ρ̃(t)
〉∣∣∣ ≤ √

CL ‖�̃(t) − U(t)‖ ‖ρ̃(t)‖.

In view of (3.4), it follows that

∣∣∣〈f (t, �̃(t)) − f (t,U(t)), ρ̃(t)
〉∣∣∣ ≤ √

CL
{∣∣∣∣ tn − t

kn

∣∣∣∣ ‖ε̃n−1‖ +
∣∣∣∣ t − tn−1

kn

∣∣∣∣ ‖ε̃n‖
}

‖ρ̃(t)‖.

Therefore,

Tn,2 ≤
√

CL
2

kn
{‖ε̃n−1‖ + ‖ε̃n‖}max

t∈Īn
‖ρ̃(t)‖ = kn DBE,n,1 max

t∈Īn
‖ρ̃(t)‖. (3.13)

Finally to estimate Tn,3, we use the Cauchy–Schwarz inequality to have

Tn,3 ≤ max
t∈Īn

‖ρ̃(t)‖
∫ tn

tn−1

‖f (t,U(t)) − f n(Un)‖ dt = kn DBE,n,2 max
t∈Īn

‖ρ̃(t)‖, (3.14)

which in conjunction with (3.12) and (3.13) complete the desired proof.

Now, we apply the above lemmas to derive the a posteriori error bound for the parabolic error
ρ̃(t) in the L∞(L2)-norm.
Theorem 3.5: Let u be the exact solution of (1.1)–(1.3) and let Un be its finite element approximation
obtained by the backward Euler approximation (2.4). Then, for 1 ≤ m ≤ N, the following a posteriori
error bound holds:

{
max

t∈[0,tm] ‖ρ̃(t)‖2 +
∫ tm

0
‖ρ̃(t)‖21dt

} 1
2

≤ {
2 CG(m) ‖ρ̃(0)‖2} 1

2

+ 4 CG(m)

m∑
n=1

kn
{
MBE,n + Te,BE,n + DBE,n,1 + DBE,n,2

}
,

where CG(m) is a positive constant due to the Gronwall’s lemma and the quantities MBE,n, Te,BE,n,
DBE,n,i(i = 1, 2) are given in (3.8)–(3.10), respectively.

Proof: Setting ϕ = ρ̃(t) in (3.6) and using (2.2), we have

1
2
d
dt

‖ρ̃(t)‖2 + γ0

2
‖ρ̃(t)‖21 ≤ | 〈ε̃t(t), ρ̃(t)〉 | + |a(�̃(t) − �̃n, ρ̃(t))| + | 〈f (t, u) − f n(Un), ρ̃(t)

〉 |.
Integrate the above from tn−1 to tn to have

1
2
||ρ̃(tn)||2 − 1

2
‖ρ̃(tn−1)‖2 + γ0

2

∫ tn

tn−1

‖ρ̃(t)‖21dt ≤ In,1 + In,2 + In,3,
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where In,i(i = 1, 2, 3) are defined in Lemmas 3.2–3.4, respectively. Summing up over n = 1 : m we
have

‖ρ̃(tm)‖2 + γ0

∫ tm

0
‖ρ̃(t)‖21dt ≤ ‖ρ̃(0)‖2 + 2

m∑
n=1

{
In,1 + In,2 + In,3

}
. (3.15)

Since ρ̃(t) is continuous in [0, tm], there exists t0,m ∈ [0, tm] such that

‖ρ̃0,m‖ := ‖ρ̃(t0,m)‖ = max
t∈[0,tm] ‖ρ̃(t)‖,

and therefore,

‖ρ̃(t0,m)‖2 + γ0

∫ tm

0
‖ρ̃(t)‖21dt ≤ 2‖ρ̃(0)‖2 + 4

m∑
n=1

{
In,1 + In,2 + In,3

}
.

Now, using Lemmas 3.2–3.4, we obtain

max
t∈[0,tm] ‖ρ̃(t)‖2 ≤ 2‖ρ̃(0)‖2 + (2 ε

√
CL − γ0)

∫ tm

0
‖ρ̃(t)‖21dt

+ 4 max
t∈[0,tm] ‖ρ̃(t)‖

m∑
n=1

kn
{
MBE,n + Te,BE,n + DBE,n,1 + DBE,n,2

} + 2
√

CL
ε

m∑
n=1

kn max
t∈[0,tn]

‖ρ̃(t)‖2.

