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Supervisor : Dr. Miguel Orszag (PUC Chile)

Committee : Dr. Jerónimo Maze (PUC Chile)

Dr. Enrique Munoz (PUC Chile)

Dr. Vitalie Eremeev (UDP Chile)

October, 2021

Santiago, Chile

c©2020, Sergio Carrasco Novoa





To my parents.





Acknowledgments

I thank to the Physics Institute at Pontificia Universidad Católica de Chile for the
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Abstract

In this thesis work an optomechanical system inside a Mach-Zehnder interferometer

is studied from the perspective of the weak value amplification effect. The optomechan-

ical system consists of a Fabry-Pérot cavity with a moving mirror in the middle. Single

photons are post-selected in the detector in one of the output ports of the interferom-

eter (dark port), which allows to enlarge the displacement caused by a single photon

over the moving mirror of the cavity. Since the interaction between a single photon

and the mirror is weak, the amplification factor of the displacement corresponds to a

weak value. By making the initial and final states of the photon quasi-orthogonal, the

weak value becomes large and the radiation pressure force exerted by the photon is in-

creased, making a single photon behave as “many photons” will do. The amplification

effect comes, however, at the cost of the lost of data. The usefulness of weak values

for parameter estimation in our setup is analysed from the perspective of the Fisher

information. Although the precision of the estimation does not change either by using

weak values or by implementing measurements that do not rely on post-selection, in

the first scenario all the information can be put in a small amount of post-selected

events, which is a verification of a well known general result in the existing literature

on the subject.

iii



Contents

Abstract iii

1 Introduction 1

2 Quantum measurement theory 5

2.1 Generalized measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Efficient measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Complete measurements . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Measurement of an observable . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Projective measurements . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Implementing operations with an ancilla system . . . . . . . . . . . . . . . 13

2.3 The von Neumann model: strong and weak measurements of an observable 16

3 Pre- and post-selected quantum measurements 28

3.1 General formulation of pre- and post-selected quantum measurements . . . 29

3.2 The weak value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Interpretation of weak values . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Weak values as contextual values . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Weak values as a property of a quantum system . . . . . . . . . . . 41

3.3.3 Do weak values have classical analogs? . . . . . . . . . . . . . . . . . 42

3.3.4 The three box problem revisited: weak values of projectors and neg-

ative probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 The quantum Cheshire cat . . . . . . . . . . . . . . . . . . . . . . . 46

iv



CONTENTS

3.3.6 Hardy’s paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.7 Two slit experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Experimental applications of weak values . . . . . . . . . . . . . . . . . . . 54

3.4.1 First experimental measurement of a weak value . . . . . . . . . . . 54

3.4.2 Estimation of small differences of refraction indices . . . . . . . . . . 56

3.4.3 Estimation of small angular displacements . . . . . . . . . . . . . . . 57

3.4.4 Weak values in interferometry . . . . . . . . . . . . . . . . . . . . . . 58

3.4.5 Meter and system being two different particles . . . . . . . . . . . . 58

3.4.6 Direct measurement of a quantum state using weak values . . . . . . 59

3.4.7 Slow and fast light . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.8 Weak values and tunneling times . . . . . . . . . . . . . . . . . . . . 61

3.4.9 Superoscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Parameter estimation 64

4.1 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Estimation theory: bayesian and of non random parameters . . . . . . . . . 65

4.3 Bias, variance and mean squared error . . . . . . . . . . . . . . . . . . . . . 67

4.4 Cramér-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 The classical limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Quantum Fisher information . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 Quantum Fisher information in mixed and pure states . . . . . . . . 75

4.6.2 Quantum Fisher information in unitary processes . . . . . . . . . . . 76

4.7 Quantum Fisher information in phase measurements and interferometry . . 78

4.8 Relationship between QFI and the Bures distance . . . . . . . . . . . . . . . 82

4.9 Fisher Information in weak measurements . . . . . . . . . . . . . . . . . . . 84

4.9.1 Weak measurements without post-selection . . . . . . . . . . . . . . 84

4.9.2 Fisher Information in weak measurements with post-selection . . . . 88

4.9.3 Fisher information in the presence of white noise . . . . . . . . . . . 107

4.9.4 Fisher information in the presence of correlated noise . . . . . . . . 110

4.9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



CONTENTS

5 Optomechanical system in Mach-Zehnder interferometer 120

5.1 Cavity optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Optomechanical system in an interferometer . . . . . . . . . . . . . . . . . . 130

5.3 Description of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Weak value amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.1 Oscillator initially in the ground state . . . . . . . . . . . . . . . . . 139

5.4.2 Oscillator initially in thermal equilibrium . . . . . . . . . . . . . . . 144

5.5 Weak value amplification in the presence of noise . . . . . . . . . . . . . . . 145

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A Conditioned probability distribution for measurements of any strength 149

B Measurement operators 151

C Beam splitters 153

D Photon detection 157

Bibliography 163

vi



List of Figures

2.1 Different measurement classes: three main classes of measurements will be

distinguished (complete, efficient and of an observable). Notice that min-

imally disturbing measurements (MDM) are a subset of efficient measure-

ments. Projective measurements arise at the intersection of MDM and mea-

surements of an observable (regions 6 and 7). Von Neumann measurements

are the intersection of all groups (region 6). . . . . . . . . . . . . . . . . . . 9

2.2 Representation of the measurement process. The first stage (pre-measurement)

entangles the system with the measurement device. In the second stage the

measurement device is measured by observing the variable R̂. . . . . . . . . 13

2.3 Strong measurement (g “ 100) of an observable with 5 eigenvalues ai “ i, i “

1...5. The red curve shows the density function of the initial position of the

meter, which is well defined and sharply peaked at some initial position,

Q0 “ 5, with spread σq “ 1 . The density function for the final position of

the meter is represented by blue curve, which is a series of distinguishable

peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Weak measurement (g “ 2.5) of an observable with 5 eigenvalues ai “ i, i “

1...5. The red curve shows the initial probability density function of the

meter position, centered on Q0 “ 1 with spread σq “ 1. The final density

function (blue curve) consists of a series of well overlapped densities (dotted

curves). A reading of the meter position gives less information than a strong

measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



LIST OF FIGURES

2.5 Weak measurement (g “ 0.25) of an observable with 5 eigenvalues ai “

i, i “ 1...5. The red curve shows the initial probability density function of

the meter position. The curve in blue color is the final density function. As a

consequence of the highly overlapped wave-packets (dotted curves), the final

density is approximately the same initial Gaussian function, displaced by

g
A

Â
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?

2 are the mirror quadratures,
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Chapter 1

Introduction

The concept of the weak value of a quantum variable was introduced in 1988 in a

seminal article written by Aharonov, Albert and Vaidman [1] with the surprising tittle:

“How the result of a measurement of a component of the spin of a spin 1{2 particle can

turn out to be 100?”. In this article the authors begin by considering a measurement of

an observable Â performed on a quantum system prepared in an initial pure state |ψiy.

Then, after the measurement of Â, a second measurement is performed. The results of

the first measurement are taken into consideration only when the second measurement

leaves the system in a pure final state |ψf y. In any other case, the outcomes of the first

measurement are simply ignored. The idea of the procedure is to examine the results of

the measurement of Â when both the initial and the final states of the system are known.

This kind of ensembles are called pre- and post-selected quantum systems. The historical

motivation to study measurements performed on these systems relates to the analysis of the

suggestion that the process of measurement, or “reduction of the wave packet”, introduces

a time-asymmetric element into quantum theory [2]. However, the asymmetry may be

actually caused not by the measurement itself but by the manner in which a conventional

ensemble is constructed, i.e. by the specification of only the initial state of the system. By

constructing a “time-symmetric ensemble” (specifying the initial and the final states), then

the probability distribution of the outcomes of a measurement becomes time-symmetric

[3]. This idea has even given rise to a new formalism of quantum mechanics, that has been

1



CHAPTER 1. INTRODUCTION

called the “two-state vector formalism of quantum mechanics” [4].

For a certain type of generalized measurements, called weak measurements and char-

acterized by a “weak coupling” or a “weak interaction” between the system and the mea-

surement device, the authors showed that the ensemble average of the outcomes of the first

measurement was the weak value of Â, which was denoted by Aw and defined as

Aw “
xψf | Â |ψiy
xψf |ψiy

. (1.1)

Consequently, the weak value was presented as the ensemble average of a weak mea-

surement of an observable, performed on a pre- and post-selected quantum system. This

is a statistical or operational definition of the weak value, analog to xψi| Â |ψiy, which is

the ensemble average of a projective measurement of Â, performed on a quantum system

prepared in the initial state |ψiy. One can immediately notice that, unlike the standard

expectation value, the weak value is not restricted to the interval rmintaiu,maxtaius, where

ai denotes one of the eigenvalues of Â. Indeed, when the overlap between the initial an

final states is small, the weak value becomes large and may exceed the range of eigenval-

ues. In this case, the weak value is said to be anomalous. In particular, in [1] the authors

considered a pair of initial and final states such that a weak measurement of the spin along

the z-direction (of a spin 1{2 particle) was equal to 100, namely, a value far larger than

any of the two eigenvalues, ˘1. This feature has been used in precision metrology for the

estimation of tiny interaction parameters, as will be seen along this work.

In my thesis I will focus on weak values of number operators. An anomalously large

weak value of the number of particles will enlarge the effect of the particles on a second

system. In particular, our aim consists to design and analyze an experiment in which the

radiation pressure effect of a single photon can be enlarged using weak values. Indeed,

a single photon inside an optical cavity exerts a tiny force over the walls of the cavity.

The force displaces the walls by 4gx0, where g is a parameter that quantifies the coupling

between a microscopic degree of freedom (the photon) and a “macroscopic” degree of

freedom (the center of mass of the cavity wall) and x0 are the zero-point fluctuations

2



CHAPTER 1. INTRODUCTION

of the wall. However, if the photon is pre- and post-selected, then it behaves as “many

photons” will do. In fact, as it will be shown along this work, the displacement will be

4gx0 ¨ F , where F is the weak value of the number of photons. This result has been

published in [5]. Our main motivation to analyze such a system is to contribute to the

understanding of the meaning of a weak value. Currently, as was pointed out above, the

weak value has been understood as an ensemble average, i.e. as an statistical quantity.

However, it has also been argued that the weak value may be understood as a property of a

quantum system. In this sense, it resembles more to an eigenvalue than to an expectation

value.

A second task was to study whether the amplification effect may be helpful to estimate

small optomechanical parameters in our experimental setup. In this work the precision of

the estimation has been studied from the perspective of the quantum Fisher information,

but also other figures of merit such as the mean squared error and the signal to noise ratio

of an estimate have been taken into consideration. The amplification effect comes at a cost,

which is the lost of data. Therefore, although one photon may behave as many photons,

there will be at the end fewer photons available for the estimation. It turns out that the

precision of the estimation does not change, either by using all the “standard” (pre-selected)

photons or by considering the fewer pre- and post-selected photons. Consequently, from

the perspective of parameter estimation, large weak values are helpful when the estimation

needs to be performed from a small amount of data. These conclusions are also described

in the preprint [6].

The structure of this thesis work is described below. Chapter 2 offers a short review

on quantum measurement theory. Here the language of generalized measurements is in-

troduced, which is based on POVM’s, measurements operators, quantum operations and

other related concepts. At the end of this chapter weak measurements of an observable

are defined. The definition is made using the so called “von Neumann” model. The next

chapter is devoted to the study of the theory of pre- and post-selected quantum mea-

surements. In this chapter the weak value is formally introduced, together with its most

popular applications. The different existing controversies regarding its interpretation as a

property of a quantum system, or if there exists a classical analog to the phenomena of
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large weak values, among others, are also put over the table. Chapter 4 is a long chapter

in which the tools of parameter estimation are presented. In the first half of the chapter,

from section 4.1 to section 4.8, the basic elements to deal with the problem of estimation

are described (Fisher information, Cramér-Rao bound, among others). Throughout the

second half of the chapter, in the section 4.9, the theory of parameter estimation is applied

to weak measurements, both on only pre-selected ensembles and on pre- and post-selected

quantum systems. In the final chapter, an experimental proposal to produce weak values

of a photon number operator is presented (the variable is actually the difference of pho-

tons between two sides of a cavity with a moving mirror in the middle). The experiment

consists of a Mach-Zehnder interferometer with an optomechanical system put along the

arms of the interferometer. The setup allows to create optomechanical entanglement be-

tween a single photon and the center of mass of a moving wall (a large object formed by

„ 1012 atoms, or more). Weak values are generated due to the detection of the photon in

one of the detectors located at the output ports of the interferometer, a procedure that

has been called dark port post-selection. Additionally, along this chapter it is explained

that, when the measurement is not weak but strong, non-classical mechanical states of the

measurement device can be generated via post-selection.
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Chapter 2

Quantum measurement theory

This chapter may be considered as a short review on quantum measurement theory.

In the first section, the theory of generalized quantum measurements is presented. The

formalism introduced in this section will allow us to define later weak measurements, a kind

of measurements that minimally disrupt the system under observation. In section 2.2 it will

be shown how a generalized measurement can be implemented using an “ancilla system”,

and it is explained how Neumark’s theorem ensures a one-to-one correspondence between

a generalized measurement and an specific ancilla-system model. In the next section, we

will consider a particular kind of interaction between the ancilla and the system, typically

called the “von Neumann model”. This model will enable us to define both projective and

weak measurements of an observable, by strengthening or weakening the coupling between

the ancilla and the system.

2.1 Generalized measurements

Quantum measurements affect the state of the system, i.e. they constitute a form of

evolution of a quantum state. A general description of quantum measurements can be made

using the language of operations and effects [8]. The formalism of quantum operations is

not restricted to measurements, but it is also used to describe the transformation of a

quantum system in a large class of physical processes, such as unitary evolution or the

dynamics of an open quantum system.

5
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Let R be the result of a measurement performed on a quantum system in an initial

(normalized) state ρptq. The instant t represents the time at which the measurement

process begins and R is a random variable that takes values in the space of resultsR. Every

observation of the random variable R, namely, every possible outcome of the measurement,

will be denoted with the lowercase letter r P R. For every possible outcome r it is possible

to define a quantum operation, denoted by Or, which is allows to describe the selective

evolution of the system as follows

ρ̃rpt` τq “ Orρptq. (2.1)

The state ρ̃rpt`τq corresponds to the unnormalized state of the system when the measure-

ment has produced the outcome r. It is also called the (unnormalized) conditioned state of

the system. The time τ corresponds to the duration of the measurement. It is clear from

(2.1) that the quantum operation Or is a superoperator or a quantum map, since it acts on

an density operator and produces another (possible unnormalized). For any operation Or

to represent a physical process it has to fulfil three important properties, described below.

Every operation is a convex linear map. This means that, for probabilities tpiu and

a set of density operators tρiptqu, the action of the quantum operation over the ensemble
ř

i piρiptq is linear, namely,

Or
ÿ

i

piρiptq “
ÿ

i

piOrρiptq. (2.2)

Additionally, every quantum operation is a trace preserving or trace decreasing map, mean-

ing that 0 ď Trrρ̃rpt` τqs ď 1. As we will see shortly this property allows to assign prob-

abilities to each possible outcome r. Finally, every operation is a completely positive map.

This third property means that the “enlarged” superoperator 1 b Or is a positive map,

where 1 is the identity superoperator acting on a second Hilbert space of operators. In this

way, the action of the quantum operation over a system that is entangled with another

will preserve the positiveness of the joint quantum state.

The probability that the result of the measurement R takes the value r will be denoted

6
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by P prq and defined as

P prq “ TrrOrρptqs. (2.3)

Consequently, the normalized conditioned state of the system is obtained dividing (2.1) by

the probability (2.3),

ρrpt` τq “
Orρptq
P prq

. (2.4)

This equation describes the selective evolution of the system under a measurement and,

unlike equation (2.1), it is non linear due to the normalization factor in the denominator.

On the other hand, the unconditioned state of the system after the measurement is

given by

ρpt` τq “
ÿ

r

P prqρrpt` τq “
ÿ

r

Orρptq ” Oρptq. (2.5)

The state ρpt`τq corresponds to the state of the system after the measurement, when all the

results are ignored, i.e. averaging over all the possible results. The operation O “
ř

rOr

generates therefore the non-selective evolution of the system under a measurement. It is

easy to show that the operation O, defined in this way, is indeed a quantum operation,

namely, it satisfies the three described properties. Notice that the sum should be replaced

by an integral if the space of results was continuum.

Every quantum operation admits a Krauss representation or operator-sum representa-

tion, namely,

Orρptq “
ÿ

k

Âr,kρptqÂ
:

r,k,
ÿ

k

Âr,kÂ
:

r,k ď 1. (2.6)

The operators Âr,k are called the elements of the operation. The index k goes over a finite

or countably infinite set. It is worth to emphasise that this representation is not unique.
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From (2.3) it is clear that

P prq “ TrrOrρptqs “ Tr
”

ÿ

k

Âr,kρptqÂ
:

r,k

ı

“ Tr
”´

ÿ

k

Â:r,kÂr,k

¯

ρptq
ı

. (2.7)

Consequently, the operator that defines the statistics of the measurement is given by

Êr “
ÿ

k

Â:r,kÂr,k. (2.8)

The positive operator Êr, associated to the outcome r, is called a probability operator or

effect operator [8]. As it is clear from (2.7), the effect operators allow to compute the

probability of the outcome r to occur as

P prq “ Tr
”

Êrρptq
ı

. (2.9)

The effect operators should satisfy the completeness condition

ÿ

r

Êr “ 1, (2.10)

which ensures that all the probabilities add up to one (again, the sum might be an integral

if the space of results r was continuum). This restriction entails that the non-selective

evolution generated by O is trace-preserving,

TrrOρptqs “ Tr
”

ÿ

r

Orρptq
ı

“ Tr
”

ÿ

r,k

Âr,kρptqÂ
:

r,k

ı

“ Tr
”

ÿ

r

Êrρptq
ı

“ Trrρptqs. (2.11)

The set tÊr, r P Ru defines a probability operator valued measure on the space of results

(POVM) and characterises the statistics of the measurement, i.e. the information-gathering

process. On the other hand, the set of operations tOr, r P Ru describes the evolution of the

system during the measurement process, i.e. the disturbance experienced by the system

due to the measurement.

The language of operations and effects allows to classify measurement into different
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classes. This classification can be done in terms of the information gain (in which case,

additional restrictions are imposed over the effects), the disturbance (imposing restrictions

over the operations) or both. There is a large variety of classes. In the following, we will

briefly describe the ones that are relevant to our work. These classes, and their different

intersections, are drawn in figure 2.1.

Figure 2.1: Different measurement classes: three main classes of measurements will be distin-
guished (complete, efficient and of an observable). Notice that minimally disturbing measurements
(MDM) are a subset of efficient measurements. Projective measurements arise at the intersection
of MDM and measurements of an observable (regions 6 and 7). Von Neumann measurements are
the intersection of all groups (region 6).

2.1.1 Efficient measurements

A measurement is said to be efficient if, for every operation Or, there exists an oper-

ator M̂r such that the action of the operation is described by Orρptq “ M̂rρptqM̂
:
r . The

operators M̂r are called measurement operators. This kind of measurements are interesting

because they do not introduce classical noise, i.e. any noise in the process can be regarded

as quantum noise. In an efficient measurement, the conditional evolution transforms pure
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states into pure states. For efficient measurements equation (2.3) tells that

P prq “ TrrOrρptqs “ Tr
”

M̂rρptqM̂
:
r

ı

“ Tr
”

M̂ :
r M̂rρptq

ı

. (2.12)

Therefore, Êr “ M̂ :
r M̂r and the completeness condition (2.10) is

ř

r M̂
:
r M̂r “ 1.

According to the polar decomposition theorem any operator can be written as the

product of a positive operator and a unitary operator. Hence, in particular, a measurement

operator may be written as M̂r “ ÛrP̂r, where Ûr is a unitary operator and P̂r is a positive

operator. As a consequence of the polar decomposition Êr “ P̂ 2
r and, therefore, according

to equation (2.9), the statistics of the measurement, i.e. the extraction of information,

depends only on P̂r and not on Ûr. Thus, the back-action produced by the operator P̂r

is the one responsible for the information gain. On the contrary, the unitary operator

Ûr provides an additional back-action on the system, which does not contribute to the

gathering of information. For an efficient measurement, it is instructive to apply the polar

decomposition theorem to equation (2.4) and rewrite it as

ρrpt` τq “
M̂rρptqM̂

:
r

P prq
“ Ûr

´ P̂rρptqP̂r
P prq

¯

U :r , (2.13)

which shows that an efficient measurement can be thought as the action of a measurement

operator, represented solely by P̂r, followed by the unitary evolution generated by Ûr. This

evolution can be viewed as an additional force applied to the system, when the measurement

outcome is r. The application of forces, based on a certain measurement result, is called

feedback. When the measurement adds no feedback, i.e. when M̂r is a positive operator,

the measurement is said to be minimally disturbing. In this case, the only disturbance of

the system is due to the information gain.

2.1.2 Complete measurements

An important class of measurements are complete measurements. A measurement is

complete when the conditioned state after the measurement is independent of the initial

state. This means that ρrpt ` τq is not correlated with ρptq. This type of measurements

10
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extract the maximum amount of information from the initial state.

When a complete measurement is efficient, then all the effects are rank one operators,

i.e. Êr “ |ψry xψr|, the set of operators t|ψry xψr| , ru being not necessarily orthonormal. In

figure 2.1 efficient and complete measurement are represented by the union of the regions

2, 5 and 6.

The complement of this class are incomplete measurements. In this case, the final

state will depend on the initial state and more information can be gained with further

measurements. Incomplete and efficient measurement have at least one effect whose rank

is higher than one. In figure 2.1 incomplete and efficient measurements correspond to the

groups 3, 7, 8 and 9. Within this sub class of measurements (incomplete and efficient),

when all the effects have rank higher than one, the measurement are said to be weak

measurements [126]. This is a general definition of weak measurements. In this work, we

will focus on weak measurements of an observable (they belong to the groups 7 or 9).

2.1.3 Measurement of an observable

A third important class of measurements are measurements of observables. A measure-

ment belongs to this class if every effect operator Êr is a function of the observable. Thus,

if Â is an hermitian operator representing a physical variable, the measurement will be a

measurement of Â if @r Êr “ ErpÂq. Consequently, if the spectral decomposition of the

observable is Â “
ř

i aiΠ̂i, then Êr “
ř

i Π̂iErpaiq and the probability distribution of the

outcomes is P prq “
ř

iErpaiqTr
”

Π̂iρptq
ı

.

2.1.4 Projective measurements

Let us consider an hermitian operator Â with discrete eigenvalues (which may be de-

generate) and whose spectral decomposition is given by Â “
ř

i aiΠ̂i, where ai is a real

eigenvalue and Π̂i is a projector into the subspace of eigenvectors of Â with eigenvalue ai.

The index number i labels each eigenvalue. The set of projectors Π̂i is orthogonal, obeying

Π̂iΠ̂j “ δi,jΠ̂i.

If a measurement of the observable Â is minimally disturbing, then the measurement is

said to be projective. In this case each possible outcome r can be “linked” to an eigenvalue

11
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of Â. For a projective measurement of Â the effects and measurement operators are equal,

and correspond to projectors,

Êr “ M̂r “ Π̂i. (2.14)

Notice that the label i corresponds to the eigenvalue associated with the outcome r. An-

other way to write the effects operators is Êr “ δÂ,1¨i, which shows that the effect is a

function of Â and, therefore, according to the definition given in the previous section,

the measurement corresponds to a measurement of Â. The projectors are obviously posi-

tive operators and the measurement is consequently a minimally disturbing measurement.

Thus, the measurement described by (2.14) is indeed a projective measurement. For a

projective measurement, equation (2.4) reduces to

ρrpt` τq “
Orρptq

Tr
”

Êrρptq
ı “

M̂rρptqM̂
:
r

Tr
”

M̂ :
r M̂rρptq

ı “
Π̂iρptqΠ̂i

Tr
”

Π̂iρptq
ı . (2.15)

This is the projection postulate, or Lüder’s rule [9], for updating the initial state after a

measurement. Therefore, equation (2.4) can be understood as a generalization of the pro-

jection postulate. Also, it should be clear that for a projective measurement the probability

to read the i-th eigenvalue is given by P piq “ Tr
”

Π̂iρptq
ı

(the normalization factor in the

projection postulate). Notice that a projective measurement is not necessarily complete,

since the projectors might not be rank one projectors, due to the possible degeneracy of

the eigenvalues.

When all the projectors have rank one, i.e. when there is no degeneracy, the measure-

ment corresponds to a von Neumann measurement. In this case, a projective measurement

is complete and equation (2.15) becomes the projection postulate introduced by von Neu-

mann, namely,

ρipt` τq “ Π̂i. (2.16)

Therefore, the von Neumann measurement corresponds to an efficient (more specifically,

to a minimally disturbing) and complete measurement of an observable, i.e. it lays at the
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intersection of the first three classes introduced above.

2.2 Implementing operations with an ancilla system

An important fact about quantum operations is that they can be constructed from

an apparatus-system model, i.e. using a second quantum system that is “attached” to

the quantum system that we want to measure. This second system has received different

names; measurement device, ancilla, pointer, meter [14] or apparatus [12]. The first system,

the one which we want to measure, is called the target system or simply “the system”. The

apparatus-system model is represented in figure 2.2 and described below.

Figure 2.2: Representation of the measurement process. The first stage (pre-measurement) en-
tangles the system with the measurement device. In the second stage the measurement device is
measured by observing the variable R̂.

We begin assuming that at an initial time t the joint state of the apparatus and the

system is given by

ρASptq “ ρAptqρptq, (2.17)

where ρAptq represents the initial state of the apparatus, ρptq is the initial state of the

system and ρASptq the initial joint state of the apparatus and the system. In this work,

we will use the superscript A to denote a state of the apparatus, AS to describe a joint

state of the apparatus and the system, and no special notation for a system state. Notice

that equation (2.17) assumes that initially the system is uncorrelated with the apparatus,

13



CHAPTER 2. QUANTUM MEASUREMENT THEORY

which is a reasonable assumption for a measurement.

The measurement is described as a “two-stage process”. The first part is sometimes

called pre-measurement. In this stage, the apparatus interacts with the system during a

time τ , i.e. this part of the process has a certain duration. The interaction is described

by a unitary operator Ûpt ` τ, tq, which brings the initial joint state ρASptq to the state

ρASpt ` τq “ Ûpt ` τ, tqρASptqÛ :pt ` τ, tq, entangling the system with the apparatus. A

specific form of Û will be given in the next section, where the so called “von Neumann

model” [14] is presented.

By introducing a (non unique) pure state decomposition for the initial state of the

apparatus, ρAptq “
ř

k pk
∣∣ψAk D @ψAk ∣∣, the joint state after the interaction can be written as

ρASpt` τq “
ÿ

k

pkÛpt` τ, tq
∣∣ψAk D ρptq @ψAk ∣∣ Û :pt` τ, tq. (2.18)

The second part of the process corresponds to the measurement of the apparatus, in which

a certain outcome is observed. The observation of the apparatus is modelled assuming

that a von Neumann measurement of an apparatus variable R̂ is made at an observation

time tO ą t ` τ . Here we will assume that tO “ t ` τ , i.e. that apparatus is measured

immediately after the interaction. This can be done without loss of generality, provided

that no evolution takes place between t` τ and tO.

For a von Neumann measurement, the measurement operators are orthogonal projec-

tors,
∣∣rAD @rA∣∣, that project into the one-dimensional space spanned by the eigenvector∣∣rAD associated to the r-th eigenvalue of an hermitian operator R̂ of the apparatus. Hence,

applying the projection postulate, the selective joint state after the measurement is given

by

ρASr pt` τq “
∣∣rAD @rA∣∣b @

rA
∣∣ ρASpt` τq ∣∣rAD

Tr
”

xrA| ρASpt` τq |rAy
ı . (2.19)

Notice that the trace in the denominator is a partial trace over the system degrees of

freedom. The state ρASr pt`τq is a product state, i.e. after the measurement the apparatus is

no longer correlated with the system. While the apparatus is left in a pure state
∣∣rAD @rA∣∣,
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the conditioned system state is

ρrpt` τq “

@

rA
∣∣ ρASpt` τq ∣∣rAD

Tr
”

xrA| ρASpt` τq |rAy
ı . (2.20)

The term in the numerator is the unnormalized conditioned state of the system after the

measurement has produced the outcome r, while the denominator represents the probabil-

ity for this result to occur, P prq. In order to define a quantum operation Or that describes

the selective evolution of the system, let us consider the unnormalized conditioned state of

the system,

ρ̃rpt` τq “
@

rA
∣∣ ρASpt` τq ∣∣rAD

“
ÿ

k

pk
@

rA
∣∣ Ûpt` τ, tq ∣∣ψAk D ρptq @ψAk ∣∣ Û :pt` τ, tq ∣∣rAD . (2.21)

From this expression it is clear that the elements of the operation Or can be defined as

Âr,k ”
?
pk

@

rA
∣∣ Ûpt` τ, tq ∣∣ψAk D , (2.22)

that ensures that the action of the operation Orρptq “
ř

k Âr,kρptqÂ
:

r,k reproduces the

result (2.21). Consequently, the effect operators are

Êr “
ÿ

k

Â:r,kÂr,k “
ÿ

k

pk
@

ψAk
∣∣ Û :pt` τ, tq ∣∣rAD @rA∣∣ Ûpt` τ, tq ∣∣ψAk D . (2.23)

From (2.23) it is clear that
ř

r Êr “ 1, as is required from (2.10). The probability of getting

the outcome r is given by P prq “ Tr
”

Êrρptq
ı

that equals the term in the denominator

of (2.20). The fact that the effects satisfy the completeness condition, ensures that the

operations defined using the elements (2.22) are completely positive, trace decreasing and

convex linear maps [15]. It can also be shown that the non-selective evolution of the system,

generated by O “
ř

rOr,

ρpt` τq “ Oρptq “
ÿ

r,k

Âr,kρptqÂ
:

r,k, (2.24)
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also satisfies these three conditions.

We have shown that operations and effects representing measurements can be con-

structed from an specific apparatus-system model, by using an apparatus (enlarging the

Hilbert space) that starts in an initial state ρAptq, couples to the system via a unitary

operator Û during a time τ , and whose variable R̂ is finally measured (projectively) at a

time tO. An important observation is that the operations constructed in this way are not

unique since the pure state ensemble decomposition used for ρAptq is not unique.

However, if the initial state of the apparatus is pure, ρAptq “
∣∣ψAD @ψA∣∣, then each

operation will have only one element. In this case the measurement is efficient and we

can speak of measurement operators, which are M̂r “
@

rA
∣∣ Ûpt ` τ, tq

∣∣ψAD and satisfy

the completeness condition
ř

r M̂
:
r M̂r “ 1. Therefore, from a unitary operator Û , a pure

state
∣∣ψAD and an apparatus variable R̂, the apparatus-system model generates a set

of measurement operators tM̂ru satisfying the completeness condition. The converse is

also true. From a set of measurement operators tM̂ru that satisfy
ř

r M̂
:
r M̂r “ 1, an

apparatus-system model may be constructed, i.e. R̂, Û and
∣∣ψAD may be found, such

that M̂r “
@

rA
∣∣ Ûpt` τ, tq ∣∣ψAD and the completeness relation is fulfilled. This one-to-one

correspondence between the set of measurement operators and an ancilla-system model is

assured by Neumark’s theorem [16].

2.3 The von Neumann model: strong and weak measure-

ments of an observable

In the last chapter of the well known book [10], von Neumann described the general

features that the interaction between the system and the meter should satisfy in order

to have the character of a measurement of a physical variable. An interaction satisfying

these features is called a “von Neumann model”. Sometimes, it is also referred as the

von Neumann scheme [17] or von Neumann protocol [14]. In this section we describe first

these general characteristics. Afterwards, a particular form of interaction is presented from

which weak measurements of an observable will be defined.

Let BA “ t
∣∣mA

D

,mu and B “ t|sy , su be vector bases for the meter and the system,
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respectively. Therefore, BAS “ t
∣∣mA

D

|sy ,m, su is a basis of the Hilbert space of the meter

and the system. Furthermore, assume that BA is formed by the eigenstates of some meter

operator M̂ , while B is the eigenbasis of a system operator pS.

The operator that entangles the system with the meter (during the pre-measurement

stage) is defined in terms of its action over the elements of BAS , as follows:

Ûpt` τ, tq
∣∣mA

D

|sy “
∣∣Upm, sqAD |sy , (2.25)

where the states
∣∣Upm, sqAD P BA. For a fixed m, each state

∣∣Upm, sqAD should have no

overlap with another state
∣∣Upm, s1qAD, s1 ‰ s. This property will allow to distinguish the

different eigenvectors of Ŝ by observing the variable M̂ after the interaction. Consequently,

we shall demand that
@

Upm, sqA
ˇ

ˇUpm, s1qA
D

“ δs,s1 .

On the other hand, for a fixed s, the function Upm, sq should put in a one-to-one

correspondence the basis element
∣∣mA

D

with the basis element
∣∣Upm, sqAD. This condition

is sufficient and necessary for Û to be unitary.

The bases BA and B are called measurement basis (for the apparatus or for the system).

The eigenstates
∣∣mA

D

are called pointer states and M̂ is the pointer variable. Observing

the pointer variable M̂ shows on a certain scale the value of Ŝ.

Let us assume that the apparatus is prepared in some state of BA denoted by ρAptq “∣∣0AD @0A
∣∣. If the interaction between the apparatus and the meter satisfies the conditions

described by von Neumann, and the apparatus is observed in the measurement basis (the

pointer variable is observed), then the measurement operators are projectors,

M̂m “
@

mA
∣∣ Ûpt` τq ∣∣0AD “ÿ

s1

@

mA
ˇ

ˇUp0, s1qA
D

Π̂s1 “ Π̂s. (2.26)

Where Π̂s projects into the space spanned by the eigenstates associated to the s-th eigen-

value of the system variable Ŝ. In this way, if the apparatus is prepared in a “pointer

state” and observed in the measurement basis, the interaction (2.25) defines a projective

measurement of Ŝ. It is important to highlight that the eigenvalue s is linked to the

outcome m by the relation m “ Up0, sq, i.e. given m and U , the eigenvalue s may be
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obtained. Evidently, if such an eigenvalue of Ŝ does not exist, then the outcome m has

zero probability to occur.

In [10] von Neumann provided an example of the unitary operator Û . It was derived

from the interaction hamiltonian between the system and the meter Ĥ “ ωQ̂P̂ , where

Q̂ was the position of the system, P̂ the momentum of the measurement device and ω

some characteristic frequency describing the coupling. The masses of the system and the

apparatus were assumed to be large, and therefore the kinetic energy (free hamiltonians

of the system and the meter) was neglected.

