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Abstract

This thesis reinterprets and adapts the model developed in Besanko and Doraszelski [Besanko, D.
& Doraszelski, U. (2004), ‘Capacity Dynamics and Endogenous Asymmetries in Firm Size’, The RAND
Journal of Economics 35(1), pp. 23-49], originally designed for unilaterally oligopolistic markets, to
explore and describe the behavior of investment and supply networks in bilaterally oligopolistic ones.
In order to do that, it combines axiomatic solutions concepts taken from cooperative game theory with
a discrete state dynamic stochastic game framework. In particular, it characterizes a version of the
bargaining game proposed by de Fontenay and Gans [de Fontenay, C. C. & Gans, J. S. (2005), ‘Vertical
Integration in the Presence of Upstream Competition’, The RAND Journal of Economics 36(3), pp. 544-
572] which considers capacity constraints, showing existence of an equilibrium and uniqueness of payoffs
for some particular applications. To illustrate the interaction between the two games, the case of a seller
facing two buyers is solved numerically. Preliminary results show that asymmetric industry structures can
arise in quantity competition settings as a result of supply network instability. Furthermore, downstream
firms tend to over-invest and hold capacity in excess to that of their supplier.

∗I would like to thank my thesis advisors, Salvador Valdés and Eugenio Bobenrieth, for their continuous support and patience.
I would also like to thank Nicolás Figueroa for his useful comments. All errors are my own. Email: fnlarrai@uc.cl
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1 Introduction

This work aims to capture two important aspects of many markets, bilateral market power and dynamics, in
a parsimonious way. To that end, I modify the production capacity accumulation game presented in Besanko
& Doraszelski (2004) (hereafter BD). First, I adapt it to consider supply-chain relationships, and secondly, I
introduce cooperative game-theoretic solution concepts to define the payoffs resulting from product market
competition.

Most classic theoretical models of imperfect competition have been concerned with markets in which
only one side (i.e. either supply or demand) can exercise market power. However, many markets are better
characterized as bilaterally imperfect1, that is, as markets in which buyers and sellers simultaneously display
some degree of market power. For example, in recent years, North American and European retail chains
have grown immensely, as documented by Inderst & Wey (2003), with each retailer accounting for a larger
share of each manufacturer’s sales. The same authors have called this market structure “bilateral oligopoly”,
extending the concept of bilateral monopoly coined, as far as I know, by Bowley (1928).

The tendency towards modeling unilateral market power can be partially explained by the fact that,
when there is bilateral market power, standard economics modeling tools lead to a large number of potential
equilibria. The multiplicity or indeterminacy of equilibria is generally due to a poor specification of the
circumstances facing the agents. When the process through which agents get to coincide in their expectations
(assuming they do) is not part of the model, it leads to multiplicity 2.

One way to solve this problem is to give a more detailed description of the bargaining process followed by
the agents, that is, of the timing of their decisions, their alternatives, their preferences, etc. However, this
approach requires assumptions that depend too much on the context. A small change in the characteristics
of the market under study might render any conclusions from the model useless.

Another way to solve the multiplicity problem is to assume that any outcome of the game should display
a series of characteristics that seem reasonable or are intuitively appealing. That is why Rubinstein (1982)
named it the “axiomatic approach”. It has the advantage of being quite general, because the assumptions it
makes are less context-dependent. However, as intuitively appealing as they may be, the axioms might not
always be consistent with non-cooperative behavior. Nevertheless, in the following sections I argue that this
second approach seems better suited for the objectives of this thesis.

Real-world markets are also characterized by a temporal dimension. Agents interact repeatedly in time,
in a possibly uncertain environment, forming and updating beliefs about their payoffs. This involves, among
other things, forming expectations of other agents’ future behavior. Any firm looking to maximize its value
should probably consider the transitional and long-term effects of its own present actions and those of other
firms. In particular, their investment or capacity accumulation strategies are a key determinant of their size
and, consequently, their bargaining power. These considerations can only be adequately taken into account
by using a fully dynamic stochastic game, such as the one in BD.

A preliminary numerical analysis of the model yields interesting results. As opposed to the results in
Besanko & Doraszelski (2004), asymmetric industry structures can arise in a quantity competition setting,
possibly due to exclusionary behavior by the suppliers. This structures become more likely when investment is
more reversible. Also, firms over-invest in production capacity, probably because this can lead to a permanent
advantage over their competitors. They tend to hold capacity in excess to that of their suppliers, that is,
capacity that can never be used because of the lack of inputs.

The rest of the thesis proceeds as follows. In Section 2, I review the different methods that have been used
in the literature to model bilateral market power and dynamics. I also review some of the literature on vertical
and horizontal integration, because it is closely related to the subject of this work. In Section 3 I formally
define the concepts that will be used to build the model and review some technical results regarding the
existence of a solution. In Section 4 the adaptation of the BD model is described and a network-bargaining
game is characterized. In Sections 5 and 6 two particular applications are characterized analytically in

1Strictly speaking, the idea of market imperfection encompasses many more situations different from the exercise of market
power, such as informational asymmetries, externalities of different kinds, etc.

2I understand this coincidence of expectations as in the definition of Nash Equilibrium, that is, a situation in which everyone
knows how the others will act and responds optimally, all at the same time.
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further detail, showing uniqueness of firms’ payoffs. In Section 7, preliminary numerical results for one of the
applications are presented and compared with the results in Besanko & Doraszelski (2004). Section 8 is for
my conclusion.

2 Literature Review

This section reviews the theoretical and applied literature related to the subject of the thesis. To make a
clear description, it is subdivided in two subsections. The first one reviews bargaining games and cooperative
game theory. The second one focuses on dynamic stochastic games. Most concepts will only be described
informally; the important ones will be defined thoroughly in Section 3.

2.1 Bargaining Games and Cooperative Game Theory

A bargaining game is a situation in which several individuals have to jointly decide how to share a “cake”
of fixed or variable size. As discussed previously, one strand of literature has solved this kind of problems
by posing axioms which determine a unique division of the cake with “reasonable” characteristics, such as
symmetry, Pareto optimality, etc. Nash (1950, 1953) was the first one to propose such a result for a two-
person bargaining problem, the so called “Nash Bargaining solution”, which consisted of dividing the cake
in equal parts. Later, it was generalized to games with imperfect information (Harsanyi & Selten (1972)),
proportional solutions (Kalai (1977), Roth (1979)), multilateral negotiations (Krishna & Serrano (1996)), etc.

Other authors working in cooperative game theory developed different axiomatic solutions which allowed
the formation of coalitions between players. The best known example of this is the “Shapley Value” (Shapley
(1953b)). It assigns to each individual a payoff equal to its average marginal contribution to the size of
the cake. This average is taken over the different possible coalitions in which it can participate. Strictly
speaking, coalitional games are different from bargaining games. However, for our purposes, they fall in the
same category: they are both games in which a group of individuals must share a cake.

Many other solution concepts were developed later on, similar in essence. Myerson (1977a,b) extended
Shapley’s Value to games in partition function form. His results were, in turn, extended by Jackson &
Wolinsky (1996), Navarro (2007) and others to general networks. In particular, Navarro (2007) develops a
“generalized Myerson-Shapley allocation rule” which admits all forms of externalities between coalitions. This
is an important aspect of supply-chain relationships whenever downstream firms compete in the same final
good market. It is also relevant when upstream firms compete for the same limited input supply.

As we saw before, another strand of literature has tried to solve bargaining games using a different ap-
proach based only non-cooperative game theory. The “strategic approach”, as it was referred to by Rubinstein
(1982), specifies the game in greater detail and looks for its Nash Equilibria, or for its Subgame Perfect Nash
Equilibria. The so called “Nash Program” was carried out by a series of authors as an attempt to connect
both approaches and justify the axiomatic solutions through non-cooperative mechanisms. For example,
Rubinstein (1982) and Binmore et al. (1986) link the Nash Bargaining solution to the discount factor and
the degree of risk aversion of the players in a game of alternating offers. Grossman & Hart (1986), Hart
& Moore (1990) and Inderst & Wey (2003), among others, develop bargaining games that implement the
Shapley Value. More recent work by de Fontenay & Gans (2005, 2013) and Douven et al. (2011) connects the
generalized Myerson-Shapley Value to non-cooperative game theory by means of simultaneous or sequential
alternating-offers games like the ones in Binmore et al. (1986).

2.2 Dynamic Stochastic Games

Broadly speaking, a dynamic game is characterized by the existence of a discrete temporal dimension in the
interaction of the players. It is stochastic if the players’ payoffs depend not only on their actions but on the
realization of some random variable. There are several ways to classify them. One of them is according to
the length of the time horizon (finite or infinite). A second one is according to the information available
to the players on each stage of the game (perfect or imperfect; it is related to whether the players move
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sequentially or simultaneously). A third one is according to the existence or non existence of a state variable
such as production capacity, inventories, etc. It can be discrete or continuous. Typically, the term “dynamic
stochastic game” is reserved for a stochastic infinite horizon game with state variables. Other common
categories have their own specific name, like “Supergames”, which are infinite horizon games with no state
variable.

These games are solved by finding an equilibrium. Just as there are many kinds of games, there are several
notions of equilibrium. For dynamic games, the most common ones are “Subgame Perfect Equilibrium” and
“Markov Perfect Equilibrium” (hereafter SPE and MPE, respectively). The idea of subgame perfection is
key to dynamic games, because it rules out equilibria sustained by non-credible threats. However, for many
games, the set of SPE’s is too large. To reduce the number of equilibria one can focus on a subset of SPE’s. A
particularly convenient subset is the one constituted of the MPE’s. The term “Markov Perfect Equilibrium”
was coined by Maskin & Tirole (1988a,b); they give a series of arguments in favor of this subset of SPE’s. The
essence of the MPE is that it only admits strategies that depend solely on directly payoff relevant variables
(state variables). In other words, it rules out strategies that condition on the whole history of the game.

Supergames are the most common class of infinite horizon games in Industrial Organization. They basi-
cally consist of an infinite number of repetitions of a static game called the “stage game”. There is no state
variable and the stage game is typically simultaneous, leading to an imperfect information supergame. They
are the simplest kind of infinite horizon game; they have well known properties and are relatively easy to
handle (e.g. there are many theorems that characterize the set of SPE’s, the so called Folk Theorems). The
key insight they offer is that it is possible to achive better equilibria (in the sense of Pareto) when there is
repeated interaction. Hence their main application in IO has been the study of tacit collusion and cartel
formation (Green & Porter (1984), Rotemberg & Saloner (1986), Abreu et al. (1986, 1990)). However, they
possess limited descriptive power because of the absence of state variables. The only connection between the
different periods of time is through the history of the game3. There is no “physical” connection, such as the
one given by the process of captial stock accumulation. This limits the range of economic problems one can
adress using supergames.