Choose ε > 0 be such that (2 ε
√

CL − γ0) > 0 and a use of the discrete Gronwall’s Lemma imply

max
t∈[0,tm] ‖ρ̃(t)‖2 + CG(m)

∫ tm

0
‖ρ̃(t)‖21dt ≤ 2 CG(m) ‖ρ̃(0)‖2

+ 4 CG(m) max
t∈[0,tm] ‖ρ̃(t)‖

m∑
n=1

kn
{
MBE,n + Te,BE,n + DBE,n,1 + DBE,n,2

}
,

where CG(m) := 2 max
{
1,

∑m
n=1

2
√

CL
ε

kn exp
{
2
√

CL
ε

(∑
n<j<m kj

)}}
.

Finally, we take

a0 := max
t∈[0,tm] ‖ρ̃(t)‖, an :=

{
CG(m)

∫ tn

tn−1

‖ρ̃(t)‖21 dt
} 1

2
(1 ≤ n ≤ m), c := {

2 CG(m) ‖ρ̃(0)‖2} 1
2 ,

b0 := 4 CG(m)

m∑
n=1

kn
{
MBE,n + Te,BE,n + DBE,n,1 + DBE,n,2

}
, and bn := 0, (1 ≤ n ≤ m),

and use standard inequality [15, (80)] to complete the proof.

The following theorem presents the fully discrete backward Euler a posteriori error estimate in the
L∞(L2)-norm for the semilinear parabolic interface problem (1.1)–(1.3).
Theorem 3.6: Let u be the exact solution of (1.1)–(1.3) and let Un be its finite element approximation
obtained by the backward Euler approximation (2.4). Then, for each 1 ≤ m ≤ N, the following a
posteriori error estimate holds:

max
t∈[0,tm] ‖u(t) − U(t)‖ ≤ {2 CG(m)} 1

2 ‖R0U0 − u(0)‖ + 2 max
0≤n≤m

OBE,n

+ 4 CG(m)

m∑
n=1

kn
{
MBE,n + Te,BE,n + DBE,n,1 + DBE,n,2

}
.
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The estimators OBE,n, MBE,n, Te,BE,n, and DBE,n,i(i = 1, 2) are given by (3.7)–(3.10), respectively.

Proof: By the triangle inequality, we have

‖e(t)‖ = ‖u(t) − U(t)‖ ≤ ‖ρ̃(t)‖ + ‖ε̃(t)‖, t ∈ In. (3.16)

Now,

‖ε̃(t)‖ = ‖ln−1(t)ε̃(n−1) + ln(t)ε̃n‖ ≤ 2 max{‖ε̃n‖, ‖ε̃(n−1)‖}, t ∈ In.

Again, for t ∈ [0, tm], using Lemma 3.1 we obtain

‖ε̃(t)‖ ≤ 2 max
0≤n≤m

OBE,n,

which combine with Theorem 3.5 proves the result.

4. Abstract Crank-Nicolson error analysis

For the purpose of the fully discrete Crank-Nicolson error analysis, we now define the space-
time quadratic reconstruction for the Crank-Nicolson approximation (2.8). For this, we recall the
definition of elliptic reconstruction from [15,16].

Definition 4.1 (elliptic reconstruction): For v ∈ S
n, we define the elliptic reconstruction Rn

c v of v
as the solution of the following elliptic problem

a(Rn
c v,ϕ) = 〈An

hv,ϕ〉 ∀ϕ ∈ H1
0 (�), 0 ≤ n ≤ N . (4.1)