This type of interaction is very common in the laboratory. In this work we will consider

an interaction hamiltonian between the apparatus and the system of the form Ĥptq “

gptqÂP̂ , where Â is discrete variable of the system, with spectral decomposition given by
ř

k akΠ̂k, and P̂ is a continuous variable of the apparatus. The measurement starts at an

initial time t and lasts for a time τ . The instantaneous coupling constant gptq between the

apparatus and the system satisfies

ż t`τ

t
gpt1qdt1 “ g. (2.27)

The constant g is a parameter that quantifies the strength of the measurement. Assum-

ing that the free evolution of the system and the measurement device may be neglected

during the interaction, the evolution operator for the measurement process is

Ûpt` τ, tq “ exp
!

´pi{~qgÂP̂
)

“
ÿ

k

exp
!

´pi{~qgakP̂
)

Π̂k. (2.28)

Let Q̂ be the conjugate variable to P̂ , namely, rQ̂, P̂ s “ i~. We will speak of P̂ as

the momentum of the apparatus and of Q̂ as its position. Also, let t
∣∣qAD , q P Ru be the

eigenbasis of Q̂ and t|aky , ku the eigenbasis of Â. The action of the evolution operator

(2.28) over the elements of these bases is given by

Ûpt` τ, tq
∣∣qAD |aky “ ∣∣pq ` gakqAD |aky . (2.29)
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Consequently, according to (2.25) the “position basis” and the basis formed by the eigen-

vectors of Â constitute the measurement bases. In other words, the eigenvalues of Â will

be read in the final position of the meter. This basis is important, since more information

is obtained when the meter is measured in this basis, as will be shown later.

We will assume that the system starts in a mixed state ρptq, uncorrelated with the

meter. With regards to the apparatus it will be assumed that it is prepared in a pure state

ρAptq “
∣∣ψAD @ψA∣∣, where

∣∣ψAD ” ż `8

´8

ψpqq
∣∣qAD dq “ ż `8

´8

ψppq
∣∣pAD dp. (2.30)

The basis t
∣∣pAD , p P Ru is the basis formed by the eigenvectors of the operator P̂ . The

wave function, ψpqq, is a assumed to be a wave packet that has a mean value of Q0 and a

standard deviation of σq. The momentum wave function, ψppq, is the Fourier transform of

ψpqq, and has mean momentum of P0 and a spread σp ě ~{p2σqq.

Since we are making the assumption that the initial state of the apparatus is pure, the

measurement is efficient and each operation will have only one element. Consequently, it

makes sense to speak of measurement operators for each possible outcome of the measure-

ment. Notice that
∣∣ψAD is not a pointer state, since the measurement basis is continuous

and thus the pointer states are not physically realizable.

Assume first that the apparatus is observed in the measurement basis. For the outcome

q, the measurement and effect operators are:

M̂q “ ψpq ´ gÂq “
ÿ

k

ψpq ´ gakqΠ̂k, (2.31)

Êq “ |ψpq ´ gÂq|2 “
ÿ

k

|ψpq ´ gakq|2Π̂k. (2.32)

The expression for M̂q shows that each measurement operator is a weighted summation

of the projectors, with weights equal to ψpq ´ gakq, which simply corresponds to the

initial wave function of the meter displaced by a distance gak. Also, it is clear that

the measurement corresponds to a measurement of Â, because the effect operators are a

function of this variable.
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On the other hand, the probability that the measurement device is found at “exact”

position q after the measurement is given by

P pqq “ Tr
”

Êqρptq
ı

“

A

|ψpq ´ gÂq|2
E

(2.33)

“
ÿ

k

|ψpq ´ gakq|2 Tr
”

Π̂kρptq
ı

. (2.34)

Obviously, P pqq is a probability density function, because the position of the meter can

not be measured with absolute precision. Notice also that expression (2.34) is a mixture

density, since it corresponds to a convex combination of the initial probability density

function, |ψpqq|2, displaced by a distance gak, with weights equal to Tr
”

Π̂kρptq
ı

.

A strong measurement corresponds to a measurement in which the overlap between

the different densities of the mixture is negligible, i.e. when g∆a " σq, where ∆a is the

minimum separation between two consecutive eigenvalues of Â (typically of the order of

the unity). This situation is represented in figure 2.3, which shows that the mixture density

consists of a series of peaks at different positions Q0`gak, which are clearly distinguishable.

Each final “possible” position of the meter is in a one to one correspondence with the

eigenvalues of the operator Â.

As the ratio g{σq decreases, the measurement becomes weaker and the overlap between

the different densities of the mixture begins to increase. Figure 2.4 shows the case when

g{σq „ 1 and the initial wave function is Gaussian. In this case the initial probability

density is normal, but it does not retain the “Gaussian shape” after the measurement.

Indeed, the final density arises from a series of overlapped Gaussian densities. For a

weaker measurement, however, the final distribution remains approximately normal (in

the vast part of its domain except in the tails) and it is almost as if the density function

was just shifted by an amount equal to g
A

Â
E

. This fact is shown in figure 2.5.

By comparing figure 2.3 to figure 2.5 it is possible to see that for a weak measurement

each outcome can not be “linked” to a particular eigenvalue, due to the significant overlap

between the different wave packets. The weak measurement contains therefore additional

quantum noise, because the meter has been prepared in a state with large σq or the coupling

constant g is sufficiently small. This noise is quantum since it has been assumed that the
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Figure 2.3: Strong measurement (g “ 100) of an observable with 5 eigenvalues ai “ i, i “ 1...5.
The red curve shows the density function of the initial position of the meter, which is well defined
and sharply peaked at some initial position, Q0 “ 5, with spread σq “ 1 . The density function
for the final position of the meter is represented by blue curve, which is a series of distinguishable
peaks.

meter started in a pure state.

The density (2.33) allows to compute the average position of the measurement device

after the measurement,

Qf “

ż

dqqP pqq “ Q0 ` gTr
”

Âρptq
ı

“ Q0 ` g
A

Â
E

. (2.35)

This shows that the displacement of the mean position is a linear function of g and

is proportional to the expectation value of Â. This holds regardless of the value of g, i.e.

both for a strong or a weak measurement. Analogously, the variance in the reading of the

position is given by

V arpQq “

ż

dqpq ´Qf qP pqq “ σ2
q ` g

2
A

∆Â2
E

, (2.36)

which shows that the dispersion of the position of the meter always increases after the
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Figure 2.4: Weak measurement (g “ 2.5) of an observable with 5 eigenvalues ai “ i, i “ 1...5. The
red curve shows the initial probability density function of the meter position, centered on Q0 “ 1
with spread σq “ 1. The final density function (blue curve) consists of a series of well overlapped
densities (dotted curves). A reading of the meter position gives less information than a strong
measurement.

measurement 1.

It is instructive to see what happens with the system after the measurement. When

the apparatus is found in position q, the conditioned state of the system is

ρqpt` τq “

ř

k,k1 ψpq ´ gakqψ
˚pq ´ gak1qΠ̂kρptqΠ̂k1

ř

k |ψpq ´ gakq|
2 Tr

!

Π̂kρptq
) , (2.37)

where ψ˚ denotes complex conjugation. If the measurement is strong, then different wave

packets do not overlap, namely, ψpq ´ gakqψ
˚pq ´ gak1q “ δk,k1 |ψpq ´ gakq|2, and the

conditioned state of the system becomes

ρqpt` τq “

ř

k |ψpq ´ gakq|
2Π̂kρptqΠ̂k

ř

k |ψpq ´ gakq|
2 Tr

!

Π̂kρptq
) . (2.38)

1∆Â “ Â´
A

Â
E

.
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Figure 2.5: Weak measurement (g “ 0.25) of an observable with 5 eigenvalues ai “ i, i “ 1...5.
The red curve shows the initial probability density function of the meter position. The curve in
blue color is the final density function. As a consequence of the highly overlapped wave-packets
(dotted curves), the final density is approximately the same initial Gaussian function, displaced by

g
A

Â
E

. One single outcome of the measurement gives a very small amount of information.

This expression does not correspond exactly to the projection postulate. However, every

measurement should have in practise some classical noise, or uncertainty, ε. This means

that the measurement device is found, not at some position q, but rather in an interval

around that position. Let us denote this interval by Iq “ pq ´ ε{2, q ` ε{2q. If the noise

is larger than the width of each wave packet, ε " σq, but is much smaller than separation

between the different wave packets, ε ! g∆a, then the interval Iq may contain only one of

the positions Q0 ` gak, or none. If Iq does not contain any of them, by integrating the

density (2.33) in Iq, it is easy to see that P pIqq « 0, i.e. with (almost) complete certainty

the reading of the meter will contain one of the positions Q0 ` gak among the noise ε.

Let i be the union of all the intervals that contain the position Q0 ` gai. From (2.33),

the probability to find the measurement device in this interval, i.e. to read one of the
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eigenvalues of the operator Â, is given by

P piq “ Tr
”

Π̂iρptq
ı

, (2.39)

and the conditioned system state is given by

ρipt` τq “
Π̂iρptqΠ̂i

Tr
”

Π̂iρptq
ı . (2.40)

Thus, the projection postulate is recovered. The important point of the argument is that

the projection postulate is recovered when the measurement is strong. Therefore, in this

work, a strong measurement will have the same meaning as a projective measurement.

In this case one single measurement of the meter position tells the corresponding eigen-

value and that the system has “collapsed” into the state 9 Π̂iρptqΠ̂i. This state could be

correlated with the initial state. However, if there was no degeneracy, then there is no

correlation between the initial and final system states (because the final state is just Π̂i).

Therefore, for a strong measurement, a large amount of information is gained with just one

reading, and the initial state of the system is highly disturbed. Indeed, the unconditioned

state of the system is

ρpt` τq “
ÿ

i

P piqΠ̂iρptqΠ̂i, (2.41)

which is always a mixture, unless the initial state of the system is one of the eigenstates

of the measured variable.

The opposite occurs when the measurement becomes weaker, i.e. the system is weakly

perturbed and little information is obtained with one single measurement. In order to

appreciate this, and assuming that wave function of the meter, ψpqq, is a complex analytic

function, it is possible to Taylor-expand the measurement and effect operators in powers

of the coupling constant g, getting

M̂q “
ÿ

n

p´gÂq

n!

n

Bnψpqq , Êq “
ÿ

n

p´gÂqn

n!
Bn|ψpqq|2. (2.42)
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The expression Bnfpqq denotes the n-th partial derivative of fpqq with respect to q, and

B0fpqq “ fpqq. Using the expansion of the effect operators it is possible to express the

probability density, P pqq “ Tr
”

Êqρptq
ı

, in powers of g. By keeping the terms up to first

order,

P pqq “
ÿ

n

p´gqn

n!
Bn|ψpqq|2

A

Ân
E

« |ψpqq|2 ´ gB|ψpqq|2
A

Â
E

« |ψpq ´ g
A

Â
E

q|2. (2.43)

The conditions under which the two approximations are valid depend on the initial wave

function of the apparatus, ψpqq, on the value of the coupling constant, g, and on the differ-

ent moments of the measured variable,
A

Ân
E

2. This result shows that, at first orden in g,

it is posible to gather information (provided that
A

Â
E

‰ 0). With one single measurement,

the extraction of information will be small, since the probability density will be noisy or

wide, as it is shown in figure 2.5.

Next, in order to appreciate the disturbance on the system, it is possible to use the

expansion of the measurement operators, and calculate the unconditioned state of the

system after the measurement. Using (2.5), the state after the measurement is

ρpt` τq “

ż

dqM̂qρptqM̂
:
q « ρptq `

ig

~

A

P̂
E

rρptq, Âs `Opg2q. (2.44)

This expression shows that the linear contribution to the final state of the system depends

on the initial expectation value of the momentum of the measurement device,
A

P̂
E

“

@

ψA
∣∣ P̂ ∣∣ψAD. Thus, by preparing the apparatus in a state with zero mean momentum,

and assuming that the system initial expectation value of Â is not zero, then information

can be extracted without perturbing the system, for a sufficiently small value of g, i.e. for a

sufficiently weak measurement of Â. The same occurs if the measured variable commutes

with the initial state of the system, i.e. when rρptq, Âs vanishes.

Let us consider now the case when the apparatus is not observed in the pointer basis.

Moreover, let us assume that it is observed in the momentum basis. Recall that P̂ is

2Recall that
A

B̂
E

“ Tr
”

B̂ρptq
ı

, where B̂ is any system operator and ρptq is the initial state of the

system.
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conjugate to the pointer variable Q̂. In this case, the measurement operators are

M̂p “ ψppq exp
”

´pi{~qgpÂ
ı

, Êp “ |ψppq|
2 ¨ 1. (2.45)

Notice that the effect operators are proportional to the identity. Therefore, the probability

density function is P pqq “ Tr
”

Êpρptq
ı

“ |ψppq|2, namely, it remains unchanged after

the measurement. Therefore, it is clear that no information is gained by observing the

apparatus in the conjugate basis to Q̂. On the other hand, by using the measurement

operators, the conditioned system state is expressed as

ρppt` τq “
M̂pρptqM̂

:
p

P ppq
“

ÿ

k,k1

ep´igp{~qpak´ak1 qΠ̂kρptqΠ̂k1 , (2.46)

which shows that the meter adds phase factors to the off-diagonal components of the system

density operator ρptq.

Finally, it is interesting to generalize the conclusions of this section and assume that

the apparatus is observed in the basis of some continuous variable R̂ “
ş

rΠ̂rdr, where

Π̂r “ |ry xr| are rank one orthogonal projectors. Furthermore, let us make the assumption

that this operator is hermitian and thus r P R. The measurement and effect operators can

be expanded in powers of the coupling constant, as follows:

M̂r “ xr| exp
”

´pig{~qÂP̂
ı

|ψy “
8
ÿ

n“0

p´igÂ{~qn

n!
xr| P̂n |ψy , (2.47)

Êr “ M̂ :
r M̂r “

8
ÿ

n“0

pigÂ{~qn

n!

n
ÿ

m“0

p´1qm
ˆ

n

m

˙

xψ| P̂n´m |ry xr| P̂m |ψy . (2.48)

The probability density function is given by P prq “ Tr
”

Êrρptq
ı

. The contribution of

the linear term is proportional to the initial expectation value of Â,

P prq “ |ψprq|2 `
ig

~

A

Â
EA

rP̂ , Π̂rs

E

`Opg2q, (2.49)
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provided that the projector does not conmute with the momentum of the meter, rP̂ , Π̂rs ‰

0. This means that, for a sufficiently weak measurement, the expectation value of R̂ will

change by an amount proportional to
A

Â
E

,

A

R̂
E

f
“

ż

drP prqr “
A

R̂
E

`
ig

~

A

Â
EA

rP̂ , R̂s
E

`Opg2q. (2.50)

This expression shows that the ensemble average of R̂ will change as long as the momentum

of the meter does not commute with the observed variable (the commutator should be

computed over the initial system state).

On the other hand, the non-selective evolution of the density matrix is obtained by

applying (2.5) to the initial system state. Using (2.47) the unconditioned state after the

measurement may be expanded in powers of g as follows:

ρpt` τq “

ż

drM̂rρptqM̂
:
r “

8
ÿ

n“0

pig{~qn

n!

A

P̂n
E

n
ÿ

m“0

p´1qm
ˆ

n

m

˙

ÂmρptqÂn´m. (2.51)

Notice that the selective evolution (2.51) is independent of R̂. To linear order in g, the

system will remain unchanged when the initial mean momentum of the meter is zero.

Indeed,

ρpt` τq “ ρptq `
ig

~

A

P̂
E

rρptq, Âs `Opg2q. (2.52)

Summarizing, equations (2.49) and (2.52) show that, in a weak measurement of an ob-

servable, information may be gained without perturbing the system, independent of the

observation basis. The state of the system will be not perturbed when
A

P̂
E

“ 0 or when

the initial state of the system commutes with the measured variable. Information will be

gained when
A

Â
E

‰ 0 and
A

rP̂ , R̂s
E

‰ 0.
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Chapter 3

Pre- and post-selected quantum

measurements

In this chapter the theory of measurements performed on pre- and post-selected quan-

tum systems is described. We begin with a brief description of the general theory, in which

the initial and the final states are mixed states and the intermediate measurement may be

of any kind. Then, we will focus on the particular case of a pre- and post-selected quan-

tum system for which both, the initial and the final states, are pure and the intermediate

measurement is projective. It worth to emphazise that section 3.1 is just an introduction

to the subject. By no means it pretends to be an exhaustive review on generalized mea-

surements on pre- and post-selected systems. However, all the elements presented in the

first section will be useful to introduce the weak value in section 3.2. In section 3.3, the

most important observations regarding the meaning of weak values are presented. In the

last section we conclude the chapter with a summary of some of the most “well-known”

experimental applications of weak values to the date.
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3.1 General formulation of pre- and post-selected quantum

measurements

The previous chapter described the basic measurement theory of a pre-selected quantum

system, i.e. of a system that starts in an initial state ρptq. In this section, we will study the

statistics of measurements performed on a quantum system whose initial and final states

are partially or fully known. We will assume that the system starts in a state ρi at a time

ti and ends in a state ρf at a time tf ą ti.

An intermediate measurement is performed between times ti and tf . We will ask for the

probability distribution of the outcomes of this intermediate measurement, given that the

initial and final states are (partially or fully) known. Recall that the measurement process

has been divided into two stages; the first is the pre-measurement process and the second

is the observation of the meter. The pre-measurement process begins at a time t and lasts

for a time τ . The observation of the meter is an instantaneous step performed at a time

tO ą t ` τ . The measurement is said to be intermediate because the pre-measurement

process is performed between the times ti and tf , i.e. the interval pt, t` τq is contained in

the interval pti, tf q. The observation of the meter can be made indistinctly before or after

the time tf . For simplicity, in general, we will just say that the intermediate is performed

at time t. However, the reader should keep in mind that this actually means that the

pre-measurement process begins that time t ą ti and ends at time t` τ ă tf .

As has been explained, the quantum system starts in a state ρi at time ti. Formally, we

will say that the state ρi is pre-selected. Later, at a time t, the intermediate measurement

is performed. Finally, at time tf , a second measurement is performed, but only the results

that produce the state ρf are taken into consideration. This “second measurement” is

called post-selection, since it selects the final state ρf . Again, the second measurement will

also have a pre-measurement stage and an observation stage, i.e. it has a certain duration.

However, we will treat the second measurement as an “instantaneous” event, that occurs

at time tf . Otherwise, only irrelevant details will be introduced.

The post-selection is a probabilistic process, because there is a chance that it might fail.

This failure occurs anytime the result obtained in the second measurement does not produce
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the desired state ρf . When tO ă tf , the results of the intermediate measurement are known

before the post-selection. In this situation, the results of the intermediate measurement are

taken into account only when the post-selection is successful. When it fails, the intermediate

results are simply ignored and therefore not taken into consideration for the statistics of the

measurement. When tO ą tf the intermediate results are known after the post-selection.

In this case, the results of the intermediate measurement are acquired only when the

(previous) post-selection process has been successful. Otherwise, when the post-selection

has failed, it does has no sense to observe the results of the intermediate measurement.

The collection of identically pre- and post-selected quantum systems is called a pre-

and post-selected ensemble. Similarly, the intermediate measurement performed on a pre-

and post-selected ensemble is called a pre- and post-selected measurement.

As a summary: the system starts in a state ρi at the initial time ti, an intermediate

measurement is performed at time t ą ti, post-selection occurs at time tf and the obser-

vation of the meter is realised at time tO. We will assume that the system does not evolve

in between those times. However, in a more general formulation, unitary or markovian

evolution might be included [13]. Figure 3.1 shows a general representation of a pre- and

post-selected measurement.

Figure 3.1: Representation of an pre- and post-selected measurement. An intermediate measure-
ment is performed between an initial state ρi and a final state ρf . The outcome of the intermediate
measurement may be read before or after the post-selection, which is a second measurement from
which only the results that leave the system in the state ρf are kept.

Let us derive now an expression for the probability distribution of the outcomes of the
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intermediate measurement, conditioning on the successful post-selection of the state ρf . If

the outcome of the intermediate measurement is equal to r, then the conditioned state of

the system will be ρr “ Orρi{P prq, where Or is the quantum operation associated with

the outcome r and P prq “ TrtOrρiu is the probability of getting this result.

Then, a second measurement is performed at time tf . As has been anticipated, no

evolution is assumed to take place between the intermediate and the final measurement.

Let Êf be the effect operator associated to the outcome f , which produces the final state

ρf . This effect operator will be, in general, a function of the outcome of the intermediate

result.

Consequently, the probability of getting the outcome f , given that the intermediate

measurement produced the result r corresponds to

P pf |rq “ Tr
”

Êfρr

ı

. (3.1)

Employing Bayes theorem, the probability of obtaining the result r in the intermediate

measurement, given that the final state is known to be ρf , may be expressed as

P pr|fq “
P pf |rq ¨ P prq

P pfq
“

Tr
”

ÊfOrρi
ı

Tr
”

ÊfOρi
ı . (3.2)

The term in the denominator, P pfq, represents the probability of successful post-selection.

Notice that the quantum operation O corresponds to the non-selective evolution generated

by the intermediate measurement O “
ř

rOr. Expression (3.2) is a general expression

that allows us to calculate the probability of the outcomes of a pre- and post-selected

measurement.

Let us assume that we accept all the possible results of the final measurement .This

would be equivalent of performing no post-selection. In this case, Êf “ 1 and therefore

expression (3.2) becomes

P pr|fq “
TrrOrρis
TrrOρis

“ TrrOrρis “ P prq, (3.3)
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namely, the probability distribution corresponds to the one of a standard quantum mea-

surement. This type of ensemble is called an only pre-selected ensemble. One may consider

the “opposite” the situation, in which the initial state is completely unknown, namely,

ρi “ 1{D (D is the dimension of the Hilbert space of states). This situation corresponds

to an only post-selected ensemble.

We will not study systematically a mixed pre- and post-selected ensemble, but consider

a more restrictive scenario described by the following two conditions: i) the initial and

final states are perfectly known, and ii) the intermediate measurement is efficient. The

first condition entails that both states are pure, i.e. that the ensemble is a pure pre- and

post-selected ensemble. Let |ψiy and |ψf y be those initial and final states, respectively.

The fact that ρf is a pure state means that the final measurement is a von-Neumann type

measurement and, consequently, the effect operator is a rank-one projector Êf “ |ψf y xψf |.

The second condition implies that the action of the operation associated to the intermediate

measurement may be written as Orρi “ M̂rρiM̂
:
r , where M̂r is the measurement operator

associated to the r-th outcome. Thereby, expression (3.2) becomes

P pr|fq “
| xψf | M̂r |ψiy |2

ř

r | xψf | M̂r |ψiy |2
. (3.4)

Projective intermediate measurement

It is interesting to study expression (3.4) when the intermediate measurement is projec-

tive. Recall that every projective measurement is a minimally disturbing measurement of

an observable. Let us denote this (possibly, degenerate) observable as Â, and let it spectral

decomposition be Â “
ř

r r ¨ Π̂r. Since the intermediate measurement is projective each

outcome is associated to one the eigenvalues of the observable. The measurement and

effect operators are projectors, M̂r “ Êr “ Π̂r. Therefore, expression (3.4) may be written

as

P pr|fq “
| xψf | Π̂r |ψiy |2

ř

r | xψf | Π̂r |ψiy |2
. (3.5)
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This formula allows to calculate the probabilities of each outcome of a projective measure-

ment performed on a pure pre- and post-selected ensemble. Notice that it is symmetric

under the exchange of the initial and final states.

One interesting application of this formula occurs in the so called quantum box problem

[42, 43, 44, 45]. Consider a single particle that can be found in three boxes. Let |iy denote

the quantum state corresponding to the spatial wave function of the particle localized in

the i-th box (i “ 1, 2, 3). These states are orthogonal and span the three dimensional

Hilbert space of states. Assume that the experiment starts and ends with the particle in

the pure states

|ψiy “
1
?

3

´

|0y ` |1y ` |2y
¯

and |ψf y “
1
?

3

´

|0y ` |1y ´ |2y
¯

. (3.6)

Let us imagine that, between the initial and final times, we want to check whether the

particle is in the k-th box or not. This can be regarded as an intermediate measurement

of the observable Â “ |ky xk| (a projector). Furthermore, in order to apply expression

(3.5), assume that this measurement is projective (strong), namely, a measurement with

two distinguishable outcomes, each one corresponding to one the two eigenvalues of the

observable: r “ 1 indicates that the particle is in the box, and r “ 0 tells that the box is

empty. In this situation, the POVM is given by the set tΠ̂1, Π̂0u, where

Π̂1 “ |ky xk| and Π̂0 “
ÿ

j‰k

|jy xj| . (3.7)

Therefore, according to expression (3.5) if we check whether the particle is in box k “ 1,

then the probability distribution of the two possible outcomes is given by

P p1|fq “
| xψf |1y x1|ψiy |

2

| xψf |1y x1|ψiy |2 ` | xψf |2y x2|ψiy ` xψf |3y x3|ψiy |2
“ 1, (3.8)

P p0|fq “
| xψf |2y x2|ψiy ` xψf |3y x3|ψiy |

2

| xψf |1y x1|ψiy |2 ` | xψf |2y x2|ψiy ` xψf |3y x3|ψiy |2
“ 0. (3.9)

Consequently, if box 1 is opened, but not the others, the particle will be found with

certainty, which is a counterintuitive result. The same happens if we look for the particle
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in box k “ 2, but do not open the rest of the boxes. Indeed, in this case the probability

distribution of the outcomes is

P p1|fq “
| xψf |2y x2|ψiy |

2

| xψf |2y x2|ψiy |2 ` | xψf |1y x1|ψiy ` xψf |3y x3|ψiy |2
“ 1, (3.10)

P p0|fq “
| xψf |1y x1|ψiy ` xψf |3y x3|ψiy |

2

| xψf |2y x2|ψiy |2 ` | xψf |1y x1|ψiy ` xψf |3y x3|ψiy |2
“ 0. (3.11)

This case is represented in figure 3.2 (upper figure). Finally, if only box 3 was opened, the

probability to find the particle is 1{5. Indeed,

P p1|fq “
| xψf |3y x3|ψiy |

2

| xψf |3y x3|ψiy |2 ` | xψf |1y x1|ψiy ` xψf |2y x2|ψiy |2
“ 1{5, (3.12)

P p0|fq “
| xψf |1y x1|ψiy ` xψf |2y x2|ψiy |

2

| xψf |3y x3|ψiy |2 ` | xψf |1y x1|ψiy ` xψf |2y x2|ψiy |2
“ 4{5. (3.13)

Notice that the probabilities P p1|fq and P p0|fq depend on the whole measure tΠ̂0, Π̂1u and

not only on the corresponding projector. This shows that the probabilities of a projective

pre- and post-selected measurement are context-dependent. A discussion of a classical

version the three box problem can be found in [46].

Let us consider now expression (3.4) when the intermediate measurement is a von

Neumann type of measurement, i.e. a complete and minimally disturbing measurement

of an observable Â. In this case, the effects and measurement operators are rank one

projectors, Êr “ M̂r “ |ary xar|, where Â |ary “ r |ary. Equation (3.4) becomes

P pr|fq “
| xψf |ary |

2 ¨ | xar|ψiy |
2

ř

r | xψf |ary |
2 ¨ | xar|ψiy |2

. (3.14)

This expression is known as the Aharonov, Bergmann and Lebowitz (ABL) rule for calcu-

lating the probabilities of the outcomes of a von Neumann measurement performed on a

pure pre- and post-selected ensemble [3]. Expression (3.5) can be regarded as an extension

of the ABL rule for projective measurements.

Let us go back to the three-box problem and imagine that we open all boxes, in-

stead of just one. This is an experiment with three possible outcomes. The effects and

measurement operators are all rank one projectors, and the measure is given by the set
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Figure 3.2: Upper figure: a strong measurement of the projector |2y x2| is performed on a pre-
and post-selected quantum system. The particle is always found in the box 2. Lower figure: a von
Neumann measurement of the non-degenerate observable Â “

ř

i |iy xi| on a pre- and post-selected
system. The particle is found in box 2 with probability of 1{3.

t|1y x1| , |2y x2| , |3y x3|u. We can use the ABL rule (3.14) to obtain the probabilities of the

three possible results,

P p1|fq “
| xψf |1y x1|ψiy |

2

| xψf |1y x1|ψiy |2 ` | xψf |2y x2|ψiy |2 ` | xψf |3y x3|ψiy |2
“ 3| xψf |1y x1|ψiy |

2 “ 1{3

P p2|fq “
| xψf |2y x2|ψiy |

2

| xψf |1y x1|ψiy |2 ` | xψf |2y x2|ψiy |2 ` | xψf |3y x3|ψiy |2
“ 3| xψf |2y x2|ψiy |

2 “ 1{3

P p3|fq “
| xψf |3y x3|ψiy |

2

| xψf |1y x1|ψiy |2 ` | xψf |2y x2|ψiy |2 ` | xψf |3y x3|ψiy |2
“ 3| xψf |3y x3|ψiy |

2 “ 1{3

These results are now more intuitive, since the particle has equal probability of being

found in each box. The expressions also show that the probabilities depend only on the

corresponding projector, namely, von Neumann measurements performed on pure pre- and

post-selected ensembles are non-contextual.

It is a well known fact that measurements of non commuting observables can not have

definite values. For von Neumann measurements, performed on pure pre- and post-selected

35



CHAPTER 3. PRE- AND POST-SELECTED QUANTUM MEASUREMENTS

ensembles, this is not the case. Assume that the initial state is |ψiy “ |ay, where Â “ a |ay.

Similarly, suppose that the final state is |ψf y “ |by and B̂ “ b |by. Thus, the system starts

in a state with a well defined value of Â and ends in a state in which the variable B̂ is

well defined. Furthermore, assume that the observables do not conmute, rÂ, B̂s ‰ 0. If the

intermediate measurement is a measurement of Â, according to (3.14), the probability of

reading the eigenvalue a is equal to

P pa|fq “
| xψf |ay |

2 ¨ | xa|ψiy |
2

ř

a1 | xψf |a
1y |2 ¨ | xa1|ψiy |2

“ 1. (3.15)

Analogously, if we measure B̂, the odds to read the eigenvalue b are equal to P pb|fq “ 1.

Therefore, this pre- and post-selected system will have definite (dispersion-free) values Â

and B̂, although these observables may not commute.

3.2 The weak value

Let us consider the formula (3.4), which allows to calculate the conditioned density

function P pr|fq of an efficient measurement. Assume that the meter is observed in the

basis of some continuous variable R̂ “
ş

r ¨ Π̂rdr, where Π̂r “ |ry xr|. In this case, the

conditioned probability density becomes

P pr|fq “
| xψf | M̂r |ψiy |2

ş

dr| xψf | M̂r |ψiy |2
. (3.16)

The operators M̂r are the measurement operators associated to the outcome r, whose

expansion in powers of the coupling constant is given in (2.47) for a von Neumann-type

interaction. The term in the numerator of (3.16) is the joint probability of reading the

outcome r and making a successful post-selection of the state |ψf y. It may be written as

P pr, fq “ | xψf | M̂r |ψiy |2 “ | xψf |ψiy |2 ¨ |ψprq|2 ¨
8
ÿ

n“0

gncnprq. (3.17)

Notice that the series is presented as a correction of the joint probability when no mea-

surement takes place, in which case the joint probability is simply the multiplication of the
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two independent probabilities. The coefficients of the series are given by

cnprq “
pi{~qn

n!

n
ÿ

k“0

ˆ

n

k

˙

p´1qk
xψf | Âk |ψiy
xψf |ψiy

¨
xψi| Ân´k |ψf y
xψi|ψf y

¨
xψ| P̂n´k |ry
xψ|ry

¨
xr| P̂ k |ψy
xr|ψy

.(3.18)

The different terms appearing in the sum are weak values of operators of the system and

the apparatus, of different orders. The system starts in a pure state |ψiy and ends in a pure

state |ψf y . The n-th order weak value of the system variable Â, between those states, is

defined as

Anw ”
xψf | Ân |ψiy
xψf |ψiy

. (3.19)

The weak value is a complex number and diverges when the initial and final states are

orthogonal. Unlike the expectation value of Â, the weak value is not restricted to lie in the

range of eigenvalues, but can be outside this range when the overlap between the initial

and final states is small.

From (3.18) it is clear that weak values of different orders completely characterize the

correction to the joint detection probability P pr, fq [18, 19, 20, 17]. The weak measurement

regime corresponds to the linear regime, namely, when it is possible to keep the terms up

to first order. Most of the experiments involving weak values has been done in this linear

regime.

Analogously, the meter starts in a pure state |ψy and ends in the eigenstate |ry when

the outcome r is read. Therefore, the weak value of the momentum operator, between

those states, corresponds to

Pw ”
xr| P̂ |ψy
xr|ψy

. (3.20)

By integrating the joint density (3.17) over all the different possible readings of the me-

ter, the probability of post-selection can be obtained. This is the term appearing in the
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denominator of the conditioned density (3.16), which corresponds to

P pfq “

ż

drP pr, fq “ | xψf |ψiy |
2
8
ÿ

n

gnCn, (3.21)

Cn “

A

P̂n
E

pi{~qn

n!

n
ÿ

k“0

ˆ

n

k

˙

p´1qkAkw ¨ Ā
n´k
w . (3.22)

The term Ān´kw denotes the complex conjugate of An´kw . The expansions of the joint density

(3.17) and the post-selection probability (3.21) allow to expand the conditioned density

(3.16). In the weak measurement regime, the conditioned probability is given by

P pr|fq « |ψprq|2 ´
ig

~
RepAwq

A

rΠ̂r, P̂ s
E

`
g

~
ImpAwq

´A

tΠ̂r, P̂ u
E

´ 2
A

P̂
E

|ψprq|2
¯

.(3.23)

This expression should be compared with (2.49), the probability density function in a pre-

selected ensemble. Notice that the expectation value of Â is now replaced with the real

part of the weak value, RepAwq. The third term, proportional to the imaginary part of

the weak value, ImpAwq, does not have an equivalent term in (2.49). In this sense, a weak

measurement performed on a pre- and post-selected system provides more information

than a weak measurement made on a pre-selected system.

It is interesting to apply expression (3.16) to the case when the apparatus is observed

in the pointer basis (the position). In this situation, the conditioned probability becomes

P pq|fq « |ψpqq|2 ´ gRepAwqB|ψpqq|
2 ´

2g

~
ImpAwq

!

~ ImrψpqqBψ˚pqqs `
A

P̂
E

|ψpqq|2
)

.(3.24)

Thus, if the initial wave function of the apparatus is real and the initial average momentum

is zero, then the imaginary part of the weak value plays no role in the weak measurement

regime. In this case or, equivalently, when the weak value is purely real, the probability

density function is

P pq|fq « |ψpqq|2 ´ gRepAwqB|ψpqq|
2 « |ψrq ´ gRepAwqs|

2. (3.25)

Again, this result resembles expression (2.43). For a (pre-selected) sufficiently weak mea-
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surement the wave function of the meter is displaced by the expectation value of the

measured observable. However, for a pre- and post-selected weak measurement the wave

function is displaced by the real part of the weak value, which can be outside the range of

the eigenvalues if the initial and final pure states are nearly orthogonal. This property has

been used in precision metrology for parameter estimation.

