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1Departamento de F́ısica Teórica, IFIC-CSIC, Universidad de Valencia

Burjassot, Valencia 46100, Spain

2High Energy Group, Physics Department Florida State University

Tallahassee, Florida 32306, USA

3Facultad de F́ısica, Universidad Católica de Chile
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Abstract

We study the predictions for mtop, tan β and Vcb in a popular texture

ansätze for the fermion mass matrices. We do this both for the Minimal Su-

persymmetric Standard Model (MSSM) and for the simplest model (MSSM–

BRpV) where a bilinear R–Parity violating term is added to the superpo-

tential. We find that taking the experimental values for mtop and Vcb at 99%

c.l. and the GUT relations hb = hτ and V 2
cb = hc/ht within 5%, the large tan β

solution, characteristic in the MSSM with bottom–tau unification, becomes

disallowed. In contrast the corresponding allowed region for the MSSM–BRpV

is slightly larger. We also find that important modifications occur if we relax

the texture conditions at the GUT scale. For example, if the GUT relations

are imposed at 40%, the large tan β branch in the MSSM becomes fully al-

lowed. In addition, in MSSM–BRpV the whole tan β − mtop plane become

allowed, finding unification at any value of tan β.
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1 Introduction

Grand unified (GUT) symmetries [1] combined with flavour symmetries [2] consti-

tute the most promising way of understanding the structure of flavour masses and

mixings. These masses and mixings constitute the majority of the unknown param-

eters of the Standard Model (SM). On the other hand, supersymmetry allows the

unification of gauge couplings to succeed where the SM fails [3, 4], implying the

prediction of one of the three gauge coupling constants.

In some GUT models [for example SU(5)], the bottom quark and the tau

lepton Yukawa couplings are equal at the unification scale, and the predicted ratio

mb/mτ at the weak scale agrees with experiments. Several studies have been made

about the effect of supersymmetry on gauge and Yukawa unification. In the Minimal

Supersymmetric Standard Model (MSSM) bottom–tau unification is achieved at two

disconnected and small regions of tan β (the ratio of the two vacuum expectation

values), one at small and the other at large tanβ [5, 6, 7].

Recently it was shown that if to the MSSM we add Bilinear R–Parity Violation

(BRpV) [8, 9, 10, 11], the unification of the bottom and tau Yukawa couplings at the

scale MGUT ≈ 1016 GeV (where the gauge couplings unify) is dramatically different

from the MSSM [12]. In the BRpV case, bottom–tau unification is achieved at any

value of tan β provided the vacuum expectation value v3 of the tau sneutrino is

chosen appropriately. In addition, it was shown that the prediction of αs, which in

the MSSM is 2σ too high, in BRpV can be lowered by more than 1σ with respect to

the MSSM prediction and therefore can lie closer to the experimental measurement

[13].

The study of BRpV is motivated by the fact that it provides a simple and useful

parametrization of many of the features of a class of models in which R-Parity is

spontaneously broken [14]. One of the main features of R–Parity violating models is

the appearance of masses for the neutrinos [14, 15], attracting a lot of attention [16]

since the latest results from Super–Kamiokande [17]. It has in fact been demostrated

that this model offers an attractive and predictive scheme for neutrino masses and

mixing parameters which accounts for the observed data from atmospheric and solar

neutrino observations [18].

In this paper we update the analysis of the relations between mtop and tan β

within the MSSM for the case in which the bottom and tau Yukawa couplings

unify and using the CKM matrix element Vcb that follows from the simplest Yukawa

texture, adopting the most recent experimental values 0.036 < |Vcb| < 0.042 at 90%

c.l. prescribed by the Particle Data Group [19]. In addition, following closely the
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method presented in ref. [12] we repeat the analysis for the MSSM–BRpV model [10,

11] and compare the results obtained with those found in the MSSM.

2 Zero Texture Ansätze

Flavour symmetries in two and three generations were first proposed in [20]. The

validity of such mass matrix ansätze at the GUT scale was postulated by [21] and

later the ansätze was modified in [22]. The final version of the mass matrix we are

considering here is given in [23] and corresponds to

hU =




0 C 0

C 0 B

0 B A


 , hD =




0 Feiφ 0

Fe−iφ E 0

0 0 D


 , hE =




0 F 0

F −3E 0

0 0 D




(1)

where hU, hD, and hE are the up–type quark, down–type quark, and charged lepton

Yukawa matrices respectively. The dimention-less parameters A, B, C, D, E, and

F are real and φ is the only phase.