Now, we shall introduce some notations for further use.
Let � : [0,T] −→ H1

0 (�) be continuous piecewise linear function in time defined by

�(t) := ln−1(t) (Pn2 (An−1
h ))Un−1 + ln(t) (An

h)U
n, t ∈ In (n = 1 . . . ,N), (4.2)

where ln−1(t) and ln(t) are given by (3.5).
Also, let �̆ : [0,T] −→ H1

0 (�) be a continuous piecewise linear interpolant of f (t) defined by

�̆(t) := ln−1(t) f n−1(Un−1) + ln(t) f n(Un), t ∈ In (n = 1 . . . ,N). (4.3)

Next, to define space-time reconstructionwe rewrite the fully discreteCrank-Nicolson approximation
(2.8) in the compact form as:

Un − Pn1U
n−1

kn
= H(tn− 1

2
), n ≥ 1, (4.4)

where
H(tn− 1

2
) := �n

0 f
n− 1

2 (Un− 1
2 ) − �(tn− 1

2
), n ≥ 1. (4.5)

We also define H̆ : [0,T] −→ H1
0 (�) be a piecewise linear function in time defined as

H̆(t) := �n
0�̆(t) − �(t), t ∈ In (n = 1, . . . ,N), (4.6)

and H̆(tn− 1
2
) = H(tn− 1

2
).
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Inspired by the idea of [16,20],wenowdefinebelow the space-timeCrank-Nicolson reconstruction
Ŭ of the Crank-Nicolson finite element solution U .

Definition 4.2 (space-time reconstruction): Thequadratic space-time reconstruction Ŭ : [0,T] −→
H1
0 (�) of U is defined by

Ŭ(t) := Rn−1
c Un−1 + kn−1 (t − tn−1)

{
(Rn

c P
n
1 )U

n−1 − Rn−1
c Un−1}

+
∫ t

tn−1

Rn
c Ĥ3(s)ds, t ∈ In (n = 1, . . . ,N).

Observe that Ŭ is a continuous function in time and satisfies the relation

Ŭt(t) = kn−1 {(Rn
c P

n
1 )U

n−1 − Rn−1
c Un−1} + Rn

c H̆(t), t ∈ In (n = 1, . . . ,N). (4.7)

To derive the a posteriori estimates we decompose the total error e(t) := u(t) − U(t) as

e(t) := ρ̆(t) + σ̆ (t) + ε̆(t), t ∈ In, (4.8)

where ρ̆(t) := u(t) − Ŭ(t) denotes the parabolic error, σ̆ (t) := Ŭ(t) − �̆(t) refers to the time
reconstruction error and ε̆(t) := �̆(t) −U(t) denotes the elliptic reconstruction error. Here, �̆(t) is
the continuous piecewise linear function in time defined by

�̆(t) := ln−1(t)Rn−1
c Un−1 + ln(t)Rn

c U
n, t ∈ In (n = 1 . . . ,N). (4.9)

The following lemma yields a posteriori error bounds for the elliptic reconstruction error ε̆(t). The
proof follows from the backward Euler case (cf. Lemma 3.1).
Lemma 4.1: For a finite element approximation Un ∈ S

n of the elliptic Equation 4.1, the following
is true for 0 ≤ n ≤ N:

‖(Rn
c − I)v‖ ≤ CI ,6 h2n | log hn| 12 ‖An

hv − (v)el‖ + CI ,7 h
3
2
n | log hn| 12 ‖j[βv]‖�n ,

where CI ,6 := CI ,3CR and CI ,7 := CI ,4CR.
Now we define the various residual-based estimators for our subsequent use.

The elliptic reconstruction error estimator:

For 0 ≤ n ≤ N ,

OCN,n := CI ,6 h2n | log hn| 12 ‖(An
h)U

n − (Un)el‖ + CI ,7 h
3
2
n | log hn| 12 ‖j[βUn]‖�n . (4.10)

The space-mesh error estimator:

For 1 ≤ n ≤ N ,

MCN,n := CI ,6 ĥ2n | log ĥn| 12 ‖k−1
n

{
(An

h)U
n − (An−1

h )Un−1 − (Un)el + (Un−1)el

}
‖

+ CI ,7 ĥ
3
2
n | log ĥn| 12 ‖k−1

n
{
j[βUn] − j[βUn−1]} ‖

�̂n

+ CI ,8 ĥ
3
2
n | log ĥn| 12 ‖k−1

n
{
j[βUn] − j[βUn−1]} ‖

�̌n\�̂n
(4.11)

with CI ,8 := CI ,5CR.
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The temporal reconstruction error estimator:

Tre,CN,n := k2n
8

{
CI ,6h2n| log hn|

1
2 ‖(An

h)Zn − (Zn)el‖ + CI ,7h
3
2
n | log hn| 12 ‖j[βZn]‖�n + ‖Zn‖

}
(4.12)

with Zn := −�n
0�̆t(t) + �t(t).