Stochastic dynamic games have a higher level of complexity than supergames but allow the study of
problems with state variables. The seminal work on this kind of games is Shapley (1953a). Several authors
have later on developed a series of results regarding the existence of equilibria. They can be classified according
to the kind of strategy they consider (pure or behavioral, stationary or non-stationary) and the kind of state
space they consider (finite, infinitely countable or a compact subset of a metric space). Some of these results
are better suited than others to the analysis of economic problems; in particular, the ones regarding Markov
pure strategies. In fact, behavior strategies don’t seem to be something that one observes in reality and they
may be hard or impossible to compute. Furthermore, Markov strategies are not as restrictive as they may
appear and they are computationally tractable. For a recent paper with general results regarding Markovian
equilibria in discrete state dynamic stochastic games see Escobar (2013).

The grater complexity of dynamic stochastic games is evident from the fact that it is generally impossible
to solve them analytically (as opposed to, for example, supergames). The root of the problem is the same one
as in any standard infinite horizon dynamic programming problem, which is that one cannot use backward
iteration because the game never ends. That is why several authors have developed numerical solution
methods. Pakes & McGuire (1994) and Ericson & Pakes (1995) defined a framework that uses an algorithm
for finding MPE’s that is analogous to that of dynamic programming (see Doraszelski & Pakes (2007) for a
complete review of the framework). However, it not only requires value function conjectures but also policy
function conjectures because of the multiple players involved. Based as it is only on an analogy, it does not
retain all of the properties of the dynamic programming algorithm. As a matter of fact, convergence to an
equilibrium is not guaranteed because it is not based on a contraction. Nevertheless, it has worked well in
practice as it is, and is the most widely used algorithm. It is this algorithm that I will use in the following
sections.

Later on, Judd et al. (2003) developed a numerical algorithm for supergames which is based on a set
based monotone operator equivalent to the Bellman operator of dynamic programming. It allows one to find

3If players were not allowed to condition on its history, the only equilibria left would be the ones from the stage game

4



the whole set of SPE’s of a game, and it guarantees convergence. It is possible to extend it to games with
state variables (see working papers cited in the same article). However, as I mentioned earlier, SPE’s can be
too wide a class to focus on, diminishing the predictive capacity of the model.

The most recent algorithm introduced to this literature was proposed by Besanko et al. (2010) to deal
adequately with the problem of multiple equilibria. One of the difficulties with the Pakes & McGuire algorithm
is that it provides no systematic approach to finding all MPE’s. The method by Besanko et al. overcomes
this issue through the use of homotopy methods. These methods can find all the solutions to many difficult
polynomial systems of equations by deforming them continuously into simpler ones. As it turns out, in several
cases the MPE’s of discrete state games can be described as a solution to a system of polynomial equations,
so one can employ homotopy methods to find them all. One disadvantage of this algorithm is that it imposes
a very heavy computational burden.

3 Preliminary Concepts

In this section I review with more detail three axiomatic solutions for cooperative games. The first one is
the generalized Nash Bargaining solution (hereafter NB), the second one is the Shapley Value, and the third
one is the generalized Myerson-Shapley allocation rule. All of them can, under certain circumstances, be
implemented by a non-cooperative bargaining process 4. I also discuss the concept of “network stability”.
Then, I define a general dynamic framework which encompasses the BD model, and review some results
related to the existence of MPE’s.

Sections 3.1 and 3.2 are based on Thomson (1994) and Winter (2002). Sections 3.3 and 3.4 are based
on Navarro (2007), Gilles et al. (2006), and Jackson & Wolinsky (1996). Finally, Sections 3.5, 3.6 and 3.7 are
based on Escobar (2013) and Doraszelski & Satterthwaite (2010).

3.1 Nash Bargaining

A bargaining problem of |I| players is a pair (B, d), where B is the set of feasible alternatives and d ∈ B. Each
player has preferences over B, and can jointly choose a point in it. En case of disagreement, the outcome of
the negotiation is d, which is why it is called the “disagreement point”. A solution is a rule that associates
to each pair (B, d) a point in B, that is, it associates an agreement to each possible bargaining game.

Nash (1950, 1953) defined a series of axioms that lead to a solution which assigns a unique point for every
pair (B, d). There are, of course, many other possible axiomatizations that lead to different solutions. The
Nash Bargaining solution is the one that maximizes the following expression over B:

∏

i∈I
(Fi(b)− Fi(d))

where Fi(b) represents the payoff for player i under alternative b ∈ B. This product may be generalized to
asymmetric bargaining situations, giving rise to the generalized Nash Bargaining solution (Harsanyi & Selten
(1972), Roth (1979)): ∏

i∈I
(Fi(b)− Fi(d))αi

The coefficient αi can be interpreted as player i’s bargaining power.

3.2 The Shapley Value

A game in coalitional form over a finite set of players I = {1, 2, ..., n} is a function µ mapping the set of
all possible coalitions 2I to the real numbers such that µ(∅) = 0. The total profit that a coalition Γ can
obtain in the game µ is µ(Γ). A value is am operator F that assigns to every game µ a payoff vector
F (µ) = (F 1(µ), F 2(µ), ..., Fn(µ)) ∈ Rn. Fi(µ) is the payoff corresponding to player i in game µ.

4See Binmore et al. (1986) for a NB example, Inderst & Wey (2003) for a Shapley Value example and de Fontenay & Gans
(2005, 2013) for the Myerson-Shapley Value.
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Just like Nash, Shapley (1953b) presented a series of axioms which define a value for any coalitional game.
The Shapley Value assigns to each player its average marginal contribution to the total profits. The average
is taken over the set of all permutations of I. If ξ is one such permutation, pξ,i the set of players preceding
i in it and Ξ the set of all permutations of I, the marginal contribution of i with respect to the order ξ is
µ(pξ,i ∪ i)− µ(pξ,i)), and the i-th component of the Shapley Value is:

Fi(µ) =
1

n!

∑

ξ∈Ξ

[µ(pξ,i ∪ i)− µ(pξ,i))] (1)

3.3 The Myerson-Shapley Value

To define the Myerson-Shapley Value, some more groundwork is required. A partition is a set of coalitions
P = {Γ1,Γ2, ...ΓM} such that (1) Γm 6= ∅ for all m = 1, 2, ...,M , (2) ∪Mm=1Γm = I and (3) Γm ∩ Γl = ∅ if
m 6= l. Let Ψ(I) be the set of partitions of I. An embedded coalition is a pair (Γ, P ) where Γ ∈ P ∈ Ψ(I).
Let C(I) be the set of all possible embedded coalitions in I.

A game in partition function form (PFF) (Thrall & Lucas (1963), as cited in Navarro (2007)) is a pair
[I, µ], where µ is a function that assigns to every (Γ, P ) ∈ C(I) a real number µ(Γ, P ). Given the coalitional
structure P , the real number µ(Γ, P ) is the value which can be perfectly transferred across players in Γ.
Notice that the function µ(·, ·) can assign different values to a coalition depending on the partition, that is,
depending on the coalitions formed by the players excluded from Γ. For example, if there are two suppliers
and two retailers in a market, the profits that a retailer-supplier pair can generate will depend on whether the
other supplier and retailer form a competing coalition or exit the market. This possibility is not contemplated
by coalitional games (section 3.2).

Myerson (1977a,b) proposed an allocation rule that generalizes the Shapley Value to games in PFF. A
PFF-allocation rule is a function F which assigns to every game in PFF [I, µ] a payoff vector F (I, µ) ∈ Rn.
It is equivalent to a value in the context of coalitional games. The Myerson Value is defined by the following
payoffs for all i:

Fi(I, µ) =
∑

(Γ,P )∈C(I)

(−1)|P |−1(|P | − 1)!(
1

n
−
∑

Γ̃∈P
Γ̃6=Γ

i/∈Γ̃

1

(|P | − 1)(n− |Γ̃|)
) (2)

As it is, the Myerson Value does not allow for general forms of externalities5. However, it can be adapted
to a general framework which does. General externalities include cases in which the “inner structure” of the
coalition could alter its payoff or other coalitions’ payoffs. We will need to define precisely what we mean by
“inner structure” because, strictly speaking, a coalition can only be distinguished from another if it contains
different players.

Let us consider the same finite set of players, I. Following Navarro (2007), assume that there are network
relations among the players. These can be formally represented by an undirected graph, which is a set of
unordered pairs (i, j), where i, j ∈ I, and i 6= j. Each unordered pair will be referred to as a link.

A link (i, j) may not belong to the graph, that is, the effective set of links may be a proper subset of the
potential set of links. Starting form a graph g, two players i, j ∈ I may decide to “break” or “delete” their
link, that is, to terminate their network relation. This will lead to the graph g \ (i, j), where “\” denotes set
subtraction. Alternatively, if (i, j) /∈ g, they might decide to add it to the graph, leading to g ∪ (i, j), where
∪ denotes set union. In the following section I discuss when this situations are likely to happen.

Continuing with the definitions, let gI be the set of all unordered pairs in I, that is, the full graph over
I. The restriction of g to a coalition Γ is g|Γ = {(i, j) ∈ g : i ∈ Γ ∧ j ∈ Γ}. A connected component of Γ is
a coalition Γ̃ ⊆ Γ such that (1) for every two players in Γ̃, there is a set of consecutive links or path in g|Γ

5For the particular model of this thesis, an oligopoly game, only pecuniary externalities will be considered. That is, they will
not take into account non-players such as price-taking consumers or suppliers. Therefore, these externalities will not correspond
to the standard use of the word in economic policy
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connecting them, and (2) for any players i ∈ Γ̃ and j /∈ Γ̃, there is no path in g|Γ which connects them. The
set of all connected components of Γ in g will be denoted by Γ|g.

Assume, lastly, that for every graph g and connected component Γ ∈ I|g there is a value w(Γ, g) which can
be perfectly distributed among the agents in Γ. What some authors have called “the generalized Myerson-
Shapley Value” is defined in the following theorem, using the specification of Fi(·, ·) in equation 2.

Theorem 1 (Myerson Value for Networks) The Myerson value for networks is the allocation rule which
assigns to every player i and every graph g the allocation Fi(I,Wg), where [I,Wg] is the game in PFF given,
for every (Γ, P ) ∈ C(I), by

Wg(Γ, P ) =
∑

Γ̃∈Γ|g
w(Γ̃, g|P )

(Navarro (2007), Theorem 4.2).

Fi(I,Wg) could be called a “network payoff function”, as in Gilles et al. (2006), because it assigns a payoff
to player i for each network g. I will use the more concise notation Fi(g) when omitting the rest of the
information leads to no ambiguities.

It is now clear that the value assigned to a coalition may depend not only on the partition of I but on how
the players are linked in the partitioned graph. In other words, a given coalition may have a different values,
even for a same partition of I, because the underlying network may change. In fact, it is not necessary that
its own links change (that is, its “inner structure”). The value of the coalition may change because of the
addition or deletion of links in other coalitions.