On the other hand, using the general conditioned density (3.16), it is possible to com-

pute the average value of the readings of the meter in the weak measurement regime,

A

R̂
E

f
«

A

R̂
E

´
ig

~
RepAwq

A

rR̂, P̂ s
E

`
g

~
ImpAwq

˜

A

tR̂, P̂ u
E

´ 2
A

P̂
EA

R̂
E

¸

. (3.26)

This expression was derived by Jozsa in [21]. It is instructive to apply this general formula

to the cases when the apparatus is observed in the position and the momentum bases. The

results are:

xP yf “

A

P̂
E

`
2g

~
ImpAwq

A

∆P̂ 2
E

, (3.27)

xQyf “

A

Q̂
E

` gRepAwq `
g

~
ImpAwq

˜

A

tQ̂, P̂ u
E

´ 2
A

P̂
EA

R̂
E

¸

. (3.28)

Notice that the imaginary part of the weak value appears when the meter is observed

in the momentum basis. This result is drastically different to the situation in which there

is no post-selection. In that case, the observation of the meter’s momentum provides no

information, as was described in section 2.3.

3.3 Interpretation of weak values

3.3.1 Weak values as contextual values

From (3.26) it is clear that in a weak measurement the shift of the expectation value of

the meter readings is not precisely equal to (1.1). This expression shows that this condi-

tioned average depends on the system, i.e. on |ψiy, and |ψf y, on the measured observable
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Â, but also on some features of the apparatus. If we make the assumption that
A

R̂
E

“ 0,

then expression (3.26) reduces to

A

R̂
E

f
“ g

«

2

~
Im

˜

Aw

A

R̂P̂
E

¸ff

. (3.29)

This result clearly shows that the conditioned expectation of the meter readings in a

weak measurement does not reflect a property of the quantum system, because it depends

also on the expectation value of the product of R̂ and P̂ , which are “features” of the

measurement strategy. Therefore, the quantity
A

R̂
E

f
{g can not be interpreted as the

conditioned average of the observable Â. This argument is developed in [110], where the

author defends the idea that weak values are not unique.

This issue was addressed in [109], where contextual values (CV) were introduced. CV

of an observable Â “
ř

k akΠ̂k are a generalization of its eigenvalues. They are defined in

terms of the observable but also in terms of the measurement strategy. Let tM̂r, r P Ru be

the set of measurement operators, also called the measurement context. Recall that the set

R represents the space of results, i.e. the set of all possible outcomes of the experiment.

For simplicity, we will assume that there are N possible outcomes, r “ 1, ..., N . This

context generates the POVM tÊr, ru, where Êr “ M̂ :
r M̂r . The set of N contextual values

tαru is defined from the identity

N
ÿ

r“1

αrÊr “

dimpSq
ÿ

k“1

akΠ̂k, (3.30)

where dimpSq corresponds to the dimension of the Hilbert space of the quantum system.

This definition requires that N ě dimpSq. If N “ dimpSq the solution of (3.30) is unique.

If N ą dimpSq, then a unique solution can be selected using the method described in [109].

Once the generalized eigenvalues are found, then the conditioned average of the observable

Â can be defined as

A

Â
E

f
”

ÿ

r

αrP pr|fq. (3.31)
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The conditioned probability density is given by (3.2). In [109] the author shows that for

a weak measurement, i.e. in the limit g Ñ 0, and when the measurement is minimally

disturbing, the conditioned average (3.31) does not depend on the context and converges

to a unique quantity. This quantity was called by the author a generalized weak value. It

equals the real part of Aw when the initial and final states are pure. This argument provides

an statistical definition of (the real part of) the weak value, as being the conditional

expectation of contextual values in a weak and minimally disturbing measurement.

3.3.2 Weak values as a property of a quantum system

So far, the weak value has been presented as the conditioned average of the pointer

readings in a weak measurement, namely, as a generalization of the standard expectation

value when post-selection is included. From this perspective, the weak value is not a

property of a single quantum system, but of a large collection of identical quantum systems.

In this sense, the weak value is an statistical quantity. In the laboratory a large number

of particles is actually needed in order to estimate a weak value as the average of the

outcomes of weak measurements.

However, in [22] the authors argue that the weak value resembles more to an eigenvalue

than to an expectation value. The ensemble is only needed because weak measurements

extract little information in one single outcome. They considered a von Neumann model of

measurement with strength g, and an apparatus initially prepared in a Gaussian state Φ0

with spread σq. Regarding the system, three different scenarios were taken into account:

i) the system starts in an eigenstate with eigenvalue equal to 1, ii) the system is prepared

in a pure state |ψiy with post-selection of the state |ψf y, in such a way that the weak value

equals to 1, and iii) the system begins in a superposition of eigenstates, with expectation

value equal to 1. In these three cases, the state of the apparatus after the measurement

was computed and denoted as Φe, Φw and ρex, respectively. Note that the final state of

the meter in third case is a mixed state. Then, the Bures distance [131] between Φ0 and

the different final states of the apparatus was computed. The results for each case were
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the following:

iq DpΦ0,Φeq „
g

σq
, iiq DpΦe,Φwq „

´ g

σq

¯2
, iiiq DpΦe, ρexq „

g

σq
. (3.32)

The first result shows that the distance between the initial and final states of the meter

is detectable at first order. The second result indicates that, at first order, there is no

appreciable difference between the first and the second cases. Thus, preparing the system

in an eigenstate with eigenvalue equal to 1 produces essentially the same effect over a

measurement device as a pre- and post-selected quantum system with weak value equal to

1. Nevertheless, when the system starts in a superposition of eigenstates, the difference

between the final states of the meter is appreciable. The conclusion of this analysis suggests

that in a weak measurement procedure a quantum system with a certain weak value will

affect a measurement device in the same way as a system prepared in an eigenstate with

eigenvalue equal to the weak value. In this sense, the weak value can be rather understood

as a “robust” property of a single quantum system than a purely statistical quantity.

3.3.3 Do weak values have classical analogs?

Ferrie and Combes [23] suggested that the measurement of anomalous weak values is

not an inherently quantum phenomenon, but is rather an statistical feature that can be

observed in a classical system, including pre- and post-selection, and a weak measurement

with disturbance. In their article, published with the tittle: “How the result of a single

coin toss can turn out to be 100 heads”, the authors considered a weak measurement of

σ̂z. The system (a qubit) starts in an initial state ρi. According to the weak measurement

model employed by the authors, the (unnormalized) conditioned state of the system can

be expressed as

ρ̃s “ ρi `
sλ

2

”

ρiσ̂z ` σ̂zρi

ı

, (3.33)

where ρ̃s is the unnormalized system state after the weak measurement has produced the

result s “ ˘1, and λ is a parameter characterizing the weakness of the measurement.

Next, Ferrie and Combes applied a “bit-flip channel” [15] to the state (3.33), in order to
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describe the effect of a classical disturbance. This operation flips a qubit from |0y to |1y

(and vice-verse) with probability p y leaves the qubit unchanged with probability 1 ´ p.

In the article, the probability of “flipping” the qubit depends on the result of the weak

measurement, namely, p “ ppsq. Let OBF psq be the quantum operation describing the

bit-flip channel. Notice that the operation depends on the outcome s. Finally, after the

action of this operation, the state |ψf y is post-selected. In this way, given the initial state

ρi, the joint probability of reading the outcome s in the weak intermediate measurement

and post-selecting the desired pure state, is given by

P pf, s|iq “ xψf | OBF psqρs |ψf y “ r1´ ppsqs xψf | ρ̃s |ψf y ` ppsq xψf |σxρ̃sσx |ψf y . (3.34)

Hence, employing Bayes’s Theorem, the conditional probability can be written as

P ps|f, iq “
xψf | OBF psqρ̃s |ψf y

ř

s xψf | OBF psqρ̃s |ψf y
, (3.35)

and, therefore, the expectation value of the weak intermediate measurement is given by

Ers|f, is “
xψf | OBF p1qρ̃1 |ψf y ´ xψf | OBF p´1qρ̃´1 |ψf y
xψf | OBF p1qρ̃1 |ψf y ` xψf | OBF p´1qρ̃´1 |ψf y

. (3.36)

In order to establish an analogy with the toss of a coin, the initial state was chosen to

be pure, ρi “ |0y x0| (head), while the final state was |ψf y “ |0y (tail). These states are the

eigenstates of σ̂z, namely, σ̂z |0y “ |0y and σ̂z |1y “ ´ |1y. In this case, the general formula

(3.36) reduces to a simply expression,

Ers|f, is “
pp1qp1` λq ´ pp´1qp1´ λq

pp1qp1` λq ` pp´1qp1´ λq
. (3.37)

Thus, the probabilities of flipping the coin may be chosen so that the expectation value

equals an specific value. In [23] the probabilities were pp1q “ p1 ` λ ´ δq{p1 ` λq and

pp´1q “ p1´λ´ δq{p1´λq. The disturbance parameter δ is constrained by 0 ă δ ă 1´λ,

so that the probabilities are well defined. In this way, the expectation value of the weak
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measurement is

Ers|f, is “ λ
´ 1

1´ δ

¯

. (3.38)

The term in the parenthesis represents an amplification factor, that may be large. Indeed,

the authors defined Erps{λq|f, is as a generalized weak value. This argument was used to

argue that the phenomenon of weak values could have an equivalence in a classical system.

Obviously, the amplification factor obtained by Ferrie and Combes appears in a different

setup: a weak measurement followed by a disturbance. In the original article by Aharonov,

Albert and Vaidman [1] no disturbance is needed. Additionally, the amplification factor

depends on the parameters associated to the disturbance, and on the initial and final states.

Consequently, the nature of the amplification is essentially different. The article by Ferries

was commented in [25] and their reply was presented in [24].

It is worth to mention that classical values, analog to weak values, can be measured

in interference experiments of classical electromagnetic waves [26]. In this type of experi-

ments, nevertheless, the apparatus and the system are different degrees of freedom of the

same particle (a photon). For weak values, however, the apparatus and the system can be

separate systems.

In [27] the authors used the Holevo quantity to distinguish between classical and quan-

tum correlations, and showed that the phenomenon of weak value amplification is exclu-

sively related to a small amount of quantum correlation. Other arguments defending the

idea that weak values are a quantum phenomenon can be found in [28, 29, 30].

3.3.4 The three box problem revisited: weak values of projectors and

negative probabilities.

Let us come back to the three box problem and consider weak measurements of the

projector operators Π̂k “ |ky xk|, k “ 1, 2 and 3. In this case, a single outcome of the

measurement will not tell with enough clarity whether the particle is or not in the box we

are looking for it. The average of such measurements, the weak value, will provide this

information. The weak values of the projector operators for three box problem are the
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following:

k “ 1 : Π1,w “
xψi|1y x1|ψf y

xψf |ψiy
“ 1, (3.39)

k “ 2 : Π2,w “
xψi|2y x2|ψf y

xψf |ψiy
“ 1, (3.40)

k “ 3 : Π3,w “
xψi|3y x3|ψf y

xψf |ψiy
“ ´1. (3.41)

The first two results show that, if we performed many weak measurements on identical

pre- and post-selected particles, and took the average of all the outcomes, we would finally

discover that the particle is actually in box 1 (or box 2). A theorem states that if the

weak value of a dichotomous variable equals one of its eigenvalues, then the probability of

measuring that eigenvalue in a strong measurement will be equal to 1 [42]. This can be

verified by comparing the weak results (3.39) and (3.40) with the probabilities (3.8), (3.9),

(3.10) and (3.11).

Imagine that the particle has positive charge and that the weak measurement of the

projector is implemented by measuring the transverse deflection of a beam of electrons

passing next to the corresponding box [50]. If the particle is in the box, then the beam will

be deflected. According to the results (3.39) and (3.40), we would find that the average

deflection of the beam was of one unit (in some scale) to the right, because particles of

opposite charges attract each other, as it is shown in figure 3.3. However, the result for

the weak value of Π̂3 is strange. In this case, the deflection is to the left, as if the particle

in the box would have inverted the sign if its electrical charge. An optical experiment of

the quantum box problem was made in [36].

Expectation values of projector operators can be thought as probabilities [35], because

their values are between 0 and 1. Weak values of projectors, nevertheless, can take neg-

ative values, as its clear from the results above. The “negative probability” would then

correspond to the probability for an “opposite” event to occur.
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Figure 3.3: Upper figure: a weak measurement of the projector |2y x2| is performed on a pre-
and post-selected quantum system. The average of all the outcomes shows that the particle is in
the box 2, since the average deflection is to the right. Lower figure: a weak measurement of the
projector |3y x3|. The particle behaves as if it had negative charge, because the average deflection
is to the left.

3.3.5 The quantum Cheshire cat

Alice in Wonderland replied to the Cheshire cat: “...and I wish you wouldn’t keep

appearing and vanishing so suddenly: you make one quite giddy!”. Then, as the cat

began slowly to disappear, while only its grin remained for some time after, Alice thought:

“Well! I’ve often seen a cat without a grin... but a grin without a cat! It’s the most

curious thing I ever saw in all my life!” [11]. Pre- and post-selected quantum systems can

affect measurement devices as if one of its properties was in a certain region of space, while

some other property was located in another place. In this sense, they can behave as grins

without cats. Consider a beam of photons going through the Mach-Zehnder interferometer

shown in figure 3.4. The photon will play the role of the cat, while its polarization degree

of freedom will be the grin.

Assume that a birefringent plate is placed in the arm A of the interferometer. The

plate will spatially separate two orthogonal polarization states. The transverse (horizontal)

position of the beam will be displaced to “the right” if the polarization is horizontal and
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Figure 3.4: The grin of the cat travels through the arm A, while the cat goes through the arm
B. The inset figures show the results of the intensity distribution for a strong (upper) and weak
(lower) measurement.

to “the left” when light is vertically polarized. These polarization states will be denoted

by |Hy and |V y, respectively, Π̂H and Π̂V being the corresponding projectors. Therefore,

the plate will implement a measurement of the operator Π̂Aσ̂z, where Π̂A “ |Ay xA| is the

projector into the corresponding path state and σ̂z “ Π̂H ´ Π̂V is a spin-like polarization

operator. The pointer variable will be the transverse (horizontal) position of the beam.

On the other hand, in path B a sheet glass is placed in order to deflect the beam

“upwards”. This element will implement therefore a measurement of the operator Π̂B “

|By xB|, that projects into a state propagating across this path. In this case, the pointer

variable will be the transverse (vertical) position of the beam.

In summary, the polarization in the arm A will be observed in the horizontal transverse

position of the photon; a displacement to the left will indicate vertical polarization and to

the right horizontal polarization. The vertical position is a which-path detector; when it is

displaced upwards, we know that the photon travelled along path B. If it is not displaced,

then it went trough the other arm. The intensity of the beam along the transverse plane will

be scanned by a CCD camera placed at the exit of the interferometer. All the beamsplitters

located at the entrance and the exit of the interferometer, together with the CCD camera,
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are arranged in such a way that the states |ψiy and |ψf y are pre- and post-selected, where

|ψiy “
1
?

2
|`y |Ay ` 1

?
2
|´y |By and |ψf y “

1
?

2
|´y p|Ay ` |Byq. (3.42)

The states |˘y are linear polarization states defined as |˘y “ p1{
?

2qp|Hy ˘ |V yq.

Consider first the the case when both measurements are strong. The intensity profile will

show three distinguishable peaks, as it is shown in figure (3.4). The upper peak, with

coordinates py “ `1, z “ 0q, will have a (normalized) intensity of 2/3, indicating that two

of every three photons passed through the arm B. The coordinate y “ 1 shows that the

photon went through the arm B, while the coordinate z “ 0 indicates that no polarization

effect was detected in the arm A. The other two peaks will have each a normalized intensity

of 1/6. This means that half of the photons moving along the arm A had horizontal

polarization while the other half was vertically polarized.

However, when the measurements are weak, then only one “broad” peak will appear,

located at py “ `1, z “ `1q. The horizontal displacement corresponds to the weak value

of Π̂Aσ̂z, while the vertical coordinate is the weak value of Π̂B. This shows that, simul-

taneously, the polarization in arm A was horizontal, but the photon travelled along the

other arm. Thus, the system behaves as if the polarization was spatially separated from the

photon, in the sense of how it affects measurement devices in weak interactions. This is the

“Cheshire cat effect” [47, 48]. It may allow to perform high-precision measurements over a

spatial region, from which a certain unwanted property, that could cause disturbance, has

been removed.

In this experiment the two degrees of freedom of the transverse position of the beam

allowed to perform simultaneous measurements of two weak values, pΠAσzqw and pΠBqw.

In a more general setup, the following four weak values could all have been measured at

the same time:

pΠAΠHqw “ 1{2 , pΠAΠV qw “ ´1{2 , pΠBΠHqw “ 1{2 , pΠBΠV qw “ 1{2. (3.43)

Where was the photon? The result pΠBqw “ pΠBΠHqw ` pΠBΠV qw “ 1 indicates

that it is was in arm 1. By virtue of the theorem mentioned above this means that the
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probability of finding the photon in arm B using a strong measurement equals to one.

So, “the cat” (the photon) was in arm B with certainty. Did the photon had vertical or

horizontal polarization? Note that pσzqw “ 1, which indicates that the polarization was

horizontal. Hence, and with certainty, the “cat was grinning”.

May we conclude that the cat was grinning in the arm B of the interferometer? In

other words, is it true that pΠBσzqw “ 1? For standard expectation values the answer

would be affirmative, because, when two commuting variables have simultaneously definite

values, the expectation value of the product is the product of the expectation values.

However, this is not the case for weak values or for average values of pre- and post-

selected measurements. In particular, the weak value of the product of two operators is

not the product of the weak values. In fact, it is easy to see that pΠBσzqw “ 0, while

pΠAσzqw “ pΠAΠHqw ´ pΠAΠV qw “ 1. The result pΠAΠHqw “ 1{2 shows that half of the

photons that went through the arm A had horizontal polarization (displacing the position

one unit to the right), while the other half had vertical polarization (not producing any

displacement). The negative result pΠAΠV qw “ ´1{2 is strange. One may interpret that

half the photons were horizontally polarized, not producing any displacement at all. The

other half were vertically polarized, but displaced the beam as if they were horizontally

polarized (to the other direction). This analysis shows that a pre- and post-selected photon

going through the arm A with vertical polarization can behave as a photon with horizontal

polarization. Therefore, in a similar way to the three box problem, the negative weak value

of a projector can be interpreted as if the photon has changed its polarization from vertical

to horizontal.

3.3.6 Hardy’s paradox

Hardy’s paradox is a gedanken experiment described in [51] and is a demonstration of

Bell’s theorem [54] without the use of inequalities. It also presents a contradiction between

quantum mechanics and a realistic theory, in the sense of Einstein, Podolsky and Rosen

[55]. The gedanken experiment is based on the interaction-free measurement proposal of

Elitzur and Vaidman [52]. In the latter, a photon is detected at the output ports of a

Mach-Zehnder interferometer. The phases are set in such a way that the photon is always
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detected at one port, which is called the bright port. The other port, called the dark port,

will never click. Then, a “bomb” is inserted in one of the arms of the interferometer. If the

photon goes through this arm, the bomb explodes with unit probability. In this situation,

quantum theory predicts that there is a chance that the dark port clicks. Therefore, a

single detection at this port will reveal the presence of the bomb, although the photon

necessarily passed through the arm without the bomb or else an explosion would have

occurred. The presence of the bomb was detected without having to make it explode!

Hardy’s experiment consists of two Mach-Zehnder interferometers, one for a positron

and the other for an electron, as it is shown in figure 3.5. If the interferometers are consid-

ered independently, then each particle will be detected at the port C˘ of the corresponding

interferometer, where the plus sign labels the interferometer for the positrons and the mi-

nus signs labels the interferometer for the electrons. These ports are therefore the bright

ports. However, if the interferometers overlap in one of its arms, then there is a probability

that the particles are detected at the ports labeled as D˘. There is also a chance that the

positron and the electron take both the overlapping path of each interferometer and meet

at point P . In this case, they annihilate each other with unit probability.

When the detectors D` and D´ click in coincidence the interference effect due to the

overlap is revealed, in the same sense as the bomb in the free-interaction measurement was

detected. In this situation, it is also known that the positron and the electron did not take

to overlapping path simultaneously.

Conditioning on the simultaneous clicking of these detectors, the projectors on each

path state (or occupation numbers) can be measured. Let pO` and yNO` be the projectors

into the overlapping and non-overlapping paths for the positron, respectively, while pO´

and yNO´ are the equivalent projectors for the electron. A strong measurement of pO` on

the pre- and post-selected particles reveals that the positron travelled through this path

with unity probability. This conclusion will be expressed as

pO` “ 1. (3.44)

Analogously, a strong measurement of pO´ indicates that the electron went through the
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Figure 3.5: Two Mach-Zehnder interferometers. The plus signs labels the interferometer for the
positrons and the minus sign labels the interferometer for the electrons. The annihilation occurs if
the two particles take simultaneously the overlapping arms O˘ and meet at point P .

overlapping path. Thus, Ô´ “ 1. However, as was pointed out in the previous section, for a

pre- and post-selected measurement, the average value of the product of two variables, each

with a well-defined value, does not equal to the product of the individual values. Hence, if

the trajectories of the positron and the electron are measured jointly, a strong measurement

reveals that the probability that both particles have gone through the overlapping path is

zero,

pO` ¨ pO´ “ 0. (3.45)

Thus, if the positron is searched in the overlapping path, it will be found with certainty,

provided that the electron is not observed. The same happens with the electron. Never-

theless, if both particles are looked in the overlapping arms, the probability to find that

both went along these arms is zero. This is an expected result, otherwise, an annihilation

would have been produced and no detection could have been recorded.
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On the other hand, strong measurements of the other three possible trajectories of the

positron-electron pair also reveal reasonable results. In fact,

yNO` ¨ pO´ “ pO` ¨ yNO´ “ yNO` ¨ yNO´ “ 1. (3.46)

Hence, except for the “annihilation trajectory” (3.45), every strong measurement of the

trajectories followed by the pair of particles, will reveal with certainty that the particles

have travelled throughout the examined trajectory. Of course, these four measurement of

joint operators can not be performed at the same time, because they disturb the state of

the system. However, they can be made “in the same run” using weak measurements. In

this case, the weak values are

pO`O´qw “ 0 , pNO`O´qw “ pO`NO´qw “ 1 , and pNO`NO´qw “ ´1. (3.47)

These results show that the system behaves as if two pairs of particles went through the

combination of an overlapping path with a non-overlapping one, while a “minus” electron-

positron pair went through the non-overlapping paths of the interferometer. The effect of

the “minus” pair of particle over a measurement device will be the opposite to the effect

caused by a positron-electron pair. Also, notice that all the weak values add up to one.

An analysis of Hardy’s paradox in terms of weak values can be found in [53]. The

experiment was implemented using photons in [39, 41]. In these experiments the joint weak

values were extracted from the correlation of the readings of two measurement devices [37].

3.3.7 Two slit experiments

Weak measurements of projectors have been useful to study the wave-particle duality

in a two-slit experiment. In [58] projectors into momentum eigenstates, |piy, were weakly

measured on a pre- and post-selected ensemble of photons. The initial state of the photons

was the two slit wave-function (a coherent superposition of the photon diffracted from

both slits), denoted as |ψy, while the final state was a momentum eigenstate |pf y. For this

experiment, the weak value corresponds to
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p|piy xpi|qw “
xpf | pU |piy xpi|ψy
xpf | pU |ψy

. (3.48)

The unitary operator pU represents the system evolution that occurs after the weak mea-

surement. In the experiment, the operator describes the which way measurement process

that follows the weak measurement of momentum. Notice that if no which way information

is gathered, i.e. pU “ 1, then the weak value equals 1 (if pf “ pi) or zero (if pf ‰ pi). Ex-

pression (3.48) corresponds to a weak value of a projector and can exceed the range r0, 1s.

In order to distinguish it from a true probability, in [58] it is called a weak valued probability,

that may be understood as the probability of a photon of having initially momentum equal

to pi, given that its final momentum was pf . Certainly, it is not an actual probability,

but a quasi-probability distribution (such as the Wigner function). It allows to compute

the probability density of the momentum transfer in a two-slit experiment. The density

function has zero variance and is therefore compatible with the claim of Scully [59] that

interference may be destroyed without momentum transfer. However, the density function

has a large width, which is also compatible with the claim of Storey [60] that any which

way measurement will transfer momentum in accordance to the Heisenberg uncertainty

principle.

In [61] weak measurements of the transverse momentum, along a sequence of planes,

with post-selection of photons arriving at a certain position of a CCD camera, allowed

the reconstruction of the trajectories followed by photons in a two-slit interferometer. In

this experiment the weak measurement of the momentum was done using the polarization

degree of freedom of the photons as the meter. The final post-selection on a certain position

was performed with a CCD device.

53



CHAPTER 3. PRE- AND POST-SELECTED QUANTUM MEASUREMENTS

3.4 Experimental applications of weak values

3.4.1 First experimental measurement of a weak value

In the same article in which the concept of the weak value was introduced [1], the

authors proposed an experimental setup to measure an anomalously large weak value of

a spin 1{2 component, using a sequence of three Stern-Gerlach magnets. Some technical

corrections to the approximations presented in this article were made by Sudarshan in [31],

where also an optical experiment was proposed in order to measure a large weak value

of a polarization operator, which played the role of the original spin component. This

experiment was realized by Ritchie and collaborators [32], and was the first experimental

measurement of a weak value.

This experiment can be described using classical electromagnetic theory, because it

used classical light. However, the formalism of quantum mechanics can be employed to

describe a classical light beam in the paraxial approximation [33, 34]. Here, we will shortly

describe the experiment using the formalism of quantum mechanics. In this way it is

identical to the original proposal [1].

The output of a laser beam in a Gaussian TE mode, propagating in the z direction,

passes through a first polarizer, which is oriented at an angle α with respect to the x

axis, as it is shown in figure 3.6. This prepares the field in an initial state of polarization

|ψiy “ cospαq |V y` sinpαq |Hy, where |Hy and |V y are horizontal (y direction) and vertical

(x direction) polarization states, respectively. Then, the light propagates through a bire-

fringent plate that spatially separates the two orthogonal polarization components of the

field by an small amount g. A second polarizer, located immediately after the plate and ori-

ented at an angle β, performs the post-selection of the state |ψf y “ cospβq |V y`sinpβq |Hy.

Finally, the intensity distribution of the field along the y direction is measured.

The transverse profile of the field, before passing through the plate, is described by a

Gaussian wave function:

|ψy “
ż

ψpx, yq |x, yy dxdy, ψpx, yq “
´ 1
?

2πσ2
xy

¯1{2
exp

“

´px2 ` y2q{p4σ2
xyq

‰

. (3.49)
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Figure 3.6: Schematic representation of the first experimental application of weak value ampli-
fication, employed to estimate a small birefringence-induced spatial separation of two orthogonal
polarization components of a laser beam, of the order of micrometers.

The parameter σxy is the waist of the beam at the interface. The states |xy and |yy

are eigenstates of the transverse position operator X̂ and Ŷ , respectively. The conjugate

variables to this set of operators are the transverse momenta, P̂x and P̂y. The momentum

in the transverse direction y will play the role of the apparatus variable.

Note that the wave function is normalized to one. Therefore, the actual intensity of the

field at location px, yq is given by |E0|
2 ¨ |ψpx, yq|2, where |E0|

2 is the intensity of the laser

beam. In this sense, |ψpx, yq|2 represents the probability of detecting a photon at location

px, yq, while |E0|
2 is total number of photons in the beam.

On the other hand, the system variable is a polarization operator, σ̂z “ |Hy xH| ´

|V y xV |. The action of the plate can by described by a unitary operator that couples the

transverse momentum of the field P̂y with the polarization operator σ̂z of the system:

Ûpzp ` d, zpq “ exp
”

´pi{~qpg{2qσ̂zP̂y
ı

, (3.50)

where zp represents the position of the plate and d is its thickness. Notice that in this

formalism time is replaced by the longitudinal coordinate. The parameter g depends on

the incident angle of the field at the plate, the refraction index for the different polarization

components and on the thickness of the plate.

After passing through the plate, the intensity of the field along the y axis is measured.

This means that the transverse position Ŷ of the apparatus is observed. Thus, expression
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(3.24) allows to compute the probability of detecting a photon at position px, yq, which

corresponds to

P py|fq « |ψpx, yq|2 ´ gRepσz,wqBy|ψpx, yq|
2 « |ψrx, y ´ gRepσz,wqs|

2. (3.51)

Notice that the probability distribution has been approximately shifted in the y direction

by g times the real part of the weak value of σ̂z. Also, note the imaginary part of the

weak value plays no role in this experiment since the initial mean transverse momentum is

zero and the wave function of the apparatus is real. Additionally, it is important to point

out that the intensity of the beam has become weaker after passing through the second

polarizer. The initial intensity |E0|
2 has diminished to |E0|

2 ˆ P pfq, where P pfq is the

probability of successful post-selection. This is the “cost” that must be paid as a trade

off for the amplification of the displacement. In this experiment, the weak value of the

polarization operator, between the initial and final polarization states, corresponds to

σz,w “
xψf | σ̂z |ψiy
xψi|ψf y

“ ´
cospβ ` αq

cospβ ´ αq
. (3.52)

Therefore, by making the difference between the orientations of the polarizers close to π{2,

the weak value becomes large and the displacement can be amplified. Indeed, the displace-

ment of the beam was approximately 20 times larger than g. In fact, when the initial and

final polarization states were nearly the same, the displacement was „ g and unresolvable

by the photo detector. When these states were orthogonal, then the amplification was

larger, but the intensity of the beam was much weaker and a precise measurement of the

intensity would have been required. In this sense, the weak value amplification protocol was

the optimal measurement scheme that allowed to estimate the small birefringence-induced

separation „ 0.6 µm.

3.4.2 Estimation of small differences of refraction indices

One of the most common uses of WVA has been the measurement of small differences

of refraction indices [32, 80, 62, 63]. In these experiments, the system is typically the

polarization degree of freedom of a photon and the measurement apparatus is its transverse
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position. A birefringent element produces the coupling between the momentum of the

meter and a polarization operator of the system, producing a spatial separation of the beam.

Pre- and post-selection is performed using polarizing elements. In all these experiments

the meter is prepared in a pure state, except for [63], where the effects of an incoherent

apparatus are studied.

Hosten and Kwiat [64] were able to measure the spatial separation of two orthogonal

polarization components produced by the spin Hall effect of light, allowing to check previous

theoretical predictions [65]. In this experiment weak values were “enlarged” by taking

advantage of the free evolution of the measuring device. Displacements of the order of one

angstrom could be measured.

Angular rotations can be amplified using weak values. In [104] the orbital angular

momentum of a beam is coupled with its polarization, via a spin-orbit interaction. Large

weak values of the polarization operator produce an amplification of the angular rotations

(due to the real part of the weak value) and a shift in the orbital angular momentum

spectrum (due to the imaginary part).

3.4.3 Estimation of small angular displacements

On the other hand, weak value amplification has also been used to measure small

angular displacements, of the order of femto radians [56, 66, 67, 81]. In these experiments

the systems are which-path states of a photon in an interferometer, while the meter is

its transverse momentum. The coupling between the system and the meter occurs due

to a tilted mirror, which imparts a shift on the momentum wave function of the photons.

Detection at the dark port of the interferometer corresponds to the post-selection of a

certain which-path state. This setup has been adapted for frequency measurements [75].

In this case, the momentum kick, imparted by a dispersive prism, depends on frequency.

Using this method, small changes in frequency were measured, achieving precision levels

comparable to Fabry-Pérot interferometers. Analogously, this setup has been useful for

phase amplification in interferometry [76], with similar sensitivities to balanced homodyne

detection.
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3.4.4 Weak values in interferometry

With regards to phase measurements in interferometry, in [26], the phase acquired by

a beam travelling through one of the arms of an interferometer is amplified, using post-

selection and standard techniques for phase measurements (the interferometer is slightly

misaligned and the phase is extracted from the shift in the fringe pattern of the output

beam). This experiment also admits a classical explanation. In [77], the weak value of a

polarization operator was extracted from the difference of intensities of the output beams.

In both experiments, the system is the polarization of a photon. In [78] a photon in

one of the arms of a Hong-Ou-Mandel (HOM) interferometer acquires a small time delay,

produced by a birefringent quartz plate. Pre- and post-selection is performed based on

polarization. The HOM dip is shifted by a quantity proportional to the weak value of

polarization projector.

It has been shown that imaginary weak values can outperform standard interferometry

for the measurement of small time delays (longitudinal phase shifts). As it is explained in

[105], an imaginary weak value of the polarization can enlarge the shift in the frequency

spectrum of the pulse. This shift can improve the resolution limit of the interferometer.

3.4.5 Meter and system being two different particles

Unlike the previous experiments, in which the system and the apparatus are different

degrees of freedom of the same particle, in [57, 74] the system and the meter are polariza-

tion states of two entangled photons, Moreover, in these experiments the meter variable is

discrete (the polarization of a photon) and the coupling is produced by a non-deterministic

optical controlled-sign gate [68]. The Leggett-Garg inequalities [69], which appeared, more

or less, at the same time as weak values, and test the assumptions of macroscopic realism

and non invasive measurements, were generalized for a system undergoing weak measure-

ments in [70]. In [71, 72] it is shown that a violation of the generalized Leggett-Garg

inequality is equivalent to an observation of an anomalous weak value. These violations

and their correspondence with strange weak values were experimentally measured in solid-

state devices [73], via deterministic coupling of two transmon qubits to a bus resonator,
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and in optical setups where the polarizations of two photons became entangled through a

non deterministic interaction in a controlled sign (CS) gate [74]. In [79] the system and

the meter are two spins, coupled by heteronuclear coupling.

In [82] an experiment is proposed where a single photon enters an interferometer but

the measurement of the photon number in one of the arms turns out to be larger than

1. This was accomplished through a photon-photon interaction in a non linear Kerr-type

medium, where the phase shift given to a beam probe is proportional to the weak value of

the number of photons in one of the arms of the interferometer. In [83] the amplification

of the phase shift caused by a single photon was experimentally verified.

3.4.6 Direct measurement of a quantum state using weak values

In a finite dimensional Hilbert space (of dimension N), two bases t|nyu and t|myu are

said to be mutually unbiased (MU) if | xn|my |2 “ 1{N , for all n,m [84]. For an infinite

dimensional Hilbert space, the square modulus of the overlap should be constant. For

example, the position and momentum bases are MU because | xq|py |2 “ 1{p2π~q, for all

the eigenstates |py and |qy. This definition formalizes the concept of complementarity.

Given a basis t|ayu of eigenstates of an observable Â, it is possible to pick an element of

the unbiased basis, denoted by |b0y, for which the overlap xb0|ay will be constant for all |ay.