The space-error estimator:

SCN,n := kn
4

{
CI ,6 h2n | log hn| 12 ‖(An

h)Zn − (Zn)el‖ + CI ,7 h
3
2
n | log hn| 12 ‖j[βZn]‖�n

}
. (4.13)

The temporal error estimator:

Te,CN,n := 1
γ0

√
α0

120
k2n

{
CI ,1 hn ‖(An

h)Zn − (Zn)el‖ + CI ,2 h
1
2
n ‖j[βZn]‖�n + α0 ‖Zn‖1

}
. (4.14)

The coarsening error estimator:

CCN,n := k−1
n ‖(I − �n

0)U
n−1‖ + 1

2
‖(Pn2 − I)( − �n−1

h )Un−1‖. (4.15)

The data approximation error estimators:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DCN,n,1 := 1
12

√
CL k2n

{
CI ,6 h2n | log hn| 12 ‖(An

h)Zn − (Zn)el‖

+ CI ,7 h
3
2
n | log hn| 12 ‖j[βZn]‖�n + ‖Zn‖

}
,

DCN,n,2 := √
CL max{‖ε̆n−1‖, ‖ε̆n‖},

DCN,n,3 := 1
kn

∫ tn
tn−1

‖f (x, t,U) − �̆(t)‖dt,
DCN,n,4 := 1√

γ0
CI ,1 hn

{∥∥∥(�n
0 − I) {f n(Un)−f n−1(Un−1)}

2

∥∥∥} .

(4.16)

Next, we state a series of lemmas to drive a posteriori error bounds for the parabolic error ρ̆(t). The
proofs can be treated in a similar manner as [21, Lemmas 4.4–4.6 and 4.8 ] and hence, the details are
omitted.

Lemma 4.2 (Temporal error estimate): With Te,CN,n as in (4.14), let In,1 refer to the error term due
to time discretization and is defined by

In,1 := α0

∫ tn

tn−1

‖σ̆ (t)‖21dt.

Then
In,1 ≤ kn T 2

e,CN,n.
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Lemma 4.3 (Space-mesh error estimate): WithMCN,n as in (4.11), let In,2 represent the space-mesh
error term and be given by

In,2 :=
∫ tn

tn−1

|〈ε̆t(t), ρ̆(t)〉| dt.
Then the following is true:

In,2 ≤ kn MCN,n max
t∈Īn

‖ρ̆(t)‖.

Lemma 4.4 (Space error estimate): With SCN,n as in (4.13), let In,3 denote the space error term and
be defined as

In,3 :=
∫ tn

tn−1

∣∣∣〈(Rn
c − I)

(
H̆(t) − H(tn− 1

2
)
)
, ρ̆(t)

〉∣∣∣ dt.
Then

In,3 ≤ knSCN,n max
t∈Īn

‖ρ̆(t)‖.

Lemma 4.5 (Coarsening error estimate): WithCCN,n as in (4.15), let In,5 denote the coarsening error
term and be defined as

In,5 :=
∫ tn

tn−1

∣∣∣〈k−1
n (I − Pn1 )U

n−1 + ln−1(t)(Pn2 − I)(An−1
h )Un−1, ρ̆(t)

〉∣∣∣ dt.
Then

In,5 ≤ kn CCN,n max
t∈Īn

‖ρ̆(t)‖.

Lemma 4.6 (Data approximation error estimate): With DCN,n,i(i = 1, . . . , 4) as in (4.16), let In,4
denote the data approximation error term and be defined as

In,4 :=
∫ tn

tn−1

∣∣〈f (t, u) − H̆(t) − �(t), ρ̆(t)
〉∣∣ dt.

