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Disseration zur Erlangung des

naturwissenschaftlichen Doktorgrades der

Julius-Maximilians-Universität Würzburg

vorgelegt von/submitted by

Ignacio A. Reyes

aus/from

Santiago de Chile

Würzburg, 2019



©2019, Würzburg, 2019, Ignacio A. Reyes

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio
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Abstract

The quest for finding a unifying theory for both quantum theory and gravity lies at the

heart of much of the research in high energy physics. Although recent years have witnessed

spectacular experimental confirmation of our expectations from Quantum Field Theory

and General Relativity, the question of unification remains as a major open problem. In

this context, the perturbative aspects of quantum black holes represent arguably the best

of our knowledge of how to proceed in this pursue.

In this thesis we investigate certain aspects of quantum gravity in 2 + 1 dimensional

anti-de Sitter space (AdS3), and its connection to Conformal field theories in 1 + 1 di-

mensions (CFT2), via the AdS/CFT correspondence.

We study the thermodynamics properties of higher spin black holes. By focusing on

the spin-4 case, we show that black holes carrying higher spin charges display a rich phase

diagram in the grand canonical ensemble, including phase transitions of the Hawking-Page

type, first order inter-black hole transitions, and a second order critical point.

We investigate recent proposals on the connection between bulk codimension-1 vol-

umes and computational complexity in the CFT. Using Tensor Networks we provide

concrete evidence of why these bulk volumes are related to the number of gates in a

quantum circuit, and exhibit their topological properties. We provide a novel formula

to compute this complexity directly in terms of entanglement entropies, using techniques

from Kinematic space.

We then move in a slightly different direction, and study the quantum properties of

black holes via de Functional Renormalisation Group prescription coming from Asymp-

totic safety. We avoid the arbitrary scale setting by restricting to a narrower window in

parameter space, where only Newton’s coupling and the cosmological constant are allowed

to vary. By one assumption on the properties of Newton’s coupling, we find black hole

solutions explicitly. We explore their thermodynamical properties, and discover that very

large black holes exhibit very unusual features.
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Kurzzusammenfassung

Die Suche nach einer vereinheitlichten Theorie zwischen Quantenmechanik und Gra-

vitation ist von zentraler Bedeutung in der Hochenergiephysik. Trotz bahnbrechenden

experimentellen Bestätigungen unserer Erwartungen aus der Quantenfeldtheorie und der

allgemeinen Relativitätstheorie in der jüngeren Vergangenheit, bleibt die Frage nach einer

vereinheitlichten Theorie unbeantwortet. In diesem Zusammenhang stellen störungstheo-

retische Aspekte quantenmechanischer schwarzer Löcher wohl eine der besten Anhalts-

punkte dar, um diesen Ziel näher zu kommen.

In dieser Dissertation beschäftigen wir uns mit Merkmalen 3d-dimensionaler schwarzer

Löcher im Anti-de-Sitter-Raum (AdS3) und ihrem Zusammenhang zu (1+1)-dimensionalen

konformen Feldtheorien (CFT2) auf der Grundlage der AdS/CFT-Korrespondenz.

Wir untersuchen thermodynamische Eigenschaften schwarzer Löcher mit höherem

Spin, insbesondere dem Fall von Spin 4. Hier zeigen wir, dass schwarze Löcher mit höheren

Spin Ladungen im kanonischen Ensemble ein reiches Phasendiagramm aufweisen. Beson-

ders bemerkenswert sind das Auftreten von Phasenübergangen des Hawking-Page-Typs,

Phasenübergängen erster Ordnung zwischen schwarzen Löchern sowie eines kritischen

Punktes zweiter Ordnung.

Ein weiterer Teil dieser Arbeit beschaeftigt sich mit vermuteten Zusammenhngen

zwischen Bulk-Kodimension 1 Volumina und Komplexität in der CFT. Mittels Tensor-

Netzwerken liefern wir konkrete Hinweise für die Korrelation zwischen diesen Volumina

sowie der Anzahl an ”Gates” in einem Quantenschaltkreis und legen ihre topologischen

Merkmale dar. Zudem entwickeln wir, unter Verwendung des kinematischen Raumes, eine

neue Formel anhand derer sich diese Komplexität direkt anhand von Verschränkungsen-

tropien berechnen lässt.