Therefore, for any pure state |ψy, it is possible to define a factor c “ xb0|ay { xb0|ψy, that

will be independent of |ay. This constant factor allows to perform the following expansion:

c |ψy “ c
ÿ

a

xa|ψy |ay “
ÿ

a

´

xb0|ay xa|ψy

xb0|ψy

¯

|ay “
ÿ

a

pΠ̂aqw |ay . (3.53)

Consequently, an unknown pure state |ψy can be determined by measuring the weak

values of the projectors Π̂a “ |ay xa| between the initial state |ψy and the final post-selected

state |b0y, and then normalizing to eliminate the factor c. This procedure will generate the

expansion coefficients of an unknown pure state |ψy in the basis formed by the eigenstates

of Â. This technique was proposed in [40], and constitutes a “direct” measurement of a

quantum state, as opposed to quantum state tomography, in the sense that it requires
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minimal post-processing and experimental error propagation [18]. It has been called direct

state measurement (DSM) or weak state tomography [91].

In [40] the transverse wave function of a photon, ψpxq, was reconstructed from the weak

values of projectors into position eigenstates Π̂x “ |xy xx|, with post-selection of a state

with zero transverse momentum, |p “ 0y. In this way, the weak values are proportional to

the wave function of the photons. Indeed,

pΠ̂xqw “
xp “ 0|xy xx|ψy

xp “ 0|ψy
“ ψpxq{φp0q. (3.54)

The factor φp0q corresponds to the wave function in momentum space evaluated at p “ 0,

and can be removed by normalization after all the weak values are estimated. In this

experiment, the meter was the polarization degree of freedom of the photons. The meter

was observed in the linear polarization basis (to extract the real part of the weak value)

and in the circular polarization basis (to extract the imaginary part of the weak value).

Regarding the direct measurement of the spatial mode of photons an overview of the

progress in this field is presented in [93].

Weak state tomography has been used for measurement of polarization states in [89, 90,

95]. In [87] this method allowed the measurement of a state vector of high dimensionality

(d “ 27), in the discrete basis of angular momentum. States with higher dimensionality

were measured in [94].

The direct measurement of a quantum state has been also applied to mixed states

[92, 89, 88, 95]. A comparison between direct state measurement and tomography is

presented in [91]. In [96] the measurement of the density matrix of two entangled photons

is investigated while other theoretical studies regarding DSM can be found in [85, 86].

3.4.7 Slow and fast light

In [97] two polarizers are put at the ends of an optical birefringent fiber (Lyot filter).

The first pre-selects an initial polarization state and the second post-selects a certain

final state. The fiber performs a weak measurement of a spin-like polarization operator,
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introducing a small phase difference between the different polarization eigenstates. The

mean arrival time of an optical pulse is amplified (or reduced), i.e. the group velocity of the

pulse is modified, resulting in slow or superluminal propagation along the fiber. Similarly,

in [98] slow and superluminal propagation of polarized microwaves was experimentally

demonstrated using weak values of polarization operators. Importantly, in this article the

relationship between weak values and the linear response function of a system was also

described.

“Weak superluminal speed”, namely, a large weak value of an internal degree of freedom

of a particle (that plays the role of a velocity), was theoretically explained in [50]. The

authors also showed that the electromagnetic field emitted by a charged particle, which

moves with a (weak) superluminal speed, corresponds to Cherenkov radiation.

3.4.8 Weak values and tunneling times

The weak value of the “dwell time operator” [100] provides a description of the time

spent by a particle tunnelling through a potential barrier. The dwell time operator is a

projector, with eigenvalue equal to one when the particle is inside in the barrier region,

and eigenvalue equal to zero if the the particle is outside the region. Its expectation value,

divided by the incident flux, corresponds to the “dwell time” [99]. The weak value of the

dwell time operator between an initial state associated to a wave packet incident from the

left, |iy, and a final state |fy that represents the state of a transmitted particle, divided

by the incident flux, is a complex time, related to the Larmor times [99, 103] and to the

complex time presented by Sokolovski and Connor using Feynman path-integrals [102].

The real part of the weak value is associated to the tunnelling time, while the imaginary

part represents the measurement back-action. This time was measured in [101], using a

Bose-Einstein condensate of Rb atoms, going through an optical potential barrier.

3.4.9 Superoscillations

One would expect that a Fourier series, with a finite number of frequencies ωn, could

not oscillate with a higher frequency than maxtωnu. However, over certain region of their

domain, some sequences can indeed oscillate faster than any of its Fourier components.

61



CHAPTER 3. PRE- AND POST-SELECTED QUANTUM MEASUREMENTS

This behaviour has been called superoscillation.

This phenomenon appears in weak measurements performed on pre- and post-selected

quantum systems. Consider a measurement of an observable Â described by the von

Neumann model, with an interaction of the form P̂ Â. Assume that the apparatus starts in

a pure state, whose wave function in momentum space is ψppq. After an interaction with

a system, pre-selected in a pure state |ψiy and post-selected in a pure state |ψf y, the wave

function of the apparatus in momentum space transforms according to:

ψppq ÝÑ
xψf | M̂p |ψiy

b

ş

dp| xψf | M̂p |ψiy |2
. (3.55)

Recall from (2.45) that the measurement operators are M̂p “ ψppqe´igpÂ{~. The term

in the denominator is the square root of the probability of post-selection (3.21), that will be

denoted in this section simply as P . Thus, after the interaction the wave function may be

expressed as ψppq ¨ rxψf | exp
!

´igpÂ{~
)

|ψiy {
?
P s. The factor inside the brackets, that will

be denoted as Sppq, represents the correction to the initial wave function of the apparatus

due to the interaction with the pre- and post-selected system. This factor may be written

as a Fourier series, namely,

Sppq “
1
?
P
xψf | exp

!

´igpÂ{~
)

|ψiy “
1
?
P

N´1
ÿ

k“0

xψf | Π̂k |ψiy expr´igpak{~s. (3.56)

The value ak is the k-th eigenvalue of Â and Π̂k “ |aky xak| is the projector into the

space spanned by the corresponding eigenvector |aky. The summation goes over all the

eigenvalues, which are assumed to be finite (k “ 0, ..., N ´ 1). The frequencies are g|ak|{~

and, since the set of eigenvalues is finite, the sequence is band-limited. Consequently, one

would expect that it will oscillate at some frequency within the minimum and the maximum

frequency. Nevertheless, in order to show that this is not always the case, consider a second

order expansion of Sppq:

Sppq «
1
?
P

”

1´
igp

~
Aw `

1

2

´

´
igp

~

¯2
A2
w

ı

. (3.57)
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For the simplicity of the argument we will assume that the weak value is real. Let us

consider the difference: α “ A2
w ´ pAwq

2. The square root of |α| corresponds to the “weak

uncertainty” defined in [106]. Since the weak value is real, α is a real number that may be

positive or negative. By using α to rewrite expression (3.57),

Sppq «
1
?
P

”

1´
igp

~
Aw `

1

2

´

´
igp

~

¯2
pAwq

2 ´
1

2

´gp

~

¯2
α
ı

. (3.58)

If the the weak value is large enough so that its square overcomes the second order weak

value, then α will be negative, and the last term of (3.58) will represent an “anti-Gaussian”

behaviour of Sppq away from the origin. This tells that near the origin Sppq behaves like

expp´igpAw{~q, namely, it oscillates with a frequency g|Aw|{~, that is larger than any

of the frequencies of its Fourier components. Therefore, the sequence (3.56) exhibits a

superoscillatory behaviour near the origin (as long as the weak value is large). Away from

the origin Sppq will start to grow like p2. In fact, studies of superoscillatory functions show

that these functions are extremely small in the region where they superoscillate, which has

consequences for information theory [107].

Recall that final wave function of the apparatus in momentum space is the product

of the initial wave function ψppq and the sequence Sppq. The initial wave function ψppq

should be wide enough to capture the superoscillatory behaviour near the origin. However,

at the same time, we want that ψpqq has tails that decay fast enough to cancel the “anti-

Gaussian” behaviour of Sppq away from the origin. In this sense, ψppq should not be too

wide. Under these conditions, ψppqSppq « ψppq expp´igpAw{~q{
?
P . The phase factor will

produce a large shift of gAw in coordinate space, namely, ψpqq « ψpq ´ gAwq.

Superoscillations not only appear in quantum physics, but also in the study of radars,

optical vortices, sub-wavelength microscopy, fractals and other fields [107]. A description

of the mathematical properties of superoscillations and a survey of the existing literature

is presented in [108].
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Chapter 4

Parameter estimation

In this chapter the tools of estimation theory are applied to weak measurements, with

and without post-selection. The first half of the chapter presents the basics tools for pa-

rameter estimation. From section 4.1 to section 4.5 the elements of classical estimation

theory are introduced. In section 4.6 the quantum Fisher information and the quantum

Cramér-Rao bound are presented. In section 4.7 the role of the quantum Fisher information

in phase measurements and interferometry is analyzed and in section 4.8 the relationship

between the quantum Fisher information and the Bures distance is briefly commented. In

the last section the Fisher information in weak measurements is studied. Fist, weak mea-

surements with and without post-selection are taken into consideration. Finally, the Fisher

information in both types of measurements is studied when noise (white and correlated)

affects the measurements.

4.1 Bayes’ theorem

Let g be some unknown parameter that we want to estimate. Assume that we have

some prior knowledge about g, which is expressed in the prior probability distribution

denoted as P pgq. Suppose that we perform a measurement on a system in order to extract

some information that will help us to estimate g. Let the result of the measurement R (a

random variable) be equal to r (a number). Bayes’ theorem [7] establishes that
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P pg|rq “
P pr|gqP pgq

P prq
. (4.1)

The prior probability reflects our knowledge about the parameter before to the measure-

ment. The probability distribution P pg|rq is called the posterior probability distribution,

and reflects our knowledge about g given that the result r was obtained. Expression (4.1)

describes therefore how our knowledge about g is updated after a measurement.

The function P pr|gq that appears in the right hand of (4.1) can be understood as

a function of r or as a function of g. In the first case, it is a conditional probability

distribution; the probability to obtain the result r given that the unknown parameter is

equal to g. In the second case, viewed as function of g, it is called the likelihood function.

It depends on the physical process employed to estimate g. Typically, the relationship

between the measurement result R (a random variable) and the parameter g can be written

as R “ fpgq`X, where X is some random variable and f is a deterministic function. From

this relationship, the likelihood function can be obtained.

4.2 Estimation theory: bayesian and of non random param-

eters

An estimator ĝ is a function of the measurement result R, i.e. ĝ “ ĝpRq. In Bayesian

estimation theory, in order to construct an estimator of the parameter of interest, first

we need to choose a cost function. The cost function, C “ Cpĝ, gq, is a function of two

variables; it depends on the estimator and on the parameter. The expectation value of the

cost function, calculated using the joint probability distribution P pr, gq is called the risk

function [119],

R “

ż

drdgCpĝ, gqP pr, gq “

ż

drP prq

ż

dgCpĝ, gqP pg|rq. (4.2)

Notice that in the inner integral of the last identity the posterior probability distribution is

employed. The Bayes estimator ĝ is chosen then in order to minimize the risk. A common
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cost function is the uniform cost, which is equal to zero when |ĝ ´ g| ď ε and equal to one

in any other case. The corresponding risk function is given by

R “

ż

drdgCpĝ, gqP pr, gq “

ż

drP prq

«

1´

ż ĝ`ε

ĝ´ε
dgP pg|rq

ff

. (4.3)

The estimator should therefore maximize the inner integral (in order to minimice the risk).

Consequently, if ε is small, then the estimator should be equal to the value of g that

maximizes the posterior probability distribution. This estimator is called the maximum a

posteriori (MAP) estimator and is obtained by solving the equation:

B lnP pg|rq

Bg
“ 0. (4.4)

The logarithm is taken in order to simplify the calculations. This equation can be formu-

lated in terms of the likelihood function using Bayes’ theorem (4.1),

Bg lnP pr|gq ` Bg lnP pgq ´ Bg lnP prq “ 0. (4.5)

Notice that the probability P prq is independent of the parameter and hence the third

term vanishes. The MAP estimator is therefore constructed by solving the equation

Bg lnP pr|gq ` Bg lnP pgq “ 0. Assume also that we are “completely ignorant” about the

parameter. This means that the prior distribution is uniform, i.e. BgP pgq “ 0. In this

case, the optimization of the posterior distribution (4.5) is equivalent to the maximiza-

tion of the likelihood function. Equation (4.5) reduces therefore to likelihood equation:

Bg lnP pr|gq “ 0. This estimator is called the maximum likelihood (ML) estimator,

ĝML “ arg max
g

!

P pr|gq
)

. (4.6)

As a summary, when the cost function is uniform and εÑ 0, then the Bayesian estimator

reduces to the MAP estimator. Additionally, if the priori distribution is uniform, it becomes

the ML estimator. Certainly, there are different cost functions, being the mean squared

error the most common (see chapter 2 of [119]). When the parameter to be estimated is not
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random, but a deterministic and unknown quantity, then the Bayesian approach, i.e. the

minimization of the risk function (4.2), should be modified. For non random parameters,

there are different measures of the quality of an estimator, which are introduced in the

next section. These measures are defined in terms of the likelihood function and not in

terms of the posteriori distribution.

4.3 Bias, variance and mean squared error

Let ĝ be an estimator of g. The mean value of the estimator, averaging over all the

possible measurement results, will be denoted as

xĝy “

ż

ĝprqP pr|gqdr. (4.7)

Notice that the mean value is a function of g, because the likelihood function depends on

this parameter. The dependence on g is not explicit in the notation xĝy, so the reader

should keep in mind that it may depend on g. Analogously, the variance of the estimator

is defined as

@

∆ĝ2
D

“

ż

rĝprq ´ xĝys2P pr|gqdr. (4.8)

On the other hand, the difference ĝpRq ´ g is the error of the estimator. The mean value

of the error is called the bias of the estimator,

bpgq “

ż

rĝprq ´ gsP pr|gqdr “ xĝy ´ g. (4.9)

The bias may be a function of g. In this case, the estimator has unknown bias. It could be

also a constant, in which case the estimator has a known bias. If @g bpgq “ 0, the estimator

is said to be unbiased. The mean value of the squared error (MSE), denoted as εpgq, is one

of the simplest measures of the precision of an estimator. It is defined as

εpgq “

ż

rĝprq ´ gs2P pr|gqdr. (4.10)
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The mean squared error can be decomposed into the variance and the bias of the estimator,

as follows:

εpgq “
@

∆ĝ2
D

` b2pgq. (4.11)

This expression shows that for unbiased estimators the variance is equal to the mean

squared error. For the construction of estimators of non random parameters, we will

interested in estimators with small
@

∆ĝ2
D

or εpgq. In the next section, we introduce

therefore the so called Cramér-Rao Bound [147], which constitutes a lower bound of the

mean squared error (of any biased estimator) or of the variance (of any unbiased estimator).

The quality of an estimator can be measured in relation with the achievement of this lower

bound.

4.4 Cramér-Rao bound

As anticipated, a lower bound of εpgq will be presented in this section. We start with

the obvious fact that
ş

pĝ ´ xĝyqP pr|gqdr “ 0. By differentiating this identity with respect

to g the following expression expression is obtained:

ż

pĝ ´ xĝyqBgP pr|gqdr “
d xĝy

dg
. (4.12)

On the other hand, by differentiating the bias (4.9) with respect to g, it is clear that

d xĝy {dg “ b1pgq ` 1, where b1pgq denotes differentiation with respect to g. It is also

useful to note that BgP pr|gqdr “ P pr|gqBg lnrP pr|gqs. These considerations allow to rewrite

expression (4.12) as

ż

!

rĝprq ´ xĝys
a

P pr|gq
)

¨

!

a

P pr|gqBg lnrP pr|gqs
)

dr “ 1` b1pgq. (4.13)
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The integral form of the Cauchy-Schwarz inequality establishes that
ş

|fpxq|2dx¨
ş

|gpxq|2dx ě

|
ş

fpxqhpxqdx|2. Applying this inequality to the last expression, is it clear that

ż

rĝprq ´ xĝys2P pr|gqdr ¨

ż

tBg lnrP pr|gqsu2P pr|gqdr ě r1` b1pgqs2. (4.14)

The first term in the left hand side is the variance of the estimator (4.8). The second term

corresponds to the Fisher information, denoted as Ipgq,

Ipgq “
ż

tBg lnrP pr|gqsu2P pr|gqdr “

ż

9P pr|gq2

P pr|gq
dr, (4.15)

where 9P pr|gq “ BgP pr|gq. Notice that the units of Ipgq correspond to the units of 1{g2.

From its definition the Fisher information can be understood as the expectation value of

the square of Bg lnrP pr|gqs, namely, of the gradient of the log-likelihood function. This

function is called score function,

Spgq “ Bg lnrP pr|gqs “
BgP pr|gq

P pr|gq
, (4.16)

and measures how sensitive is the likelihood function with respect to changes in the param-

eter. The average value of the score is zero 1. Therefore, the Fisher information can also

be viewed as the variance of the score function. For the toss of a coin, i.e. for a Bernoulli

variable with probability of success equal to a parameter p, the Fisher information with

respect to the parameter is 1{rpp1´pqs. The information is larger near the extremes, p “ 1

or p “ 0, when the coin is highly unfair or unbalanced. The information is minimal when

p “ 1{2, i.e. when the coin is balanced.

Besides its definition as the variance of the score function (4.15), the Fisher information

can also be defined as the average value of the (negative) curvature of the likelihood

function. Indeed, note that if the likelihood function is twice differentiable, then

Bgg lnrP pr|gqs “
BggP pr|gq

P pr|gq
´ tBg lnrP pr|gqsu2. (4.17)

1This is true whenever the integral and the partial derivative can be exchanged, ErSpgqs “
ş

BgP pr|gqdr “
pd{dgq

ş

P pr|gqdr “ 0.
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When the partial derivatives operators can be interchanged with the integral operators,

by taking the expectation value of (4.17), it is easy to see that (4.15) can be equivalently

expressed as

Ipgq “ ´EtBgg lnrP pr|gqsu “ ´

ż

Bgg lnrP pr|gqsP pr|gqdr, (4.18)

which shows that the Fisher information may be viewed as the expectation value of the

negative curvature (second derivative with respect to the parameter) of the log-likelihood

function. Typically this expression provides an easier way for the calculation of the Fisher

information than the definition (4.15).

In terms of the introduced definitions (4.15) and (4.8), the inequality (4.14) can be

written as
@

∆ĝ2
D

Ipgq ě r1 ` b1pgqs2. Therefore, the Fisher information can be employed

to construct a lower bound on the variance of any estimator of g. This lower bound is the

Cramér-Rao bound [119, 120]:

@

∆ĝ2
D

ě
r1` b1pgqs2

Ipgq
, (4.19)

and the inequality is called the Cramér-Rao inequality. The larger the Fisher information

contained in the likelihood function, the smaller will be the lowest attainable variance of

any estimator. Restricted to the class of unbiased estimators (i.e. estimators such that @g

bpgq “ 0), the Cramér-Rao bound reduces to the inverse of the Fisher Information,

@

∆ĝ2
D

ě
1

Ipgq
. (4.20)

On the other hand, for biased estimators, by expressing the variance in terms of the MSE

and the squared bias (4.11), the Cramér-Rao inequality can be formulated as

εpgq ě
r1` b1pgqs2

Ipgq
` b2pgq. (4.21)

Notice that for biased estimators the Cramér-Rao inequality actually establishes a lower

bound on the mean squared error. If the bias is such that |1 ` b1pgq| ă 1, then the lower
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bound can be inferior than the lower bound for unbiased estimators, I´1pgq.

An estimator that saturates the Cramér-Rao inequality (4.19) for all the possible values

of the parameter is said to be an efficient estimator. An efficient estimator may depend

on the parameter we wish to estimate and therefore require good prior knowledge about

it, which is typically not the case. Therefore, an efficient estimator may not always be

feasible. Moreover, in the class of unbiased estimators, an efficient estimator may not

even exist, i.e. the inequality (4.20) might not be saturated by any unbiased estimator.

In this class, the estimator that has minimum variance for all the possible values of the

parameter is called the minimum-variance unbiased estimator (MVUE). Certainty, if an

efficient unbiased estimator exists, then it will be also the MVUE.

As pointed out in the previous section, the variance (for unbiased estimators) and the

mean squared error (for biased estimators) are the figures of merit to measure the perfor-

mance of an estimator. Although these are the formal statistical tools for the estimation

problem, sometimes the signal to noise ratio (SNR) is also taken into consideration in

order to evaluate the quality of an estimator. In this work, we will employ the definition

presented in [82, 121], where the SNR is defined as the ratio between the mean value of

the estimator (the signal) and the standard deviation of the estimator (the noise). Hence,

SNR “
xĝy

a

x∆ĝ2y
. (4.22)

A “good” SNR should be greater than one, i.e the level of the signal should be greater

than the level of the noise. Since the Cramér-Rao bound defines a lower bound on the

variance, it constitutes an upper bound on the SNR, which is limited by xĝy
a

Ipgq{|1 `

b1pgq|.

4.5 The classical limit

In most cases there will be a collection of M measurement results r1, ..., rM available

for the estimation of g (M represents therefore the number of repetitions of the same

experiment). In this case, the likelihood function is given by P p~r|gq “ P pr1, ..., rM |gq. If
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the observations are independent, then

P p~r|gq “
M
ź

i“1

P pri|gq. (4.23)

The Fisher information of independent random variables is additive. Indeed, it is easy to

check that the Fisher information in (4.23) becomes

Ipgq “
ż

d~r
!

Bg lnrP p~r|gqs
)2
P p~r|gq “

M
ÿ

i“1

Iipgq, (4.24)

where d~r “ dr1...drM and Iipgq is the Fisher information associated to the i-th observation,

namely,

Iipgq “
ż

dri

!

Bg lnrP pri|gqs
)2
P pri|gq. (4.25)

If all the observations are identically distributed, then Iipgq “ I1pgq. In this case, the

Cramér-Rao inequality for unbiased estimators becomes

@

∆ĝ2
D

ě
1

MI1pgq
. (4.26)

Therefore, the error (square root of the variance) of an efficient unbiased estimator scales

as 1{
?
M , where M is the number of independent observations. This type of scaling is

considered to be classical, and arises as a consequence of adding independent information.

The limit on the precision of any estimator „ 1{
?
M has been called the “classical limit”

for metrology.

As an example, let us take into consideration the sample mean estimator (SME), which

simply takes the average of all the measurement results,

ĝSMEpMq “

řM
i“1 ri
M

, (4.27)

as an estimator of the population mean. If the elements of the sample are independent and

identically distributed, with mean µ and variance σ2, it is easy to verify that the SME is
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an unbiased estimator of the population mean,

ErĝSMEpMqs “ µ. (4.28)

The variance of the sum of M independent variables corresponds to the sum of the variances

and taking the average adds a 1{M2 factor. Therefore, the variance of the SME is given

by

@

r∆ĝSMEpMqs
2
D

“
σ2

M
, (4.29)

which means that the error of the estimator presents the classical scaling „ 1{
?
M , i.e. it

achieves the classical limit for any finite sample. This does not mean that the estimator

is necessary efficient, which occurs when the Cramér-Rao inequality is saturated. If each

observation is taken from a normal population, then the estimator would be efficient,

since 1{σ2 corresponds to the Fisher information with respect to the mean of a normal

distribution. In this particular case, the SME estimator is also efficient for finite samples.

Typically, the efficiency can be achieved asymptotically, i.e. for a large number of

observations. Let us consider the maximum likelihood estimator ĝML, presented in section

4.2, and defined as

ĝMLpMq “ arg max
g

!

P pr1, ..., rM |gq
)

. (4.30)

This estimator is asymptotically efficient, i.e. it saturates the Cramér-Rao inequality in

the limit M Ñ 8. For random samples (independent and identically distributed random

variables), this means that
?
M rĝMLEpMq ´ gs converges in distribution to a random

variable, normally distributed, with zero mean and variance equal to I´1pgq, where I´1pgq

is the inverse of the Fisher information contained in a single observation. In other words,

for a sufficiently large sample,

@

r∆ĝMLEpMqs
2
D

«
1

MIpgq
. (4.31)
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This occurs as a consequence of the central limit theorem [148, 119].

4.6 Quantum Fisher information

For the quantum case, the likelihood function is P pr|gq “ Tr
”

Êrρpgq
ı

, where ρpgq is

a quantum state that depends on the parameter g that we want to estimate and Êr is

the effect operator associated to the outcome r of the measurement. Consequently, the

classical Fisher information (4.15) can be expressed as

Ipgq “
ż

dr

!

Bg Tr
”

Êrρpgq
ı)2

Tr
”

Êrρpgq
ı . (4.32)

We want to maximice this expression over all possible POVM’s. In order to derive an

upper bound for the classical Fisher information let us define the Symmetric Logarithmic

Derivative (SLD) as an hermitian operator Lg that satisfies the equation

Lgρpgq ` ρpgqLg
2

“ Bgρpgq. (4.33)

Note that, in terms of the SLD, the classical fisher information (4.32) can be bounded in

the following way:

Ipgq “

ż

dr
Re

!

Tr
”

ρpgqÊrLg

ı)2

Tr
”

Êrρpgq
ı ď

ż

dr

ˇ

ˇ

ˇ

ˇ

ˇ

Tr
”

ρpgqÊrLg

ı

c

Tr
”

Êrρpgq
ı

ˇ

ˇ

ˇ

ˇ

ˇ

2

(4.34)

“

ż

dr

ˇ

ˇ

ˇ

ˇ

ˇ

Tr

»

—

—

–

a

ρpgq
a

Êr
c

Tr
”

Êrρpgq
ı

b

ÊrLg
a

ρpgq

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (4.35)

The inequality is achieved when the trace Tr
”

ρpgqÊrLg

ı

is real. Considering now the matrix

form of the Cauchy-Schwarz inequality, |Tr
”

Â:B̂
ı

|2 ď Tr
”

Â:Â
ı

Tr
”

B̂:B̂
ı

, the prior upper

bound can be optimized over all over all possible POVM’s, according to:
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Ipgq ď
ż

drTrrLgρpgqLgs “ Tr
“

L2
gρpgq

‰

” IQpgq. (4.36)

This upper bound is called the quantum Fisher information (QFI), and will be denoted

as IQpgq. It is easy to show that the expectation value of the SLD is zero. Therefore, the

quantum Fisher information can be defined as the variance of the SLD. In this sense, the

SLD plays the role of the score function. Using the QFI in (4.19) it is possible to derive

the quantum Cramér-Rao bound [122, 123, 124],

@

∆ĝ2
D

ě
r1` b1pgqs2

Ipgq
ě
r1` b1pgqs2

IQpgq
. (4.37)

The first is classical Cramér-Rao inequality while the second corresponds to the quantum

Cramér-Rao inequality.

The optimal POVM is the set of projectors t|Liy xLi|u, where |Liy is one of the eigen-

states of Lg. This measurement may depend on the (unknown) parameter we wish to

estimate and therefore it may be unfeasible to implement. It is important not to con-

fuse the optimal POVM with the estimator. The first is given by the set of projectors

t|Liy xLi|u, while the second depends on how the acquired data is processed. In section

(4.5) we pointed out that the ML estimator can be employed for these purposes because

it saturates the Cramér-Rao inequality in the limit of a large number of observations (the

classical inequality for any POVM and the quantum inequality if the optimal POVM is

implemented).

4.6.1 Quantum Fisher information in mixed and pure states

Consider a mixed state with spectral decomposition ρpgq “
řR
k“1 λk |ψky xψk|. The

dimension of the support of ρpgq is R ď D (D being the dimension of the Hilbert space).

Notice that both, the eigenvalue λk or the ket |ψky, may depend on the parameter. The

partial derivatives of the eigenvalue and the eigenstate with respect to g will be denoted by

9λk and
∣∣∣ 9ψk

E

, respectively. In this case, the solution of equation (4.33) may be expressed
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as

Lg “
R
ÿ

n“1

´ 9λn
λn

¯

|ψny xψn|` 2
ÿ

n‰m

´λn ´ λm
λn ` λm

¯A

ψm

ˇ

ˇ

ˇ

9ψn

E

|ψmy xψn| . (4.38)

The summation in the second term goes over all n and m such that λn ` λm ‰ 0. Using

this expression in (4.36), the quantum Fisher information can be expressed as

IQpgq “
R
ÿ

n“1

´ 9λ2
n

λn

¯

` 2
ÿ

n‰m

pλn ´ λmq
2

λn ` λm
|

A

ψm

ˇ

ˇ

ˇ

9ψn

E

|2. (4.39)

The first term corresponds to the information contained in the eigenvalues and represents

the “classical contribution”, while the second term reflects the information contained in

the states and is properly the quantum contribution. For a pure state, i.e. ρpgq “ |ψy xψ|,

expression (4.39) reduces to

IQpgq “ 4
A

9ψ
ˇ

ˇ

ˇ

9ψ
E

´ 4
ˇ

ˇ

ˇ

A

ψ
ˇ

ˇ

ˇ

9ψ
E ˇ

ˇ

ˇ

2
. (4.40)

4.6.2 Quantum Fisher information in unitary processes

Assume now that the state ρpgq is generated by a unitary process, namely, ρpgq “

e´igT̂ρ0e
igT̂ . The initial state ρ0 is a mixed state with spectral decomposition ρ0 “

ř

λn |φny xφn|, and T̂ is an hermitian operator called the generator of the process. The

initial state does not depend on g, only the unitary process applied to it depends on the

parameter2. In this case, the QFI (4.39) corresponds to

IQpgq “ 2
ÿ

n‰m

pλn ´ λmq
2

λn ` λm
|T̂m,n|

2, (4.41)

where T̂m,n “ xφm| T̂ |φny. Since the generator T̂ is independent of the parameter, the

quantum Fisher information will also be independent of it. In fact, this occurs actually

because the SLD operator (4.38) is independent of the parameter. Consequently, the

optimal POVM will not depend on g and therefore it will possible in principle to implement

2We will also assume that the generator is independent of the parameter.
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it, although we might be completely ignorant about the real value of the parameter. This

type of optimal measurements, which are independent of the parameter, are called by

Braunstein, Caves and Milburn [125] “global optimal measurements”. When the generator

has no degeneracies, such measurements can described in terms of effect operators Êpxq,

where x is a real number that takes the same values as the parameter. If the generator is

degenerated, then the optimal POVM requires more information than the one provided by

a single real number x (see [125] for more details).

If the initial state is pure ρ0 “ |φy xφ|, then the quantum Fisher information (4.41)

corresponds to

IQpgq “ 4
A

∆T̂ 2
E

φ
“ 4 xφ| T̂ 2 |φy ´ 4| xφ| T̂ |φy |2, (4.42)

namely, four times the variance of the generator. Notice that the quantum Fisher infor-

mation of a pure state is greater than (4.41). Therefore, for initial pure states and any

unbiased estimator of g, the quantum Cramér-Rao bound takes the form of an uncertainty

principle,

@

∆ĝ2
D

¨

A

∆T̂ 2
E

ě 1. (4.43)

This is a parameter-based uncertainty principle, that resembles the standard uncertainty

principle, with the difference that
@

∆ĝ2
D

refers to the variance of an unbiased estimator

(which does not necessarily corresponds to an hermitian operator).

Finally, it is worth to mention that the quantum Fisher information (4.42) can be

maximized over all possible initial states,

max
φ

!

4
A

∆T̂ 2
E

φ

)

“ p∆tq2, (4.44)

where ∆t is the difference between the maximum and minimum eigenvalues of the generator

T̂ . The optimal initial state is an equal superposition of the eigenstates associated to the

maximum and minimum eigenvalues of the generator [111].
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4.7 Quantum Fisher information in phase measurements and

interferometry

In quantum mechanics the scaling of the error of the type 1{
?
M appears in differ-

ent situations. Consider, as an example, the measurement of the phase of an harmonic

oscillator [126]. Assume that an harmonic oscillator is prepared in a coherent state |αy

and then evolves freely. For simplicity suppose that α P R. After a time t the unitary

evolution produced by expt´iωtn̂u will impart a phase of g “ ωt, and the final state will

be the coherent state
∣∣e´igαD. Since the final state is generated by a unitary process, the

quantum Fisher information is given by 4|α|2, i.e. four times the mean energy (or the mean

number of particles) of the oscillator. Therefore, the error of any estimator of the phase

will be limited by a factor „ 1{
?
N , where N denotes the mean number of particles.

This limit has been called the standard quantum limit (SQL) [149] for the measurement

of the phase acquired by an harmonic oscillator. Although it is similar to the classical limit

1{
?
M (where M is the number of repetitions of the experiments) it has a different nature.

The classical scaling arises as a consequence of adding independent information, while the

scaling 1{
?
N simply appears because the initial state is a coherent state.

Indeed, assume that the harmonic oscillator, instead of being prepared in semi-classical

state such as the coherent state, is prepared in a non-classical state that consists of a

superposition of Fock states, p1{
?

2qp|0y ` |2Ny. The quantum Fisher information of this

state corresponds to 4N2, and therefore the scaling is improved when “quantum resources”

are employed. The scaling of the error proportional to 1{N has been called the Heisenberg

limit (HL) for metrology [150, 151, 152, 153]. Experimentally, the HL is harder to obtain

than the SQL, since coherent states are easier to prepare.

For a coherent state, the SQL can be achieved implementing a POVM whose elements

are Êpφq “ |φy xφ| {p2πq, where |φy are the Susskind-Glogower phase states [127, 12], ´π ď

φ ď π. These states can be expressed in terms of number states as |φy “
ř8
n“0 e

´iφn |ny.

They are eigenstates of the phase operator Â “
ř8
n“0 |ny xn` 1|, which generates transla-

tions of the number operator, i.e. Â:n̂Â “ n̂`1. The exact probability density corresponds
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to P pφq “ Tr
”

Êpφq
∣∣e´igtαD @e´igα∣∣ı,

P pφq “
1

2π

8
ÿ

n,m

´e´
α2

2 αn
?
n!

¯´e´
α2

2 αm
?
m!

¯

eipφ´gqpn´mq

«
1

2π

8
ÿ

n,m

1
?

2πα
exp

"

´
1

4α2

”

pα2 ´ nq2 ` pα2 ´mq2
ı

` ipφ´ gqpn´mq

*

.(4.45)

In the last step the approximation e´
α2

2 αn{
?
n! « p2πα2q´1{4e´

pα2´nq2

4α2 was used, assuming

that α " 1. This probability density is normalized in the interval r´π, πs. Finally, by

converting the summations into integrals, the density becomes

P pφq “
1

?
2π

´

1
4|α|2

¯ exp

»

–´
pφ´ gq2

2
´

1
4|α|2

¯

fi

fl, (4.46)

that is a Gaussian function with mean g and variance 1{p4α2q, and is normalized over

r´8,8s. The Fisher information in this distribution equals to 4α2, which corresponds to

the quantum Fisher information. This result shows that, when the harmonic oscillator is

prepared in a coherent state, the POVM tÊpφqu corresponds (approximately, for large α)

to the optimal POVM.