Then we have

In,4 ≤
√

CL
2 ε

kn max
t∈Īn

‖ρ̆(t)‖2 + ε
√

CL
2

∫ tn

tn−1

‖ρ̆(t)‖21dt

+ kn
{
DCN,n,1 + DCN,n,2 + DCN,n,3

}
max
t∈Īn

‖ρ̆(t)‖ + k
1
2
n DCN,n,4

(
γ0

∫ tn

tn−1

‖ρ̆(t)‖21dt
) 1

2
.

Proof: With an aid of (4.6), we first rewrite the integrand in In,4 as

f (t, u) − H̆(t) − �(t) = f (t, u) − �n
0�̆(t) =

(
f (t, u) − �̆(t)

)
− (�n

0 − I)�̆(t). (4.17)

Further, we split the first term of (4.17) to obtain

In,4 ≤
∫ tn

tn−1

∣∣〈f (t, u) − f (t, Ŭ), ρ̆(t)
〉∣∣ dt +

∫ tn

tn−1

∣∣∣〈f (t, Ŭ) − f (t, �̆(t), ρ̆(t)
〉∣∣∣ dt

+
∫ tn

tn−1

∣∣∣〈f (t, �̆(t)) − f (t,U(t)), ρ̆(t)
〉∣∣∣ dt +

∫ tn

tn−1

∣∣∣〈f (t,U(t)) − �̆(t), ρ̆(t)
〉∣∣∣ dt

+
∫ tn

tn−1

∣∣∣〈(�n
0 − I)�̆(t), ρ̆(t)

〉∣∣∣ dt
:= Tn

1 + Tn
2 + Tn

3 + Tn
4 + Tn

5 .



566 J. S. GUPTA AND R. K. SINHA

Then using the Cauchy–Schwarz inequality and the Young’s inequality, we have
∣∣〈f (t, u) − f (t, Ŭ), ρ̆(t)

〉∣∣ ≤ √
CL ‖ρ̆(t)‖ ‖ρ̆(t)‖1

≤ √
CL

(
1
2 ε

‖ρ̆(t)‖2 + ε

2
‖ρ̆(t)‖21

)
,

and hence,

Tn
1 ≤

√
CL
2 ε

kn max
t∈Īn

‖ρ̆(t)‖2 + ε
√

CL
2

∫ tn

tn−1

‖ρ̆(t)‖21dt.
Again, using the Cauchy–Schwarz inequality once more we obtain∣∣∣〈f (t, Ŭ) − f (t, �̆(t), ρ̆(t)

〉∣∣∣ ≤ ‖f (t, Ŭ) − f (t, �̆(t)‖ ‖ρ̆(t)‖
≤ 1

2

√
CL |t − tn−1| |tn − t| {‖(Rn

c − I)Zn‖ + ‖Zn‖
} ‖ρ̆(t)‖,

where in the last step we have used the fact that σ̆ (t) = Ŭ(t) − �̆(t) = 1
2 (t − tn−1)(tn − t)RnZn.

Therefore,

Tn
2 ≤ k3n

12

√
CL

{‖(Rn
c − I)Zn‖ + ‖Zn‖

}
max
t∈Īn

‖ρ̆(t)‖
= kn DCN,n,1 max

t∈Īn
‖ρ̆(t)‖.

Exactly following the same argument of (3.13), we have

Tn
3 ≤ kn DCN,n,2 max

t∈Īn
‖ρ̆(t)‖.

Again, invoking the Cauchy–Schwarz inequality it follows that

Tn
4 ≤ max

t∈Īn
‖ρ̆(t)‖

∫ tn

tn−1

‖f (t,U(t)) − �̆(t)‖ = kn DCN,n,3 max
t∈Īn

‖ρ̆(t)‖.

Finally to estimate Tn
5 , we exploit the orthogonality property of �

n
0 and Proposition 2.1 to have

〈
(�n

0 − I)�̆(t), ρ̆(t)
〉
=

〈
(�n

0 − I)�̆(t), ρ̆(t) − Jnρ̆(t)
〉

≤ ‖(�n
0 − I)�̆(t)‖ ‖ρ̆(t) − Jnρ̆(t)‖

≤ CI ,1 hn ‖(�n
0 − I)�̆(t)‖ ‖ρ̆(t)‖1.