The fact that the third diagonal matrix element in the down–type quark and

the charged lepton Yukawa matrices are the same indicates bottom–tau unification

at the GUT scale. Another interesting prediction refers to the CKM matrix element

Vcb. After defining running CKM matrix elements [5], the following relation holds

at the GUT scale
∣∣∣Vcb(MGUT )

∣∣∣ =

√√√√hc(MGUT )

ht(MGUT )
(2)

In this way, together with the bottom–tau unification condition

hb(MGUT ) = hτ (MGUT ) , (3)

The corresponding relations between mtop, Vcb and tanβ have been derived in the

literature [5, 24]. Here we closely followed the method developed in [5], updating

the analysis of these relations for the case in which bottom–tau Yukawa couplings

unify, as indicated by eq. (3), and with the CKM matrix element Vcb given by eq. (2)

and satisfying the experimental constraint at the weak scale 0.036 < |Vcb| < 0.042

at 90% c.l. [19]. This is done first for the MSSM case. In addition, following closely

ref. [12] we do the same analysis for the MSSM–BRpV model [10, 11].

2



3 Bilinear R–Parity Violation

The MSSM–BRpV has one bilinear term in the superpotential for each generation.

In this way, after including one-loop radiative corrections, neutrino masses and mix-

ings can be predicted [18]. For our present purposes in this paper it will sufficient

to consider lepton and Rp violation only in the tau sector. In this case, the super-

potential has the following bilinear terms

WBi = εab
[
−µĤa

d Ĥ
b
u + ǫ3L̂

a
3Ĥ

b
u

]
, (4)

with µ and ǫ3 having units of mass. The MSSM superpotential is recovered if we

take ǫ3 = 0. The BRpV term can disappear from the superpotential if we make the

rotation defined by µ′Ĥ ′
d = µĤd − ǫ3L̂3 and µ′L̂′

3 = ǫ3Ĥd + µL̂3, with µ
′2 = µ2 + ǫ23.

Nevertheless, BRpV effects are reintroduced through the soft terms in such a way

that sneutrino vacuum expectation values are present in both basis: 〈L̃3〉 = v3/
√
2

and 〈L̃′
3〉 = v′3/

√
2. The VEV v3 contributes to the W boson mass according to

m2
W = 1

4
g2(v2d + v2u + v23). On the other hand, the relations of quark masses with

Yukawa couplings are the same in BRpV–MSSM as in the MSSM, namely

h2t,c =
2m2

t,c

v2u
, h2b =

2m2
b

v2d
. (5)

except for the numerical value of vd.

However, in the BRpV model the tau lepton mixes with the charginos, and

in the original basis where ψ+T = (−iλ+, H̃1
u, τ

+

R ) and ψ−T = (−iλ−, H̃2
d , τ

−
L ), the

charged fermion mass terms in the Lagrangian are Lm = −ψ−TMMMCψ
+, with the

mass matrix given by

MMMC =




M 1√
2
gvu 0

1√
2
gvd µ − 1√

2
hτv3

1√
2
gv3 −ǫ3 1√

2
hτvd


 (6)

where M is the SU(2) gaugino mass. In the limit ǫ3 = v3 = 0 the MSSM chargino

mass matrix is recovered in the upper–left 2 × 2 sub-matrix and at the same time

the tau mass relation in the third diagonal element [analogous to the bottom mass

relation in eq. (5)]. This tau mass relation is no longer valid in BRpV–MSSM and

it is modified to

h2τ =
2m2

τ

v2d

1

1 + δ
, δ =

v23
v2d

+

[
(A−m2

τ )µ
′2

Tm2
τ −m4

τ −∆

]
v′23
v2d

(7)

where A, T , and ∆ refer to the upper left 2 × 2 sub-matrix of the 3 × 3 matrix

M ′T
C M

′
CM ′T

C M
′
CM ′T

C M
′
C : A is its first diagonal element, T is its trace, and ∆ is its determinant.