3.4 Network Stability

In the presence of externalities among players in the game, a new concern arises: the stability of the network.
Cooperative games assume that the network is exogenous, but attempts to understand the network formation
process have yielded several insights relating them to non-cooperative game theory. For instance, one could
think of a cooperative game as a second stage to a non-cooperative game in which players decide which links to
form. This kind of models will typically give rise to several Nash Equilibria. That is why many authors have
developed refinements that help reduce the number of equilibria (e.g. Strong Nash Equilibria, Coalition Proof
Nash Equilibria, etc.). However, even then, multiple equilibria may persist. In what follows, I describe three
simple refinements, based on the principle that a link can be unilaterally dissolved. The first two are probably
the earliest notions of stability in the networks literature (Jackson & Wolinsky (1996)). Before stating them,
we need to define the neighborhood of player i in graph g, which is the set Ni(g) = {j ∈ I|j 6= i ∧ (i, j) ∈ g}.

(i) A network g ∈ gI is link deletion proof (LDP) if for every i ∈ I and every j ∈ Ni(g), it holds that
Fi(g) >= Fi(g \ (i, j)). The operator “\” denotes set subtraction, so the LDP property means that no
player wants to break a link with its neighbors, considering them one at a time.

(ii) A network g ∈ gI is link addition proof (LAP) if for all players i, jinI, it holds that Fi(g ∪ (i, j)) >
Fi(g) =⇒ Fj(g ∪ (i, j)) < Fj(g). In other words, LAP means that when a player wants to add a link,
its potential neighbor doesn’t want to. That is, there are no compatible incentives to form additional
links.

(iii) A network g ∈ gI is strong link deletion proof (SLDP) if for every i ∈ g and every Γ ⊆ Ni(g), it holds
that Fi(g) >= Fi(g \ Γ). SLDP means that no player wants to break any links with its neighbors,
considering one or more at a time.

A network that satisfies (i) and (ii) is called pairwise stable (Jackson & Wolinsky (1996)). If it satisfies (ii)
and (iii), it is called strongly pairwise stable (Gilles & Sarangi (2004)). Since (iii) implies (i), strong pairwise
stability implies pairwise stability.
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3.5 Dynamic Framework

The definitions and theorems in this section and in Sections 3.6 and 3.7 were taken from Escobar (2013) and
Doraszelski & Satterthwaite (2010). In what follows I reproduce a formal definition of discrete state dynamic
stochastic games by Escobar (2013).

It will be assumed that there exists a finite set I of players. Each period t ≥ 0 they observe the state
of the game, st ∈ S, where S is countable. Then, they simultaneously choose actions at = (ai,t)i∈I , where
ai,t ∈ Ai ⊆ RLi , Ai compact. The evolution of the state of the system is Markovian, that is, the distribution
over st+1 is completely determined by (at, st). The Markovian transition function is Q(E; at, st) = P[st+1 ∈
E|(at, st)], where E ⊆ S. Q(E; a, s) is setwise continuous in a, i.e., for every E ⊆ S and s ∈ S it is continuous
in a ∈ A ≡ ∏i∈I Ai. Each player receives a per period payoff equal to πi(at, st), where πi(a, s) is bounded.
Given realized sequences of actions (at)t≥0 and states (st)t≥0, the total payoff for player i corresponds to the
discounted sum of its per period payoffs:

∞∑

t=0

(βi)
tπi(at, st) (3)

where βi ∈ [0, 1). The objective of each player is to maximize the expected value of this sum.
A Markov strategy for player i is a function āi : S → Ai mapping current states to feasible actions. This

means that every period t, player i chooses āi(st) if the state is st. A tuple āi)i∈I of Markov strategies is a
Markov Perfect Equilibria if it constitutes an SPE of the dynamic game. In other words, a tuple of strategies
is an MPE if and only if it is Markov and it constitutes an SPE. Notice that there may be tuples that conform
an SPE but are not Markov. Notice too that we have taken the Markov strategies to be pure. It is generally
understood that they are. When they’re not, the term “behavior strategy” is used. We will denote by a−i
the tuple that includes the actions of every player except i. A−i will be defined analogously.

3.6 Some Existence Results

The following result allows one to reduce the problem of existence of an MPE to one of existence of a solution
to a system of functional equations:

Theorem 2 For each i ∈ I, consider a function āi : S → Ai. Suppose that there is a tuple (Ji)i∈I , where
Ji : S → R is bounded, such that for all i and for all s ∈ S

Ji(s) = max
xi∈Ai

{πi((xi, ā−i(s)), s) + βi
∑

s′∈S
Ji(s

′)Q(s′; (xi, ā−i(s)), s)}

āi(s) ∈ arg max
xi∈Ai

{πi((xi, ā−i(s)), s) + βi
∑

s′∈S
Ji(s

′)Q(s′; (xi, ā−i(s)), s)}

Then, (āi)i∈I is an MPE (Stokey et al. (1989), Theorem 9.2, as apparently incorrectly cited by Escobar
(2013). However, similar results are used in (Fackler 2002, p. 209) and in several, if not most, articles related
to the Ericson and Pakes framework (see Doraszelski & Pakes (2007))).

For a ∈ A, s ∈ S and bounded functions Ji : S → R , lets define

Πi(a, s; Ji) = πi(a, s) + βi
∑

s′∈S
Ji(s

′)Q(s′; a, s)

If we fix s and (Ji)i∈I , the functions Π(·, s; Ji), i ∈ I, define a static game in which the players’ action profiles
are a ∈ A. It will be called the “reduced game”.

Definition 1 (Convex Best Replies) The dynamic stochastic game in Section 3.5 has convex best replies
if for all i, all s ∈ S, all a−i ∈ A−i and all bounded function Ji : S → [ π̌i

1−βi
, π̂i

1−βi
], the best-reply set

arg max
xi∈Ai

Πi((xi, a−i), s; Ji)

is convex. π̂i and π̌i are the supremum and infimum, respectively, of πi (Escobar (2013)).
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The following theorem guarantees the existence of a tuple (Ji)i∈I which satisfies Theorem 2 and which is,
consequently, an MPE.

Theorem 3 (Existence of an MPE) The dynamic stochastic game possesses an MPE if it has convex best
replies and for all i, πi(a, s) is upper semi-continuous in a ∈ A and lower semi-continuous in a−i ∈ A−i
(Escobar (2013), Theorem 1).

3.7 Some Concavity Results

In this section I present sufficient conditions for Theorem 3. More precisely, they are sufficient conditions for
the convexity of the players’ best replies. This will be true, in particular, if they are unique for each state,
which is equivalent to having reduced game objective functions with unique global maximizers. This, in turn,
will be true if they are strictly concave. In the remainder of this section, we will assume that Ai = [0, x̂i].

Definition 2 (Unique Investment Choice (UIC) Admissibility) The transition probability Q(s′; a, s)
is UIC admissible if, for all i, a, s and s′, it can be written in separable form as

Gi(s
′; a−i, s)Λi(ai, s) + Li(s

′; a−i, s) (4)

where Λi(ai, s) is twice differentiable, strictly increasing and strictly concave in ai, that is:

∂Λi(ai, s)

∂ai
> 0,

∂2Λi(ai, s)

∂a2
i

< 0

for all ai ∈ [0, x̂i] (Doraszelski & Satterthwaite (2010), Condition 1).

The name of this property is due to the fact that it was originally proposed for a model in which the action
space corresponded to investment choices. It might as well be called “unique action choice admissibility” in
a more general context such as this. It is only a matter of interpretation of the action space.6

UIC admissibility by itself does not guarantee a unique best reply. In order for it to be sufficient, one
needs to impose additional structure to the model. For our purposes, it will be enough to assume that for

all a ∈ A and s ∈ S, πi(a, s) is linear in ai with ∂πi(a,s)
∂ai

= m < 0. Under this two conditions, it is possible to
write the reduced game payoff for player i in the following way:

Πi(a, s; Ji) = πi(a, s) + βi
∑

s′∈S
Ji(s

′)Q(s′; a, s)

= πi(a, s) + βi
∑

s′∈S
Ji(s

′)(Gi(s
′; a−i, s)Λi(ai, s) + Li(s

′; a−i, s))

= πi(a, s) +Hi(s
′; a−i, s, Ji)Λi(ai, s) + (βi

∑

s′∈S
Ji(s

′)Li(s
′; a−i, s))

and its first order condition (hereafter FOC)

∂Πi(a, s; Ji)

∂ai
= m+Hi(s

′; a−i, s, Ji)
∂Λi(ai, s)

∂ai
= 0

where Hi(s
′; a−i, s, Ji) = βi

∑
s′∈S Ji(s

′)Gi(s′; a−i, s). If this last term is less than or equal to zero, the only
solution to the FOC is ai = 0, because the objective function is strictly decreasing. If it is greater than zero

6To avoid confusion, notice that partial derivatives are taken with respect to the action, wich belongs to a compact interval.
This is done for any given state. Also, the actions are not equilibrium strategies, but simply an argument of the function. There
is no attempt to take a derivative with respect a discrete variable nor is there any attempt to use the Envelope Theorem or
anything simmilar.
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and a solution to the FOC exists, the latter will be unique by the strict concavity of the objective function. If
Hi(s

′; a−i(s), s, Ji) is greater than zero and the FOC has no solution, the objective function is either strictly
increasing or strictly decreasing in the interval Ai, and the only maximizer is ai = 0 or ai = x̂i, respectively.
It has thus been shown that the best reply of player i is unique for any state (Doraszelski & Satterthwaite
(2010),Proposition 3).

4 The Model

The framework developed by Ericson & Pakes (1995) gave origin to a series of dynamic models of imperfect
competition. Many of them possess what Doraszelski & Pakes (2007) call a“static-dynamic breakdown”:
the actions which determine the operational cash flows of the firms do not affect the evolution of the state
variables. The operational cash flow corresponds to the payoff obtained through product market competition
and is typically affected by pricing and production decisions. The free cash flow, which is what the firm
owners ultimately receive and care about, subtracts the additional investment expenditures (R&D, production
capacity accumulation, etc.). The static-dynamic breakdown allows the independent specification of the type
of market competition, which implies that the operational cash flows can be treated as part of the primitives
of the model.

Continuing with the notation in Section 3.5, it will be assumed that there is a set of firms, I = {1, 2, ..., n},
which can be partitioned in a set of upstream firms (sellers, suppliers or manufacturers), U , and set of down-
stream firms (buyers or retailers), D, both non-empty. The former provide the latter with an intermediate
good which is then processed and sold as a final good in the next stage of the supply chain. In what follows,
I will show how to adapt the BD model to this bilateral format.