Let us turn now to Mach-Zehnder interferometry. Figure 4.1 shows a Mach-Zehnder

interferometer. The description of the interferometer requires two modes, which describe

the field in the different arms of the interferometer. It is useful to employ the Jordan-

Schwinger map [128, 129] to describe the action of the whole interferometer over the input

states,

Ĵx “ pâ:b̂` âb̂:q{2,

Ĵy “ pâ:b̂´ âb̂:q{p2iq,

Ĵz “ pâ:â´ b̂:b̂q{2,

Ĵ2 “ Ĵ2
x ` Ĵ

2
y ` Ĵ

2
z “

N̂

2

´N̂

2
` 1

¯

, N̂ “ â:â` b̂:b̂, (4.47)

where â and b̂ are the annihilation operators associated to the input fields, and N̂ is
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the total number of photons in the interferometer. The operators Ĵi satisfy the angular

momentum algebra, i.e. rĴx, Ĵys “ iĴz and its cyclic permutations. As it is described in

appendix (C) the action of a balanced beamsplitter can be described as a rotation of ˘π{2

around the x axis,

Û˘ “ exp
”

˘ipπ{2qĴx

ı

, (4.48)

while the addition of a phase shift ϕ between both paths corresponds to a rotation of ϕ

around the z-axis,

Ûpϕq “ exp
”

iϕĴz

ı

. (4.49)

Therefore, the action of the whole interferometer can be described by the unitary trans-

formation

ÛMZ “ Û´ÛφÛ` “ exp
”

´iϕĴy

ı

. (4.50)

Note that the interferometer (ideally) preserves the total number of photons because

rĴy, N̂ s “ 0. Since the generator of the transformation is Ĵy, the quantum Fisher in-

formation about the phase corresponds to

IQpϕq “ 4
A

p∆Ĵyq
2
E

. (4.51)

If the input state is |αy |0y, i.e. one input is a coherent beam |αy and the second is

the vacuum state |0y, the quantum Fisher information will correspond to |α|2, the mean

number of photons in the beam. The same result is obtained when the input state is a Fock

state of the form |Ny |0y, namely, IQpϕq “ 4N . Therefore, Fock or coherent states are the

suitable states in order to achieve the SQL. This limit can be reached simply by counting

the photons at the output ports of the interferometer and then taking the difference, as

described below.

It is possible to work in the Schrödinger picture and evolve the input states along the in-
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Figure 4.1: Mach-Zehnder interferometer. Two input modes (â,b̂) are mixed coherently in the first
beam splitter. Inside the interferometer, a phase difference ϕ between both paths is introduced.
The fields are merged coherently in the second beam splitter. Photons are counted at the detectors
placed in the output ports. The SQL can be reached when a coherent (fock) state is sent through
the input â, while the second port is in the vacuum state.

terferometer using ÛMZ . Alternatively, we may work in the Heisenberg picture and evolve

an input operator Ô using Û :MZÔÛMZ . The operator 2Ĵz “ â:â´ b̂:b̂ corresponds the dif-

ference of photons at the input ports of the interferometer. The corresponding Heisenberg

operator, N̂out, i.e. the difference of photons between the output ports, corresponds to

N̂out “ 2Û :MZ ĴzÛMZ “ 2
”

cospϕqĴz ´ sinpϕqĴx

ı

. (4.52)

On the other hand, the variance of the difference of photons at the output is given by

p∆N̂outq
2 “ 4

”

cos2pϕqp∆Ĵzq
2 ` sin2pϕqp∆Ĵxq

2 ´ 2 cospϕq sinpϕqcovpĴx, Ĵyq
ı

, (4.53)

where ∆Ĵi “ Ĵi´
A

Ĵi

E

and the covariance between Ĵx and Ĵy corresponds to tĴx, Ĵyu{2´

ĴxĴy.

Both for a coherent state or a Fock state the mean value of N̂out will be equal to

cospϕqN . The bias of the estimator can be removed by normalizing N̂out by N , and

assuming that the phase is known to be a small deviation around π{2, namely, ϕ “ π{2´θ,

where |θ| ! 1.

For a coherent state, the variance of N̂out corresponds to N , while for a Fock state

it is N sin2pϕq. Taking into account the normalization factor of N and the fact that
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sinpϕq « 1 for small phase shifts around π{2, the variance of the estimator corresponds to

1{N , both for coherent and Fock states. Consequently, when coherent or Fock states are

employed, N̂out{N is an unbiased and efficient estimator of small phase shifts around π{2,

that achieves the SQL.

4.8 Relationship between QFI and the Bures distance

Consider an experiment with D possible outcomes and let pi “ P pri|gq be the prob-

ability of the i-th outcome to occur, for i “ 1, ..., D. For simplicity, we have chosen the

probability to be discrete, but the argument that follows may be generalized to a continuous

distribution.

If the parameter of the likelihood function P pr|gq is changed infinitesimally, from g to

g ` dg, then the probabilities of the outcomes will be modified from pi to pi ` dpi, where

dpi “ BgP pri|gqdg. This change can be viewed as an infinitesimal displacement along a

curve (parametrized by g) that “lives” in a statistical manifold of dimension D´1; we start

from a point in the manifold corresponding to P pr|gq and, by changing infinitesimally the

parameter, we reach a second point that corresponds to P pr|g` dgq. Figure 4.2 illustrates

this displacement for a distribution with three outcomes.

The classical Fisher information (4.15) is a metric on this manifold, and allows therefore

to define the length of a line element along any curve, namely, ds2 “ Ipgqdg2. Hence, the

larger the Fisher information, the larger the distance between P pr|gq and P pr|g ` dgq.

As explained in section (4.4), the Fisher information is associated to the precision of an

estimator of g. Consequently, the notion of distance in a statistical manifold is associated

to the notion of distinguishability, because the better the precision (the larger the Fisher

information), the better the distributions P pr|gq and P pr|g ` dgq can be resolved.

Now, consider two quantum states, ρpgq and ρpg`dgq. Implementing a certain POVM,

tÊrpgqu (notice the possible dependence on g), will map each state to a point on the

statistical manifold, namely, to a probability distribution; P pr|gq “ Tr
”

Êrpgqρpgq
ı

and

P pr|g ` dgq “ Tr
”

Êrpg ` dgqρpg ` dgq
ı

. The distance between both probabilities is de-

fined by the classical Fisher information. Choosing the POVM that maximices the classical
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(a) (b)

Figure 4.2: a) Infinitesimal displacement in the statistical manifold. The distance between two
neighbouring distributions is obtained using the Fisher metric. b) Infinitesimal displacement in the
manifold of density operators. The distance depends on the quantum Fisher metric, which is equal
to the Bures metric (except for a factor of 1{4).

Fisher information, will maximice the distance (the distinguishability) between both quan-

tum states. Therefore, the quantum Fisher information defines a metric in the manifold

of density operators, namely, ds2 “ IQpgqdg2. The larger the quantum Fisher informa-

tion, the larger the distance between ρpgq and ρpg ` dgq and the better both states can

be distinguished. See figure 4.2 for a representation of these concepts. The definition of a

statistical distance was presented in [130] for pure states and in [124] for mixed states.

On the other hand, the Bures distance [131, 132, 133] between two quantum states ρ1

and ρ2 is defined as dBpρ1, ρ2q “ 2r1 ´
a

F pρ1, ρ2qs, where F pρ1, ρ2q “ Tr
“
a?

ρ1ρ2
?
ρ1

‰2

is the quantum fidelity between the states. When the states are parametrized by a single

parameter g, then

ds2 “ dBrρpgq, ρpg ` dgqs
2 (4.54)

“

«

1

4
IQpgq

ff

dg2, (4.55)

which shows that, except for a factor of 1{4, the quantum Fisher metric equals the Bures

metric on the manifold of quantum states [124, 134].

83



CHAPTER 4. PARAMETER ESTIMATION

4.9 Fisher Information in weak measurements

In this section the Fisher information contained in weak measurements is analyzed.

Two measurement strategies will be distinguished; with and without post-selection. See

chapters 2 and 3 for a description of both measurement strategies. We consider weak

measurements of an observable Â, according to the von Neumann model.

Before taking each strategy into consideration, it is important to point out that the

maximum information about the parameter g corresponds to the quantum Fisher informa-

tion. In the von Neumann model, the measurement is described by a unitary process Û

with generator equal to ÂP̂ {~. Therefore, for initial pure states states of the meter and the

system, |ψy xψ|b|ψiy xψi|, the quantum Fisher information is obtained by a straightforward

application of expression (4.42),

IQpgq “ 4
A

Â2
EA

P̂ 2
E

{~2 ´ 4
A

Â
E2 A

P̂
E2
{~2

“
4

~2

”

V arpÂq
A

P̂ 2
E

` xAy2 V arpP̂ q
ı

. (4.56)

In the last expression, the term V arrÔs denotes the variance of the operator Ô calculated

in the initial state, and is also sometimes denoted by
A

p∆Ôq2
E

along this text. Expression

(4.56) represents the maximum precision that can be achieved, and hence the different

measurement strategies will be compared with this limit.

4.9.1 Weak measurements without post-selection

When no post-selection is performed, i.e. when the apparatus variable R̂ is measured

and no second measurement is performed, the measurement and effect operators (M̂r and

Êr, respectively) are given by (2.47). The probability density function P prq “ Tr
”

Êrρ
ı

corresponds to

P prq “
8
ÿ

n“0

pig{~qn

n!

A

Ân
E

n
ÿ

m“0

p´1qm
ˆ

n

m

˙

xψ| P̂n´mΠ̂rP̂
m |ψy , (4.57)
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where the measurement result r corresponds to one of the eigenvalues of the meter variable

R̂ “
ş

drrΠ̂r. In the linear regime, the probability density (2.49) can be expressed as

P prq “ |ψprq|2

#

1` 2pg{~q
A

Â
E

ImpPwq

+

, (4.58)

where Pw “ xr| P̂ |ψy {pxr|ψyq is the weak value of the momentum operator of the meter.

The regime in which this approximation can be made depend on the moments of Â (thus,

on the initial state of the system), and on the weak values P kw “ xr| P̂ k |ψy {pxr|ψyq (which

depend on R̂ and on the initial state of the meter). In particular, later in this same

section, the validity of the linear regime is analyzed for the case R̂ “ Q̂ (Q̂ being the

position operator), assuming that Â is a dichotomic variable, and when the initial state of

the meter is Gaussian.

On the basis of (4.58), and retaining the zero order contribution (since g is a small

parameter), the score function Spgq “ Bg lnrP pr|gqs corresponds to

Spgq “ p2{~q
A

Â
E

ImpPwq. (4.59)

The variance of the score, calculated using (4.58), gives the Fisher information of a weak

measurement (without post-selection),

Ipgq “ p4{~2q

A

Â
E2

ż

ImpPwq
2|ψprq|2dr. (4.60)

This expression represents the maximum precision that can be achieved by observing the

variable R̂. The integral term can be understood as the variance of the imaginary part of

the weak value of P̂ (since the first moment is zero). An important result [135] regarding

the variance of the imaginary and real parts of a weak value establishes that

ż

|ψprq|2
”

RepPwq ´
A

P̂
Eı2

dr `

ż

ImpPwq
2|ψprq|2dr “ V arpP̂ q. (4.61)

85



CHAPTER 4. PARAMETER ESTIMATION

Consequently, the Fisher information (4.60) can be expressed as

Ipgq “ 4

~2

A

Â
E2 !

V arpP̂ q ´

ż

|ψprq|2
”

RepPwq ´
A

P̂
Eı2

dr
)

, (4.62)

which shows that, when the variance of the real part of the weak value of P̂ is zero,

the Fisher information achieves its maximum value, p4{~2q

A

Â
E2
V arpP̂ q. This value

should be contrasted with the maximum precision (4.56). The difference corresponds to

V arpÂq
A

P̂ 2
E

. Therefore, unless the the system starts in an eigenstate of Â, the quantum

Fisher information can not be achieved with this strategy.

As an example, let us consider the case when the meter variable corresponds to the

position, R̂ “ Q̂. Consider also the polar decomposition of the initial wave function of

the meter, ψpqq “ |ψpqq| exptiΦpqq{~u. The weak value of the momentum operator of the

meter is given by

Pw “
xq| P̂ |ψy
xq|ψy

“ ´i~
Bqψpqq

ψpqq
“ ´i~

Bq|ψpqq|

|ψpqq|
` BqΦpqq, (4.63)

which shows that the phase gradient corresponds to the real part of Pw, while its imaginary

part is the logarithmic derivative with respect to q of the modulus of the initial wave

function of the meter. Therefore, the maximum value of the Fisher information can be

achieved when the gradient of the phase is equal to
A

P̂
E

. As an additional remark, it is

worth to mention that the phase gradient has played a role in different formulations of

quantum mechanics [136, 137, 138, 139].

Assume, for example, that the initial wave function of the meter corresponds to a

complex Gaussian function with a quadratic phase,

ψpqq “ Nq exp

"

piF ´ 1q
pq ´ q0q

2

4σ2
q

` i
A

P̂
E

q{~
*

, Nq “

˜

1
?

2πσq

¸1{2

. (4.64)

For Gaussian states with quadratic phase the uncertainty principle is σ2
pσ

2
p “ p~2{4qp1`F2q.
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Hence, the Fisher information can be expressed as

Ipgq “

A

Â
E2

σ2
q

“

´ 4

~2

¯A

Â
E2
V arpP̂ q

´ 1

1` F2

¯

. (4.65)

Expression (4.65) represents the Fisher information in a weak measurement, when no

post-selection is performed, the meter starts in a state described by (4.64), and a projective

measurement of the joint operator Q̂b1 is performed. This result shows that, under these

conditions, it is preferable that the quadratic phase factor disappears.

It is worth to mention that, when the momentum of the meter is observed (R̂ “ P̂ ),

then the weak value of the momentum operator is purely real and therefore the information

(4.60) is zero, as expected.

Linear regime for Gaussian states and R̂ “ Q̂

Finally, let us study the regime in which the approximation (4.58) holds. When the

position of the meter is observed, the general expression of the density function (4.57)

equals (2.33). For the family of wave functions described by (4.64), this probability density

function can be expressed as

P pqq “ |ψpqq|2
B

exp

"

z
´ g

σq

¯

Â´
1

2

´ g

σ

¯

Â2

*F

, (4.66)

where z “ pq´ q0q{σq is a standardized variable. Notice that the initial momentum of the

meter and the quadratic phase factor do not appear in the density function. The expression

inside the brackets can be expanded in terms of the Hermite polynomials [140],

P pqq “ |ψpqq|2
8
ÿ

n“0

1

n!

´ g

σq

¯n A

Ân
E

Henpzq (4.67)

“ |ψpqq|2

«

1`
´ g

σq

¯A

Â
E

z `
1

2

´ g

σq

¯2 A

Â2
E

pz2 ´ 1q ` ...

ff

. (4.68)

Note that the Hermite series Spzq “
ř8
n“0

1
n!

´

g
σq

¯n A

Ân
E

Henpzq (from the first order term

onwards) corresponds to a correction to |ψpqq|2, the probability of finding the measurement
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device at position q in the absence of any interaction with the system. The first order

approximation will be a “good” approximation when itself has greater magnitude than the

sum of the neglected higher order terms, namely,

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“2

1

n!

´ g

σq

¯n A

Ân
E

Henpzq

ˇ

ˇ

ˇ

ˇ

ˇ

!

ˇ

ˇ

ˇ

ˇ

ˇ

1`
g

σq

A

Â
E

z

ˇ

ˇ

ˇ

ˇ

ˇ

. (4.69)

For the values of z that satisfy this condition, the system will exhibit a linear response,

i.e. the correction Spzq´1 will be a linear function of g{σq. Since the initial wave function

of the meter |ψpqq|2 is Gaussian with standard deviation σq, what is actually important

is that the linear response dominates over the rest of the terms within some standard

deviations away from the media.

Consider, as an example, an operator that satisfies Â2 “ 1, i.e. that it is an involution

and thus ´1 ď
A

Â
E

ď 1. In this case, the exact probability (4.67) becomes

P pqq “ |ψpqq|2 exp

"

´
1

2

´ g

σq

¯2
*

!

coshpgz{σqq `
A

Â
E

sinhpgz{σqq
)

, (4.70)

that shows that the linear response holds when |gz{σq| ! 1. The complete response Spzq

and the linear response are plotted in figure 4.3 for different values of g{σq. The exact

probability and its first order approximation are presented in figure 4.4. Notice that, for

g{σq “ 0.5, the approximation, although normalized, takes negatives values in some part

of the domain. This occurs because the region in which the approximation is valid (i.e. the

relative error is less than 1%) is small. However, for g{σ “ 0.01 the approximation is good

in a large region of its domain. As a result, the approximation and the exact probability

are almost indistinguishable.

4.9.2 Fisher Information in weak measurements with post-selection

In section 3.1 we described pre- and post-selected measurements, where an intermediate

generalized measurement of an observable Â is performed between a pre-selected and a

post-selected final state. The intermediate measurement was described by measurement

operators M̂r acting on the system, which result from the observation of the meter variable
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(a) (b) (c)

Figure 4.3: The complete Hermite series Spzq (blue) and the linear response (red) are plotted

for different values of the parameter g{σq, assuming
A

Â
E

“ 1. The shadowed area represents the

region where the relative error of the approximation is less than 1%. (a) g{σq “ 0.5, (b) g{σq “ 0.1,
and (c) g{σq “ 0.01.

(a) (b)

Figure 4.4: Exact probability (solid line) and the first order approximation (dashed line) for
different values of the ratio g{σq: a) 0.5, (b) 0.01.
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R̂ “
ş

drΠ̂r, a continuous variable of the measurement device.

The post-selection procedure corresponds to a second (projective) measurement of

an hermitian operator F̂ , of the system, with eigenvectors and eigenvalues described by

F̂ |ψky “ λk |ψky, k “ 1..N . When post-selection is performed not all results of the inter-

mediate measurement are taken into consideration, but only those when the state |ψf y is

detected in the second measurement. Therefore, the set of measurement operators that

describe this measurement strategy [141] corresponds to

#

|ψf y xψf |b Π̂r,
´

1´ |ψf y xψf |
¯

b 1, r P R

+

. (4.71)

The probability to successfully select the state |ψf y in the second measurement and to

read the outcome r in the intermediate measurement is given by

P pf, rq “ Tr
”

|ψf y xψf |b Π̂rÛ |ψy xψ| ρÛ :
ı

“ xψf | M̂rρM̂
:
r |ψf y , (4.72)

where |ψy is the pure initial state of the meter and Û is the unitary operator that de-

scribes the intermediate measurement. The probability of successful post-selection P pfq

is obtained by marginalizing (4.72) over r. The probability of failure corresponds to

1´P pfq. The classical Fisher information contained in the probability distribution (4.72)

and 1´ P pfq is obtained by applying the definition (4.15),

Ipgq “

ż

dr
rBgP pr, fqs

2

P pr, fq
`
tBgr1´ P pfqsu

2

1´ P pfq

“ P pfq

ż

dr
rBgP pr|fqs

2

P pr|fq
`
rBgP pfqs

2

P pfq
`
tBgr1´ P pfqsu

2

1´ P pfq
. (4.73)

The integral term in the last line represents the Fisher information given that the state

|ψf y was post-selected, and will be denoted as Ipg|fq. The sum of the second and third

terms correspond to the information contained in the partition into different sub-ensembles,

according to to the result of the second measurement. This information will be denoted as
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IP . Therefore, the Fisher information in the whole process can be expressed as

Ipgq “ P pfqIpg|fq ` IP . (4.74)

Therefore, the maximum amount of information provided by the post-selection strategy

corresponds to

IMaxpgq “ P pfqIQpg|fq ` IP , (4.75)

where IQpg|fq corresponds now to the quantum Fisher information in the final state of

the measurement device, given that the post-selection was successful. If the initial state of

the meter is pure, let us denote it as |ψy, then its final state, conditioned on the successful

post-selection, corresponds to (3.55)3. To first order in g, the final state of the meter

corresponds

|φy “ 1
?
N

”

1´ pig{~qAwP̂
ı

|ψy , (4.76)

where N “ 1 ` 2gk0 ImpAwq is a normalization factor due to the post-selection. This is

a pure state and therefore expression (4.40) can be employed to compute the quantum

Fisher information,

IQpg|fq “
´ 4

~2

¯

|Aw|
2V arpP̂ q. (4.77)

On the other hand, from (3.21) the probability of post-selection corresponds to P pfq “

| xψf |ψiy |
2r1`2gk0 ImpPwqs. It contains therefore information about g, as long as the weak

value is not purely real and the meter has initial momentum. Thus, for a balanced meter

(zero initial momentum) or for protocols based on real weak values, this term plays no

role.

Taking all the contributions into account, the maximum amount of information (4.75)

3This state corresponds to the case R̂ “ P̂ . For the general case, M̂p should be simply replaced by M̂r
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that can be obtained using the post-selection strategy is given by

IMaxpgq “
4| xψf |ψiy |

2

~2

#

|Aw|
2
A

P̂ 2
E

´

A

P̂
E2 ”

RepAwq
2 ´

| xψf |ψiy |
2

1´ | xψf |ψiy |2
ImpAwq

2
ı

+

.(4.78)

Notice that, if the final state |ψf y is the same as the initial state |ψiy, then ImpAwq “ 0,

RepAwq “
A

Â
E

and the expression reduces to maximum information attainable without

post-selection.

By comparing expression (4.78) to the quantum Fisher information (4.56), it is clear

that, in order for IMaxpgq to reach the maximum precision, the following two conditions

will be needed:

iq | xψf |ψiy |
2 RepAwq

2 ` | xψf |ψiy |
2 ImpAwq

2 “

A

Â2
E

. (4.79)

iiq | xψf |ψiy |
2 RepAwq

2 ´

´

| xψf |ψiy |
4

1´ | xψf |ψiy |2

¯

ImpAwq
2 “

A

Â
E2
. (4.80)

The first condition should be fulfilled for every initial pure state of the meter. Both

equations need to be satisfied only for meter states with initial momentum,
A

P̂
E

‰ 0. It

is more informative to express this set of equations as

| xψf | Â |ψiy |2 “

A

Â2
E

, (4.81)

| xψf |ψiy |
2
”

RepAwq
2 ´ | xψf | Â |ψiy |2

ı

“

A

Â
E2 ´

1´ | xψf |ψiy |
2
¯

. (4.82)

First, if the meter is balanced
A

P̂
E

“ 0, then we only have to worry about the first equation

(4.81). In this situation, the post-selected state should be simply chosen in order to exactly

satisfy (4.81). There is, however, a way to satisfy this equation in the limit | xψf |ψiy |
2 Ñ 0.

A standard theorem of linear algebra (shown, for example, in [143]), establishes that

Â |ψiy “
A

Â
E

|ψiy `
c

A

p∆Âq2
E ∣∣ψKi D , (4.83)

where
∣∣ψKi D is any state orthogonal to the initial state. Assume that quasi-orthogonal state

|ψf y “
∣∣ψKi D` ε |ψiy , (4.84)
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is post-selected, where ε is a small quantity, ε ! 1. By virtue of (4.83), and retaining up

to first order terms of ε, condition (4.81) can be expressed as

A

Â
E”A

Â
E

´ 2

c

A

p∆Âq2
E

¨ ε
ı

“ 0. (4.85)

Consequently, when
A

Â
E

„ ε the left hand side will be of the order of ε2 and the equation

will be approximately satisfied. In simpler words, when
A

Â
E

is close to zero, the post-

selection of quasi-orthogonal states will allow to satisfy the first condition in the limit

| xψf |ψiy |
2 Ñ 0.

Assume now that the meter has initial momentum, in which case both equations should

be fulfilled. When the weak value Aw is purely real or purely imaginary, it is easy to

show that conditions (4.79) and (4.80) can not be satisfied, unless the system starts in

an eigenstate of Â (in which case both conditions are fulfilled and the weak value is real).

Thus, besides the case in which the system starts in an eigenstate of the measured variable,

the quantum Fisher information can not be exactly reached by using purely real or purely

imaginary weak values.

Nevertheless, analogously to the previous case (balanced meter), both conditions can

be met in the limit | xψf |ψiy |
2 Ñ 0. We have already shown that the first condition will

be approximately satisfied when the initial and final states are quasi-orthogonal and the

expectation value of Â is close to zero (of the same order of overlap between the initial and

final states). Let us study now what happens with the second condition when a state of

the form (4.84) is post-selected. Using (4.83) it is easy to show that the second equation

(4.80) reduces to

ε2 ¨

#

RepAwq
2 ´

A

Â2
E

`

A

Â
E”A

Â
E

´ 2

c

A

p∆Âq2
E

¨ ε
ı

+

“

A

Â
E2
p1´ ε2q. (4.86)

Notice that when
A

Â
E

„ ε, then both sides of the equation will be of second order in

ε only when the weak value is purely imaginary (notice that the real weak value in the

left hand side of the equation is of the order of ε´2). Therefore, both equations can be

approximately satisfied when
A

Â
E

is close to zero, by using quasi-orthogonal states and
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Table 4.1: The post-selection strategy may be optimal (in the sense that it achieves exactly the
quantum Fisher information) using real or imaginary weak values. If the meter is prepared with
zero initial momentum (balanced meter), then only the first condition (4.81) should be met. If the
meter has momentum (not balanced meter), then the second condition (4.82) should be also taken
into consideration. The strategies in which the states are close to orthogonality achieve the quantum
information in the limit | xψf |ψiy |

2 “ εÑ 0. Recall, however, that the weak amplification effect is
restricted by the validity of linear approximation (4.87) and the states can not become indefinitely
close to orthogonality.

Strategy Balanced Not balanced

Exact The systems starts in

achievement | xψf | Â |ψiy |2 “
A

Â2
E

in an eigenstate

of QFI of Â

QFI is achieved
A

Â
E

„ ε

in the limit
A

Â
E

„ ε and imaginary

| xψf |ψiy |
2 “ εÑ 0 weak values

imaginary weak values.

The previous analysis shows that, when the meter is balanced, then the quantum Fisher

information can be exactly achieved by post-selecting a state such that | xψf | Â |ψiy |2 “
A

Â2
E

, keeping in mind the the final state should not be exactly orthogonal to the initial

state. In the general case, either when the meter is balanced or not, then the quantum

Fisher information can be achieved in the limit | xψf |ψiy |
2ε Ñ 0, when

A

Â
E

„ ε. If
A

P̂
E

‰ 0 then imaginary weak values are needed. The whole, already described, strategy

is also summarized in table 4.1.

Fisher Information in the conditioned probability

Now, we will consider the Fisher information Ipg|fq contained in the conditioned prob-

ability density function P pr|fq, i.e. assuming that the post-selection of the state |ψf y was

successful. The exact density function was derived in (3.16). The first order expansion was

presented in (3.23), and can be expressed as

P pr|fq “ |ψprq|2

#

1`
2g

~
Im

”

Aw ¨
´

Pw ´
A

P̂
E¯ı

+

. (4.87)
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Now, the score function BgP pr|fq becomes

Spgq “ 2

~
Im

”

Aw ¨
´

Pw ´
A

P̂
E¯ı

. (4.88)

Using (4.61), the Fisher information can be expressed as

Ipg|fq “ IQpg|fq ´
´ 4

~2

¯

ż

|ψprq|2

#

RepAwq

«

RepPwq ´
A

P̂
E

ff

´ ImpAwq ImpPwq

+2

.(4.89)

The first term, IQpg|fq, corresponds to the quantum Fisher information (4.77) and can be

achieved by making the second term equal to zero.

What happens when the weak value Aw is purely real? In this case, it is clear that

the second term of (4.89) will vanish when RepPwq “
A

P̂
E

. Thus, for a balanced meter

(zero initial momentum), when real weak values values are employed, the weak value of the

meter should be purely imaginary, in order to achieve the quantum Fisher information of

the conditioned state. As an example, consider the case when the position of the meter is

observed. In this scenario, according to (4.63), the real and imaginary parts of P̂ are given

by

RepPwq “ Bqφpqq, ImpPwq “ ´~
Bq|ψpqq|

|ψpqq|
. (4.90)

Hence, when the position of the meter is observed, preparing the meter in a state with a

linear phase will allow to achieve the quantum information of the conditioned state (4.77).

What happens if the weak value Aw is purely imaginary? In this case, the second term

of (4.89) will disappear when ImpPwq “ 0 for all the possible values of r. It is easy to see

that this occurs when the momentum of the meter is observed,

Pw “
xp| P̂ |ψy
xp|ψy

“ p. (4.91)

In this case, the weak value of the meter becomes real and the quantum Fisher information

in the conditioned state can be achieved.

Finally, for complex weak values, the weak value associated with the apparatus variable
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should also be complex. In fact, it is easy to see that the second term of (4.89) will vanish

when

RepPwq ´
A

P̂
E

ImpPwq
“

ImpAwq

RepAwq
, (4.92)

for every possible value of r. As an example, let us consider again the case of a meter

prepared in a Gaussian state with a quadratic phase (4.64). Physically, this state can

be achieved when an harmonic oscillator is prepared in a coherent squeezed state, |ψy “

DpαqSpβq |0y, where Dpαq is a Glauber displacement operator and Spβq is a squeezing

operator. The displacement is given by α P C and the squeezing factor is β “ r exptiθu.

The coordinate representation of the wave function is given by

ψpqq “ exp

"

piF ´ 1q
rq ´ 2x0 Repαqs2

4σ2
q

`
i

~

A

P̂
E

q

*

, (4.93)

where x0 are the zero-point fluctuations of the harmonic oscillator and σ2
q “ x2

0re
2r sin2pθ{2q`

e´2r cos2pθ{2qs. The initial momentum of the meter
A

P̂
E

corresponds to p~{x0q Impαq.

The adimensional parameter F (the coefficient associated to the quadratic phase) depends

entirely on the squeezing factor and corresponds to ´ sinhp2rq sinpθq. This coefficient rep-

resents the covariance between the position and momentum of the meter (besides a factor

of 1/2),

CovpQ̂, P̂ q “
1

2

A

tQ̂, P̂ u
E

´

A

Q̂
EA

P̂
E

“ ~F{2. (4.94)

When the position of the meter is observed, ImpPwq “ ~pq´q0q{p2σ
2
q q, and RepPwq´

A

P̂
E

“

F ImpPwq. Therefore, the correlation between the position and the momentum of the meter

(calculated in the initial state) should be equal to one half the tangent of the argument of

the weak value of Â, namely,

1

~
CovpQ̂, P̂ q “

´1

2

¯ ImpAwq

RepAwq
. (4.95)

It should be noted that the effect of the squeezing establishes a correlation between the
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position and the momentum of the meter. This correlation is necessary for protocols based

on complex or imaginary weak values; otherwise, without applying squeezing, real weak

values of Â should be employed.

Finally, consider the case when the momentum of the meter is observed, R̂ “ P̂ . The

weak value of the momentum operator Pw “ xp| P̂ |ψy {pxp|ψyq is equal to p and the Fisher

information Ipg|fq becomes

Ipg|fq “ p4{~2q ImpAwq
2σ2
p. (4.96)

The momentum of the meter contains useful information about the parameter, unlike the

situation without post-selection. In this case, as was previously explained, the weak value

should be purely imaginary in order to achieve the quantum Fisher information (4.77).

Optimal post-selection strategy for a qubit and a Gaussian meter

As an example, let us analyse the case of a spin-like operator, Â “ σ̂z. The meter

is prepared in a Gaussian state described by (4.93) and the system is a two-level system,

prepared in an initial pure state. The post-selected state is also a pure state. For a qubit,

the initial and final states pure states can be described using the Bloch representation,

|ψiy “ cos
´θi

2

¯

|0y ` sin
´θi

2

¯

eiφi |1y , (4.97)

|ψf y “ cos
´θf

2

¯

|0y ` sin
´θf

2

¯

eiφf |1y , (4.98)

where σ̂z |0y “ |0y and σ̂z |1y “ ´ |1y. The weak value of σ̂z between the initial and final

states is defined by

σz,w “
xψf | σ̂z |ψiy
xψf |ψiy

, (4.99)
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while the real and imaginary parts of the weak value, respectively, are given by

Repσz,wq “

cos
´

θi`θf
2

¯

cos
´

θi´θf
2

¯

| xψf |ψiy |2
, (4.100)

Impσz,wq “
1

4

sinp∆q
”

cospθi ` θf q ´ cospθi ´ θf q
ı

| xψf |ψiy |2
. (4.101)

In these expressions ∆ “ φf ´ φi and | xψf |ψiy |
2 corresponds to the transition probability

between the initial and the final states, which corresponds to

| xψf |ψiy |
2 “

1

2

«

1` cos2
´∆

2

¯

cospθi ´ θf q ` sin2
´∆

2

¯

cospθi ` θf q

ff

. (4.102)

According to (4.101), real weak values are obtained when: iq sinp∆q “ 0, or iiq

cospθi ´ θf q “ cospθi ` θf q. Let us consider the first case, for which the transition prob-

ability | xψf |ψiy |
2 corresponds to cos2p

θi`θf
2 q and the first condition of optimality (4.81)

becomes,

cos2
´θi ´ θf

2

¯

“ 1 (4.103)

Thus, by choosing θi “ θf the first condition will be exactly fulfilled. The transition

probability, | xψf |ψiy |
2 “ cos2pθiq, will remain different from zero unless θi “ π{2. The

weak value (4.99) becomes

σw,z “
1

cospθiq
, (4.104)

which is always anomalous, except when the initial state is an eigenstate of σ̂z. Con-

sequently, and taking into consideration only the first condition of optimality (which is

the case for meters without initial momentum), the quantum Fisher information can be

achieved by post-selecting the state

|ψf y “ cos
´θi

2

¯

|0y ´ sin
´θi

2

¯

eiφi |1y . (4.105)
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As it has been pointed out, this protocol works for meters with zero initial momentum and

for every initial state, except for states for which θi “ π{2. For these kind of states (eigen-

states of the spin along any direction in the x´ y plane), the quantum Fisher information

can be approximately achieved by post-selection of states with θf “ π{2´ 2ε, where ε is a

small deviation. In this case, the transition probability becomes sin2pεq « ε2 and the weak

value (4.99) will correspond to

σw,z “ cotpεq «
1

ε
. (4.106)

Summarizing, for a balanced meter, post-selection of the state (4.105) will produce

the real weak value (4.104) and the quantum Fisher information will be exactly achieved.

When θi “ π{2, post-selection of states described by θf “ π{2 ´ 2ε will produce the real

weak value (4.106) and reach the quantum Fisher information in the limit ε Ñ 0. This

strategy is represented in figure 4.5.

On the other hand, regarding the meter, since the weak value of the spin operator is

real, RepPwq should be equal to the initial momentum of the meter, as was explained in the

previous section. This can be achieved by preparing the meter in the state (4.93), without

compressing (squeezing), and observing the position of the meter.

Finally, for real weak values obtained when cospθi ´ θf q “ cospθi ` θf q, the quantum

Fisher information can be reached only when the initial state is an eigenstate of σ̂z as well

as the post-selected state.