As max
t∈Īn

|ln(t)| = 1 and max
t∈Īn

|ln−1(t)| = 1, it follows from (4.3) that

‖(�n
0 − I)�̆(t)‖ ≤ max

t∈Īn
|ln−1(t)| ‖(�n

0 − I)f n−1‖ + max
t∈Īn

|ln(t)| ‖(�n
0 − I)f n‖

= ‖(�n
0 − I)f n−1‖ + ‖(�n

0 − I)f n‖,

and hence,

Tn
5 ≤ k

1
2
n DCN,n,4

(
γ0

∫ tn

tn−1

‖ρ̆(t)‖21dt
) 1

2
,

and this completes the proof of the lemma.



APPLICABLE ANALYSIS 567

As a consequence of the above lemmas we derive the a posteriori error bound for the parabolic
error ρ̆(t) in the following theorem.
Theorem 4.7: Let u be the exact solution of (1.1)–(1.3) and let Un be its finite element approximation
obtained by the Crank-Nicolson approximation (2.8). Then, for 1 ≤ m ≤ N, the following is true:

{
max

t∈[0,tm] ‖ρ̆(t)‖2 +
∫ tm

0
‖ρ̆(t)‖21dt

} 1
2

≤
{
2 CG(m)

(
‖ρ̆(0)‖2 +

m∑
n=1

knT 2
e,CN,n

)} 1
2

+ (
ϒ2
m,1 + ϒ2

m,2
) 1
2 ,

where

ϒm,1 := 4CG(m)

m∑
n=1

kn
(
MCN,n + SCN,n + DCN,n,1 + DCN,n,2 + DCN,n,3 + CCN,n

)
, (4.18)

and

ϒm,2 := 4CG(m)

m∑
n=1

k
1
2
n DCN,n,4. (4.19)

MCN,n, SCN,n, Te,CN,n, CCN,n, DCN,n,i(i = 1, . . . , 4) are defined in (4.11) and (4.13)–(4.16), respec-
tively.

Proof: For each ϕ ∈ H1
0 (�) and for 1 ≤ n ≤ N , using (4.7), (2.1) and rearranging the terms we have

the following error equation for ρ̆(t)

〈ρ̆t(t),ϕ〉 + a(ρ(t),ϕ) = 〈R(t),ϕ〉, t ∈ In, (4.20)

where

R(t) := − ε̆t(t) − (Rn
c − I)

(
H̆(t) − H(tn− 1

2
)
)

+ (
f (t, u) − H̆(t) − �(t)

)
+ ln−1(t)(Pn2 − I)( − �n−1

h )Un−1 − k−1
n (Pn1 − I)Un−1.

Setting ϕ = ρ̆(t) in (4.20), we have

1
2
d
dt

‖ρ̆(t)‖2 + a
(
ρ(t), ρ̆(t)

) = 〈R(t), ρ̆(t)〉 .

Using the identity 2a(v,w) = a(v, v) + a(w,w) − a(v − w, v − w) ∀v,w ∈ H1
0 (�) and using (2.2),

we arrive at

1
2
d
dt

‖ρ̆(t)‖2 + γ0

2
(‖ρ(t)‖21 + ‖ρ̆(t)‖21

) ≤ α0

2
‖σ̆ (t)‖21 + |〈R(t), ρ̆(t)〉| . (4.21)

Integrating the above from tn−1 to tn and summing up over n = 1 : m, we obtain

‖ρ̆(tm)‖2 + γ0

∫ tm

0

(‖ρ(t)‖21 + ‖ρ̆(t)‖21
)
dt ≤ ‖ρ̆(0)‖2 +

m∑
n=1

{
In,1 + 2

5∑
i=2

In,i

}
, (4.22)
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where In,i (i = 1, . . . , 5) are defined in Lemmas 4.3–4.6. Proceeding as in Theorem 3.5, we lead to

max
t∈[0,tm] ‖ρ̆(t)‖2 + CG(m)