4.1 Static Competition

Static competition is the one that occurs every period in the product markets. Each seller i ∈ U has a
constant marginal cost of production and a production capacity restriction. Each buyer i ∈ D has a constant
returns to scale technology which uses as input the intermediate good7, and it also has a capacity restriction.
The inverse demand for the final good is p(q) = ζ − ηq, where ζ and η are two positive constants and q is
the total production of the final good. zi is the amount of the intermediate good bought (sold) by i ∈ D
(i ∈ U), qi the amount of the final good produced by i ∈ D, γ > 0 the transformation coefficient from z
to q, c ∈ [0, ζγ) the marginal cost of production of z and ki ∈ Ki ⊂ R+ the production capacity of firm i
(measured in the same units as its output). I have assumed homogeneous final and intermediate goods to
simplify the analysis. This will not impact greatly the solution of the model since it will involve a form of
quantity competition.8

The symmetry assumptions regarding the transformation coefficient and the marginal cost serve to identify
alternative sources of asymmetric market structures. The objective is to isolate endogenous sources of asym-
metry that result from market competition from exogenously imposed technological or strategic asymmetries
(e.g. Stackelberg leadership).

To simplify the resolution of the model, my approach to the determination of the firms’ payoffs in the
static game will be mainly axiomatic or cooperative. Each period, depending on the state of the industry, a
network configuration g will arise. It will be composed of buyer-seller pairs only, that is, g ⊆ ĝ = {(i, j)|i ∈
D ∧ j ∈ U} ⊂ gI . In other words, it will exclude the possibility of horizontal links. This could be due to the
presence of antitrust regulations, for example.

The restriction to buyer-seller pairs allows me to follow the convention of reserving the first index in the
link for downstream firms and the second for upstream firms without loss of generality.

7other inputs enter the function in fixed proportion.
8As it is well known, price competition is more sensitive regarding the assumption of product differentiation.
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4.1.1 The Bargaining Problem

Recall from Section 3.3 that a link (i, j) represents a network relation between players i and j. Each link
in network g will negotiate over an output-input-transfer triple denoted by (qij , zij , Tij), taking as given the
values of other triples. Transfers are defined to be positive when i pays j. The outcome will be determined
by NB, considering as the firms’ outside options the best payoffs they would obtain by breaking that link
(and that link only). The intersection of the results from all bilateral negotiations will determine the static
equilibrium values for every output-input pair and the price of the final good. It will also determine the value
of each coalition for the graph under consideration.9

More specifically, the bargaining game for the link (i, j) will be given by a set of feasible agreements
B = {(qij , zij , Tij) ∈ R2

+ × R|qi ≤ ki ∧ zj ≤ kj ∧ qi ≤ γzi}, where qi, zj and zi are as defined above10. The
disagreement point will be (qij , zij , Tij) = (0, 0, 0) and it will give players i and j payoffs of Fi(g \ (i, j)) and
Fj(g \ (i, j)), respectively.

Fi(g \ (i, j)) and Fj(g \ (i, j)) represent the payoffs i and j would get in the network g \ (i, j), that is,
the network composed by the links that remain after the negotiations between i and j break down. In this
network, there is no trade between players i and j. A supplier facing two buyers, for example, might prefer
to sell inputs to a single buyer to avoid the externalities generated by downstream competition. The link
with one of the buyers would cease to exist and the link with the remaining seller would constitute a new
network.

In the current network, g, the payoff for a downstream firm will equal its sales minus any transfers
made to upstream firms, that is, Fi(g) = p(q)qi − Ti, where Ti =

∑
m∈U Tim. On the other hand, the

payoff for an upstream firm will equal the transfers received from downstream firms minus production costs:
Fj(g) = Tj − czj , with Tj =

∑
m∈D Tmj . NB implies that (qij , zij , Tij) will be chosen to maximize over B

the product of these payoffs net of outside options:


p(q)qi − Tij −

∑

m 6=j,m∈U
Tim − Fi(g \ (i, j))




Tij +

∑

m6=i,m∈D
Tmj − czj − Fj(g \ (i, j))




It is straightforward to show that this is equivalent to maximizing their joint net surplus and choosing Tij
to split it evenly 11. In other words, the optimal final and intermediate good quantities are independent of
the way the firms share their joint net surplus. Therefore, we can rewrite link (i, j)’s optimization problem
as follows:

max
(qij ,zij)

p(q)qi − czj

s.t.

qi ≤ ki
zj ≤ kj
qi ≤ γzi
qij , zij ≥ 0

9Notice that the assumption of bargaining over short-run variables only is not innocuous. It is quite likely that this will
generate externalities among the players, specially when considering the fully dynamic game. Some coordination on investment
strategies is likely, but I will assume that for reasons such as informational asymmetries or the existence of non-contractible
contingencies, players can only bargain over short-run variables. Of course, the problem of intertemporal commitment can also
be an important impediment restriction to long term agreements.

10That is, qi =
∑

m∈U qim, zj =
∑

m∈D zmj and zi =
∑

m∈U zim
11This is partly due to the fact that the restrictions in B involving quantities are independent of the one involving the transfer

payment, which corresponds to the trivial restriction Tij ∈ R. Intuitively, this practically unrestricted transfer allow the players
to separate the choice of the size of the surplus to be shared from the choice of the distribution of that surplus. Since NB, as
shown by Nash (1950, 1953), is (bilaterally) efficient, the joint surplus will be maximized
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4.1.2 Existence of a Static Equilibrium

I have not defined formally the notion of equilibrium being employed in this game. Strictly speaking, there
is no equilibrium in the non-cooperative sense because there is no non-cooperative behavior. What matters
is how to solve simultaneously all negotiation problems. Therefore, I will understand as “static-equilibrium”
the quantities that result when all bilateral negotiations are carried out assuming “passive beliefs” as in
de Fontenay & Gans (2013). This concept is similar to the idea of rational expectations: all negotiations
will be carried out expecting equilibrium values for the outcomes of other links, and this expectation will be
self-fulfilling.

To demonstrate that there is such an equilibrium for any network, let us assume that every link (i, j)
is restricted to output-input pairs that satisfy qij = γzij . This reduces the dimensionality of the previous
problem. Among other things, it implies that qi = γzi, qj = γzj and the third restriction is trivially satisfied.
Writing the inverse demand function explicitly, we get:

max
qij

(ζ − ηq)qi −
c

γ
qj (5)

s.t. (6)

qi ≤ ki (7)

qj ≤ γkj (8)

qij ≥ 0 (9)

Let q̃i = qi− qij , z̃j = zj − zij , z̃i = zi− zij and q̃ = q− qij . The first and second order conditions (FOC and
SOC, respectively) for an interior solution are:

FOC:− ηqi + ζ − ηq − c

γ
= 0 (10)

SOC:− 2η < 0 (11)

This conditions lead to a unique unrestricted maximum at:

qij =
1

2η
(ζ − c

γ
)− 1

2
(q̃i + q̃)

The strictly negative SOC implies that the objective function is strictly concave in qij (globally). In other
words, it is strictly increasing to the left of the unrestricted maximum and strictly decreasing to the right.
Consequently, there is a unique restricted maximum determined by:

qij = max{0,min{ 1

2η
(ζ − c

γ
)− 1

2
(q̃i + q̃), ki − q̃i, γkj − q̃j}

Solving for other links, one obtains symmetric expressions. Together, they constitute a system of equations
that has at least one solution. To see why this last statement is true, notice that the minimum between two
continuous functions is continuous, and so is the maximum. Since every function inside min{·} above is linear
and, therefore, continuous, the minimum between them is continuous too. Hence, the two functions inside
the maximum are continuous, which leads us to the conclusion that the whole function is continuous.

It is also true that qij will take values between zero and min{ 1
2η (ζ − c

γ ), ki, γkj}. The interval defined

by [0,min{ 1
2η (ζ − c

γ ), ki, kj}] is non-empty, compact and convex, and so is the Cartesian product D =∏
j∈U

∏
i∈D[0,min{ 1

2η (ζ − c
γ ), ki, kj}]. Since the continuous image of a compact set is compact, the mapping

from D to itself defined by the system of equations satisfies the conditions of the Brouwer Fixed Point
Theorem. The system having a fixed point is equivalent to saying that there exists at least one equilibrium
defined by the previous optimality conditions.

Remember, however, that I imposed an artificial restriction, namely, that qij = γzij for all (i, j) ∈ g.
For the previous solution to constitute an equilibrium to the original problem, it is necessary (and sufficient)
that no link wants to unilaterally deviate from qij = γzij . That is, given qml = γzml for all (m, l) ∈ g,
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(m, l) 6= (i, j), it should be optimal for (i, j) to choose qij = γzij . This is exactly the case, because qml = γzml
implies that the third restriction in problem 5 becomes qij ≤ γzij . Since the objective function is strictly
decreasing in zij whenever c > 0, and since qij ≤ γkj , the optimal choice for the input will always be
zij = qij/γ.12

I have shown that the model has at least one equilibrium, but there could be many. This is problematic
to the extent that it generates multiple payoff profiles for the same network. Then, a refinement of the
equilibrium concept would be required to obtain unique payoffs that can be plugged into the dynamic frame-
work from Section 3.5. This will be unnecessary for the cases examined afterwards. It will be demonstrated
that payoffs are uniquely determined in those particular cases. Unfortunately, even then, the equilibrium
network might not be unique, as I discuss below, so it will be necessary to use a somewhat arbitrary selection
procedure for the payoffs. Still, having unique payoffs for each network represents an improvement from the
case in which both the payoffs for each network and the network itself are not uniquely defined.

4.1.3 Payoffs

So far, I have only explained how equilibrium quantities for the final and intermediate goods are determined.
After solving for the optimal values of every output-input pair, one way to find the payoff functions and
transfers is through the following iterative procedure. Since the value of the outside option is zero for both
players in graphs containing a single link, one can begin by defining Fi((i, j)) = Fj((i, j)) = 1

2 (p(q∗ij)q
∗
ij−cz∗ij),

where the asterisk denotes optimality (from the link’s perspective). In other words, Tij is chosen so that
both firms split total industry profits evenly. After finding the payoffs for every single-link graph, the outside
options for every double-link graph will be known and it will be possible to find the corresponding payoffs.
This procedure continues until finding the payoffs for ĝ, the largest network.

Alternatively, this hybrid network-bargaining game leads to payoffs that can be described through the
generalized Myerson-Shapley allocation rule, as demonstrated by de Fontenay & Gans (2005, 2013). In
fact, notice that the iterative procedure described above follows the axioms that define the Myerson-Shapley
Value, namely, that the surplus net of outside options is equally shared among players, and that all profits are
distributed. Using its explicit formula would require finding the value of every coalition Γ under each possible
network structure g, w(Γ, g), and applying Theorem 1 afterwards. This second approach seems better suited
for solving large scale problems. For the applications in Sections 5 and 6, I used the first one.

Notice that to obtain unique payoffs for each network, it will be necessary and sufficient that the total
value of each connected component (defined in Section 3.3) is uniquely determined. For the applications in
this thesis, it will suffice to verify that total industry profits are unique, that is, that the amount given by

p(q)q − cz (12)

is the same for every static equilibrium.