Let us look now at the case of meters with initial momentum, for which imaginary

weak values are needed. As it can be seen from (4.100), imaginary weak values will be

generated when θi`θf “ π. In this case, the transition probability | xψf |ψiy |
2 corresponds

to cos2p∆{2q sin2pθiq, the weak value is given by ´i tanp∆{2q and the optimality conditions

(4.81) and (4.82) become

sin2pθiq sin2p∆{2q “ 1, (4.107)

cos2p∆{2q sin2pθiq
”

cos2pθiq ´ sin2pθiq sin2p∆{2q
ı

“ cos2pθiq. (4.108)
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(a) (b)

Figure 4.5: a) The weak value obtained using the sub-optimal post-selection strategy θf “ π{2´2ε
is plotted as a function of the parameter ε. b) The red curve shows transition probability | xψf |ψiy |

2

as a function of ε. Recall that the smaller ε, the larger the information about g and the larger the
weak value.

Notice that when θi is close to π{2, i.e. θi “ π{2` δ, then, by making ∆ “ π ´ 2ε (which

makes the states quasi-orthogonal), both equations will be satisfied in the limit ε Ñ 0.

Consequently, states of the form

|ψf y “ sin
´θi

2

¯

|0y ´ cos
´θi

2

¯

eipφi´2εq |1y , θi “ π{2` δ, δ, ε ! 1, (4.109)

should be post-selected in order to reach the quantum Fisher information in the limit εÑ 0.

In this situation, the purely imaginary weak value will be equal to ´i cotpεq (independent

of θi) and the transition probability will be sin2pεq sin2pθiq. This sub-optimal strategy is

represented in figures 4.6 and 4.7. As explained in the previous section, for imaginary weak

values, the momentum of the meter should be observed in order for Pw to be real. This

result is valid for any pure initial state of the meter and not only for (4.93).

Finally, in order to study complex weak values, it is useful to look at the first condition

of optimality, which, in its most general form, is given by

cos2
´∆

2

¯

cospθi ` θf q ` sin2
´∆

2

¯

cospθi ´ θf q “ 1 (4.110)

Excluding all the previous cases, of purely real weak values, i.e. assuming ∆ ‰ 0 or
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Figure 4.6: Left Figure: The red line, θi “ θf , represents the optimal post-selection strategy
for real weak values (for meters without initial momentum). Along the purple line the initial and
final states are orthogonal. The two blue lines are sub-optimal strategies for meters with initial
momentum, which work for θi “ π{2. Right Figure: sub-optimal strategy for imaginary weak
values. This strategy is useful for all initial states and meters with momentum, and works for θi
around π{2.

cospθi ´ θf q ‰ cospθi ` θf q, and purely imaginary weak values, namely, supposing that θi`

θf ‰ π, it is not possible to satisfy this condition, either in an exact or approximate manner.

Indeed, any “way” to make the left hand side close to one, will rely on purely imaginary

or real weak values. Consequently, for a two level system, the quantum Fisher information

can be reached through post-selection of the state (4.105) (real weak value, balanced meter)

and the state (4.109) (meter with initial momentum, imaginary weak value). The use of

real or imaginary weak values will depend on the features of each experiment. For example,

protocols based on real weak values may be used if it is experimentally easier to observe the

position of the meter, or when the apparatus has no initial momentum (in which case the

quantum Fisher information can be exactly achieved, except for the initial states described

by θi “ π{2).

Linear regime for a qubit and a Gaussian meter

The weak value can not be increased indefinitely because the approximation (4.87)

breaks down. We will study now the conditions under which the linear approximation is

valid, that in turn depend on the initial wave function of the meter, and on the initial and
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(a) (b)

Figure 4.7: a) The weak value, ´ cotpεq, obtained using the sub-optimal post-selection strategy
(4.109) is plotted as a function of the parameter ε. b) Transition probability | xψf |ψiy |

2 as a function
of ε, for different initial system states; θi “ π{2 (green), θi “ π{2´ 0.26 (red) and θi “ π{2´ 0.35
(blue). As for real weak values, the smaller ε, the larger the information about g (the closest is the
difference with respect to the quantum Fisher information) and the larger the weak value.

final states of system. The exact joint probability of selecting the state |ψf y and reading

the outcome r was presented in (3.17). For convenience, we reproduce it below.

P pr, fq “ | xψf |ψiy |
2 ¨ |ψprq|2 ¨

8
ÿ

n“0

gncnprq

looooomooooon

Sprq

. (4.111)

The coefficients cnprq are presented in (3.18), and contain weak values (of the system

and the apparatus variables) of different orders. The series Sprq “
ř8
n“0 g

ncnprq charac-

terize the change of the “unperturbed” probability distribution | xψf |ψiy |
2 ¨ |ψprq|2 due to

the measurement process.

When the position of the meter is observed, namely R̂ “ Q̂, and the initial wave

function of the apparatus belongs to the family of Gaussian functions described by (4.64),

then the full series can be expressed in terms of the Hermite polynomials as

Spqq “
8
ÿ

n“0

1

n!

´

?
γg

2σq

¯n n
ÿ

k“0

ˆ

n

k

˙

AkwĀ
n´k
w Hk

´

?
γz

2
´ i

σq
?
γ
k0

¯

H˚n´k

´

?
γz

2
´ i

σq
?
γ
k0

¯

,(4.112)
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where z is a standardized variable z “ pq ´ q0q{σq, γ “ 1´ iF and k0 “ p0{~ is the initial

momentum of the meter. See appendix (B) for the details regarding the derivation of this

result.

Analogously to the condition (4.69), the linear approximation will dominate over the

higher order terms when

iq

ˇ

ˇ

ˇ

ˇ

ˇ

Re

«

8
ÿ

n“2

gncnpqq

ffˇ

ˇ

ˇ

ˇ

ˇ

!

ˇ

ˇ

ˇ

ˇ

ˇ

1`
gz

2σq

”

RepAwq ` F ImpAwq
ı

` g ImpAwqk0

ˇ

ˇ

ˇ

ˇ

ˇ

,(4.113)

iiq

ˇ

ˇ

ˇ

ˇ

ˇ

Im

«

8
ÿ

n“2

gncnpqq

ffˇ

ˇ

ˇ

ˇ

ˇ

!

ˇ

ˇ

ˇ

ˇ

ˇ

gz

2σq

”

ImpAwq ´ F RepAwq
ı

´ gRepAwqk0

ˇ

ˇ

ˇ

ˇ

ˇ

. (4.114)

Since the function Sprq is multiplied in (4.111) by a Gaussian function of width „ σq, these

conditions should be satisfied within a couple of standard deviations from the mean, in

order to have a good approximation for at least 95% of the total probability.

As was previously indicated, these conditions are valid when the meter is prepared in

a pure state of the form (4.64). Any further specification of them should specify the weak

values of all orders, which will be done later in this chapter for a two-level system.

Before going into this last issue, let us study the state of the measurement device in

the linear regime. Recall from (3.55) that, when the post-selection is successful, the wave

function of the measurement device (in the coordinate representation) corresponds to

ż

xψf | M̂q |ψiy
ş

dq| xψf | M̂q |ψiy |2
|qy dq (4.115)

As can bee seen from appendix (B), when conditions (4.113) and (4.114) are satisfied,

then the measurement operators can be safely expanded to first order, and the final wave

function of the meter becomes

ż

«

1` gAwz
´

γ
2σq

¯

´ igk0Aw
a

1` 2gk0 ImpAwq

ff

ψpqq |qy dq. (4.116)

This state corresponds to the coordinate representation of (4.76). The denominator is a

normalization factor, whose square is related to the probability of post-selection (it corre-

sponds actually to the perturbation of the transition probability | xψf |ψiy |
2). The factor
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can be expanded to first order by imposing an additional requirement: iii) |gk0 ImpAwq| ! 1.

Then, the final state of the measurement device becomes

ż

«

1` gAwz
´ γ

2σq

¯

´ igk0 RepAwq

ff

ψpqq |qy dq. (4.117)

As an example, consider the case of a meter with zero quadratic phase, i.e. γ “ 1,

zero initial momentum, and a purely real weak value. In this situation, the state (4.116)

corresponds to

ż

«

ψpqq ´ gAwBqψpqq

ff

|qy dq «
ż

ψpq ´ gAwq |qy dq, (4.118)

namely, the (real) wave function of the meter is displaced by gAw. On the other hand, the

squared amplitude of the wave function (4.116) corresponds to the probability density of

reading the output q given that the state |ψf y was successfully post-selected,

P pq|fq “ |ψpqq|2

#

1`
g

σq

”

RepAwq ` F ImpAwq
ı

z

+

, (4.119)

which corresponds to the probability density (4.87) for the case R̂ “ Q̂.

Conditions (4.113), together with the additional third condition on gk0 ImpAwq, can be

easily analized when the operator Â satisfies Â2 “ 1. In this scenario, the series (4.112)

can be written in closed form as

Spqq “ e´
1
2
p
g
σ
q2
”

cosh
´gz

σ

¯´1` |Aw|
2

2

¯

` cos

ˆ

Fgz
σ

` 2gk0

˙

´1´ |Aw|
2

2

¯

`RepAwq cos

ˆ

Fgz
σ

` 2gk0

˙

sinh
´gz

σ

¯

` ImpAwq sin

ˆ

Fgz
σ

` 2gk0

˙

cosh
´gz

σ

¯ı

.(4.120)

From (4.111) it is clear that the probability distribution P pq, fq corresponds to | xψf |ψiy |
2 ¨

|ψpqq|2Spqq. Integration of this probability over q produces the “exact” probability of post-
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selection, P pfq, which is given by

P pfq “ | xψf |ψiy |
2e´

1
2
p
g
σ
q2

«

e
1
2
p
g
σ
q2
´1` |Aw|

2

2

¯

` cosp2gk0qe
´ 1

2
p
Fg
σ
q2
´1´ |Aw|

2

2

¯

´ sinp2gk0qe
´ 1

2
p
g
σ
q2pF2´1q ¨

!

RepAwq sin
”´ g

σ

¯2
F
ı

´ ImpAwq cos
”´ g

σ

¯2
F
ı)

ff

. (4.121)

The series Spqq can be expanded to first order in the parameter g when the conditions

(4.113) hold. In this case, these conditions will be fulfilled when the coupling constant is

small and the weak value is not too large, in the sense that

iq
ˇ

ˇ

ˇ

g

σq

ˇ

ˇ

ˇ
! 1, iiq

ˇ

ˇ

ˇ

Fg
σq

ˇ

ˇ

ˇ
! 1, iiiq

ˇ

ˇ

ˇ
gk0

ˇ

ˇ

ˇ
! 1, (4.122)

ivq
ˇ

ˇ

ˇ
Aw

g

σq

ˇ

ˇ

ˇ
! 1, vq

ˇ

ˇ

ˇ
Aw

´Fg
σq

¯ˇ

ˇ

ˇ
! 1, viq

ˇ

ˇ

ˇ
Awgk0

ˇ

ˇ

ˇ
! 1. (4.123)

Under these conditions, and over a large region of the distribution (a region that accumu-

lates at least 95% of the probability), the perturbation of the probability distribution will

be a linear function of the parameter g, namely,

Spqq “ 1`
g

σq

”

RepAwq `A ImpAwq
ı

z ` 2gk0 ImpAwq. (4.124)

And the probability of post-selection will correspond to

P pfq “ | xψf |ψiy |
2r1` 2gk0 ImpAwqs. (4.125)

Notice that, if the meter has no initial momentum, then the probability of post-selection is

just the square of the transition amplitude of xψf |ψiy, i.e. as if no intermediate measure-

ment had been performed. The conditions (4.123) define a limit on the maximum value

that can be achieved by the weak value, which is given by

|Aw| ! min

#

ˇ

ˇ

ˇ

g

σq

ˇ

ˇ

ˇ

´1
,
ˇ

ˇ

ˇ

g

σq

ˇ

ˇ

ˇ

´1
¨

ˇ

ˇ

ˇ

1

F

ˇ

ˇ

ˇ
, |gk0|

´1

+

. (4.126)
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(a) (b)

Figure 4.8: a) The blue curve corresponds to the full series, Spqq, and the red line is the linear re-
sponse. The conditions (4.122) and (4.123) are satisfied over the grey area. The different parameters
are: g{σq “ gk0 “ 0.005, F “ ´0.5, RepAwq “ 9.18 and ImpAwq “ ´3.29, b) The exact conditioned
density function (blue curve) overlaps with its approximation (red dotted). Both functions are ex-
pressed in standardized units. The mean value corresponds to pg{σqqrRepAwq`F ImpAwqs “ 0.054.

In the “standard case” of a real weak value and a meter with no complex phase factor

(F “ 0) and zero initial momentum (k0 “ 0), the limit simply reduces to |Aw| ! pg{σqq
´1.

A more complex case is represented in figure 4.8, which shows the full series Spqq as

compared to the linear approximation, together with the exact and approximate probability

distributions. In this example, the weak value is limited by |Aw| ! 200.

On the other hand, figure 4.9 shows the conditioned probability density, P pq|fq, in

three different regimes (the linear regime together with two other regimes in which the

measurement is stronger).

Finally, it is worth to mention that the case of a meter initialized in a state of the

form (4.64) with F “ 0, q0 “ 0 and
A

P̂
E

“ 0, and a general variable Â (not necessarily a

dichotomous variable) is analyzed in [31]. In this case, the conditions that enable the first

order approximation correspond to

iq gAw ! σq , iiq
g

σq
! min

n“2,3,...

ˇ

ˇ

ˇ

ˇ

ˇ

xψf |Â|ψiy

xψf |Ân|ψiy

ˇ

ˇ

ˇ

ˇ

ˇ

1{pn´1q

. (4.127)
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Figure 4.9: The conditioned density function (in standardized units) in different regimes. For
all the curves the parameters are: gk0 “ 0.005, F “ ´0.5, RepAwq “ 9.18 and ImpAwq “ ´3.29.
The blue curve, with two peaks, corresponds to the case g{σq “ 3. The measurement is weaker in
the case described by the green curve (g{σq “ 0.5), in which the peaks begin to overlap. The red
dotted function corresponds to the linear regime, for which g{σq “ 0.05. Notice that the function
has a Gaussian shape, that arises as a large superposition of two peaks.

4.9.3 Fisher information in the presence of white noise

In this section we will consider a quantum measurement that is affected by the presence

of classical noise. Let R be the result of an efficient quantum measurement performed on

a system in a state ρ. The probability that the result R is equal to r is given by

P pR “ rq “ Tr
”

M̂ :
r M̂rρ

ı

, (4.128)

where M̂r is the measurement operator associated to the outcome r. Suppose, however,

that we do not have access to the quantum measurement. Instead, a signal S is read,

which consists of the sum of the quantum measurement R „ P pR “ rq and a noise

variable Υ „ P pΥ “ υq,

S “ R`Υ. (4.129)
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The noise variable Υ is assumed to be a continuous variable. Equation (4.129) describes

the presence of additive noise. Since the signal arises from the addition of two random

variables, the probability of reading the signal S “ s is given by the convolution between

the probability density function of the quantum measurement and the noise,

P pS “ sq “

ż

P pΥ “ υqP pR “ s´ υqdυ

“ Tr

„
ż

a

P pΥ “ υqM̂s´υρM̂
:
s´υ

a

P pΥ “ υqdυ



. (4.130)

Hence, the measurement can be described by an operation Osρ “
ş

dυÂυ,sρÂ
:
υ,s, with

elements (or Krauss operators) given by Âυ,s “
a

P pΥ “ υqM̂s´υ. Thus, the unnormalized

conditioned state of the system, after the result r is obtained, is given by ρ̃s “ Osρ and

the probability (4.130) corresponds simply to TrrOsρs. When the measurement is weak,

this probability reduces to

P pS “ sq “

ż

dυP pΥ “ υq|ψps´ υq|2
!

1` 2pg{~q
A

Â
E

ImpPwq
)

. (4.131)

The Fisher information about g contained in this density function can be computed using

(4.15) or (4.18), and the result should be compared to (4.60), in order to appreciate the

effects of the noise. For simplicity, let us consider the “standard case”, in which 1) the

position of the measurement device is observed, 2) the meter starts in the complex Gaussian

function (4.64), 3) the system is a qubit, and 4) the measurement is weak (g{σq ! 1). As

was shown in section (4.9.1), under these circumstances and in the absence of classical

noise, the Fisher information corresponds to (4.65). If noise is taken into consideration, it

is necessary to specify the type of noise that affects the measurement in order to solve the

convolution (4.131) and compute the Fisher Information.

A common type of noise is the Gaussian white noise, described by a normal probability

density with zero mean and variance σ2
noise,

P pΥ “ υq “
1

?
2πσnoise

exp

"

´
υ2

2σ2
noise

*

. (4.132)
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In this case, the convolution becomes a Gaussian distribution with mean equal to q0 and

variance σ2
q ` σ

2
noise, and the Fisher information corresponds to

Ipgq “

A

Â
E2

σ2
q ` σ

2
noise

. (4.133)

By comparing this result with (4.65) it is clear that the presence of additive Gaussian white

noise reduces the information about the parameter we wish to estimate. The detrimental

effects of the noise will be small as long as σnoise{σq ă 1.

Now, let us take a look at the scenario with post-selection. If post-selection is per-

formed, the probability to read the signal S “ s in the intermediate result and to select

the pure state |ψf y will be given by

P ps, fq “ xψf | Osρ |ψf y . (4.134)

This result should be compared with (4.72). The probability of post-selection is obtained by

integrating over s, and the conditioned probability is obtained from P ps|fq “ P ps, fq{P pfq.

In an analogous way to the result (4.74), now the Fisher information is

Ipgq “ P pfqIpg|fq ` IP , (4.135)

where Ipg|fq corresponds to the Fisher information contained in P ps|fq and IP is the

information in the partition of the whole ensemble into two sub-ensembles, according to

the result of the post-selection (success or failure).

For simplicity, let us analyse the previously called “standard case”. Assume also that

the weak value is real and the noise is (4.132). In this simplified situation, the post-

selection probability (4.125) is simply the the transition probability | xψf |ψf y |
2 (it contains

no information about g) and the conditioned probability density becomes

P ps|fq “
1

?
2π

b

σ2
q ` σ

2
noise

exp

#

´
rs´ gRepAwqs

2

2pσ2
q ` σ

2
noiseq

+

, (4.136)
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namely, the weak value acts as an amplification factor of the displacement, but the noise

widens the probability density function. Thus, the Fisher information (4.135) corresponds

to

Ipg|fq “ | xψi|ψf y |2 ¨
RepAwq

2

σ2
q ` σ

2
noise

. (4.137)

Consequently, the effect of Gaussian white noise is the same as in the case without post-

selection, namely, it reduces the Fisher information by augmenting the variance. This

occurs because the initial wave function of the meter is a Gaussian function and thus its

convolution with another Gaussian function produces a final density function that is also

Gaussian, whose variance and mean simply correspond to the addition of the variances and

means of each function, respectively. As a final remark, notice that the Fisher information

(4.133) has the same order of magnitude as (4.137). Thus, in the so called “standard case”,

the information remains approximately the same, with or without post-selection [142, 143].

However, in the last situation, all the information is contained in a small amount of post-

selected events. This fact can be beneficial in the presence of detector saturation [144].

4.9.4 Fisher information in the presence of correlated noise

In this last section we will examine the Fisher information when the intermediate

measurement is affected by classical noise that has correlations in time. For simplicity,

we will restrict our analysis to the “standard case”, that is characterized by 1) a meter

initially prepared in the state (4.64), 2) the observation of the position of the measurement

device, 3) a two-level system (qubit), and 4) a weak measurement. Without post-selection

this last feature means that g{σq ! 1, whereas with post-selection a weak measurement

is described by conditions (4.122) and (4.123). Also, when post-selection is performed, it

will be assumed that the weak value is real.

Consider a sample of N elements tS1, ..., SNu, or repetitions of the experiment. As in

the previous section, assume that each observation has a “quantum component”, denoted

by Ri, and a “classical component”, denoted by Υi. The first component appears due

to a measurement performed on a quantum system, and the latter is a consequence of
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the presence of classical noise affecting the measurement process. The variables Ri are

uncorrelated, while the classical variables Υi may be correlated. If the noise is additive,

then each observation, or signal, can be expressed as

Si “ Ri `Υi, @i “ 1, ..., N. (4.138)

First, let us consider the case without post-selection. The joint probability to read

Si “ si, @i “ 1, .., N , will be denoted as P p~SN “ ~sN q, where ~SN and ~sN are N -dimensional

vectors; the first contains N random variables and the second contains the N real values

taken by them. The subscript N has been used explicitly to emphasize that the vector has

dimension N (later, when the case with post-selection is analyzed, the dimension of the

vectors will correspond to the number of post-selected events).

On the other hand, the noise process will be described by an N -dimensional Gaussian

distribution,

P p~ΥN “ ~υN q “
1

?
2π

N
|C|N{2

exp

"

´
~υTNC

´1~υN
2

*

. (4.139)

The N dimensional vectors, ~ΥN and ~υN , contain N random variables or noise variables

(Υi) and the N values taken by them (υi), respectively. Thus, P p~ΥN “ ~υN q denotes the

joint probability that Υi “ υi, @ i “ 1, .., N . The vector ~υTN is the transpose vector of

~υN . The covariance matrix C is an N ˆN matrix whose diagonal elements represent the

variance of the noise, which will be assumed to be the same for all the noise variables,

i.e. Ci,i “ σ2
noise. The off-diagonal terms Ci,j (i ‰ j) represent the covariance between

the different noise variables. In general, the covariances Ci,j may take positive or negative

values. The covariance matrix should be a positive definite matrix and the covariances

satisfy the Cauchy-Schwarz inequality, i.e. |Ci,j | ď σ2
noise. The inverse of the covariance

matrix is C´1 and |C| is its determinant.

Consequently, the joint probability of obtaining the outcomes Si “ si, in the presence
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of additive noise of the type (4.139), is given by

P p~SN “ ~sN |gq “

ż

d~υNP p~ΥN “ ~υN qP pR1 “ s1 ´ υ1, ..., RN “ si ´ υN |gq, (4.140)

where d~υN “ dυ1 . . . dυN . Notice that now it has been made explicit the fact that this

distribution depends on the value of the parameter g, i.e. that it can be viewed as a

likelihood function. Note also that the integral represents a convolution between two

multidimensional probability distributions, of the noise and of the quantum measurements.

Since the quantum measurements are independent of each other, then

P pR1 “ s1 ´ υ1, ..., RN “ si ´ υN |gq “
N
ź

i“1

P pRi “ si ´ υiq. (4.141)

In the standard case (described at the beginning of this section), the probability that each

quantum measurement takes a certain value follows a Gaussian distribution with mean

value equal to g
A

Â
E

and variance equal to σ2
q . This fact can be seen from expression

(2.43). Then, since the distribution (4.141) is the product of N Gaussian distributions,

P pR1 “ r1, ..., RN “ rN |gq “
1

?
2π

N
|D|N{2

exp

"

´
p~rN ´ ~µN q

TD´1p~rN ´ ~µN q

2

*

.(4.142)

The vector ~rN has the values ri as its elements. The covariance matrix is a diagonal matrix

with elements Dii “ σ2
q . The vector ~µN contains the N means of the distribution, all of

which are equal to g
A

Â
E

,

~µN “ g
A

Â
E

¨

˚

˚

˚

˝

1
...

1

˛

‹

‹

‹

‚

. (4.143)

The convolution of two Gaussian distributions is also a Gaussian distribution, with covari-

ance matrix and vector of means equal to the sum of the corresponding covariance matrices

and vector of means. Therefore, the distribution (4.140) will be a Gaussian with vector of
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means given by (4.143) and a covariance matrix equal to

E “ C `D “

¨

˚

˚

˚

˚

˚

˚

˝

σ2
q ` σ

2
noise C1,2 ¨ ¨ ¨ C1,N

C2,1 σ2
q ` σ

2
noise C2,N

...
. . .

...

CN,1 CN,2 σ2
q ` σ

2
noise

˛

‹

‹

‹

‹

‹

‹

‚

. (4.144)

From (4.15) or (4.18) it is a straightforward calculation [146, 145] to show that the Fisher

information about the parameter g, contained in a multidimensional Gaussian distribution

with covariance matrix E and vector of means ~µ, is given by

Ipgq “
A

Â
E2 N

ÿ

i,j

E´1
i,j , (4.145)

where E´1
i,j denotes the pi, jq element of the inverse of the covariance matrix E´1. Notice

that, if the noise is uncorrelated, i.e. Ci,j “ 0 @i ‰ j, then expression (4.145) reduces to

(4.133). In the opposite situation, when the correlations do not decay and are constant

[145],

Ci,j “ η P R @i, j P t1, ..., Nu ^ i ‰ j, (4.146)

then it is easy to check that the elements of the inverse of the covariance matrix of E

(4.144) are given by

E´1
i,j “

1

σ2
q ` σ

2
noise

˜

δij ´
η

σ2
q ` σ

2
noise `Nη

¸

. (4.147)

This scenario, in which the correlations of the noise process are constant, will be referred

as the case affected by the presence of colored noise. In this model, in order for the

covariance matrix to be positive definite, the covariances should satisfy 0 ď η ď σ2
noise. In

this situation, the Fisher information (4.145) becomes

Ipgq “
A

Â
E2 N

σ2
noise ` σ

2
q `Nη

. (4.148)
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First, notice that when the sample is large, in the sense that N " pσ2
noise ` σ2

q q{η,

the Fisher information will be constant. It will be independent of σ2
q and σ2

noise, and will

only depend on the expectation value of Â and on the covariance η. Indeed, the Fisher

information will reach a constant value of

Ipgq “
A

Â
E2
{η. (4.149)

On the other hand, if the sample is small, N ! pσ2
noise`σ

2
q q{η, then Ipgq „ N , i.e. the

precision of the measurement will scale as the SQL (as long as N is small). In this regime

the Fisher information becomes

Ipgq “

A

Â
E2

σ2
q ` σ

2
noise

¨N, (4.150)

that corresponds to N times the information (4.133), i.e. the measurement behaves has

N independent measurements. This scenario is feasible when η is much smaller than the

variance, which explains that the measurements behave almost as if the were independent.

Let us consider now the case when post-selection is performed, which is a bit more

involved. In this scenario, the experiment is repeated N times, but the post-selection may

be successful in k cases, 0 ď k ď N . Notice that the k successfully post-selected events

may occur in different ways.

For example, if N “ 4 and k “ 2, then the two successful post-selections may occur

in six different ways; in the first and second experiments, which is denoted by t1, 2u, or in

the second and third experiments, which is similarly denoted by t2, 3u, and so on for the

rest of the other four possibilities. Thus, in general, the set ti1, i2, ..., iku means that the

first successful post-selection occurred in the i1-th repetition of the experiment, the second

in the i2-th repetition, and so on. Notice that i1 ă i2 ă ... ă ik and that 1 ď ij ď N , @

j “ 1, ..., k. For N repetitions and k successful post-selections, the number of possible sets

equals
`

N
k

˘

. Let us label each of these sets with an auxiliary variable J “ 1, ...,
`

N
k

˘

. For

example, in the previously considered case (N “ 4, k “ 2), the set J “ 1 may correspond

to the occurrence of successful post-selections in the first and second repetitions, namely,
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to the set t1, 2u.

Recall that every time the post-selection is successful the meter is observed and when it

fails the results are ignored. Therefore, if k out of N events are successfully post-selected,

and they occur according to the set J “ ti1, i2, ..., iku, we will end with k observations of

the measurement device (4.138),

~SJk “

¨

˚

˚

˚

˝

Si1
...

Sik

˛

‹

‹

‹

‚

. (4.151)

Let us compute the probability that ~SJk “ ~sk, where ~sk is a k-dimensional vector with real

values. This probability will be denoted as PN p~S
J
k “ ~skq and is given by

PN p~S
J
k “ ~skq “

´

1´ | xψf |ψiy |
2
¯N´k

ż

d~υkP p~Υ
J
k “ ~υkqP p~R

J
k “ ~sk ´ ~υk, fq, (4.152)

where d~υk “ dυ1 ¨ ¨ ¨ υk. In an analogous way to (4.151), the vector ~ΥJ
k is formed by the

k noise variables specified by the set J . Similarly, ~RJk is a vector of k random variables

associated to the results of the quantum measurements, specified by J .

The probability P p~RJk “ ~sk ´ ~υk, fq corresponds to the probability that Rij “ sj ´ vj

and that the state |ψf y is successfully post-selected, @ j “ 1...k. Since the results of the

quantum measurements are not correlated, then

P p~RJk “ ~qk, fq “
k
ź

j“1

P pRij “ qj , fq, (4.153)

which is the equivalent of (4.141) for the post-selection case. From (3.25) it is easy to see

that, in the ij-th repetition of the experiment, the probability that the quantum measure-

ment Rj equals qj and the state |ψf y is post-selected, is given by

P pRij “ qj , fq “ | xψf |ψiy |
2 ¨ |ψpqj ´ gAwq|

2. (4.154)

Therefore, the distribution (4.153) corresponds to the product of | xψf |ψiy |
2k and a k-
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dimensional Gaussian distribution with covariance matrix equal to D (see equation 4.142),

which is a diagonal matrix with elements Di,i “ σ2
q . The vector of means is given by

~µk “ gAw

¨

˚

˚

˚

˝

1
...

1

˛

‹

‹

‹

‚

pkˆ1q

, (4.155)

that is the equivalent result to (4.143) for the post-selection scenario. Hence, besides a

factor of | xψf |ψiy |
2k, the integral term in (4.152) corresponds to the convolution between

a Gaussian distribution (with vector of means ~µk and covariance matrix D) and the dis-

tribution P p~ΥJ
k “ ~υkq, which is obtained from (4.139), by marginalizing over the variables

not included in the set J . So, it is also a Gaussian distribution, with vector of means equal

to the null vector and covariance matrix given by

CJ
k “

¨

˚

˚

˚

˚

˚

˚

˝

σ2
noise Ci1,i2 ¨ ¨ ¨ Ci1,ik

Ci2,i1 σ2
noise Ci2,ik

...
. . .

...

Cik,i1 Cik,i2 σ2
noise

˛

‹

‹

‹

‹

‹

‹

‚

pkˆkq

. (4.156)

Notice that it contains the covariances between the noise variables, but only between those

k variables associated to the cases when the post-selection is successful (which are specified

by J). Therefore, besides the factor of | xψf |ψiy |
2k, the convolution in (4.152) is finally

a Gaussian distribution with the vector of means given by (4.155) and covariance matrix

EJ
k “ CJ

k `D, which is a similar result to (4.144).

The previous analysis shows that, given k successful post-selections out of N repetitions

of the experiment, and assuming that the post-selected events occur in the order defined

by the set J , the probability to read ~sk, i.e. the distribution (4.152), is simply the product

between p1´| xψf |ψiy |
2qN´k ¨ | xψf |ψiy |

2k and a Gaussian distribution with vector of means

~µk and covariance matrix EJ
k . In an analogous way to (4.145), the Fisher information about
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g contained in this distribution is given by

IJN,kpgq “ A2
w ¨ p1´ | xψf |ψiy |

2qN´k ¨ | xψf |ψiy |
2k ¨

k
ÿ

i,j

pEJk q
´1
i,j . (4.157)

This is a involved expression, which requires knowledge about the different correlations

between the noise in the post-selected events. If the noise is “coloured” (4.146), namely,

the correlations are constant, then the elements of the matrix EJ
k are independent of the

order defined by the set J . In this scenario, the Fisher information becomes

IJN,kpgq “ A2
w ¨ p1´ | xψf |ψiy |

2qN´k ¨ | xψf |ψiy |
2k ¨

«

k

σ2
q ` σ

2
noise ` kη

ff

. (4.158)

Finally, the total Fisher information in the post-selection strategy is obtained simply

by summing IJN,kpgq over all the possible values of k and J ,

Ipgq “ A2
w

N
ÿ

k“0

ˆ

N

k

˙

p1´ | xψf |ψiy |
2qN´k ¨ | xψf |ψiy |

2k ¨

«

k

σ2
q ` σ

2
noise ` kη

ff

. (4.159)

This expression should be compared with the Fisher information associated to the strategy

that does not employ post-selection (4.148). If the sample is small, in the sense that

N ! pσ2
q ` σ

2
noiseq{η, then the Fisher information (4.159) becomes

Ipgq “
´ A2

w

σ2
q ` σ

2
noise

¯

| xψf |ψiy |
2 ¨N, (4.160)

that corresponds to N times the information (4.137), because the effect of the correlations

are small as compared to the variance of the noise. On the other hand, if N | xψf |ψiy |
2 "

pσ2
noise ` σ

2
q q{η, then the Fisher information (4.159) achieves a constant value equal to

Ipgq “ A2
w

η
. (4.161)

This value may be far larger than
A

Â
E2
{η, the Fisher information without post-selection

(4.149). In conclusion, in the presence of correlated noise and for large samples, the

saturation value of the Fisher information (in the so called “standard case”) is largely
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increased (as compared to the non post-selection case) by employing the post-selection

strategy and anomalous real weak values.

The Fisher information is a formal statistical tool to characterise the maximum preci-

sion that can be achieved by an estimation procedure. There are other criteria, such as the

signal to noise ratio (SNR), under which the benefits of the post-selection strategy over the

non post-selection scenario can be appreciated. Consider that the parameter is estimated

from the sample mean estimator (4.27),

ĝSMEpNq “

řN
i“1 Si
N

, (4.162)

where Si are given by (4.138). In the non post-selection case the mean value of the estimator

equals g
A

Â
E

. If the noise variables have long correlation times (coloured noise), then the

variance of the estimator corresponds to

V arrĝSMEpNqs “
σ2
noise ` σ

2
q ´ η

N
` η. (4.163)

Thus, for a large sample, the SNR (4.22) of the estimator becomes g
A

Â
E

{
?
η. When

post-selection is employed there will be, on average, M successfully post-selected events,

where M “ N | xψf |ψiy |
2. The mean value of the sample mean estimator will be gAw,

while its variance will correspond to

V arrĝSMEpMqs “
σ2
noise ` σ

2
q ´ η

N | xψf |ψiy |2
` η. (4.164)

As in the previous case, when the sample is large, the SNR of the sample reaches the

value gAw{
?
η, which is larger than the SNR of the non post-selection case (as long as

the weak value is anomalous). Therefore, as with the Fisher information, the SNR is also

increased when post-selection is employed and the experiment is affected by noise with

long correlation times. If the noise is uncorrelated, the SNR of the sample mean, with and
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without post-selection, is given by

SNR “
gAw| xψf |ψf y |
b

σ2
q ` σ

2
noise

¨
?
N , SNR “

g xAy
b

σ2
q ` σ

2
noise

¨
?
N, (4.165)

respectively. Notice that both values scale as
?
N and have the same order of magnitude.

Consequently, when the measurement is affected by white noise, the SNR does not change

substantially by using one strategy or the other. We have already arrived to this conclusion

in the previous section, by comparing the Fisher information (4.133) to (4.137).