The matrix M ′
CM ′
CM ′
C is the chargino mass matrix analogous to eq. (6) but in the rotated

basis. It is easy to see that MCMCMC →M ′
CM ′
CM ′
C when (µ, ǫ3, vd, v3) → (µ′, 0, v′d, v

′
3).
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4 RGE’s and Matching Conditions

We use two-loop MSSM RGE’s at scales Q > MSUSY and two loop SM RGE’s at

scales Q < MSUSY . Therefore, we include leading and next–to–leading logarithmic

supersymmetric threshold corrections in the approximation where all the SUSY par-

ticles decouple at the same scale Q =MSUSY . In this way, the matching conditions

at Q =MSUSY are defined by the continuity of the quark and lepton running masses

at that scale, which translates into matching conditions on Yukawa couplings given

in MSSM–BRpV as

λt,c(M
−
SUSY ) = ht,c(M

+

SUSY ) sin β sin θ ,

λb(M
−
SUSY ) = hb(M

+

SUSY ) cos β sin θ , (8)

λτ (M
−
SUSY ) = hτ (M

+

SUSY ) cos β sin θ
√
1 + δ ,

where we have defined the angles β and θ according to spherical coordinates

vd = v cos β sin θ , vu = v sin β sin θ , v3 = v cos θ , (9)

with v = 246 GeV. Note that the MSSM relation tanβ = vu/vd is preserved. In

addition, the boundary condition for the quartic Higgs coupling is given by

λ(M−
SUSY ) =

1

4

[
(g2(M+

SUSY ) + g′2(M+

SUSY )
]
(cos 2β sin2 θ + cos2 θ)2 . (10)

The corresponding MSSM boundary conditions are obtained by setting θ = π/2.

Starting at the scale Q = mZ we randomly vary the parameters α−1
em(mZ) =

128.896 ± 0.090, sin2 θw(mZ) = 0.2322 ± 0.0010, and αs(mZ) = 0.118 ± 0.003 [26],

looking for solutions with gauge unification at a scale MGUT with a common gauge

coupling αGUT . These solutions are concentrated in a region of the plane MGUT −
αGUT centered around MGUT ≈ 2.3× 1016 GeV and αGUT

−1 ≈ 24.5. For simplicity,

from now on, we fix the unification scale to that value. SinceMGUT depends on other

input parameters, this simplification implies that we don’t have “perfect” unification

throughout our sampling. Nevertheless, we have checked that unification is good up

to 0.4%.

Next, we evolve the Yukawa couplings using two-loop RGEs, starting from the

experimental values of the quark and lepton masses at the weak scale and imposing

unification of bottom–tau Yukawa couplings at MGUT within 5%. Matching con-

ditions at MSUSY are well known in the MSSM. The main difference in our BRpV

model lies in the fact that since the sneutrino vacuum expectation value v3 con-

tributes also to the W–boson mass, the Higgs VEVs will be in general smaller. This

in turn makes the down-type Yukawa couplings larger than in the MSSM. In addi-

tion, tau mixing with charginos makes the tau Yukawa coupling hτ a quantity which
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Figure 1: Allowed regions in the tan β − mtop plane where bottom–tau Yukawa

unification is possible together with the texture prediction for Vcb. Accepted values of

Vcb lie in the 90% c.l. The vertical lines correspond to the experimental measurement

of the top quark mass, with its central value (solid), 1σ (dashes), and 2σ (dot–dash)

regions.

not only depends on tanβ but also on the other chargino (M , µ) and BRpV (ǫ3, v3)

parameters [11].

Apart from imposing unification of bottom–tau Yukawa couplings we calculate

the texture prediction for Vcb at the weak scale with the boundary condition given in

eq. (2) within 5%. Regarding the MSSM part of the analysis, we have updated the

analysis in refs. [5] and [24] by incorporating the most recent experimental values of

the top quark mass and of Vcb. In contarst, in the case of the the BRpV model, the

analysis is done for the first time.