4.1.4 Equilibrium-Network Selection

As mentioned earlier, the model just described was developed by de Fontenay & Gans (2005, 2013). However,
in the context of a dynamic investment model, their results are insufficient. Specifically, the authors give
feasibility conditions for the complete buyer-seller network to arise in equilibrium, and assume that they are
satisfied. Unfortunately, this will rarely be the case when considering endogenous and potentially asymmetric
production capacities, which is the situation analyzed in this thesis. Since de Fontenay & Gans do not
characterize the equilibria that result when the feasibility conditions are not met, I will use different feasibility
criteria. I will assume that every period, a graph is randomly chosen with equal probability from the set of
non-empty strongly pairwise stable networks. In other words, the ex-post payoffs of the firms will be given
by the generalized Myerson-Shapley Value, but the ex-ante payoffs will be given by its expectation over the
set of non-empty strongly pairwise stable networks.

As previously discussed, the equilibrium selection problem is not easily solved. When recurring to non-
cooperative link formation games, multiple Nash Equilibira arise. Refinements of the Nash Equilibrium

12Notice that when c = 0, this choice is also optimal, but it is not the only one.

13



concept yield a smaller set of equilibria, yet uniqueness is not guaranteed. That is why it seems reasonable
and simpler to continue with the cooperative approach, in spite of the arbitrariness involved in my solution. I
will employ some filters to avoid unstable networks and obtain payoffs that are fairly consistent with individual
rationality, but I will not specify the process through which the players get to one stable network or another.
Instead, I will assume that every period “nature” chooses a stable network randomly.

For instance, consider what happens when there is disagreement between a buyer and two sellers and one of
these links is broken, but not both of them. In other words, assume that network g = {(seller, buyer1), (seller, buyer2)}
is not link-deletion proof, but networks g1 = {(seller, buyer1)} and g2 = {(seller, buyer2)} are strongly pair-
wise stable. Our assumption is that each buyer will have a 50% chance of remaining in the static game during
that period.

This working assumption is designed to avoid exogenous asymmetries between firms and solve the network
selection problem in a simple way. It should be analyzed in more detail in future work because it may be
inconsistent with profit maximizing behavior.

4.2 Dynamic Competition

Every period, each firm i begins with a production capacity from the finite set Ki = {ki,0, ki,1, ..., ki,κi
} ⊂ R+

with 0 = ki,0 < ki,1 < ... < ki,κi
. The state space of the industry is defined as the Cartesian product

∏
i∈I Ki.

For simplicity, when referring to the state of a particular firm i, ki,si , the variable si ∈ {1, 2, ...,κi} will be
used. The set S will be defined as the finite set of all vectors s = (s1, s2, ..., sn) corresponding to a vector
k ∈∏i∈I Ki.

Since the static game is stationary, time subscripts will be eliminated. An apostrophe will indicate next
period variables (e.g. s′ indicates the state of the game next period) and no apostrophe will indicate current
period variables (e.g. s is the state of the game in the current period).

4.2.1 The Capacity Accumulation Process

Firms can invest in the accumulation of production capacity blocks, subject to a risk of non-completion or
failure. They can also be subject to depreciation shocks which destroy part of their capacity. The probability
that firm i suffers a depreciation shock is δi, independent of that of other firms. The probability that an
investment project is completed successfully the next period is also independent between firms (and from the
depreciation shock) and is defined as:

λi(xi) =
θixi

1 + θixi

where xi ≥ 0 is the amount of money invested by the firm and θi > 0 measures the effectiveness of investment
around xi = 0:

dλi(xi)

dxi

∣∣∣∣
xi=0

= θi

It is possible to interpret (λi(xi))
−1 as the average time it takes for an additional block to come on-

line if the firm invests xi every period. The time-to-build will be geometrically distributed, with variance
(λi(xi))

−1/(θixi). The risk measured by this variance translates into stock-outs or idle capacity, making the
choice of thetai an important matter.

According to the previous definitions, the transition function for firm i should therefore be:

Qi(s
′
i|xi, si) = P[s′i|xi, si] =





λi(xi)(1− δi) if s′i = si + 1

(1− λi(xi))(1− δi) + λi(xi)δi if s′i = si

(1− λi(xi))δi if s′i = si − 1

0 in other case
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when starting from interior values of the production capacity set, i.e., for si different from 1 or κi. For si = 1,

Qi(s
′
i|xi, si) = P[s′i|xi, si] =





λi(xi)(1− δi) if s′i = si + 1

1− λi(xi)(1− δi) if s′i = si

0 in other case

Similarly, for si = κi,

Qi(s
′
i|xi, si) = P[s′i|xi, si] =





1− (1− λi(xi))δi if s′i = si

(1− λi(xi))δi if s′i = si − 1

0 in other case

The independence between firms implies that the transition function of s, the state of the whole market or
industry, is Q(s′;x, s) =

∏
i∈I P[s′i|xi, si] =

∏
i∈I Qi(s

′
i;xi, si) for s corresponding to (s1, s2, ..., sn) and s′ to

(s′1, s
′
2, ..., s

′
n), with x = (x1, x2, ..., xn). Q(s′;x, s) is setwise continuous because, for any given initial and

final state pair, it is an n degree polynomial in the success probabilities of the players (λi(xi)), which are
themselves continuous in the investment decisions.

It may be too restrictive to assume that it is only possible to transition to adjacent states, and that the
firms’ transition probabilities are independent of each other. However, both restrictions can be easily relaxed
(see Doraszelski & Satterthwaite (2010)). For example, it is possible to introduce shocks that simultaneously
affect all firms, that is, industry-wide shocks. For the sake of simplicity, I will only consider the restricted
transitions. They will generate sufficiently rich dynamics, as we will see.

Entry and exit are only implicitly considered through the investment decision. If a firm wants to exit the
market it must stop investing and, in a finite number of periods, depreciation will take care of it. If it wants
to enter, it must invest to accumulate capacity, which will also grow in a finite number of periods. A firm
exiting the market does not receive a scrap value for its assets, and a firm entering it does not pay setup
costs (beyond investing in capacity). It is possible to extend the model to consider entry and exit decisions
explicitly the same way Doraszelski & Satterthwaite (2010) extend the BD model, following the tradition of
the Ericson & Pakes (1995) framework.

4.2.2 Existence of an MPE

The free cash flow of firm i in a given period corresponds to the operational cash flow minus the amount
invested in capital accumulation. Considering explicitly in the notation that the operational cash flow depends
on the state of the industry, we obtain the following expression for the free cash flow of i:

πi(x, s) = Fi(s)− xi
where Fi(s) is defined according to the cooperative game described in 4.1.

The space of available actions for each player is the interval Ai = [0, x̂i], where x̂i > 0. It will always be
possible to choose its upper bound in way that it is not binding for the firm. Similarly, the state space of
the game, S, has been defined as a finite set. It can be demonstrated that there will be no loss of generality
in doing so because, in equilibrium, only a finite subset of the “true”, infinitely countable state space, will
be visited with positive probability (see Ericson & Pakes (1995) for a rigorous demonstration in a similar
context). With A =

∏
i∈I Ai and S defined in such a way, it can be shown that the function πi(x, s) is

bounded (that is, for the relevant pairs (x, s) ∈ A × S). Furthermore, it is possible to define the objective
function of each player as the discounted sum of its future cash flows for some nonnegative discount factor
βi < 1, just like in the general framework defined previously (see equation 3).

For x ∈ A, s ∈ S and bounded functions Ji : S → R, the payoffs from the reduced game implicit in this
model are defined as (Section 3.6):

Πi(x, s; Ji) = Fi(s)− xi + βi
∑

s′∈S
Ji(s

′)Q(s′;x, s)
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To prove that there is at least one MPE we need to show first that Q(s′;x, s) is UIC admissible. This
has already been demonstrated by Doraszelski & Satterthwaite (2010), but, for the sake of completeness, I
reproduce their result. First, notice thatQ(s′i;xi, si) can always be written in the form h(s′i; si)λi(xi)+l(s

′
i; si),

i.e., it is linear in the success probability of i. Let us define

Gi(s
′;x−i, s) =


 ∏

j∈I,j 6=i
Qj(s

′
j ;xj , sj)


h(s′i; si)

Li(s
′;x−i, s) =


 ∏

j∈I,j 6=i
Qj(s

′
j ;xj , sj)


 l(s′i; si)

Λi(xi, s) = λi(xi)

Now it is straightforward to show that Q(s′;x, s) can always be written in the separable form of equation 4:

Q(s′;x, s) =
∏

j∈I
Qj(s

′
j ;xj , sj)

=


 ∏

j∈I,j 6=i
Qj(s

′
j ;xj , sj)


Qi(s

′
i;xi, si)

=


 ∏

j∈I,j 6=i
Qj(s

′
j ;xj , sj)


 (h(s′i; si)λi(xi) + l(s′i; si))

= Gi(s
′;x−i, s)Λi(xi, s) + Li(s

′;x−i, s)

Notice also that the first derivative of λi(xi) is strictly positive on Ai, and its second derivative is strictly
negative:

dλi(xi)

dxi
=

θi
(1 + θixi)2

d2λi(xi)

dx2
i

=
−2θ2

i

(1 + θixi)3

Hence, Q(s′;x, s) is UIC admissible, which concludes the first part of the proof.13

Since the transition function is UIC admissible and the cash flow πi(x, s) = Fi(s) − xi is continuous in
x for all i, there exists a unique xi ∈ Ai which maximizes the payoff Πi(x, s; Ji) (i.e. the reduced game has
convex best replies) and the conditions for Theorem 3 are satisfied. Moreover, the conditions for Theorem 2
are also satisfied, that is, there exists a tuple (Ji)i∈I , where Ji : S → R is bounded, such that for all i and
all s ∈ S

Ji(s) = max
xi∈Ai

{Fi(s)− xi + βi
∑

s′∈S
Ji(s

′)Q(s′; (xi, x̄−i(s)), s)} (13)

x̄i(s) = arg max
xi∈Ai

{Fi(s)− xi + βi
∑

s′∈S
Ji(s

′)Q(s′; (xi, x̄−i(s)), s)} (14)

and the functions x̄i : S → Ai form an MPE.