4.9.5 Conclusions

As a brief summary of this last section, it should be pointed out that in 4.9.1 we have

analyzed the Fisher information contained in a weak measurement without post-selection

and showed, on the basis of the results presented in [135], that the quantum Fisher can

be achieved when the initial state is an eigenstate of the measured variable. Then, we

have provided an analysis of the validity of the so called “linear regime”. Next, in 4.9.2 we

have described the “optimal post-selection strategy”, which presents some of the results

given in [141] but mostly in [143]. The subsections “Fisher Information in the conditioned

probability” and “Linear regime for a qubit and a Gaussian meter” are of our own analysis.

The conclusions to which we have arrived in subsections 4.9.3 and 4.9.4 are also presented

in [146, 145]. Expression (4.159), the Fisher information in the presence of correlated noise,

is of our own analysis.
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Chapter 5

Optomechanical system in

Mach-Zehnder interferometer

Optomechanical systems [154, 155] provide an interface between light and mechanical

motion. In its most simple configuration, an optomechanical system consists of an optical

or microwave cavity with one of its end mirrors that vibrates as if it was attached to a

spring. Typically, the cavity is driven by laser light. The estimation of the phase shift of

the light reflected from (or transmitted through) the cavity allows to monitor continuously

the motion of the mirror, achieving the SQL in position measurements [156, 157, 158, 159,

160, 161] or approaching the HL when quantum non demolition (QND) measurements

[166, 160, 165] of a single mechanical quadrature [163, 162] or of the phonon occupation

number [164] are implemented. Displacements in the order of attometers, and below, can

be detected within one second of monitoring [167].

These hight sensitivities are particularly relevant for gravitational waves detection. In

a gravitational wave interferometer [168], an optical cavity is put in each arm, the length

of the cavity being in the order of km and the masses of the mirrors of several kg. A

gravitational wave changes the length of the cavity, which modifies the frequencies of the

cavity modes. In turn, the light emitted from the cavity and detected at the output of the

interferometer is modified.

Quantum effects can be appreciated when all thermal quanta are removed from the
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mechanical component, i.e. when it is put near to its motional ground state. Micro and

nano mechanical devices, whose masses are of the order of 10´12 kg (or less), have been

cooled down to states with mean occupation number less than one [169, 170, 171, 172].

Large objects, with masses of the order of kg, have been cooled down to states with nearly

200 phonons [173]. Recently, employing the suspended mirrors of the Laser Interferometer

Gravitational-Wave Observatory (LIGO), the center of mass of a mechanical oscillator with

a mass of 10 kg was cooled down to a state with nearly ten quanta [211].

The cooling of mechanical devices with laser light can be made in so called “strong

coupling regime”, in which the Heisenberg-Langevin equations for the optical and mechan-

ical variables become linear. In this regime, not only energy can be extracted from the

mechanical components into the optical modes, but also the inverse is possible, i.e. the

conversion of photons into phonons.

The coherent control and manipulation of mechanical states offers the possibility to

study fundamental aspects of quantum theory, such as the “measurement problem”, with

regards to the decoherence of superpositions of macroscopic objects into classical states.

Different scaling rules for the decoherence rates (in terms of the number of particles) can

in principle be tested by generating distinct superpositions of mechanical objects with

large masses [179, 177, 180]. Also, the relation between gravity and quantum theory can

be explored, by analysing the role of gravity in the decoherence of the superpositions

[174, 175], or even by directly testing predictions of quantum gravity [176].

The control of mechanical states is also important for sensing applications, in areas such

as microscopy[181], magnetometry [182] and acceleration sensing [183]. In particular, the

generation of mechanical squeezed states [184], with reduced uncertainty in the position

or momentum variables, can lead to higher sensitivities in different applications.

Mechanical elements can also be used to mediate the interaction between different sys-

tems, a configuration that has been referred as hybrid systems. Such systems can employ

a mechanical device to couple cold atoms [185], spins [186, 187] or superconducting qubits

[171, 188] to an optical mode, which has applications in quantum information processing

[189]. The possibility to establish interactions between flying qubits and stationary (non

optical) qubits has applications in communications [190]. Devices that act as quantum
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memories [191] can be designed, based on the possibility to “storage” light inside optome-

chanical systems due to the optomechanically induced transparency effect [192, 193, 194].

In this work, we use an optomechanical system (a cavity with a vibrating mirror)

inserted inside an interferometer to create optomechanical entanglement. Single photon

detection at the outputs of the interferometer will produce weak value amplification of the

effect of the photon on the mechanical oscillator, via post-selection. In the first section

of this chapter we present the hamiltonian description of a cavity with a moving mirror.

In section 5.2, the generation of optomechanical entanglement with an interferometer is

described. Also, it is explained how the observation of the interferometric visibility allows

to study the decoherence of a vibrating mirror. In the next section, our experimental

proposal is described, which is based on a Mach-Zehnder interferometer. The weak value

amplification effect, both for a mirror starting in its motional ground state or in a thermal

state, is analyzed in section 5.4 from the perspective of the Fisher information and the

signal to noise ratio. Finally, in section 5.5, the amplification effect in the presence of

classical noise is studied.

5.1 Cavity optomechanics

A Fabry-Pérot resonator consists of two highly reflecting mirrors separated by a distance

L. The electric field vanishes at the location of the mirrors and thus the wave number of

the different (longitudinal) modes are kn “ pπ{Lqn, n P N. The dispersion relation in

empty space is ωn “ ckn, where c is the speed of light. The difference between the angular

frequencies of neighbouring modes is called the free spectral range (FSR) of the cavity,

∆ω “ pπ{Lqc. For resonators with lengths in the order of centimetres, ∆ω is of the order

of GHz. Thus, the modes are well separated in frequency and are individually addressable.

Let ωcav be the angular frequency of one mode of interest. The energy of the mode is

~ωcavâ:â, where â (â:) is the boson annihilation (creation) operator of the mode into

consideration.

Assume now that one of the mirrors is allowed to vibrate, as it is shown in figure 5.1.

The vibrations of the center of mass of the mirror can be treated quantum-mechanically,
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Figure 5.1: Optomechanical system (OM): A Fabry-Pérot with a movable end mirror. The center
of mass of the mirror is treated as a quantum harmonic oscillator. The length of the cavity is
modulated by the small vibrations of the mirror. The interaction between the radiation field and
the mechanical oscillator occurs due to the radiation pressure force.

as an harmonic oscillator, with position and momentum operators denoted as X̂ and P̂ .

The corresponding creation and annihilation operators are

b̂ “

c

MΩ

2~

´

X̂ ` i
1

MΩ
P̂
¯

, b̂: “

c

MΩ

2~

´

X̂ ´ i
1

MΩ
P̂
¯

, (5.1)

where M is the total mass of the mirror and Ω is the natural frequency of the oscillator.

For a micro-sized mechanical oscillator M „ 10´12 kg and Ω „ 108 Hz [167]. Consequently,

the total energy inside the cavity is given by

Ĥ “ ~ωcavpX̂qâ:â` ~Ωb̂:b̂. (5.2)

Notice that the length of the cavity (and therefore the frequency of the mode) depends

on the position of the mechanical oscillator, i.e. the hamiltonian represents the energy of

a parametric oscillator. In turn, the frequency of the mode may be Taylor expanded as

ωcavpX̂q “
ncπ

L` pX
“

´ncπ

L

¯

loomoon

ωcav

´
1

L

´ncπ

L

¯

loomoon

ωcav

X̂ ` ... (5.3)
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For most applications it suffices to keep the first order term of the Taylor expansion. The

term G ” ´BωcavpX̂q{BX̂ is called the optomechanical frequency shift per displacement

or the frequency pull parameter [155]. For the system under consideration G “ ωcav{L.

Notice that the sign of G depends on the how the sign of the mechanical displacement is

defined. If a positive displacement of the mirror increases the length of the cavity (as in the

present case), then G has positive sign. In the opposite case, when a positive displacement

of the mirror reduces the cavity length, producing an increase of the frequency, then G has

negative sign. Therefore, (5.2) becomes

Ĥ “ ~ωcavâ:â` ~Ωb̂:b̂´ ~Gâ:âX̂. (5.4)

The term that multiplies X̂ in the hamiltonian is the radiation pressure force, F̂rad “

~Gâ:â, i.e. it is proportional to the number of photons inside the cavity. It is possible

to arrive to a similar result by using a classical argument. A single photon that hits

a wall transfers an amount of momentum equal to 2h{λ, where λ is the wavelength of

the photon. If the photon stays inside the cavity for a time equal to τ , then it will hit

one the mirrors τ ¨ c{p2Lq times, producing a total transfer of momentum ∆p equal to

τ ¨ pch{λq ¨ p1{Lq “ τ ¨ ~ ¨ ωcav{L “ τ ¨ ~ ¨ G. Consequently, the radiation pressure force

exerted by an intracavity photon is ∆p{τ “ ~G. For an optical cavity, with length L „

mm, G „ 10´ 1000 Hz/µm.

Notice that the interaction between the vibrating mirror and the electromagnetic field

inside the cavity is a non linear process, described by the product between three operators;

the complex amplitude of the field, that appears twice (three-wave mixing process), and the

position of the mirror. The interaction 9 â:âX̂ is called the optomechanical interaction.

Although it has been derived here for a Fabry-Pérot cavity with a vibrating mirror, it is

expected to appear every time the boundary conditions of an electromagnetic cavity are

modified. For the particular system under consideration, a derivation of the optomechanical

interaction from first principles can be found in [195].

The position operator can be expressed as X̂ “ x0pb̂ ` b̂:q, where x0 are the so called
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zero-point fluctuations of the mechanical oscillator, which are defined as

x0 “

c

~
2MΩ

. (5.5)

For a mirror of the size of the order of µm x0 „ 10´15 m. In terms of the operators b̂ and

b̂: the hamiltonian (5.4) can be written as

Ĥ “ ~ωcavâ:â` ~Ωb̂:b̂´ ~g0â
:âpb̂` b̂:q, (5.6)

where the parameter g0 “ Gx0 „ 1 ´ 103 Hz is the vacuum optomechanical coupling

strength that characterises the magnitude of the coupling between a single photon and a

single phonon.

Let |nym be a number state of the mechanical harmonic-oscillator (the subscript m has

been used to indicate that it is a state of the mirror, which will act as the measurement

device or apparatus) and let |my be a number state of the cavity, where n and m in N0 (the

number m inside the ket, that indicates the number of photons inside the cavity, should

not be confused with the subscript m, which simply indicates that the state is a mechanical

state). Next, let us define a displaced number state [196] as

|npmqym “ exp
!

m
´g0

Ω

¯

pb̂: ´ b̂q
)

|nym , (5.7)

where m P N0 represents the number of photons inside the cavity, i.e. the state |npmqym is

a mechanical state that arises from the displacement of a mechanical number state |nym by

m photons. For example, if n “ 0 (the mirror is in the ground state) and the cavity contains

one photon (m “ 1), then the state |0p1qym is simply a coherent state |g0{Ωym. Also, if

there are no photons inside the cavity (m “ 0), then |np0qym “ |nym. The eigenstates of

the hamiltonian (5.6) are product states |npmqym |my, with energy levels given by

Ĥ |npmqym |my “ En,m |npmqym |my , En,m “ ~
”

ωcavm´
´g2

0

Ω

¯

m2 ` Ωn
ı

. (5.8)

The energy-level structure of the optomechanical system is shown in figure 5.2. Addition-
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Figure 5.2: Energy levels of the optomechanical hamiltonian (5.6). For a fixed number of photons
inside the cavity, the spacing between the energy levels is ~Ω. The energy spectrum acquires
an offset of ωcavm ´ pg20{Ωqm

2, where m denotes the number of photons inside the cavity. The
non linear effect occurs because the frequency of the cavity depends on the number of photons,
generating a Kerr-type non linearity or an effective photon-photon interaction.

ally, notice that the hamiltonian (5.6) preserves the total number of particles, rĤ, â:â `

b̂:b̂s “ 0.

In order to analyse the evolution generated by the optomechanical hamiltonian, notice

that free energy of the electromagnetic field commutes with the other two terms in the

hamiltonian (the energy of the mirror and the optomechanical interaction). Thus, the

time evolution operator can be written as

pUptq “ exp
!

´pi{~q pHt
)

“ exp
 

´ipωcavtqâ
:â
(

exp
!

´ipΩtqb̂:b̂` ipg0tqâ
:âpb̂` b̂:q

)

. (5.9)

It is possible to employ the sometimes called polaron transformation [178] pS “ exp
!

pg0{Ωqpâ
:âqpb̂: ´ b̂q

)

in order to work out the previous expression. This transformation corresponds to a (me-

chanical) displacement operator that produces a displacement in phase space of pg0{Ωqâ
:â.

The real parameter g ” g0{Ω corresponds to the displacement produced by a single photon

in the (mechanical) phase space, i.e. it is the displacement of the equilibrium position in

units of x0. For an oscillator with frequency Ω „ 1 ´ 100 MHz, g is typically a small
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parameter with values in the range 10´5 ´ 10´1. Using the polaron transformation, the

time evolution operator can be expressed as

pUptq “ pS pS: pUptqpS pS:

“ exp
 

´iωcavtâ
:â
(

exp
 

ipgâ:âq2
(

pS exp
!

´iΩtb̂:b̂
)

pS:

“ exp
 

´iωcavtâ
:â
(

exp
 

ipgâ:âq2
(

pS exp
!

´iΩtb̂:b̂
)

pS: exp
!

iΩtb̂:b̂
)

exp
!

´iΩtb̂:b̂
)

“ exp
 

´iωcavtâ
:â
(

exp
 

ipgâ:âq2
(

pS exp
!

gâ:âpb̂eiΩt ´ b̂:e´iΩtq
)

exp
!

´iΩtb̂:b̂
)

.(5.10)

Notice that in this derivation the well known operator expansion for two non-commuting

operators Â and B̂,

exp
!

αÂ
)

B̂ exp
!

´αÂ
)

“ B̂ ` αrÂ, B̂s `
α2

2!
rÂ, rÂ, B̂ss ` ..., (5.11)

has been used, together with the property T̂ fptẐiuqT̂
: “ fptT̂ ẐiT̂

:uq, for any unitary

transformation T̂ and any analytic function f of a set of operators tẐiu [197]. Using the

property exp
!

Â` B̂
)

“ exp
!

Â
)

exp
!

B̂
)

exp
!

´rÂ, B̂s{2
)

, for any pair of operators Â, B̂

that satisfy rÂ, rÂ, B̂ss “ rB̂, rÂ, B̂ss “ 0, it is straightforward to show that

pS exp
!

gâ:âpb̂eiΩt ´ b̂:e´iΩtq
)

“ exp
!

â:ârb̂:ϕ˚ptq ´ b̂ϕptqs
)

exp
 

´ipgâ:âq2 sinpΩtq
(

,(5.12)

where ϕptq “ gp1´e´iΩtq and ϕ˚ptq is its complex conjugate. By using this result in (5.10)

it is possible to express the time evolution operator as

pUptq “ exp
 

´iωcavtâ
:â
(

exp
 

iφptqpâ:âq2
(

exp
!

â:ârb̂:ϕptq ´ b̂ϕ˚ptqs
)

exp
!

´iΩtb̂:b̂
)

,(5.13)

where φptq “ g2rΩt ´ sinpΩtqs. The first term (from left to right) corresponds to the free

evolution of the radiation field. The second term adds a phase that depends quadratically

on the number of photons, which shows that the optomechanical coupling generates an

effective Kerr nonlinearity or photon-photon interaction. This occurs because the frequency

of the cavity ωcav depends on the position of the mechanical resonator, which in turn

depends on the number of photons inside the cavity. Therefore, ωcav depends finally on the
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Figure 5.3: The (closed) evolution of the initial state |1y |0ym under the hamiltonian (5.6) is
represented in phase space. Each point of the blue line (that represents a displaced harmonic
oscillator) has the expectation value of the x-quadrature as the horizontal coordinate and the
y-quadrature as the vertical coordinate, both calculated in the evolved state at time t. The x-
quadrature is defined as pâ: ` âq{2 and the y-quadrature corresponds to ipâ: ´ âq{2. At half the
vibrational period the displacement of the average position is maximum and equal to 4x0g.

number of photons, which generates the term pâ:âq2. The third term in (5.13) entangles

the photons with the mirror and the last term corresponds to the free evolution of the

mirror.

As a simple example assume that cavity and the mirror start in the initial state |1y |0ym
(the cavity contains one photon and the mirror is in the ground state). After a time t the

initial state will evolve under (5.13) to |1y |ϕptqym, i.e. the mirror evolves into a coherent

state with complex amplitude of ϕptq. This state is represented in figure 5.3, which shows

that the equilibrium position of the ground state is displaced by p2x0qg. It is possible to

derive this result using a classical argument. The mirror is subjected to a constant driving

force equal to ~G. Thus, the displacement of the equilibrium position will be equal to

~G{pMΩ2q “ p2x0qg. Additionally, notice that the maximum displacement of the position

occurs at half the vibrational periods, i.e. at times that are odd multiples of π{Ω.

In this work we will consider a Fabry-Pérot cavity with a vibrating mirror placed in the

middle of the cavity as shown in figure 5.4. This setup is sometimes called the “membrane

in the middle” configuration [155]. The fields in both sides of the cavity couple to the

vibrating mirror with a strength g0 “ x0G, i.e. the same as in the previous case of a
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Figure 5.4: A vibrating mirror is placed in the middle of a Fabry-Pérot cavity. The fields interacts
with the mirror via the radiation pressure force pF “ ~Gpâ:1â1 ´ â:2â2q. In our model there is no
photon hopping between both sides.

one-sided cavity. In this setup, typically, the fields interact with each other via photon

hopping. However, in our model it will be assumed that this interaction is neglectable,

i.e. that the mirror in the middle is perfectly reflecting. The hamiltonian of the system is

therefore analogous to the previous hamiltonian (5.6),

pH “ ~ωcavpâ:1â1 ` â
:
2â2q ` ~Ωb̂:b̂´ ~g0pâ

:
1â1 ´ â

:
2â2qpb̂

: ` b̂q. (5.14)

The operators â1 (â:1) and â2 (â:2) are boson annihilation (creation) operators for the cavity

modes of the left and right sides, respectively. Notice that the frequency of the left and

right modes is the same, because the mirror is placed in the middle of the cavity. Note also

that the radiation pressure force is now proportional to the difference of photons between

both sides of the cavity, because the movement of the mirror in one direction shortens the

length of one side of the cavity while enlarges the other.

The eigenstates of the two-sided optomechanical system are product states,

|ny1 |my2 |kpn´mqym , (5.15)

where |ny1 and |my2 are number states of the sides 1 and 2 of the cavity, respectively, and

|kpn´mqym is a k mechanical number state, displaced by m ´ n photons, according to

(5.7). The energy levels are given by En,m,k “ ~
”

ωcavpn`mq ´
´

g20
Ω

¯

pn´mq2 `Ωk
ı

. The
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Figure 5.5: The evolution of the initial states |ny1 |0y2 |αym (blue circle) and |0y1 |ny2 |αym (red
circle) under the hamiltonian (5.14) is represented in phase space. When n photons are in one side
of the cavity, the mirror oscillates around a new equilibrium position. At half the vibrational period
the displacement of the average position is maximum and equal to 4x0g.

evolution generated by the hamiltonian (5.14) is analogous to (5.13), but now the phase

associated to the Kerr nonlinearity depends quadratically on the difference of photons

between both sides of the cavity,

pUptq “ exp
!

´iωcavtpâ
:
1â1 ` â

:
2â2q

)

exp
!

iφptqpâ:1â1 ´ â
:
2â2q

2
)

ˆ

exp
!

pâ:1â1 ´ â
:
2â2q ¨ rb̂

:ϕptq ´ b̂ϕ˚ptqs
)

exp
!

´iΩtb̂:b̂
)

. (5.16)

The evolution of states of the form |ny1 |0y2 |αym or |0y1 |ny2 |αym, i.e. with n photons

either in the right or the left side of the cavity and the mirror in a coherent state with

amplitude α, is shown in figure 5.5.

5.2 Optomechanical system in an interferometer

The optomechanical hamiltonians (5.6) and (5.14) generate entanglement between “mi-

croscopic” degrees of freedom (the cavity modes) and “macroscopic” degrees of freedom

(the center of mass of a vibrating mirror). The optomechanical entanglement can be

achieved by putting the cavity in one of the arms of a Michelson interferometer [179], as

shown in figure 5.6. The mirror needs to be cool down near to its ground state. Once

the photon passes through the entrance beamsplitter it is put in a coherent superposition

between both paths and therefore the initial state of the cavity and the mirror is described
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Figure 5.6: Michelson interferometer with an optomechanical system in one of the arms creates
optomechanical entanglement.

by the state

´ 1
?

2
|1ya |0yb `

1
?

2
|0ya |1yb

¯

|0ym , (5.17)

where the subscript a or b labels the corresponding path of the interferometer. Under the

hamiltonian (5.6) the state evolves to

eiφptq
?

2
|1ya |0yb |ϕptqym `

1
?

2
|0ya |1yb |0ym , (5.18)

which is an entangled state between the mirror and the photon. Nevertheless, after a full

mechanical period, the mirror returns to the initial position and disentangles from the

radiation field. By tracing over the mechanical degrees of freedom one obtains the reduced

density matrix of the photon, that corresponds to a mixed state, except at multiples of the

mechanical period (because at those instants the mirror is not entangled with the photon).

Consequently, the interferometric visibility

V “ exp
 

´|ϕptq|2{2
(

“ exp
 

´g2r1´ cospΩtqs
(

(5.19)
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Figure 5.7: Mach-Zehnder interferometer with an optomechanical system in both arms, which acts
as a which way detector (WWD). The second beam splitter is not balanced, i.e. the transmission and
reflection coefficients are not necessarily equal. The level of unbalance is described by a parameter
δ (see equation 5.25).

will exhibit decays and revivals. The visibility will be zero at odd multiples of half the

mechanical period (when the entanglement is maximum) but the photon coherence will

revive at multiples of the period, when the state of the photon is pure again. Therefore,

the observation of the visibility, as a function of the time spent in the cavity, allows

to study the entanglement between light and a vibrating mirror. The optomechanical

entanglement was first studied in [178, 199]. Since the mirror is subject to decoherence

and dissipation, the decays and revivals of the visibility will be eventually spoiled. Thus, by

observing the visibility it is possible to test different models that describe the decoherence

of a superposition state of the mirror [177, 179, 180], which is a “large” object formed by

„ 1014 atoms.

In our work we will employ a Mach-Zehnder interferometer to produce optomechanical

entanglement. As will be explained in the following sections of this chapter, the small

displacement caused by a single photon can be largely increased by using the so called

“dark port post-selection” and the weak value amplification effect.

5.3 Description of the experiment

The Mach-Zehnder interferometer is shown in figure 4.1. The action of a balanced

beamsplitter is described by the unitary transformation (4.48). Now, we will assume
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that the second beam splitter, which sometimes is also called the beam merger [200], is

unbalanced. Figure 5.7 shows a Mach-Zehnder with a second unbalanced beamsplitter.

The relationship between the input and output modes is given by

â3 “ râ1 ` tâ2

â4 “ tâ1 ´ râ2, (5.20)

where t and r are (real and positive) transmittances an reflectances of the beamsplitter,

respectively. The minus sign in the second equation is necessary in order for the trans-

formation to be unitary. Physically, it means that the field reflected in lower side of the

beamsplitter acquires a phase of π. In ideal conditions the beamsplitter preserves the en-

ergy, i.e. t2 ` r2 “ 1. Hence, 0 ď r ď 1 and 0 ď t ď 1. See appendix (C) for details

regarding the quantum mechanical description of a beam splitter. The transformation

of the fields (5.20) allows to transform states between the inner and outer paths of the

interferometer, as it is described in the following example.

|0y3 |1y4 “ â:4 |0y3 |0y4

“ ptâ1 ´ râ2q |0y1 |0y2

“ t |1y1 |0y2 ´ r |0y1 |1y2 . (5.21)

The subindices of the states denote the corresponding path in the interferometer. Notice

that in the second step of (5.21) the beam splitter transformation (5.20) was employed,

while the vacuum states outside and inside the interferometer were identified. Conse-

quently, counting a photon in the arm 4 is equivalent to select the state

|ψf y “ t |1y1 |0y2 ´ r |0y1 |1y2 (5.22)

inside the interferometer. Analogously, counting a photon in the arm 3 is equivalent to the

selection of the state

∣∣ψKf D “ r |1y1 |0y2 ` t |0y1 |1y2 . (5.23)
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If one photon enters the interferometer through one of the input ports, while the second

port is left in the vacuum state, the field will evolve along the first (balanced) beam splitter

and enter the interferometer. The state of the field inside the interferometer will correspond

to coherent a superposition of the two paths, described by

|ψiy “
|1y1 |0y2 ` |0y1 |1y2?

2
. (5.24)

Therefore, in the absence of the optomechanical system, the probability to count the photon

in the arm 4 is given by | xψi|ψf y |
2 “ pt´ rq2{2, while the probability to detect the photon

in the arm 3 corresponds to |
A

ψi

ˇ

ˇ

ˇ
ψKf

E

|2 “ pr` tq2{2 “ 1´pt´ rq2{2. It is useful to define

a parameter δ that quantifies the level of unbalance of the beamsplitter as

δ “ t´ r. (5.25)

If δ “ 0 the beamsplitter will be balanced, as it is usual in most cases. In this situation,

the photon will be detected with certainty in the arm 3, while no light will go through

the other arm. This occurs due to the wave behaviour of the photon, i.e. because there

is constructive interference in the arm 3 and destructive interference in the arm 4 (recall

that the photon reflected in the lower side of the beamsplitter acquires a phase of π).

If δ is a small parameter, i.e. the beam splitter is slightly unbalanced, little light goes

through the arm 4, while most light passes through the arm 3. For this reason, in this

scenario, the arm 3 is typically called the “bright port” and the other outer arm is the

“dark port”.

When δ “ 1 (the beam splitter transmits all the light) or δ “ ´1 (the beamsplitter acts

as perfectly reflecting mirror), there is a 50% probability to detect the photon in each arm.

This configuration shows the particle behaviour of the photon. Indeed, when δ “ ˘1 the

second beam splitter plays no role, as if no second beam splitter was present. Thus, each

photon counter will “click” every time the photon has gone through the corresponding

path. Since the probabilities of “clicking” of both detectors are the same, the photon

behaves like a particle that enters the interferometer and randomly takes one of the two

paths.
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In our setup a two-sided optomechanical cavity will be placed inside the interferome-

ter, as shown in figure 5.7. As was explained in the previous section, a single photon will

produce a maximum displacement of the average position of 4x0g at half the vibrational

period (see figures 5.3 and 5.5). Placing the optomechanical system inside the interferome-

ter will allow us to employ weak value amplification to enlarge the displacement caused by

a single photon. This effect will put all the Fisher information about the parameter g in

the post-selected events, which may be useful when we need to estimate g from a “small”

amount of post-selected photons. As will be explained below a “post-selected photon” is

simply a photon detected in the dark port. Additionally, if the experiment is performed

in the presence of noise with long correlation times, then the Fisher information can be

further increased as compared to the scenario without post-selection, i.e. when all the

photons are used to estimate g, both those detected in the bright port and those detected

in the dark port. The amplification of the displacement caused by a single photon on an

optomechanical Fabry-Pérot cavity placed in one of the arms of a Mach-Zhender has also

been studied in [201, 202, 203].

Before we turn into the description of our experimental proposal, it is worth mentioning

that the optomechanical system acts as a which way detector [204], i.e. as a device that

stores information about the path taken by the photon. It the photon has gone through the

path 1, then we expect that the position of the mirror will be displaced along the positive

direction of the x axis. On the contrary, if the photon goes through the path 2, the mirror

should be displaced in the opposite direction. Analogously, if the photon behaves like a

wave, then the position of the mirror should not be affected, since the photon in one side of

the cavity “pushes” the mirror in one direction, while the photon in the other side exerts

a force in the opposite direction.

The experimental proposal works as follows. The oscillator should be prepared in the

ground state [171, 169, 205, 206] or in a thermal equilibrium state. The initial state of the

mirror is denoted by ρm.

On the other hand, one single photon should be injected into the system through the

input port, while the other port is left unused. After passing through the first balanced

beamsplitter, the photon will be in a superposition of both paths and enter the cavity.

135



CHAPTER 5. OPTOMECHANICAL SYSTEM IN MACH-ZEHNDER
INTERFEROMETER

The absorption probability can be made close to unity when the shape of the photon is

the “time reversed version” of a photon that is spontaneously emitted from the cavity

[207, 208]. Therefore, once the photon has entered the cavity it will be in a superposition

of both sides, and the initial state of the cavity and the mirror will be |ψiy ρm xψi|. This

state will evolve under the time evolution operator (5.16). For NOON states [209], which

are states of the form

|Nya |0yb ` eiNΘ |0ya |Nyb?
2

, N P N0, (5.26)

the free evolution and the “Kerr term” will simply add a global phase factor that can be

disregarded. Consequently, after a time t the photon and the mirror will evolve into the

state

pUeptq |ψiy

˜

e´iΩtb̂
:b̂ρme

iΩtb̂:b̂

¸

xψi| pU :e ptq, (5.27)

where pUeptq “ exp
!

pâ:1â1 ´ â
:
2â2q ¨ rb̂

:ϕptq ´ b̂ϕ˚ptqs
)

is the term in (5.16), responsible

for the entanglement between the mirror and the photon. Note that the operator pUeptq

displaces by pâ:1â1 ´ â
:
2â2qϕptq, i.e. the displacement depends on the difference of photons

between both sides of the cavity. From (4.41), the quantum Fisher information about the

parameter g in the state (5.27) is given by

IQpgq “ 8r1´ cospΩtqs
´

1` 2
A

b̂:b̂
E¯

, (5.28)

where the expectation value of the number of phonons is calculated over the initial state

of the mirror ρm. Notice that the quantum Fisher information depends on time; at odd

multiples of half the vibrational period (when the displacement of the average position

is maximum) the quantum Fisher information achieves its maximum value, while at the

vibrational periods (when the mirror and the photon are not entangled) the Fisher infor-

mation is zero.

Once the photon leaks out from the cavity, it will be detected at one of the photon

counters (the interferometer is consider to be ideal, i.e. without lost of photons). Successful
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post-selection occurs when a photon is detected in the dark port. Only when post-selection

is successful, the position of the oscillator should be observed [162, 184]. The cases when

post-selection fails should be simply disregarded. In other words, the position of the mirror

will be observed, conditioned on a photon detected at the dark port.

Under certain conditions, described in the next section, the displacement caused by a

single photon will be proportional to the weak value of the difference of photons between

both sides of the cavity. As will be shown in the next section, the weak value amplification

effect will enlarge the displacement, which can be useful for the estimation of optome-

chanical parameters. In every repetition of the experiment, the state of the mirror should

be reinitialized. The experiment is designed for single photons with frequency ωcav. The

photons are considered to be nearly monochromatic, i.e. with an spectral bandwidth ε

much smaller than the cavity decay rate γ.

5.4 Weak value amplification

Assume that the photon is detected at the dark port at time t, i.e. the state (5.22) is

post-selected. Then, the unnormalized state of the mirror is

xψf | pUeptq |ψiy

˜

e´iΩtb̂
:b̂ρme

iΩtb̂:b̂

¸

xψi| pU :e ptq |ψf y . (5.29)

In order to employ weak values to enlarge the displacement produced by the photon, let

us expand the “evolution operator” pUeptq to first order, namely,

xψf | pUeptq |ψiy « xψf |ψiy
!

1` pâ:1â1 ´ â
:
2â2qw ¨ rb̂

:ϕptq ´ b̂ϕ˚ptqs
)

, (5.30)

« xψf |ψiy exp
!

pâ:1â1 ´ â
:
2â2qw ¨ rb̂

:ϕptq ´ b̂ϕ˚ptqs
)

. (5.31)

The term pâ:1â1´â
:
2â2qw corresponds to the weak value of the difference of photons between

the initial state |ψiy (5.24) and the final state |ψf y (5.22). It is given by

pâ:1â1 ´ â
:
2â2qw “

t` r

t´ r
“

?
2´ δ2

δ
. (5.32)
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Since the transmission and reflection coefficients are real values, the weak value is also a

real number. Both approximations, (5.30) and (5.31), can be made when g|pâ:1â1´ â
:
2â2q|w

is small as compared to the inverse of the standard deviation of the rotated quadrature

ip1´ e´iΩtqb̂: ´ ip1´ eiΩtqb̂, computed over the initial state of the mirror,

g|pâ:1â1 ´ â
:
2â2q|w !

!

V ar
”

p1´ e´iΩtqb̂: ´ p1´ eiΩtqb̂
ı)´1{2

“

!

2
”

1´ cospΩtq
ı´

1` 2
A

b̂:b̂
E¯)´1{2

. (5.33)

Notice that near the mechanical periods, when there is little entanglement between the

photons and the mirror, the bound on the right hand side gets larger. On the contrary, at

half the vibrational periods, the bound reaches its minimum value. From the state (5.29)

and the first order approximation (5.31), it is clear that the normalized state of the mirror

is given by

ρmptq “ epâ
:
1â1´â

:
2â2qwrb̂

:ϕptq´b̂ϕ˚ptqs

˜

e´iΩtb̂
:b̂ρme

iΩtb̂:b̂

¸

e´pâ
:
1â1´â

:
2â2qw¨rb̂

:ϕptq´b̂ϕ˚ptqs. (5.34)

While the probability of successful post-selection, P pfq, is | xψf |ψiy |
2 “ δ2{2. Notice that

the post-selection probability is the same as if no optomechanical system was employed.

The conditioned probability (given that post-selection was successful) to read the position

x of the mirror corresponds to

P px|fq “ xx| ρmptq |xy . (5.35)

The Fisher information contained in this distribution depends on the initial state of the

mirror (ρm). We will study two cases. First, we assume that the mirror starts in a pure

state (the ground state). The results presented in the previous chapter (see section 4.9)

will be applied to this situation. Then, we study the case of a mirror that starts in a

thermal state.
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5.4.1 Oscillator initially in the ground state

Let us consider first the case when the oscillator is cooled down to its ground state, i.e.

ρm “ |0ym x0|. In this scenario, the conditioned density becomes a Gaussian function,

P px|fq “
1

?
2πx0

exp

$

’

&

’

%

´

´

x´ 2x0gpâ
:
1â1 ´ â

:
2â2qwr1´ cospΩtqs

¯2

2x2
0

,

/

.

/

-

. (5.36)

Using (4.18) it is easy to see that the Fisher Information about the parameter g contained

in this distribution corresponds to

Ipg|fq “ 4pâ:1â1 ´ â
:
2â2q

2
wr1´ cospΩtqs2. (5.37)

Therefore, according to the result (4.74) presented in chapter 4, the Fisher information in

the measurement protocol that includes post-selection is

Ipgq “ P pfqIpg|fq “ 2r1´ cospΩtqs2p2´ δ2q. (5.38)

The quantum Fisher information (5.28) is achieved at half the period and when δ Ñ 0, i.e.

when the weak value (5.32) is indefinitely large. Recall, nevertheless, that the weak value

is restricted by the condition (5.33) and therefore can not become arbitrarily large.

