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Upwelling is a determinant factor for intertidal community structure on all
coasts where it occurs. Most of the evidence has been obtained from sessile
species or those with limited mobility and it is still unknown whether
nutrients are transferred from primary producers to upper trophic levels in
upwelling systems. We studied a fish species from two localities in Central
Chile, Quintay, and Las Cruces, the former affected by upwelling and the
latter not as evidenced by sea surface temperatures. Specimens of the
herbivorous fish Scartichthys viridis, from the two sites were compared for
weight–length relationships and RNA :DNA ratio in muscle tissue. The
results showed that in the upwelling zone, fish increase their weight faster
and have greater RNA :DNA ratios than those from the non-upwelling
zone. This suggests that nutrient subsidies can alter the performance of key
intertidal vertebrates such as S. viridis. The consequences of this effect on
community structure and dynamics are not known.
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Introduction

Upwelling is an oceanographic condition that can be intermittent or persistent,
upwelling waters are colder and richer in nutrients than the surface waters they
replace (Strub et al. 1998; Poulin et al. 2002a, 2002b; Palumbi 2003; Narváez et al.
2004); this coastal phenomenon causes dramatic effects on nutrient availability as
well as herbivore and predator activity (Menge et al. 2004; Nielsen and Navarrete
2004; Wieters 2005; Thiel et al. 2007). Upwelling can regulate rocky shore
communities by modifying the strength of positive interactions between algae and
mussels (Menge 2000; Menge et al. 2003; Wieters 2005). In New Zealand,
intermittent upwelling on the west coast increases ecologically significant processes
such as prey growth, abundance of consumers and rates of predation. Compared to
the downwelling observed in the east coast, the entire intertidal ecosystem moves at a
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faster pace on the New Zealand west coast (Palumbi 2003). Upwelling on the Chilean

coast has been associated with increased abundance and faster growth rates of algae

(Broitman et al. 2001; Nielsen and Navarrete 2004), with no effects on the diversity

of intertidal and subtidal organisms (Vasquez et al. 1998).
Dahlhoff (2004) describes the effects of environmental variability on community

dynamics in terms of two complementary models; the environmental stress model

and the nutrient/productivity model. Environmental stress models assume that

community structure results from species interactions and their modulation by the

underlying gradients of environmental stress, whereas nutrient/productivity models

emphasize the role of bottom-up factors (nutrients, productivity) as the determinants

of species interactions. Under both models, environments with the harshest physical

conditions or the lowest productivity will have simple communities with structure

determined directly by severe stress or nutrient shortage. The moderation of

environmental conditions leads to increased abundance, more complex trophic

structure and increased influence of species interactions on community structure

(Menge 2000; Menge and Branch 2001; Menge et al. 2002). Consistent with these

predictions, invertebrates grow faster and cover a wider intertidal rock surface in

sectors with nutrients subsidies (e.g. upwelling) than in similar habitats on a non-

upwelling coast (Menge et al. 2003, Palumbi 2003).
Among the biochemical indicators for determining nutritional condition and

metabolic activity in situ, RNA to DNA ratio (RNA :DNA) is the most widely used

index to determine field organism condition (Chı́charo and Chı́charo 2008). This

index measures the synthetic capacity and is usually correlated with nutritional status

under a given environmental condition (Buckley and Caldarone 1999). Organisms in

good condition, such as species inhabiting upwelling zones, therefore tend to have

higher RNA :DNA ratios (Bulow 1987; Robinson and Ware 1998). This index has

been used on a wide range of marine organisms such as plankton, phytoplankton

(Dortch et al. 1983), zooplankton (Sutcliffe 1965; Ikeda et al. 2007), larval fish

(Bulow 1987; Caldarone et al. 2003), juvenile and adult fish (Bulow 1970; Thorpe

et al. 1982), bivalves (Grémare and Vétion 1994; Chı́charo and Chı́charo 1995;

Chı́charo et al. 2001), cephalopods (Clarke et al. 1989; Sykes et al. 2004), and

crustaceans (Lemos et al. 2002).
Most of the evidence showing upwelling as a determinant factor of intertidal

community structure has been obtained from sessile organisms or those with limited

mobility (e.g. limpets, mussels, littorines, barnacles, whelks) (Dahlhoff and Menge

1996; Menge 2000; Menge et al. 2004; Wieters 2005). Fishes have not been studied as

determinants of community structure and dynamics despite the strong effects they

exert on intertidal algae and invertebrates (Horn et al. 1999; Ojeda and Muñoz

1999), thus the effect of upwelling on their biology remains unknown. Evidence on

the growth and mortality of intertidal fishes associated with changes in nutrient

availability during the climatic variation as a result of El Niño and La Niña events

indicates that irrespective of the trophic level, fish growth rates decrease with

El Niño and increase during La Niña events, suggesting that bottom-up nutrients

drives fish growth at multiple levels (Hernández and Ojeda 2006; Carstensen et al.