13The decreasing returns to investment implied by the concavity of λ generate incentives for firms to develop multiple projects
at the same time instead of one. However, this is not allowed by the model. Nevertheless, when considering mergers, for example,
it is relevant to determine if the merged firm will be able to make multiple investment decisions or not. This is also an important
question when determining a benchmark for this oligopoly.
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4.2.3 Best-Reply Functions

The best-reply functions of the reduced game can be obtained from the FOC that characterize the maximum
of Πi(x, s; Ji):

−1 + βi
∑

s′∈S
Ji(s

′)
∂Q(s′;x, s)

∂xi
= 0 (15)

The partial derivative of the individual transition function is:

∂Qi(s
′
i|xi, si)
∂xi

=





(1−δi)θi
(1+θixi)2

if s′i = si + 1
(2δi−1)θi
(1+θixi)2

if s′i = si
−δiθi

(1+θixi)2
if s′i = si − 1

0 in other case

for interior si, i.e. different from 1 or κi. For si = 1,

∂Qi(s
′
i|xi, si)
∂xi

=





(1−δi)θi
(1+θixi)2

if s′i = si + 1

− (1−δi)θi
(1+θixi)2

if s′i = si

0 in other case

Similarly, for si = κi,

∂Qi(s
′
i|xi, si)
∂xi

=





δiθi
(1+θixi)2

if s′i = si
−δiθi

(1+θixi)2
if s′i = si − 1

0 in other case

If the equation 15 has a nonnegative solution, we can solve for xi by multiplying by (1 + θixi)
2 and taking

square root. If it has a negative solution or no solution at all, xi can only be equal to zero (if it approaches
∞, the objective function approaches −∞). Therefore, the best reply from i is:

xi =





max

{
0,

√
∆i(x−i,s)−1

θi

}
if ∆i(x−i, s) ≥ 0

0 in other case
(16)

where

∆i(x−i, s) = βi
∑

s′∈S


Ji(s′)

∏

j∈I,j 6=i
Qj(s

′
j ;xj , sj)

∂Qi(s
′
i;xi, si)

∂xi
(1 + θixi)

2


 (17)

4.3 Computation

The solution algorithm is similar to the dynamic programming algorithm, but as previously mentioned, it
does not guarantee convergence. The existence of an MPE is demonstrated through the use of Kakutani’s
Fixed Point Theorem, not in the Contraction Mapping Theorem.

What it does, basically, is to start from initial guesses for the value functions (Ji(s)) and investment
policies (xi(s)) to obtain the reduced game best replies and payoffs (Πi(x, s; Ji)) for every player. If the
payoffs differ greatly from the initial value function guesses, the process is repeated substituting the initial
guesses by the functions obtained from the reduced game. Otherwise, the new functions are accepted as a
good approximation to the solution of the dynamic game.

More specifically, the solution algorithm is as follows:
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1. Initial guesses: xi(s) = 0 y Ji(s) = πi(0,s)
1−βi

, ∀s ∈ S, i ∈ I.

2. For each i, update its optimal policy to x′i(s) using equation 16 evaluated in the initial guesses.

3. Update its value function:

J ′i(s) = πi(x
′
i(s), s) + βi

∑

s′∈S
Ji(s

′)Q(s′|x′(s), s)

4. Convergence criterion: ∥∥∥∥
J ′i(s)− Ji(s)
1 + |J ′i(s)|

∥∥∥∥
∞
< ε

for all i, where ‖ · ‖∞ denotes the sup norm and ε > 0 is the tolerance level. The optimal policies can
be used as an additional stopping criterion. If the inequation is satisfied, the last policies and value
functions are accepted as a solution to the system of functional equations in 13. If not, the process is
repeated from step 2 onwards using them as initial guesses.

The convergence criterion is practically free of unit of account. This is convenient because it is hard to
get a notion of the magnitudes involved and determine an appropriate level of precision for the algorithm. If
it is too demanding, the program may take too long to converge, and if not, the result may be inaccurate.
This is especially the case when the model is not being calibrated according to real data.

If the parameterization of the model is symmetric, it is possible to partially reduce the computational
burden by reducing the number of optimization problems to be solved and the size of the state space. For
example, if all buyers have equal payoff functions, production technologies and transition functions and
the same is true for the sellers, it suffices to solve the optimization problem of one buyer and one seller.
Furthermore, it is possible to iterate over a smaller subset of the state space. As a matter of fact, the only
relevant information about the sellers’ state from a buyer’s point of view is the combination of their capacity
levels. A redistribution of these among the sellers does not alter the buyer’s optimization problem and best
reply. The same thing happens when considering a seller’s the point of view and the buyers’ capacity levels.

To verify that the definition of the state space is not restrictive, it is possible to obtain the investment
strategies of the firms for a given S and check that they are zero near the boundaries of S. If they’re not, S
should be amplified or the parameters of the game rescaled until they are (for example, it is possible to move
the demand curve towards the origin). It must not be the case that a firm wants to accumulate more capacity
but cannot do so because of the artificial restriction of the state space. This could distort the solution of the
game.

5 Two Buyers and One Supplier

In this section I study the case of two downstream firms, D = {1, 2}, and one upstream firm, U = {3}. The
largest network they can form corresponds to the graph ĝ = {(1, 3), (2, 3)}. Then come networks with only
one link, which are equivalent to a bilateral monopoly. Finally, there is the empty network, in which no firm
produces and all get a payoff equal to zero. In what follows I characterize the production levels for every
possible g ⊆ ĝ.
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5.1 Two links

The optimization problem for link (1, 3) is the following:

max
q13,z13

(ζ − η(q13 + q23))q13 − c(z13 + z23)

s.t.

q13 ≤ k1

z13 + z23 ≤ k3

q13 ≤ γz13

q13, z13 ≥ 0

Since c > 0, for every feasible level of q13 the third restriction will be active, so we can safely assume that
q13 = γz13. This reduces the dimensionality of the problem to one. Replacing the expression in the objective
function, we get:

(ζ − η(q13 + q23))q13 − c(
q13

γ
+ z23)

Notice that the SOC is the same as in the general case (see equation 10). Consequently, solving the FOC
for q13 and taking into account the remaining restrictions yields the following expression for the optimum
production level:

q13 = max{0,min{ 1

2η
(ζ − c

γ
)− 1

2
q23, k1, γ(k3 − z23)}}

Since the problem for link (2, 3) is symmetric, we can simply exchange the subscripts 1 and 2 to obtain the
other optimum production level:

q23 = max{0,min{ 1

2η
(ζ − c

γ
)− 1

2
q13, k2, γ(k3 − z13)}}

For the second link it will also be true that its third restriction is always active in the relevant range, that
is, q23 = γz23. Therefore, we can eliminate all intermediate good quantities from the equations to obtain a
system in the variables q13 and q23:

q13 = max{0,min{ 1

2η
(ζ − c

γ
)− 1

2
q23, k1, γk3 − q23}}

q23 = max{0,min{ 1

2η
(ζ − c

γ
)− 1

2
q13, k2, γk3 − q13}}

Even though this system of equations can have multiple solutions, I will demonstrate next that the total
profits generated by the network are always unique.

5.1.1 Uniqueness of Total Industry Profits

Notice that the first equation represents a continuous piecewise linear function of q23 that has a slope between
−1 and 0. The second equation, when inverted, represents a correspondence, and not a function, of q23.
However, this is only due to the non-negativity constraint q23 ≥ 0 and the capacity constraint q23 ≤ k2. In
between, it is a continuous piecewise linear function which has a slope between −1 and −2. Considering the
constraints, the slope would be between −1 and −∞.

It is easy to see that a line of slope −1 would only intersect the first function in one point unless it
coincided with the line q13 = γk3 − q23. If it did, there would be an interval of intersections where the
function takes that form. Let this interval be [q̌1

23, q̂
1
23], q̌1

23 ≤ q̂1
23. For any q23 ≤ q̌1

23, the line will be higher
than the function, because it decreases at a higher rate over that range. The same reason implies that for
any q23 ≥ q̂1

23, the line will be lower than the function.
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The same argument can be used to show that the opposite is true for the correspondence. Let the interval
over which the correspondence takes the form q13 = γk3 − q23 be [q̌2

23, q̂
2
23], q̌2

23 ≤ q̂2
23. For any q23 ≤ q̌2

23, the
line will be lower than the function, because it decreases at a lower rate over that range. The same reason
implies that for any q23 ≥ q̂2

23, the line will be higher than the function.
Using Brouwer’s Fixed Point Theorem as in Section 4.1.2, it can be shown that the function and the

correspondence intersect at least once. Since the value of the slope of the correspondence is less or equal than
that of the function, it can only be the case that they intersect once or that there is an overlap of the intervals
in which both are equal to γk3−q23. To see that, notice that the line of slope−1 going through any intersection
point q∗23 is lower than the function and higher than the correspondence for q23 ≥ q∗23 and is higher than the
function and lower than the correspondence for q23 ≤ q∗23. That is, unless q∗23 ∈ [q̌23, q̂23] = [q̌1

23, q̂
1
23]∩[q̌2

23, q̂
2
23],

which would require the intersection to be non-empty. If this were the case, then all points in q̌23, q̂23] would
be intersections. More over, no q23 ≤ q̌23 is an intersection point because the function is lower than the line
and the correspondence is higher, and no q23 ≥ q̂23 is an intersection point because the function is higher
than the line and the correspondence is lower. Since all equilibria, if more than one, satisfy q13 + q23 = γk3,
the total profits generated by the network, given by (p(q13 + q23)− c)(q13 + q23), will be unique.

5.2 One Link: Bilateral Monopoly

Assume that the graph is g = {(1, 3)}. The other one-link graph can be treated symmetrically, so there is
no loss of generality. The problem for one link is simpler because it only involves an optimization problem.
It does not require the solution of an equilibrium. It is equivalent to assuming that k2 = 0 in the previous
problem. This would imply that q23 = z23 = 0. Consequently, the final good production level will be:

q13 = max{0,min{ 1

2η
(ζ − c

γ
), k1, γk3}}

By symmetry, the solution for link (2, 3) would be:

q23 = max{0,min{ 1

2η
(ζ − c

γ
), k2, γk3}}

5.3 Equilibrium Production Levels

In this section I characterize all possible equilibria for network ĝ. The purpose of this is to obtain analytical
expressions for the equilibrium production levels to build an algorithm that finds the firms’ payoffs. The
following cases are mutually exclusive unless one of them yields the same industry profits as another. Then,
both can be equilibria.

• [q13 = 0] : When the non-negative constraint for (1, 3) is active, the quantity set by link (2, 4) is:

q23 = max{0,min{ 1

2η
(ζ − c

γ
), k2, γk3}}

• [q13 = 1
2η

(ζ − c
γ
) − 1

2
q23; q23 = 1

2η
(ζ − c

γ
) − 1

2
q13] : Notice that this case is equivalent to a tradi-

tional Cournot game, resulting in the following quantities:

q13 = q23 =
1

3η
(ζ − c

γ
)

• [q13 = 1
2η

(ζ − c
γ
) − 1

2
q23; q23 = k2] : In this case, link (2, 3) is restricted by firm 2’s capacity. This

leads link (1, 3) to an increase in output, whenever its capacity is not restrictive:

q13 =
1

2η
(ζ − c

γ
)− 1

2
k2
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• [q13 = 1
2η

(ζ − c
γ
) − 1

2
q23; q23 = γk3 − q13] : Instead of any downstream firm’s capacity being re-

strictive, it is now the upstream firm that is incapable of providing Cournot quantities of input:

q13 =
1

η
(ζ − c

γ
)− γk3q23 = 2γk3 −

1

η
(ζ − c

γ
)

• [q13 = k1; q23 = k2] : In this trivial case, both downstream firms are constrained by their own capacity
levels.