On the other hand, notice that the evolution operator pUeptq couples the difference of

photons with a rotated quadrature ip1 ´ e´iΩtqb̂: ´ ip1 ´ eiΩtqb̂ (an hermitian operator),

with a coupling strength of g. The weak value of the quadrature is given by

xx| ip1´ e´iΩtqb̂: ´ ip1´ eiΩtqb̂ |0y
xx|0y

“ ip1´ e´iΩtq
ψ1pxq

ψ0pxq
, (5.39)

where ψ0pxq and ψ1pxq are the wave functions of the ground state and the first exited state

of the mirror, respectively. Both are real functions and therefore the weak value is always

a complex value, except at half the period, when it becomes purely imaginary. In this case,

the weak value of the system variable (the difference of photons) is a real value, while the

weak value of the apparatus variable (the rotated quadrature) is purely imaginary.
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Table 5.1: As the magnitude of the dark port post-selection parameter δ decreases, the magnitude
of the weak value of the difference of photons is increased since the weak value 9 δ´1. At the same
time the probability of post-selection decreases, because it is 9 δ2.

|δ| |pâ:1â1 ´ â
:
2â2qw| Post-selection Probability p%q

0.5 2.6 13
0.4 3.4 8
0.3 4.6 5
0.2 7.0 2
0.1 14.1 1
0.09 15.7 0.4

As was explained in the previous chapter (see section 4.9.2), this is a sufficient condition

in order to extract the quantum Fisher information from the conditioned state of the mirror

(5.34). Indeed, at half the period, the quadrature is proportional to momentum of the

mirror and therefore, because the position (the conjugate variable) is observed, the weak

value of the momentum will be imaginary, as long as the wave function of the meter is real.

This fact can be seen from equation (4.63). Consequently, at an arbitrary instant of time,

the conjugate quadrature of the meter should be observed in order to reach the quantum

Fisher information (5.28).

Moreover, restricted to the space of single photons, i.e. for NOON states (5.26) with

N “ 1, the operator â:1â1´ â
:
2â2 behaves as a σ̂z operator, the states |1y1 |0y2 and |0y1 |1y2

being its eigenvectors. The initial state (5.24) is therefore an eigenstate of σ̂x, i.e. a qubit

state (4.97) with θi “ π{2 and φi “ 0. When δ ! 1, the final state is a qubit with

polar angle θf “ π{2 ´
?

2δ and azimuthal angle φf “ π. The post-selected state is in

accordance with the strategy described in section (4.9.2) for a qubit and a meter in a

Gaussian (pure) state. Indeed, this strategy generates weak values of the form (4.106),

with the identification ε “ δ{
?

2, and achieves the quantum Fisher information in the limit

δ Ñ 0. The post-selection probability δ2{2 and the weak value of the difference of photons

are summarized in table 5.1. Figure 5.8 shows the weak value and the amplification effect

due to the post-selection for different values of δ.

If the experiment is repeated N times, from which there will be on average M “

N | xψf |ψiy |
2 successfully post-selected events, the maximum likelihood estimator (4.6) of
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Figure 5.8: The weak value (red curve) and the amplification factor (blue curve) plotted against
the post-selection parameter δ. The amplification factor corresponds to the displacement of the
measurement device divided by 4gx0. The weak value equals the amplification factor when g ! δ
(weak measurement regime). The amplification factor achieves its maximum value outside this
regime, when g „ δ. When δ is much smaller than g notice that there is no amplification affect. In
this case g “ 10´3.

the parameter g and its variance (4.8) correspond to

ĝML “
1

x0r1´ cospΩtqsδ
?

2´ δ2

řM
i“1 xi
N

, (5.40)

@

∆ĝ2
ML

D

“

#

1

2r1´ cospΩtqs2p2´ δ2q

+

1

N
, (5.41)

respectively. Notice that the estimator is the sample mean, corrected by a factor that

depends on the prior knowledge of δ and x0. The maximum likelihood estimator is an

unbiased estimator of g. Notice that the variance corresponds to the inverse of the Fisher

information (5.38), i.e. the estimator saturates the Crámer Rao inequality (4.19) and scales

as N´1 (standard quantum limit). As was explained previously, the estimator will also

saturate the quantum Crámer Rao inequality (4.37) at half the vibrational period, when

the quantum Fisher information (5.28) is achieved. The signal to noise ratio (4.22) is

SNR0,w “ gr1´ cospΩtqs
a

2Np2´ δ2q. (5.42)

The subscript 0 indicates that the initial state of the mirror is the ground state and that

the measurement is weak, i.e. that it relies on the validity of the approximations (5.30)
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and (5.31). Note that, in a single event, i.e. when N “ 1, the SNR0,w ă 1. In order for

the SNR0,w to be greater than one, the experiment should be repeated N times, where

N " g´2. When no post-selection is performed, the SNR is of the same order, i.e. the

experiment should be repeated the same times, N " g2, in order to estime g precisely. The

difference between both strategies lies in the amount of photons employed for estimation;

with post-selection fewer photons are needed to perform the estimation.

Finally, it is interesting to study measurements of any strength. For any value of g, it

is easy to see that the state of the mirror, conditioned on the successful post-selection of

the state |ψf y, corresponds to

|ψptqy “ 1

N

#«

1` pâ:1â1 ´ â
:
2â2qw

2

ff

|ϕptqy `

«

1´ pâ:1â1 ´ â
:
2â2qw

2

ff

|´ϕptqy

+

, (5.43)

where N is a normalization factor and |˘ϕptqy are coherent states. The mirror is therefore

in a superposition of states that are not necessarily orthogonal. Since ϕptq ! 1, a first-order

expansion of the coherent states allows to express the previous state as

|ψptqy “ 1
b

1` |ϕptq|2pâ:1â1 ´ â
:
2â2q

2
w

”

|0y ´ ϕptqpâ:1â1 ´ â
:
2â2qw |1y

ı

. (5.44)

Consequently, this setup generates non classical mechanical states, which consist of a super-

position of the ground state and the one-phonon state. In the weak measurement regime,

defined by (5.33), this state becomes |0y ` rϕptqpâ:1â1 ´ â:2â2qws |1y, i.e. a “weak” super-

position between the ground state and the first excited state. The Wigner function of this

state, shown in figure 5.9, has no negative part and thus can be understood as a classical

state. As it is pointed out in [210], this slight superposition between the ground state

and the one-phonon state can give rise to a large amplification effect, without changing the

shape of initial wave function of the measuring device, but only translating it. On the other

hand, outside the weak measurement regime, e.g when δ „ g, the state of the oscillator is

1?
2
p|0y ´ |1yq, an equal superposition of the ground state and the first excited state (see

figure 5.10). In this situation, the wave function of the oscillator is no longer Gaussian,

due to the larger weight of the one-phonon state. The generation of non Gaussian states
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Figure 5.9: Wigner function of the final state of the measuring device (the oscillator) in the weak
measurement regime . In this case, the optomechanical strength is g “ 10´3 and the post-selection
parameter δ “ 5 ¨ 10´2. Here (and in figure 5.10) X̂ “ pĉ ` ĉ:q{

?
2 and Ŷ “ ipĉ: ´ ĉq{

?
2 are the

mirror quadratures, satisfying rX̂, Ŷ s “ i.

occurs due to the post-selection.

The probability to read the position x, conditioned on a successful post-selection, can be

computed from the state (5.43), i.e. P px|fq “ | xx|ψptqy |2. The distribution is presented

in the appendix (A). For time t “ π{Ω, the result is a straightforward application of

the expressions (4.111), (4.120) and (4.121) to the present case. The maximum likelihood

estimator can be obtained, in principle, from this distribution (in an approximate manner).

However, in general, it will depend on the parameter we wish to estimate and is therefore

Figure 5.10: Wigner function of the final state of the oscillator outside the weak measurement
regime, for the case δ „ g. The optomechanical strength g is set to be 10´3.
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Figure 5.11: The average position of the oscillator, divided by its standard deviation, is plotted
against the magnitude of the post-selection parameter. The optomechanical strengths are g “ 0.01
(blue curve) and g “ 0.05 (red curve). The weak measurement regime occurs when g ! δ. Note
that the oscillator reaches the level of the fluctuations outside the weak measurement regime, when
δ „ g.

unfeasible. Also, from this distribution it is possible to obtain the average position of the

mirror and its standard deviation. Figure 5.11 shows the ratio between both quantities as

a function of the parameter δ, illustrating the well known fact that, when the measurement

is strong (δ „ g), the result is precise, while it is “noisy” when the measurement is weak

(g ! δ).

5.4.2 Oscillator initially in thermal equilibrium

Let us assume now that the oscillator starts in a thermal state ρ̂m “
ř

pn |ny xn|, where

pn “
e´En{kBT

ř8
n e

´En{kBT
, En “ n~Ω, (5.45)

is the Boltzmann distribution. In this scenario, the state (5.34) will be a mixture of

displaced number states,

ρmptq “
ÿ

n

pn ¨ pU |ny xn| pU:, (5.46)

144



CHAPTER 5. OPTOMECHANICAL SYSTEM IN MACH-ZEHNDER
INTERFEROMETER

where we have defined the displacement operator pU “ exp
!

pâ:1â1 ´ â
:
2â2qwrb̂

:ϕptq ´ b̂ϕ˚ptqs
)

just for the simplicity of the expression. The first and second moments of the position op-

erator are

TrtX̂ρmptqu “ 2gx0r1´ cospΩtqspâ:1â1 ´ â
:
2â2qw, (5.47)

TrtX̂2ρmptqu “ 4g2x2
0r1´ cospΩtqs2pâ:1â1 ´ â

:
2â2q

2
w ` x

2
0p1` xnythq, (5.48)

where xnyth “ pe
~Ω{kBT ´ 1q´1 is the average number of thermal phonons. Therefore, we

SNR of the estimator (5.40) corresponds to

SNRth,w “
SNR0,w

a

1` 2xnyth
. (5.49)

From the expressions (5.47) and (5.48) it is clear that, although the shift of the average

position remains the same as in the first case (when the mirror starts in the ground state),

i.e. proportional to the weak value, the fluctuations are now increased with the mean

number of phonons. Hence, the SNR will remain approximately the same when the average

number of phonons is small, i.e. when the system is operated in the regime where ~Ω «

kBT .

5.5 Weak value amplification in the presence of noise

In this last section we will study how white and coloured noise affect the Fisher in-

formation, by applying the results presented in the previous chapter, in section (4.9). We

restrict our analysis to the case of a mirror initially prepared in the ground state. Up to

this point, the time spent by photon inside the cavity has not been specified and therefore

all the expressions for the Fisher information, SNR and other related quantities are time

dependent. As it is shown in appendix (D), in a Markovian bath, the time t spent by

the photon inside the cavity before it is emitted and detected at the output, follows an

exponential distribution,

t „ γe´γt, (5.50)
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where γ is the cavity decay rate of the cavity. The mean lifetime of the photon inside

the cavity is therefore γ´1. Hence, in order for the photon to stay for half the mechanical

period, γ „ Ω, which leads to a quality factor Q “ ωcav{γ “ ωcav{Ω. Consequently, an

optical cavity with a moving mirror with frequency of the order of MHz, should have a

qualify factor Q „ 108. With the time “fixed” around half the vibrational period, the

Fisher information (5.38) and the SNR (5.42) become

Ipgq “ 8p2´ δ2q , SNR0,w “ 2g
a

2Np2´ δ2q. (5.51)

These values will be contrasted with the corresponding quantities in the presence of noise.

Recall that the Fisher information 8p2´δ2q represents the information in a single event and

scales as N , where N is the number of independent repetitions of the experiment. First,

let us assume that the measurement of the position of the meter is affected by Gaussian

white noise (4.132). In this scenario, in accordance with the result (4.136), the variance of

the distribution (5.36) will be increased. The Fisher information becomes

Iwhite noisepgq “
8p2´ δ2q

1` σ2
noise{x

2
0

, (5.52)

which is a direct application of equation (4.137) to the present experiment. The maximum

likelihood estimator is still (5.40), but now the variance of the estimator is increased. The

SNR ratio of the estimator becomes

SNRwhite noise “
SNR0,w

b

1` σ2
noise{x

2
0

. (5.53)

Both quantities will be affected by the noise when the classical fluctuations are much

larger than the quantum fluctuations. Recall that (5.52) grows linearly with the number

of repetitions of the experiment.

On the other hand, when the noise has long correlation times, the Fisher information
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for the strategy without (4.149) and with post-selection (4.149) corresponds to

Icol. noisepgq “ 16

˜

2´ δ2

δ2

¸

x2
0

η
, Ino post.col. noisepgq “ 16 ¨

x2
0

η
, (5.54)

respectively. The benefits from the weak value amplification effect, as compared to a

weak measurement without post-selection, are therefore evident when coloured noise is

unavoidable. Let us look now into the maximum likelihood estimator. The probability

distribution of the outcomes si will be a normal distribution with a covariance matrix E

of the form (4.144), which has dimension k ˆ k, where k is the number of post-selected

photons out of N trials (if post-selection is performed) or is simply equal to N (in the non

post-selection scenario).

When post-selection is performed, instead of treating k as a random variable, we will

replace it by its average value, i.e. by N | xψf |ψiy |
2. The maximum likelihood estimator

corresponds to a weighted average of the observations si,

ĝML “
1

4x0

?
2´ δ2{δ

k
ÿ

i“0

αisi , αi “

řk
j“1E

´1
i,j

řk
i,j“1E

´1
i,j

. (5.55)

Notice that the construction of the estimator requires precise knowledge of the correlations

of the noise, besides x0 and δ. When the correlations are constant over time, the weights

αi become equal to 1{k , i.e. the sum in (5.55) reduces to the mean. The variance of the

estimator corresponds to

V arrĝMLs “
1

16p2´ δ2q{δ2

!1` pσ2
noise ´ ηq{x

2
0

k
`

η

x2
0

)

. (5.56)

Consequently, when k is sufficiently large the variance of the estimator achieves a constant

value, pη{x2
0q{r16p2´δ2q{δ2s. When no post-selection is performed, the maximum likelihood

estimator is analogous to (5.55) (the weak value does not appear in the denominator and

k “ N). In this case, the variance of the estimator reaches a constant value of pη{x2
0q{16.

Hence, when post-selection is implemented, the variance of the estimator will be reduced,

being divided by the squared of the weak value p2´ δ2q{δ2. Equivalently, the SNR will be

amplified by the weak value when post-selection is performed.
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5.6 Conclusions

Regarding our work, three main conclusions should be emphasized. First, we have

presented an experiment in which the radiation pressure exerted by a single pre and post-

selected photon can by amplified by anomalous weak values: an large momentum transfer

is given by the photon to a mechanical oscillator when the photon makes a transition from

a state that can produce constructive interference to a state that produces destructive

interference. This is a quantum effect with no classical analog. Secondly, the use of

the weak amplification effect achieves equal precision for parameter estimation, but at a

lower cost since fewer observations of the measurement device are needed to construct an

estimator. Finally, we have shown that in our experiment dark port post-selection can

generate non classical states of a mechanical oscillator (“Schrödinger cat” states).
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Conditioned probability

distribution for measurements of

any strength

Consider the case when the measurement device starts in the ground state,

ψpxq “
1

?
2πx0

e
´ x2

4x20 , (A.1)

and the system starts in the initial state (5.24). The state of the meter, when the final

state (5.22) is post-selected, is given by (5.43). Then, if the position of the measurement

device is observed, the probability to find it in small interval dx around the position x is

P px|fqdx, where the density function corresponds to

P px|fq “
1

N
|ψpxq|2e´2g2r1´cospΩtqs2

#

1

δ2
cosh

”

2gp1´ costΩtuqx{x0

ı

`

?
2´ δ2

δ
sinh

”

2gp1´ costΩtuqx{x0

ı

´
1´ δ2

δ2
cos

”

2g sintΩtux{x0

ı

+

.(A.2)

The normalization factor N depends both on g and δ,

N “
1

δ2
´

1´ δ2

δ2
e´4g2r1´cospΩtqs. (A.3)
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In the weak measurement regime (5.33), the probability density (A.2) reduces to (5.36), a

Gaussian density equal to the original density function |ψpxq|2 displaced by a large amount

(larger than the eigenvalues of the system variable).
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Measurement operators

In this appendix we will present the measurement operators for the case of a mea-

surement device that starts in the pure state (4.64). We consider measurements of an

observable Â, which couples to an apparatus variable P̂ , according to the von Neumann

model.

Due to (2.33) the measurement operators are given by

xMq “ Nq exp

#

piF ´ 1q
pq ´ q0 ´ gÂq

2

4σ2
q

` ip0pq ´ gÂq{~

+

“ ψpqq exp

"

´piF ´ 1q
´ g

2σq

¯´q ´ q0

σq

¯

Â´ ig
´p0

~

¯

Â` piF ´ 1q
´ g

2σ

¯2
Â2

*

,(B.1)

that shows that the wave function of the measurement device is displaced by gÂ. It is

convenient to define the auxiliar (standardized) variable z “ pq ´ q0q{σq, the complex

parameter γ “ 1´ iF and k0 “ p0{~. Then, the measurement operator can be written as

xMq “ ψpqq exp

"

2
´

?
γ
g

2σq
Â
¯´

?
γz

2
´ i

σq
?
γ
k0

¯

´

´

?
γ
g

2σq
Â
¯2
*

“ ψpqq
8
ÿ

n“0

1

n!

´

?
γg

2σq
Â
¯n
Hn

´

?
γz

2
´ i

σq
?
γ
k0

¯

. (B.2)

In the last line we have used the fact that exp
 

2xt´ t2
(

is the exponential generating
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function of the Hermite sequence Hnpxq [140], namely,

exp
 

2xt´ t2
(

“

8
ÿ

n“0

tn

n!
Hnpxq, (B.3)

for any complex values t and x. Hence, the measurement operators associated to the

selection of the state |ψf y in the second measurement and to the obtaining of the outcome

q in the intermediate measurement correspond to xMf,q “ |ψf y xψf |xMq. Their action over

an initial pure state |ψiy is

|ψf y xψf |xMq |ψiy “ |ψf y xψf |ψiyψpqq
8
ÿ

n“0

1

n!

´

?
γg

2σq

¯n
AnwHn

´

?
γz

2
´ i

σq
?
γ
k0

¯

. (B.4)

The squared norm of this state corresponds to the probability P pf, qq, i.e. to the probability

of selecting the desired state and reading the value q in the intermediate measurement,

P pq, fq “ | xψf |xMq |ψiy |2 (B.5)

“ |ψpqq|2| xψf |ψiy |
2

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“0

1

n!

´

?
γg

2σq

¯n
AnwHn

´

?
γz

2
´ i

σq
?
γ
k0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (B.6)

Clearly, the probability can be expressed as |ψpqq|2| xψf |ψiy |
2Spqq, where the series Spqq

is presented, expanded in powers of g, in equation (4.112).
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Beam splitters

Classically, a beam splitter is a device that “splits” an incident beam of light into two

components; a transmitted and a reflected component, as it is shown in the left side of

figure (C.1). When the beam splitter is treated quantum mechanically, the second input

should be necessarily taken into consideration, which is shown explicitly in the right side

of (C.1).

Figure C.1: Left side figure: the incident field is separated into a reflected component, Er “ rEi,
and a transmitted component, Et “ tEi, where r and t are the reflectance and transmittance of the
beam splitter, respectively. For a “quantum beam splitter” (right side figure) these equations are
not valid and the second input must be necessarily taken into consideration, even when this port
is left unused (in the vacuum state).

The relation between the input modes and the output modes is given by

â3 “ r1â1 ` t2â2,

â4 “ t1â1 ` r2â2, (C.1)

where r1 and r2 is the set of reflectances of the beam splitter, and t1 and t2 is the set
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of transmittances. These quantities can be complex values and depend on how the beam

splitter is constructed.

The mode operators in the input ports satisfy boson commutation relations, i.e. râ1, â
:
1s “

râ2, â
:
2s “ 1 and râ1, â2s “ râ1, â

:
2s “ 0. In order for the mode operators of the output ports

to satisfy analogous boson commutation relations, the set of reflectances and transmit-

tances should satisfy the reciprocity relations [198]:

|r1| “ |r2| , |t1| “ |t2| , |r1|
2 ` |t1|

2 “ 1 , r˚1 t2 ` r2t
˚
1 “ r˚1 t1 ` r2t

˚
2 “ 0. (C.2)

When |r1| “ |t1| the beam splitter is said to be a balanced, or 50:50, beam splitter. Notice

that the last equation relates the phase shifts between the output beams. The reciprocity

relations (C.2) assure that the transformation (C.1) of the input modes â1 and â2 into the

output modes â3 and â4 is unitary. Assume, for example, that all the transmittances and

reflectances are real values, given by

r1 “ r P r0, 1s , r2 “ ´r , t1 “ t2 “ t P r0, 1s , r2 ` t2 “ 1. (C.3)

Allowing r to be distinct from t offers the possibility to design an unbalanced beam splitter.

In this situation, the transformation (C.1) takes the form of (5.20). Notice that this

transformation can be equivalently expressed as

â3 “ epi{~q
ş

dtĤBS2 ¨ epi{~q
ş

dtĤBS1 ¨ â1 ¨ e
´pi{~q

ş

dtĤBS1 ¨ e´pi{~q
ş

dtĤBS2 ,

â4 “ epi{~q
ş

dtĤBS2 ¨ epi{~q
ş

dtĤBS ¨ â2 ¨ e
´pi{~q

ş

dtĤBS ¨ e´pi{~q
ş

dtĤBS2 , (C.4)

where the integrals are taken over the time the fields interact with each other inside the

beam splitter. ĤBS1 are ĤBS2 are effective hamiltonians that describe the beam splitter.

It is easy to show that the hamiltonians correspond to

ĤBS1 “ ´i~θδptqpâ:2â1 ´ â
:
1â2q, (C.5)

ĤBS2 “ ~πδptqâ:2â2, (C.6)
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where δptq is the Dirac delta function (which integrates to one during the time of interaction

between the fields inside the beam splitter), cospθq “ r and sinpθq “ t. Physically, the

first hamiltonian can be implement with a single layer of dielectric material. The second

hamiltonian corresponds to a phase shift gate. The action of the beam splitter is described

therefore by the consecutive evolution generated by ĤBS1 and ĤBS2. The output modes

â3 and â4 are simply the evolution of the input modes in the Heisenberg picture.

It is also possible to work in the Schrödinger picture and evolve states instead of

operators. Consider the input state |0y1 |1y2, that describes the input port 1 left unused and

a single photon entering through the input port 2. The evolution of the state corresponds

to

|0y1 |1y2 “ â:2 |0y1 |0y2

“ ptâ:3 ´ râ
:
4q |0y3 |0y4

“ t |1y3 |0y4 ´ r |0y3 |1y4 . (C.7)

Note that in the second step the vacuum states in the input and the output have been

identified, i.e. |0y1 |0y2 “ |0y3 |0y4. The final state is a path-entangled state, namely, a

coherent superposition of both paths. Single-photon interference can be studied by using

second beam splitter in a Mach-Zehnder configuration (see figure 4.1) .

Besides (C.3), another common design is a balanced beam splitter described by the

following set of reflectances and transmittances:

r1 “ t2 “
1

2
, r2 “ t1 “

i

2
. (C.8)

For this type of beam splitter, the transformation of the fields (C.1) can be written as

â3 “ epi{~q
ş

dtHBS â1e
´pi{~q

ş

dtHBS , (C.9)

â4 “ epi{~q
ş

dtHBS â2e
´pi{~q

ş

dtHBS , (C.10)

where HBS “ ´~pπ{4qδptqpâ:1â1` â
:
2â2q is an effective hamiltonian that describes the beam

splitter. Physically, it can be implemented with a single layer of dielectric material. If the
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operator â:1â1 ` â
:
2â2 is associated with a Ĵx operator, according to the Jordan-Schwinger

map (4.47), then the evolution generated by the beam splitter corresponds to (4.48).
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Photon detection

Let us consider a double sided cavity that interacts with two reservoirs, that are moni-

tored with photon counters, as it is shown in figure D.1. Each reservoir (or bath) is modelled

as a collection of harmonic oscillators, each one with a frequency ωn. The hamiltonian that

describes the open quantum system is

Ĥ “ ~
ÿ

n

ωnĉ
:
1,nĉ1,n ` ~

ÿ

n

ωnĉ
:
2,nĉ2,n ` (D.1)

~

˜

â:1
ÿ

n

g1,nĉ1,n ` â1

ÿ

n

g1,nĉ
:
1,n

¸

` ~

˜

â:2
ÿ

n

g2,nĉ2,n ` â2

ÿ

n

g2,nĉ
:
2,n

¸

`(D.2)

~ωcavpâ:1â1 ` â
:
2â2q ` ~Ωb̂:b̂´ ~g0pâ

:
1â1 ´ â

:
2â2qpb̂

: ` b̂q. (D.3)

The operators ĉi,n are boson annihilation operators of each reservoir (i “ 1, 2). The

subscript n labels a different mode. The modes can be thought as standing waves with a

sinusoidal mode function that vanishes at the position of the mirrors. The terms in the first

line (D.1) correspond the free energy of the reservoirs. The terms in the second line (D.2)

describe the interaction between the external modes (of the reservoir) and the field inside

the cavity. The constants gi,n are the different couplings between the cavity mode (âi) and

the field outside the cavity (ĉi,n). This part of the hamiltonian describes the exchange of

photons between the external field and the cavity that occurs because of the interaction

between the fields inside the mirrors. Indeed, the mirrors of the cavity have actually some

width and a small amount the electromagnetic field penetrates inside the mirrors, allowing
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Figure D.1: An optomechanical system (a Fabry-Pérot cavity with a movable mirror placed in
the center of the cavity) is monitored with photon counters. The optomechanical system interacts
with the baths 1 and 2.

the exchange of photons. For a high Q cavity, the hamiltonian in the second line (D.2) is

a good approximation to describe the absorption of photons from the bath or the emission

of photons from the cavity into the bath. In our work, we will assume that the photon has

been already absorbed. Therefore, this part of the hamiltonian will describe the emission

or leakage of photons from the cavity into the reservoir. For more details regarding the

hamiltonian that describes the exchange of photons between the cavity and the bath see

[112, 113, 114, 115, 116, 117, 118]. Finally, the terms in the last line (D.3) correspond to

the hamiltonian of the (closed) optomechanical system, which was described in equation

(5.14).

First, we go to an interaction picture with respect to ~
ř

n ωnĉ
:
1,nĉ1,n`~

ř

n ωnĉ
:
2,nĉ2,n`

~ωcavpâ:1â1 ` â
:
2â2q. In this frame, the hamiltonian becomes

ĤI{~ “ â:1
ÿ

n

g1,ne
´iδntĉ1,n ` â1

ÿ

n

g1,ne
iδntĉ:1,n ` â

:
2

ÿ

n

g2,ne
´iδntĉ2,n ` â2

ÿ

n

g2,ne
iδntĉ:2,n

`Ωb̂:b̂´ g0pâ
:
1â1 ´ â

:
2â2qpb̂

: ` b̂q. (D.4)

Notice that the hamiltonian is time dependent (the subscript I indicates that it corresponds

to the the hamiltonian in the interaction frame). The parameter δn “ ωn´ωcav represents

the detuning of each mode of the bath with respect to the frequency of the cavity. From

now on, we base our analysis on the treatment of an open quantum described in section

3.11 of [12]. It is convenient to redefine the annihilation operators of the cavity as

â1 “ ´i
?
γ1â1 , â2 “ ´i

?
γ2â2, (D.5)
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where i is the imaginary unit and γ1,2 are the dissipation rates of each side of the cavity.

Additionally, it is useful to define the bath operators

ĉ1ptq “
1
?
γ1

ÿ

n

g1,nĉ1,ne
iδnt , ĉ2ptq “

1
?
γ2

ÿ

n

g2,nĉ2,ne
iδnt. (D.6)

It is important to examine the commutation relations between the bath operators. Consider

the commutator between the operators associated to the bath 1,

rĉ1ptq, ĉ
:
1pt
1qs “

1

γ1

ÿ

n

g2
1,ne

iδnpt´t1q “
1

γ1

ż 8

0
g2

1pωqρ1pωqe
pω´ωcavqpt´t1qdω, (D.7)

where ρ1pωq is the density of modes of the bath 1 and g1pωq is the coupling between the

cavity mode and the n-th mode of the bath, as a function of frequency. The density of

modes is proportional to the volume V of the bath, but the coupling g1pωq „ V ´1{2.

Consequently, the term g2
1pωqρpωq remains finite as V is increased. This allows to convert

the summation into an integral. Additionally, if g2
1pωqρ1pωq is a smooth function of the

frequency around ωcav, then

ż 8

0
g2

1pωqρpωqe
pω´ωcavqpt´t1qdω « 2πg1pωcavqρpωcavq

2δpt´ t1q. (D.8)

The term 2πg1pωcavqρpωcavq
2 corresponds to the rate at which energy is dissipated from the

cavity, through the mirror of the side 1. This fact can be checked when the equation that

describes the evolution of the average photon number inside the cavity is derived, which can

be made from the master equation for the cavity field in the Born-Markov approximation.

Consequently, the bath operators are “delta-correlated”,

rĉ1ptq, ĉ
:
1pt
1qs “ δpt´ t1q. (D.9)

The same result applies to the bath operators of the other side. Assuming that the decay

rate through each mirror of the cavity is the same (γ1 “ γ2 “ γ), in terms of the bath
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operators (D.6) and the cavity operators (D.5), the Hamiltonian (D.4) can be expressed as

ĤI{~ “ ´i
”

â:1ĉ1p´tq ´ â1ĉ
:
1p´tq

ı

´ i
”

â:2ĉ2p´tq ´ â2ĉ
:
2p´tq

ı

`Ωb̂:b̂´
g0

γ
pâ:1â1 ´ â

:
2â2qpb̂

: ` b̂q. (D.10)

The term in the second line describes the optomechanical interaction. For simplicity, it will

denoted by H. The evolution generated by the hamiltonian (D.10) during an infinitesimal

time interval dt is given by

Ûpt` dt, tq “ exp
!

â:1dĈ1ptq ` â1dĈ
:
1ptq ` â

:
2dĈ2ptq ` â2dĈ

:
2ptq ´ iHdt

)

, (D.11)

where we have introduced “new bath operators” dĈ1ptq “ ĉ1p´tqdt and dĈ2ptq “ ĉ2p´tqdt.

These operators are of order
?
dt. Indeed, from the commutation relation (D.9), it is

clear that rĉ1ptq, ĉ
:
1ptqs “ δp0q, which implies that ĉ1ptq is of order 1{

?
dt because the

delta function at zero can be considered as 1{dt. The commutation relation between these

operators is described by

rdĈ1ptq, dĈ
:
1ptqs “ dt , rdĈ2ptq, dĈ

:
2ptqs “ dt. (D.12)

Consequently, a first order expansion of (D.11), in terms of dt, should keep terms that

involve products of dĈ1ptq and dĈ2ptq (and products between its hermitian conjugate vari-

ables). Therefore,

Ûpt` dt, tq « 1´ iHdt` pa1d pC
:
1ptq ´ pa:1d

pC1ptq ` pa2d pC
:
2ptq ´ pa:2d

pC2ptq

´
1

2
pa:1pa1dt´

1

2
pa:2pa2dt´

1

2
tpa:1,pa1ud pC

:
1ptqd

pC1ptq ´
1

2
tpa:2,pa2ud pC

:
2ptqd

pC2ptq

`
rpa1d pC1ptqs

2

2
`
rpa1d pC

:
1ptqs

2

2
`
rpa2d pC2ptqs

2

2
`
rpa2d pC

:
2ptqs

2

2
. (D.13)

We will assume that the cavity and the baths are initially uncorrelated. Also, let us suppose

that the optomechanical system (the cavity and the vibrating mirror) starts in a pure state

|Ψy and both baths begin in the multi-mode vacuum state, denoted as |0y1 |0y2. Due to the

fact that both baths are in the vacuum state all terms in (D.13) that involve dĈ1ptq, dĈ2ptq
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and its hermitian conjugate variables, in normal order, can be disregarded. Consequently,

the action of the evolution operator over the initial system state is given by

Ûpt` dt, tq |Ψy |0y1 |0y2 “

«

1´ dt
´

iH` 1

2
pa:1pa1 `

1

2
pa:2pa2

¯

ff

|Ψy |0y1 |0y2

`pa1 |Ψy |0y2 d pC
:
1ptq |0y1 ` pa2 |Ψy |0y1 d pC

:
2ptq |0y2 .(D.14)

The terms in the second line create photons in the reservoirs. The probability to detect a

photon in the first bath corresponds to norm of the single-photon state created in the this

reservoir, namely,

P1 “ xΨ| â:1â |Ψy x0|1 dĈ1ptqdĈ
:
1ptq |0y1 . (D.15)

The probability to detect the photon in the second bath is analogous. Finally, from the

commutation relations (D.9) and using the actual mode operators of the cavity (D.5),

during an infinitesimal time interval dt, the probabilities to detect a photon in the first

bath, in the second bath, and to detect no photons at all, are given by

P1 “ γ
A

â:1â1

E

dt, (D.16)

P2 “ γ
A

â:2â2

E

dt, (D.17)

P0 “ 1´ γ
A

â:1â1 ` â
:
1â1

E

dt. (D.18)

Notice that the probabilities of detection are of order dt. The measurement operators

associated to each one of the previous events correspond to

xM1 “ ´i
a

γdtâ1, xM2 “ ´i
a

γdtâ2, xM0 “ 1´ dt
´

iH` γpa
:
1pa1 ` pa:2pa2

2

¯

. (D.19)

Indeed, it is easy to see that P0 “ xΨ|xM :
0
xM0 |Ψy, P1 “ xΨ|xM :

1
xM1 |Ψy and P2 “ xΨ|xM :

2
xM2 |Ψy.

The set of measurement operators (D.19) defines a Poisson point process. The probability
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to detect no photons during an time interval t is given by

P ptq “ Tr

«

exp

#

´iHt´ γtpa
:
1pa1 ` pa:2pa2

2

+

|Ψy xΨ| exp

#

´iHt´ γtpa
:
1pa1 ` pa:2pa2

2

+ff

“ exp
!

´γt
A

pa:1pa1 ` pa:2pa2

E)

. (D.20)

Consequently, the probability density fptq to detect a photon at time t corresponds to

fptq “ ´
dP ptq

dt
“ γ

A

pa:1pa1 ` pa:2pa2

E

exp
!

´γt
A

pa:1pa1 ` pa:2pa2

E)

, (D.21)

which corresponds to an exponential distribution with parameter γ
A

pa:1pa1 ` pa:2pa2

E

.
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