2010). Whether upwelling determines the conditional status of intertidal fishes, and

hence affects the ecological performance of algae predators, is not known. To

address this, we studied the physiological status of the highly mobile and abundant

herbivorous intertidal fish Scartichthys viridis (Muñoz and Ojeda 1997, 1998; Ojeda
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and Muñoz 1999; Pulgar et al. 2005; 2007) in the upwelling (Quintay) and the non-
upwelling (Las Cruces) localities of the central Chile coast (Wieters 2005).

Materials and methods

Specimen collection and temperature recording

Two zones on the Central Chile coast were studied. One with reported upwelling
(U¼ upwelling); Quintay (33�110S, 71�430O), and the other not affected by upwelling
(NU¼ non-upwelling); Las Cruces (32�000 0S, 71�00 0W). These localities were
selected because they represent extremes in nutrient availability, as indicated by
Thiel et al. (1997), Wieters et al. (2003), and Wieters (2005). The selected low
intertidal rock pools in both localities were located no more than 1–2m above the
low-tide mark. The seawater of these pools was consequently renewed during every
tidal cycle. The temperature of this environment was recorded to allow assessment of
its relationship to potential effects on the morphology and molecular response of S.
viridis. Data on onshore sea surface temperature (SST) were obtained by recording
surface water temperature at 20min intervals with Optic Stowaway (Onset
Computer� 0.1�C precision) submersible temperature loggers placed at approxi-
mately 1m depth below the lowest low tide at U and NU zones (Data provided by
Dr S. Navarrete, ECIM). SST is often used as a proxy for nutrient concentration
(Wieters 2005) and to characterize upwelling effects on coastal marine ecosystems
(Barth et al. 2007). Data from recordings made in 2008 and 2009 during the same
study season (winter) were pooled for analysis.

Processing of specimens

Specimens were captured at the same tide cycle in winter 2009, using BZ20
anesthetic. We used two approaches to determine fish condition in both zones; a
morphometric approach based on the weight–body size relation comparisons, and a
molecular approach based on RNA :DNA ratio determinations. For the morpho-
metric analysis we used 51 fish from the upwelling zone and 143 fish from the non-
upwelling zone. Total fish length (L) and body mass (W) were recorded using a
caliper (0.1 cm) and an electronic balance (0.1 g). For the molecular approach we
used 18 individuals per site. Individuals were captured and immediately deposited in
liquid nitrogen, transported to the laboratory, and kept frozen until analysis. The
extraction of RNA and DNA was performed using TRIZOL� Reagent, which is a
ready to use reagent for the isolation of total RNA from cells and tissues
(Chomczynski and Sacchia 1987). We extracted 200mg of muscle from the back of
the pectoral fin and between the high dorsal and belly of each individual. During the
homogenization of the sample previously extracted, TRIZOL� Reagent maintains
the integrity of the RNA, while disrupting cells and dissolving cell components. The
addition of chloroform followed by centrifugation separates the solution into an
aqueous phase and an organic phase. RNA remains exclusively in the aqueous phase.
After the transfer of the aqueous phase, the RNA is recovered by precipitation with
isopropyl alcohol. After the removal of the aqueous phase, the DNA in the interface
can be recovered by sequential precipitation (Chomczynski 1993). After extraction
the RNA and DNA were reconstituted in 50 and 900mL of nuclease-free water,
respectively. Both RNA and DNA were quantified spectrophotometrically to
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260/280 nm (Perkin Elmer Lambda Bio L7110184) and expressed as microgram per
microliter, corrected for body and sample size.