5 Numerical Results

In Fig. 1 we display the regions in the tan β−mtop plane where bottom–tau Yukawa

unification occurs together with the prediction for the Cabibbo–Kobayashi–Maskawa

matrix element Vcb. This prediction lies in the region indicated by experiment, i.e.,

0.036 < Vcb < 0.042, at 90% c.l. Nevertheless, it is worth mentioning that we do not

find any point with Vcb < 0.039. The space between the solid curves is the allowed
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Figure 2: Allowed regions in the tanβ−mtop plane where bottom–tau Yukawa unifi-

cation is possible together with the texture prediction for Vcb. This is a magnification

of the low tanβ region displayed in the previous figure. Accepted values of Vcb lie

in the 90% c.l.

region in MSSM–BRpV. Similarly, the space between the right solid curve and the

dashed curve is the allowed region in the MSSM. The solid curve at the right is

common to both models and corresponds to the Landau pole of the quark Yukawa

couplings (quasi–fixed point). The solid vertical line corresponds to the central value

of the experimental measurement for mtop, and the dashed (dot–dashed) lines are

the 1σ (2σ) limits.

It is known that bottom–tau unification in the MSSM is obtained in a region

similar to the one in Fig. 1 but including an extra branch at high tanβ. By imposing

the texture prediction for Vcb this branch disappears. It can be observed from the

figure that the MSSM–BRpV region is only slightly larger than the MSSM region.

Nevertheless, in the 2σ region for the top quark mass the MSSM–BRpV allowed

region is about twice as large as the MSSM one. This can be seen in Fig. 2 which is

a blow up of the previous figure. However in our scan we did not find any solution

in the large tan β branch within the MSSM nor the MSSM–BRpV.

In Fig. 3 we have relaxed the allowed values of Vcb at the weak scale. In

this figure we consider Vcb < 0.0437 which naively corresponds to the 99% c.l. region

(here we don’t find solutions with Vcb < 0.039 neither). Although the allowed regions

are bigger, the large tanβ branch is still not present. Nevertheless, the difference

6



Figure 3: Allowed regions in the tan β − mtop plane where bottom–tau Yukawa

unification is possible together with the texture prediction for Vcb. Accepted values

of Vcb lie in the 99% c.l.

between the MSSM–BRpV and the MSSM is more pronounced in this case, as it

can be seen from Fig. 4 where we blow up the region compatible with the top quark

mass measurement. Note that preliminary results of Higgs searches by the ALEPH

collaboration [25] which rule out low values of tan β, pushing mt to high values in

the MSSM would not necessarily hold in our BRpV case, due to the importance of

novel Higgs boson decay channels [8].

The previous four figures have been obtained imposing the validity of the

bottom–tau Yukawa unification condition in eq. (3) and the Vcb texture condition in

eq. (2) at the 5% level. In the next two figures we explore the effect of relaxing the

5%. As we can see, the effect is very interesting.

In Fig. 5 we have plotted the allowed regions in the tanβ −mtop plane within

the MSSM. There are five regions each one labelled by the maximum deviation in

percent accepted for the conditions in eqs. (2) and (3). Clearly, the large tan β

branch of the MSSM slowly reappears as we relax the GUT conditions and it is fully

present in the 40% case. Therefore in this case two solutions are possible, one at

large and one at small values of tanβ, in order to account for the measurement of

the top quark mass. The situation is different in MSSM–BRpV. In this case the

whole interval for tan β compatible with perturbativity of Yukawa couplings slowly

reappears as we relax the GUT conditions. If we accept the GUT conditions within

7



Figure 4: Allowed regions in the tanβ−mtop plane where bottom–tau Yukawa unifi-

cation is possible together with the texture prediction for Vcb. This is a magnification

of the low tanβ region displayed in the previous figure. Accepted values of Vcb lie

in the 99% c.l.

Figure 5: Allowed regions in the tan β − mtop plane for the MSSM. The texture

conditions at the GUT scale are relaxed to lie within the indicated percent level.

Accepted values of Vcb at the weak scale lie in the 99% c.l.
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Figure 6: Allowed regions in the tan β − mtop plane for the MSSM–BRpV. The

texture conditions at the GUT scale are relaxed to lie within the indicated percent

level. Accepted values of Vcb at the weak scale lie in the 99% c.l.

40%, then the allowed region is all the space at the left of the quasi–infrared fixed

curve. In this case, the prediction for Vcb, mtop and tan β in BRpV is dramatically

different from that in the MSSM. This was already pointed out for bottom–tau

Yukawa unification in ref. [12].