• [q13 = k1; q23 = γk3 − q13] : A downstream and an upstream restriction are activated leading to:

q23 = γk3 − k1

• [q13 + q23 = γk3] : As discussed above, there may be multiple equilibria. However, if there are, they
must always satisfy this equation, yielding constant industry profits.

Ignoring symmetric cases, these seven types of equilibrium summarize all possibilities. A computer algorithm
for finding equilibrium industry profits would verify the consistency of each case by replacing the quantities
in the optimality conditions until obtaining a coincidence. Since industry payoffs are uniquely determined,
no further search is required. Because the last case has undetermined production levels, it could be harder
to verify. However, knowing that there is always an equilibrium, it is possible to check the consistency of all
other cases first. If none of them work, it has to be true that the last case is the equilibrium. Then, one
simply replaces q13 + q23 by k3 in the industry profits definition (see equation 12).

6 One Buyer and Two Suppliers

In this section I explore the inverse industry structure. There will be one downstream firm, D = {1}, and two
upstream firms, U = {3, 4}. The largest network they can form corresponds to the graph ĝ = {(1, 3), (1, 4)}.
Breaking a link would lead to a bilateral monopoly, and breaking both, to the empty network. I will only
discuss the case of two links; the bilateral monopoly can be treated the same way as in Section 5.2.

6.1 Two Links

The optimization problem for link (1, 3) is the following:

max
q13,z13

(ζ − η(q13 + q14))(q13 + q14)− cz13

s.t.

q13 + q14 ≤ k1

z13 ≤ k3

q13 + q14 ≤ γ(z13 + z14)

q13, z13 ≥ 0

Since c > 0, for any feasible levels of q13, q14 and z14, the third restriction will be active. Therefore, we can
replace z13 in the objective function to obtain the following expression:

(ζ − η(q13 + q14))(q13 + q14)− c(q13 + q14

γ
− z14)

The SOC is the same as in the general case (see equation 10), and the FOC yields:

q13 =
1

2η
(ζ − c

γ
)− q14
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Notice that the equation corresponds to the static monopoly production level, and not the Cournot level.
The externalities between downstream firms are internalized. Using the third restriction again, one gets:

z13 =
1

2ηγ
(ζ − c

γ
)− z14

Rewriting the capacity restrictions in terms of input quantities, we get:

z13 = max{0,min{ 1

2ηγ
(ζ − c

γ
)− z14,

k1

γ
− z14, k3}}

By symmetry,

z14 = max{0,min{ 1

2ηγ
(ζ − c

γ
)− z13,

k1

γ
− z14, k4}}

These two equations form a system. It is possible to show that it has either one solution or an interval of
solutions satisfying z13 + z14 = min{ 1

2ηγ (ζ − c
γ ), k1γ }. In fact, the first equation is a function of z14 with

slope between 0 and −1. The second equation, when inverted, has slopes between −1 and −∞, that is,
slopes less or equal than the first equation. Therefore, the conditions for applying the same argument from
Section 5.1.1 are met. Recalling that z13 +z14 = (q13 +q14)/γ, it is easy to see that total industry payoffs will
be uniquely determined. The only additional restriction to be kept in mind is q13, q14 ≥ 0. Since the system
simultaneously guarantees that z13 + z14 ≤ k1

γ and z13, z14 ≥ 0, it will always be possible to take q13, q14 ≥ 0

such that z13 + z14 = (q13 + q14)/γ.

6.2 Equilibrium Production Levels

The system of equations can be expressed in the following way:

z13 = max{0,min{Θ− z14, k3}}
z14 = max{0,min{Θ− z14, k4}}

where Θ = min{ 1
2ηγ (ζ − c

γ ), k1γ }. The different possibilities for equilibrium production levels are considered
next, ignoring the symmetric cases.

• [z13 = 0] : In this case, z14 = min{Θ, k4}. Notice that the max{·} can be omitted because all expression
inside the min{·} are non-negative.

• [z13 + z14 = Θ] : This is the case of multiple equilibria. They always add up to the same amount, so
industry profits remain constant.

• [z13 = Θ − z14; z14 = k4] : This leads to z13 = Θ− k4.

• [z13 = k3; z14 = k4] : Both upstream firms are constrained by their capacities.

In other words, the downstream firms produces the monopoly level unless it is restricted by its own capacity
or that of its suppliers.

7 Preliminary Numerical Results

In this section I numerically solve the model for the case of two buyers and one seller and compare the results
to those obtained for a quantity duopoly by Besanko & Doraszelski. I choose the same specification for the
parameters, which is the following:

• βi = 1/1.05, for all i ∈ I. This discount factor can be interpreted as equivalent to an interest rate of
5%.
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• c = 0, that is, I normalized marginal input production costs to zero.14

• γ = 1, which means that one unit of the intermediate good results in one unit of the final good.

• Ki = {0, 5, 10, ..., 45} and κi = 10, for all i ∈ I. That is, the state space corresponds to 9 equally sized
production capacity blocks equivalent to five units of final or intermediate good, depending on the case.
Since γ = 1, the unit of account is the same.

• ζ = 4 and η = 0.1. This, together with the assumption of zero marginal costs, implies that the monopoly
production level corresponds to q = 20 (4 blocks) and the total Cournot level to q = 26.6̄ (between
2 and 3 blocks each buyer). Notice that a single firm is potentially able to serve the market, since
k10 = 45 > 40 = ζ/η, the demand level for p = 0.

• δi = δ, for all i ∈ I. I will assume the same depreciation rate for all firms, and I will solve the MPE for
different values of δ.

• θi = θ, for all i ∈ I. I will assume the same effectiveness of investment for all firms. To partially
neutralize the effect of changes in δ on the probability of accumulating a capacity block, thereby
isolating the incentive for maintenance investment, I will follow the same procedure as Besanko &
Doraszelski. It consists of choosing θ so that the probability of accumulating an additional block given
an investment of x = 20 remains constant at a level of 0.5:

θ =
0.5

(1− δ − 0.5)20

For all the cases examined next, I verified that the state space was not restrictive by checking that
xi(ki, k−i) = 0 for all i ∈ I and for all ki = 9. In all cases it was true. It was also true that the MPE’s
obtained had a unique invariant distribution. In fact, the transition matrices had only one eigenvalue equal
to 1. When that is the case, there is only one probability distribution which, when post-multiplied by the
corresponding transition matrix, yields the same distribution over next-period states. It can be interpreted
as a steady state distribution, because it represents the percentage of time the supply-chain will spend on a
given state when looking at an infinite sample of periods.

To make a graphic analysis of the invariant distribution, I obtained the marginal distribution of the seller’s
capacity level by summing over the buyers’ capacity levels. I also obtained the marginal joint distribution of
the buyers’ capacity levels by summing over the seller’s capacity level. The results are displayed in Figure 1.
Summary statistics are provided in Table 1, including the mean, median and inter-quartile range (IQR) of
relevant variables. I also included a measure co-movement between the capacity levels of both downstream
firms, k1 and k2.

Before discussing the results, I state the main conclusions from Besanko & Doraszelski (2004):

• when firms compete in quantities, the size-distribution of firms is symmetric no matter what the value
of δ is. If it takes the value of zero, firms invest until they accumulate Cournot levels of capacity
(state (4, 4), precisely). If it is positive, they begin investing for maintenance or precautionary motives,
leading to idle capacity in equilibrium.

• when firms compete in prices, the size-distribution of firms is asymmetric, and increasingly so when
investment is more reversible, as measured by a higher δ.

The distributions found in this paper (see Figure 1) show the interesting results that asymmetries can
arise in a quantity competition setting, and they behave in a similar way as in the price competition case,
meaning that they are exacerbated when δ increases. Moreover, the mechanism behind this results are quite
different. The asymmetries arise when one of the links between buyer and seller becomes unstable. In fact, for
73% of the states, the complete network (that is, the one that includes both sellers) is the only stable network;

14This normalization can be used assuming that the behavior of the supplier is as if c > 0, meaning that it prefers to produce
less than more, everything else constant.
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Figure 1: Marginal Invariant Distributions of Capacity Levels
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Table 1: Summary Statistics

δ = 0.01
Variable E[·] Median IQR
q, z 18.2422 20.0000 [15.0000,20.0000]
k1 14.4293 15.0000 [15.0000,15.0000]
k3 18.2451 20.0000 [15.0000,20.0000]

k1 · k2 208.0825 - -
p∗ 2.1758 3.0000 [3.0000,3.0000]

T/z∗∗ 1.4067 1.2917 [1.2917,1.6667]
π1 6.7126 7.0833 [6.2500,7.0833]
π3 24.9740 25.8333 [24.6016,25.8333]
x1 0.2181 0.0000 [0.0000,0.0000]
x3 0.2249 0.0000 [0.0000,0.3984]

δ = 0.1
Variable E[·] Median IQR
q, z 17.3459 20.0000 [15.0000,20.0000]
k1 14.4462 15.0000 [10.0000,20.0000]
k3 17.5172 20.0000 [15.0000,20.0000]

k1 · k2 201.4364 - -
p∗ 2.2654 3.0000 [2.5000,3.0000]

T/z∗∗ 1.4160 1.3125 [1.2500,1.5833]
π1 5.2243 5.4618 [1.9794,7.5000]
π3 21.5572 22.9167 [19.4927,25.8333]
x1 1.9027 1.6082 [0.0000,3.4005]
x3 2.2261 0.0000 [0.0000,4.4498]

δ = 0.2
Variable E[·] Median IQR
q, z 17.8641 20.0000 [15.0000,20.0000]
k1 16.4611 20.0000 [0.0000,30.0000]
k3 19.2197 20.0000 [15.0000,25.0000]

k1 · k2 108.7674 - -
p∗ 2.2136 2.5000 [2.0000,4.0000]

T/z∗∗ 1.2023 1.0333 [1.0000,1.3125]
π1 6.3339 3.8462 [-0.0104,14.4533]
π3 17.0085 17.4806 [12.9009,20.0000]
x1 2.1759 1.5280 [0.2032,3.4502]
x3 3.5561 2.6012 [0.8125,5.8703]

∗ Marginal cost c = 0.
∗∗ Distribution conditional on the variable being defined.
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Figure 2: Distribution of Stable Networks
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for 16%, both the complete and some single-link network are stable, and for the remaining percentage, all
networks are stable. However, when considering the distribution over states, one can see that for δ = 0.01,
the complete network has a probability close to 100%, but when δ = 0.2, it has only a probability of 34%,
shifting almost all the probability mass towards the cases where single-link networks are stable.

Figure 2 illustrates the interaction between the investment game and the network formation game, which
is what ultimately gives rise to the asymmetries. The first bar shows the percentage of states that fall under
each of the three categories. These percentages can be interpreted as the probability of each category under
a uniform distribution over states. When this distribution is endogenized through the dynamic investment
process, one obtains the three remaining bars, depending on the depreciation rate.