Statistical analysis

A Kolmogorov–Smirnov test was used to compare body size frequency distribution
of fish in the total sample and in those used for RNA :DNA ratio analysis. We used
linear regression and ANCOVA to compare weight (g) : length (cm) relationships
and RNA :DNA ratios between U and NU fish, in relation to fish length (Zar 1996).
An ANOVAS (GLM) was used to compare the weight : length ratio between U and
NU fish. A significant level of p5 0.05 was chosen.

Results

Temperature

Recording of SST indicated that the temperature of the upwelling site was
consistently colder than that of the non-upwelling site during the study period.
Figure 1 shows data from 2 years combined (2008 and 2009).

Morphometric analysis

Frequency of body size distribution for total individuals sampled, indicated no
differences between upwelling and non-upwelling fish (Kolmogorov–Smirnov:
p4 0.1, max diff. �4, Figure 2). However, the comparisons of weight–length
relationships among upwelling and non-upwelling S. viridis, indicated a greater
weight gain rate in relation to body size in upwelling fish (F1,191¼ 6.66, p¼ 0.010,
Figure 3A, upwelling slope¼ 6.07, non-upwelling slope¼ 2.06). Moreover, the
comparison of weight : length ratios between fish from each site revealed that
upwelling fish exhibited greater weight per body size unit (W :L ratio) than those
from the non-upwelling site (F1,192¼ 30.4, p¼ 0.001, Figure 3B).

Figure 1. Average of daily SST during 2008 and 2009 in study zones from Central Chile.
U, upwelling zone; NU, non-upwelling zone.
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Molecular analysis

Frequency of body size distribution for the individuals used in the RNA :DNA ratio
analysis indicated no differences between upwelling and non-upwelling fish
(Kolmogorov–Smirnov: p4 0.1, max diff. �2). The RNA :DNA ratio in relation
to body size was significantly higher in upwelling fish than non-upwelling fish
(F1,33¼ 4.21, p¼ 0.04, Figure 4A), with greater values for overall RNA :DNA
ratio/length in upwelling compared to non-upwelling fish (2.3� 0.5 vs. 1.2� 0.2,
p5 0.05, Figure 4B)

Discussion

Our results support the hypothesis that the higher food availability in upwelling
zones is associated with the transfer of nutrients to higher trophic level predators

Figure 2. Body size distribution of S. viridis in upwelling and non-upwelling zones in
Central Chile. Body lengths were distributed in size groups (A, 4.9–7.4 cm; B, 7.5–10 cm;
C, 10.1–12.6 cm; D, 12.7–15.2 cm; E, 15.3–17.8 cm) for upwelling (U, #, n¼ 51) and non-
upwelling (NU, h, n¼ 145) fish and compared as percent of total animals analyzed per site.

Figure 3. Weight to body size relationships in upwelling and non-upwelling S. viridis
from Central Chile. (A) Upwelling fish (U, �): Weight¼ 6.07 � length-37.85,
R2
¼ 0.84, F(1,46)¼ 244.81; p¼ 0.001. Non-upwelling fish (NU,*): Weight¼ 2.96 � length-

15.34, R2
¼ 0.87, F(1,141)¼ 913.5; p¼ 0.002. (B) Weight to length ratio between upwelling

(U, �, n¼ 51) and non-upwelling (NU,*, n¼ 143) fish. Bar indicate� SEM, *p5 0.05.
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such as fishes. At the morphological level, S. viridis from upwelling zones display
greater weight gain, whereas at the molecular level, a greater RNA :DNA ratio was
observed in fish from upwelling zones.

Upwelling intensity along the central Chile coast has been reported and a direct
relationship between water temperature and nutrient availability was observed
(Wieters 2005). Our temperature data showed persistent differences between both
study zones: Las Cruces displays higher temperature than Quintay during the study
period. This local oceanographic scenario allows the classification of Quintay and
Las Cruces as upwelling and non-upwelling zones, respectively.

The morphological evaluations of fish, using frequency distribution of body size
and weight–body size relationships, indicate that the increase in weight in the
upwelling fish was higher compared with non-upwelling fish (Figure 3A and B). This
result suggests that there was more food available in upwelling zones, for example,
Chlorophytes and Rhodophytes (Caceres et al. 1994; Vasquez et al. 1998; Ojeda and
Muñoz 1999), to be transferred to herbivorous fishes such as S. viridis. Previous
studies performed in equivalent upwelling and non-upwelling zones in Central Chile
reported transfer of nutrients to primary producers (Broitman et al. 2001; Nielsen
and Navarrete 2004; Wieters 2005), these studies did not considered higher trophic
level predators such as herbivorous fishes.