∫ tm

0
‖ρ̆(t)‖21dt ≤ 2 CG(m)

{
‖ρ̆(0)‖2 +

m∑
n=1

knT 2
e,CN,n

}

+ 4 CG(m) max
t∈[0,tm] ‖ρ̆(t)‖

m∑
n=1

kn
{
MCN,n + SCN,n + DCN,n,1 + DCN,n,2 + DCN,n,3 + CCN,n

}

+ 4CG(m) k
1
2
n DCN,n,4

(
γ0

∫ tn

tn−1

‖ρ̆(t)‖21dt
) 1

2
,

where CG(m) := 2 max
{
1,

∑m
n=1

2
√

CL
ε

kn exp{ 2
√

CL
ε

(∑
n<j<m kj

)
}
}
.

Finally, we take

a0 := max
t∈[0,tm] ‖ρ̆(t)‖, an :=

{
CG(m)

∫ tn

tn−1

‖0ρ̆(t)‖21 dt
} 1

2
(1 ≤ n ≤ m),

c :=
{
2 CG(m)

(
‖ρ̆(0)‖2 +

m∑
n=1

knT 2
e,CN,n

)} 1
2

,

b0 := 4 CG(m)

m∑
n=1

kn
{
MCN,n + SCN,n + DCN,n,1 + DCN,n,2 + DCN,n,3 + CCN,n

}
,

bn := 4 CG(m) k
1
2
n DCN,n,2 (1 ≤ n ≤ m),

and invoke the inequality [15, (80)] to complete the rest of the proof.

We are now prepared to state the fully discrete Crank-Nicolson a posteriori error estimate in the
L∞(L2) norm for the semilinear parabolic interface problem (1.1)–(1.3).
Theorem 4.8: Let u be the exact solution of (1.1)–(1.3) and let Un be its finite element approximation
obtained by the Crank-Nicolson approximation (2.8). Then, for each 1 ≤ m ≤ N, the following a
posteriori error estimate holds:

max
t∈[0,tm] ‖u(t) − U(t)‖ ≤

{
2 CG(m)

(
‖R0U0 − u(0)‖2 +

m∑
n=1

knT 2
e,CN,n

)} 1
2

+ (
ϒ2
m,1 + ϒ2

m,2
) 1
2 + 2 max

0≤n≤m
OCN,n + max

0≤n≤m
Tre,CN,n,

where the estimators are given in Theorem 4.7.

Proof: By the triangle inequality, we have for t ∈ In

‖e(t)‖ ≤ max
t∈[0,tm] ‖ρ̆(t)‖ + max

t∈[0,tm] ‖σ̆ (t)‖ + max
t∈[0,tm] ‖ε̆(t)‖.

Now,

‖ε̆(t)‖ = ‖ln−1(t)ε̆n−1 + ln(t)ε̆n‖ ≤ 2 max{‖ε̆n‖, ‖ε̆n−1‖}, t ∈ In.
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Again, for t ∈ [0, tm], using Lemma 4.1, we obtain

‖ε̆(t)‖ ≤ 2 max
0≤n≤m

‖ε̆n‖ ≤ 2 max
0≤n≤m

OCN,n. (4.23)

Further,

‖σ̆ (t)‖ = ‖1
2
(t − tn−1)(tn − t)Rn

cZn‖

≤ 1
2
max
t∈Īn

{|(t − tn−1)(tn − t)|} (‖(Rn
c − I)Zn‖ + ‖Zn‖

)
≤ Tre,CN,n, (4.24)

which in combination with (4.23) and Theorem 4.7 completes the proof.

5. Conclusion and extension

This paper investigates a residual-based L∞(L2)-norm a posteriori error estimates for semilinear
parabolic interface problem in a bounded convex domain in R

2. An appropriate adaption of elliptic
reconstruction technique and the energy method play a crucial in deriving a posteriori error bounds.
It is interesting to extend these results to problems in R

3 and many computational issues which need
to be addressed in future. We remark that such an extension is not straightforward. However, the
authors feel that the idea of universal extension results for Sobolev spaces [22] could be useful.
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