6 Discussion

In this section we provide a way to understand of the results presented above in

the figures 1 to 6. In to do this we make some approximations so that the relevant

RGE’s have simple analytical solutions. First of all, let us consider the question of

why in BRpV bottom–tau Yukawa unification is achieved at any value of tan β, as

opposed to the MSSM, where only two disconnected regions of tanβ are allowed

[12]. We notice first that the quark and lepton masses are related to the different

VEVs and Yukawa couplings in the following way

m2

top =
1

2
h2t v

2

u , m2

b =
1

2
h2bv

2

d , m2

τ = 1

2
h2τv

2

d(1 + δ) , (11)

where δ depends on the parameters of the chargino/tau mass matrix and is positive

[11, 12]. This implies that the ratio of the bottom and tau Yukawa couplings at the
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weak scale is given by
hb
hτ

(mweak) =
mb

mτ

√
1 + δ (12)

and grows as |v3| is increased.

On the other hand, if hb and hτ unify at the GUT scale, then at the weak scale

its ratio can be approximated by

hb
hτ

(mweak) ≈ exp
[

1

16π2

(
16

3
g2s − 3h2b − h2t

)
ln
MGUT

mweak

]
(13)

implying that the combination 3h2b + h2t should decrease when |v3| increases.

In the MSSM region of high tan β the bottom quark Yukawa coupling domi-

nates over the top one, and the opposite happens in the region of low tanβ. There-

fore, at high (low) values of tan β, the Yukawa coupling hb (ht) will decrease if |v3|
increases, which implies an increase of vd (vu) in order to keep constant the quark

masses. Similarly, in order to keep constant the W mass, m2
W = 1

4
g2(v2d + v2u + v23),

the VEV vu (vd) decreases at the same time. This implies that unification occurs

at lower (higher) values of tan β as |v3| increases. This explains why in BRpV

intermediate values of tanβ are compatible with bottom–tau unification.

Let us now understand why the high tanβ branch is not allowed when we

impose the |Vcb| constraint at the unification scale. The RGE for the CKM angle

|Vcb| is [5]
d|Vcb|
dt

= − |Vcb|
16π2

(
h2t + h2b

)
(14)

where t = ln(Q). In addition, the RGE for the ratio between the charm and top

quark Yukawa couplings Rc/t ≡ hc/ht is

dRc/t

dt
= − Rc/t

16π2

(
3h2t + h2b

)
. (15)

Imposing now the relation in eq. (2) at the GUT scale, we obtain at the weak scale

Rc/t

|Vcb|2
(mweak) ≈ exp

[
1

16π2

(
h2t − h2b

)
ln
MGUT

mweak

]
(16)

where we have approximated the RGE’s to first order in perturbation series. Since

the left hand side of eq. (16) is greater than one (approximately equal to 1.5), it

is clear that the GUT condition Rc/t = |Vcb|2 prefers the region of parameter space

where the top Yukawa coupling is large while the bottom Yukawa coupling is small.

This is obtained at small values of tan β, since our definition of tanβ = vu/vd retains

the MSSM relation hb/ht = mbtβ/mtop
∗. This explains what it is seen in Figs. 5

and 6.

∗ In refs. [13, 27] it was defined as tanβ′ = vu/
√
v2
d
+ v2

3
which has the advantage of being

invariant under rotations defined at the beginning of section 3, but spoils the relation between ht

and hb described in the text.
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If the GUT conditions are relaxed to more than 5%, eq. (16) should be modified

by adding a numerical factor different from one in front of the exponential. The effect

is to allow larger values of hb that can only be achieved in BRpV by increasing v3

without having to go to very large values of tan β as in the MSSM. Consequently,

the plane mtop − tan β is filled up in BRpV and not in the MSSM.

Now we would like to understand why in BRpV larger values of tanβ are

acceptable compared with the MSSM when imposing the GUT conditions at 5%.

This effect is observed in Figs. 1 to 4. We notice first that our numerical results

with 5% of unification indicate that BRpV accepts values of ht slightly smaller than

the MSSM (the upper bound on ht is the same in both models). Considering the

base independent parameter cosχ defined for example in refs. [13, 27] and whose

expression in our basis is cosχ = vd/
√
v2d + v23, we have for the top quark Yukawa

coupling

h2t =
g2m2

top

2m2
W

(
1 +

1

t2βc
2
χ

)
. (17)

This equation indicates that for a constant value of the top quark Yukawa coupling,

larger values of tanβ can be achieved in BRpV compared with the MSSM (in the

MSSM cosχ = 1) when values of cosχ smaller than one are considered (typically

0.87 <∼ |cχ| <∼ 1). The widening of the allowed region mtop − tanβ in BRpV is also

observed, although less pronounced, if we use the alternative definition of tanβ ′ =

vu/
√
v2d + v23 where we have t′β = tβcχ. The reason is that b− τ unification in BRpV

can be achieved at larger values of t′β, thus lowering ht [12].