At the molecular level, upwelling S. viridis displays higher RNA :DNA ratio
related to body size (Figure 4A). The RNA :DNA ratio is considered as an in situ
indicator of the physiological status, because of its association to nutritional
condition and growth in several marine organisms (Buckley and Caldarone 1999;
Chı́charo and Chı́charo 2008). A higher RNA :DNA ratio in the upwelling fish
suggests greater protein synthetic activity producing higher weight gain. This
indicates that at the same body size the upwelling fish are in better condition (e.g.
weight gain, growth rate, reproduction, and survival) compared to the non-upwelling
fish. To our knowledge this represents the first evidence of the effect of an upwelling
nutrient subsidy on the nutritional status of an herbivorous fish. This is particularly
significant because S. viridis is an important ecological component of its intertidal
communities (Muñoz and Ojeda 1998).

Understanding the mechanisms by which environmental variability modifies
physiological performance of organisms in nature is of great interest when

Figure 4. RNA to DNA ratio and its relationship to body size in upwelling and non-upwelling
S. viridis from Central Chile. (A) RNA :DNA ratio and body length in upwelling (U, �) and
non-upwelling (NU,*) fish. (B) Summary of RNA :DNA ratio values in upwelling
(U, �, n¼ 18) and non-upwelling (NU,*, n¼ 18) fish, *p5 0.05.
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considering the foundations of community dynamics (Hofmann and Somero 1995;
Parmesan and Yohe 2003; Dahlhoff 2004). Given the important role that predators
and herbivores play in the structure of intertidal communities (Paine 1966; Dayton

1971; Menge 1976; Lubchenco 1978), the assessment of the physiological condition
of ecologically significant consumers is essential for an understanding of how the
environmental variation (e.g. nutrients subsidy) affects the performance or fitness of
these consumers (Menge et al. 2002). Due to higher weight gain (Figure 3B) and
RNA :DNA ratio (Figure 4B) in the upwelling condition, it is expected that
upwelling S. viridis would exert a more significant influence on intertidal community
dynamics than non-upwelling fish. This is in agreement with nutrient/productivity
model’s predictions, where with increased productivity, both prey and their

consumers will be increasingly well-off nutritionally (Palumbi 2003).
Ecological measurements such as growth and feeding rates, as well as reproduc-

tive output should therefore grow with increased productivity (Menge et al. 2003;
Wieters 2005). For example, growth rates of sessile invertebrates influence
community structure and prey availability by altering the outcome of competition
(Menge et al. 2003). Our results indicate that upwelling fish had double the weight
gain compared with non-upwelling fish (Figure 3A,B). Because individual perfor-
mance (strength, activity levels, growth, feeding, survival, and reproduction)
ultimately depends on physiological status, the links between ecological individual
performance and physiological status need to be uncovered for a full understanding

of the effect of a predator on community structure and dynamics.
Upwelling sites represent physically complex habitats for the energy balance of

individuals. The higher nutrient availability increases metabolic processes (Palumbi
2003; Wieters 2005), and at the same time lower temperature has direct consequences
on physiology, behavior, foraging, and general ecology, through its effects on vital
rates (Sanford 2002, Pulgar et al. 2005). Non-upwelling sites may impose energetic
restrictions, associated with higher temperature and lower nutrient availability.
Scartichthys viridis in upwelling and non-upwelling zones may have different optima
for maximizing metabolic scope, the amount of energy available for activity and food

processing (Kelsh and Neill 1990). Such optimum temperature is often, but not
always, near to that providing optimal growth (Casselman 1996). Greater growth
rates in upwelling sites suggest that nutrient availability is more important than
thermal variation in setting up the synthetic capacity and growth in S. viridis.
Finally, our morphological and molecular evidence suggests that nutrient subsidy
could alter the predatory performance of an herbivorous fish, which is important in
intertidal communities along the Central Coast of Chile. The consequence for the
structure of those communities remains unknown. Integrative approaches dealing

with the effects that environment may have on individual biological responses are
necessary and urgent in countries located in extreme geographic zones that are
considered sentinels of the effects of global change on biodiversity.
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