Examining the marginal distributions in more detail shows that downstream firms have an incentive
to over-invest, whether the depreciation rate is high or low. Consider first the unimodal or symmetric
distributions. Both of them have modal capacities of 3 blocks, which is similar to what Besanko & Doraszelski
found for low δ under quantity competition. In their case, this represented no over-investment compared to
the static equilibrium output levels, which were Cournot. However, in our case, it does represent over-
investment, because the supplier never has enough capacity to produce Cournot levels of inputs. In fact, it
appears as if the supplier would be restricting its own production capacity, thereby reducing the output of
downstream firms, in order to achieve the monopoly production level.

In the case of the bimodal or asymmetric distribution, the same pattern can be observed: upstream modal
capacity is equivalent to the monopoly level and downstream modal capacity is equivalent to the Cournot
level. This seems counterintuitive, because in the modal states only one downstream firm has non-zero
production capacity. It appears that the possibility of loosing the advantage over the excluded firm prevents
the remaining firm from reducing its capacity to the monopoly level.

8 Conclusions

I have characterized in detail a network-bargaining game based on de Fontenay & Gans (2005, 2013) that can
be plugged into the dynamic framework of Besanko & Doraszelski (2004). I have also developed two particular
applications and demonstrated that they yield unique payoffs. The preliminary results obtained from the
numerical solutions are partially different from the ones obtained by Besanko & Doraszelski, and they are the
outcome of a different mechanism that involves the formation of supply relationships. In particular, firm-size
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distribution can be asymmetric under quantity competition, meaning that aggressive investment policies can
lead to a permanent advantage over the competitor, excluding it from the supply-network. Furthermore,
firms tend to over-invest and hold capacity in excess to that of their supplier, a behavior which is probably
motivated by the possibility of achieving that advantage. I also find that increases in investment reversibility
lead to greater asymmetries, as in the price competition case in Besanko & Doraszelski (2004).

References

Abreu, D., Pearce, D. & Stacchetti, E. (1986), ‘Optimal Cartel Equilibria with Imperfect Monitoring’, Journal
of Economic Theory 39(1), 251 – 269.
URL: http://www.sciencedirect.com/science/article/pii/0022053186900281

Abreu, D., Pearce, D. & Stacchetti, E. (1990), ‘Toward a Theory of Discounted Repeated Games with
Imperfect Monitoring’, Econometrica 58(5), pp. 1041–1063.
URL: http://www.jstor.org/stable/2938299

Besanko, D. & Doraszelski, U. (2004), ‘Capacity Dynamics and Endogenous Asymmetries in Firm Size’, The
RAND Journal of Economics 35(1), pp. 23–49.
URL: http://www.jstor.org/stable/1593728

Besanko, D., Doraszelski, U., Kryukov, Y. & Satterthwaite, M. (2010), ‘Learning-by-Doing, Organizational
Forgetting, and Industry Dynamics’, Econometrica 78(2), pp. 453–508.
URL: http://www.jstor.org/stable/40664481

Binmore, K., Rubinstein, A. & Wolinsky, A. (1986), ‘The Nash Bargaining Solution in Economic Modelling’,
The RAND Journal of Economics 17(2), pp. 176–188.
URL: http://www.jstor.org/stable/2555382

Bowley, A. L. (1928), ‘Bilateral Monopoly’, The Economic Journal 38(152), pp. 651–659.
URL: http://www.jstor.org/stable/2224123

de Fontenay, C. C. & Gans, J. S. (2005), ‘Vertical Integration in the Presence of Upstream Competition’,
The RAND Journal of Economics 36(3), pp. 544–572.
URL: http://www.jstor.org/stable/4135229

de Fontenay, C. C. & Gans, J. S. (2013), ‘Bilateral Bargaining with Externalities’, Melbourne Business School
Discussion Paper No. 2004-32. .
URL: http://ssrn.com/abstract=59168, http://dx.doi.org/10.2139/ssrn.591688

Doraszelski, U. & Pakes, A. (2007), ‘A Framework for Applied Dynamic Analysis in IO’, Handbook of Indus-
trial Organization 3, 1887–1966.

Doraszelski, U. & Satterthwaite, M. (2010), ‘Computable Markov-Perfect Industry Dynamics’, The RAND
Journal of Economics 41(2), pp. 215–243.
URL: http://www.jstor.org/stable/40649298

Douven, R., Halbersma, R., Katona, K. & Shestalova, V. (2011), ‘Vertical Integration and Exclusive Vertical
Restraints between Insurers and Hospitals’, TILEC Discussion Paper No. 2011-016. .
URL: http://ssrn.com/abstract=1781685, http://dx.doi.org/10.2139/ssrn.1781685

Ericson, R. & Pakes, A. (1995), ‘Markov-Perfect Industry Dynamics: A Framework for Empirical Work’,
The Review of Economic Studies 62(1), 53–82.

Escobar, J. F. (2013), ‘Equilibrium Analysis of Dynamic Models of Imperfect Competition’, International
Journal of Industrial Organization 31(1), 92 – 101.
URL: http://www.sciencedirect.com/science/article/pii/S0167718712001154

27



Fackler, P. L. (2002), Applied Computational Economics and Finance, MIT press.

Gilles, R., Chakrabarti, S. & Sarangi, S. (2006), Social Network Formation with Consent: Nash Equilibrium
and Pairwise Refinements, Technical report, Working paper, Department of Economics, Virginia Tech,
Blacksburg, VA.

Gilles, R. P. & Sarangi, S. (2004), ‘Social Network Formation with Consent’.
URL: http://ssrn.com/abstract=603341, http://dx.doi.org/10.2139/ssrn.603341

Green, E. J. & Porter, R. H. (1984), ‘Noncooperative collusion under imperfect price information’, Econo-
metrica: Journal of the Econometric Society 52(1), 87–100.

Grossman, S. J. & Hart, O. D. (1986), ‘The costs and benefits of ownership: A theory of vertical and lateral
integration’, Journal of Political Economy 94(4), pp. 691–719.
URL: http://www.jstor.org/stable/1833199

Harsanyi, J. C. & Selten, R. (1972), ‘A Generalized Nash Solution for Two-Person Bargaining Games with
Incomplete Information’, Management Science 18(5), pp. P80–P106.
URL: http://www.jstor.org/stable/2661446

Hart, O. & Moore, J. (1990), ‘Property Rights and the Nature of the Firm’, Journal of Political Economy
98(6), pp. 1119–1158.
URL: http://www.jstor.org/stable/2937753

Inderst, R. & Wey, C. (2003), ‘Bargaining, Mergers, and Technology Choice in Bilaterally Oligopolistic
Industries’, The RAND Journal of Economics 34(1), pp. 1–19.
URL: http://www.jstor.org/stable/3087440

Jackson, M. O. & Wolinsky, A. (1996), ‘A Strategic Model of Social and Economic Networks’, Journal of
Economic Theory 71(1), 44 – 74.
URL: http://www.sciencedirect.com/science/article/pii/S0022053196901088

Judd, K. L., Yeltekin, S. & Conklin, J. (2003), ‘Computing Supergame Equilibria’, Econometrica 71(4), pp.
1239–1254.
URL: http://www.jstor.org/stable/1555496

Kalai, E. (1977), ‘Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons’,
Econometrica 45(7), pp. 1623–1630.
URL: http://www.jstor.org/stable/1913954

Krishna, V. & Serrano, R. (1996), ‘Multilateral Bargaining’, The Review of Economic Studies 63(1), pp.
61–80.
URL: http://www.jstor.org/stable/2298115

Maskin, E. & Tirole, J. (1988a), ‘A Theory of Dynamic Oligopoly, I: Overview and Quantity Competition
with Large Fixed Costs’, Econometrica 56(3), pp. 549–569.
URL: http://www.jstor.org/stable/1911700

Maskin, E. & Tirole, J. (1988b), ‘A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand
Curves, and Edgeworth Cycles’, Econometrica 56(3), pp. 571–599.
URL: http://www.jstor.org/stable/1911701

Myerson, R. B. (1977a), ‘Graphs and Cooperation in Games’, Mathematics of Operations Research 2(3), pp.
225–229.
URL: http://www.jstor.org/stable/3689511

28



Myerson, R. B. (1977b), ‘Values of Games in Partition Function Form’, International Journal of Game
Theory 6(1), 23–31.
URL: http://dx.doi.org/10.1007/BF01770871

Nash, J. (1953), ‘Two-Person Cooperative Games’, Econometrica 21(1), pp. 128–140.
URL: http://www.jstor.org/stable/1906951

Nash, J. F. (1950), ‘The Bargaining Problem’, Econometrica 18(2), pp. 155–162.
URL: http://www.jstor.org/stable/1907266

Navarro, N. (2007), ‘Fair Allocation in Networks with Externalities’, Games and Economic Behavior
58(2), 354 – 364.
URL: http://www.sciencedirect.com/science/article/pii/S0899825606000443

Pakes, A. & McGuire, P. (1994), ‘Computing Markov-Perfect Nash Equilibria: Numerical Implications of a
Dynamic Differentiated Product Model’, The RAND Journal of Economics 25(4), pp. 555–589.
URL: http://www.jstor.org/stable/2555975

Rotemberg, J. J. & Saloner, G. (1986), ‘A supergame-theoretic model of price wars during booms’, The
American Economic Review 76(3), 390–407.

Roth, A. E. (1979), ‘Proportional Solutions to the Bargaining Problem’, Econometrica 47(3), pp. 775–778.
URL: http://www.jstor.org/stable/1910423

Rubinstein, A. (1982), ‘Perfect Equilibrium in a Bargaining Model’, Econometrica 50(1), pp. 97–109.
URL: http://www.jstor.org/stable/1912531

Shapley, L. S. (1953a), ‘Stochastic Games’, Proceedings of the National Academy of Sciences of the United
States of America 39(10), 1095.

Shapley, L. S. (1953b), ‘A Value for N-Person Games’, Annals of Mathematical Studies 28, pp. 307–317.

Stokey, N., Lucas, R. & Prescott, E. (1989), ‘Recursive Methods in Economic Dynamics’, Cambridge MA .

Thomson, W. (1994), Cooperative Models of Bargaining, in R. Aumann & S. Hart, eds, ‘Handbook of Game
Theory with Economic Applications’, 1 edn, Vol. 2, Elsevier, chapter 35, pp. 1237–1284.
URL: http://EconPapers.repec.org/RePEc:eee:gamchp:2-35

Thrall, R. M. & Lucas, W. F. (1963), ‘N-Person Games in Partition Function Form’, Naval Research Logistics
Quarterly 10(1), 281–298.
URL: http://dx.doi.org/10.1002/nav.3800100126

Winter, E. (2002), The Shapley Value, in R. Aumann & S. Hart, eds, ‘Handbook of Game Theory with
Economic Applications’, 1 edn, Vol. 3, Elsevier, chapter 53, pp. 2025–2054.
URL: http://EconPapers.repec.org/RePEc:eee:gamchp:3-53

29