Now a word about the neutrino mass. The question is whether the values of

cosχ we find are compatible with small neutrino masses. The tau-neutrino neutrino

mass is generated in BRpV via mixing with neutralinos and a weak-scale-type see–

saw type mechanism and can be expressed as

mντ ≈ m2
Zs

2
ζ

M1/2(1 + t2βc
2
χ)

(18)

where sζ ≡ sin ζ is another basis independent invariant which in our basis is equal

to

sin ζ =
(µv3 + ǫ3vd)√
µ2 + ǫ23

√
v2d + v23

. (19)

This parameter, which is proportional to the tau–sneutrino VEV in the basis where

the ǫ3 term is absent from the superpotential, has to be small in order to have a

small neutrino mass. In models with universality of soft mass parameters at the

GUT scale, this parameter is naturally small and calculable, since it is generated

by radiative corrections through the RGE’s of the soft parameters. It can be shown

11



that

sin ζ ≈ sχcχ
µ′tβcχ∆B ±∆m2

m2
ν̃

(20)

where µ′2 = µ2 + ǫ23, ∆m2 = m2
Hd

− M2
L3
, and ∆B = B3 − B with B and B3

the bilinear soft mass parameters associated to µ and ǫ3, all at the weak scale. The

fraction at the right hand side of eq. (20), which we denote as δ, is a good measure of

the cancellation needed in order to have a small neutrino mass. It is approximately

given by

δ ≈
√
mντM1/2(1 + t2βc

2
χ)

sχcχmZ
. (21)

Considering M1/2 = 300 GeV, tanβ = 15, and sinχ = 0.3, the amount of can-

cellation necessary to obtain a neutrino mass mντ = 0.1 eV is given by δ ≈ 10−4

(sin ζ ≈ 3 × 10−5). We do not think that this is a fine tuning. For example note

that the same amount of cancellation between VEV’s in the MSSM is necessary in

SO(10) models where tan β needs to be higher than 50.

7 Conclusions

In summary, in the context of supersymmetric models with universality of gauge and

Yukawa couplings we have studied the predictions formtop, Vcb and tan β, implied by

the Georgi–Jarlskog–Nanopoulos ansätze for fermion mass matrices. First, we have

investigated the impact of the most recent experimental measurements of the top

quark mass and the CKM matrix element Vcb in the MSSM analysis, which we have

updated. As it is well-known, imposing bottom–tau unification at the GUT scale two

solutions are found in the MSSM, characterized by large and low tanβ. Requiring

in addition the texture constraint for Vcb at the GUT scale within 5%, the large

tan β solution becomes disallowed even if we accept the experimental measurements

for mtop and Vcb at 99% c.l. If we relax the level of validity of the latter condition,

the large tanβ solution starts to reappear and it is fully valid when the conditions

at the GUT scale are imposed to within 40%. But no intermediate tanβ solutions

emerge.

We have also studied the same predictions in the MSSM–BRpV model, where

a bilinear R–Parity violating term is added to the superpotential. This model is

the simplest and most systematic way to include the effects of R-parity violation.

Since no new interactions are added, its RGE are unchanged with respect to those

of the MSSM. Nevertheless, boundary conditions for Yukawa couplings at the su-

persymmetric threshold are different. The allowed region in the tanβ −mtop plane

in the MSSM–BRpV is slightly larger than in the MSSM when we impose the GUT

12



conditions for Vcb and bottom–tau unification within 5%. This allowed region for

the MSSM–BRpV grows as we relax the texture conditions on Vcb at the GUT scale.

When these conditions are imposed within 40%, not only is the large tan β branch

recovered as in the MSSM, but also the full tan β−mtop plane including every tan β

value appears. These effects are compatible even with tau neutrino masses as small

as 0.1 eV. Last but not least, such small ντ values are not really required by present

phenomenology to the extent that the atmospheric neutrino data allow for alterna-

tive explanations involving sterile neutrinos [28], flavour changing interactions [29]

or neutrino decay [30].
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