Im Weiteren ändern wir unser Werkzeug und untersuchen Quanteneigenschaften schwar-

zer Löcher mittels Methoden der funktionalen Renormierungsgruppe basierend auf asymp-

totischer Sicherheit. Wir beschränken uns auf ein kleines Fenster im Parameterraum, in

5



welchen bloß Newtons Kopplungskonstante und die kosmologische Konstante variieren

dürfen, und vermeiden hierdurch das Setzen einer beliebigen Skale. Eine einzige An-

nahme an die Eigenschaften der Newtonschen Kopplung, liefert uns explizite Lsungen

schwarzer Löcher. Beim Untersuchen derer thermodynamischen Eigenschaften entdecken

wir sehr ungewöhnliche Merkmale bei besonders großen schwarzen Löchern dieser Klasse.
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Chapter 1

Introduction

1.1 The status of high energy physics today

The decade of 2010-2020 will pass to History as a memorable one for Physics. In less

than ten years, two major experimental endeavours involving international cooperations

have successfully achieved the purpose for which they were built for: the discovery of

the Higgs boson in 2012 by Atlas and CMS at the LHC [1, 2], and the detection of of

gravitational waves in black hole merging by LIGO [3,4] in 2015. In both cases, the ideas

ante ceded the facts, and by much. The existence of the Higgs boson was postulated in

1964 by Englert and Brout, and independently by Higgs [5–7]. On the other hand we

have (almost fatefully) a century of gap: Einstein’s paper predicting gravitational waves

was published in 1918 [8]. These two are by far the most successful scientific theories in

History.

On the one hand, we have quantum theory. Our present knowledge of the fundamen-

tal constituents of matter is the Standard Model (SM) of elementary particles. It is a

renormalizable QFT in flat spacetime, containing as fundamental particles the leptons,

the quarks, gauge bosons and the Higgs. It is based on two Symmetry principles. By

requiring that all fields transform covariantly under the Poincare group (Lorentz trans-

formations plus spacetime translations), we get a beautiful group-theoretic categorisation

of particles in terms of two quantum numbers: mass and spin. The mass is understood as

coming from the phenomenon of spontaneous symmetry breaking - the Higgs mechanics.

Spin however has a much more geometric (and algebraic) origin: it is directly related
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Figure 1.1: The two experiments of high energy physics of the decade. Left: the LHC

detects the Higgs boson at around 125 GeV [1]. Right: LIGO signal, received in Hanford,

Washington, of a gravitational wave coming from a black hole merger [3].

to the way in which the fields ‘look different’ when seen from a different frame of refer-

ence. Thus we have scalars, spinors and vectors. We will have much more to say about

spin in Chapter 4. By requiring invariance under an internal symmetry, we also have

the elegant structure of gauge theories build in it. In particular, the SM is built on a

SU(3)× SU(2)× U(1) gauge group acting on the different fields. Although it is consid-

ered an effective field theory (coming from some yet unknown more general framework)

it has proven to be extremely accurate up to the 13 TeV achieved at the LHC.

On the other hand, we have General Relativity. By a simple but profound set of

assumptions about the nature of space, time, rulers, clocks and light, Einstein was able

to completely reform our notions of what gravity means. Instead of an action-at-distance,

gravity is geometry. Einstein’s equations,

Gµν = 8πGTµν (1.1)

are amongst the most complicated equations ever written in physics. They explain a vast

class of phenomena. However, they reflect a remarkable elegant dynamic, as John Wheeler

beautifully put it, “Spacetime tells matter how to move; matter tells spacetime how to

curve” [9]. But the true richness of GR lies in its tremendous variety of applicability:

from the perihelium of Mercury and the bending of light, to the theory of the Big Bang

and the accelerated expansion of the universe, to the discovery of black holes and the

recently measured gravitational waves.
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In some sense, the two aforementioned experiments by LIGO and the LHC vividly

reflect the situation in which high energy physics stands today. By separate, these two

experimental evidences have given us spectacular tests of GR and QFT. But the principles

behind these two theories belong, for the most of it, to two different bookshelves in the

library of Physics.

But the quest for finding a unified description of both quantum mechanics and gravity

is a long lasting dream in theoretical physics. Although by separate these two theories

have been known for around a century, until now there has not been found a coherent

scheme in which they can work together. This is not to say that no progress have been

made. Indeed, much has been achieved.

It is against this background that we should understand why black holes have been

(and will certainly remain) one of the key protagonists of this search. The study of black

holes has dominated the field for several fundamental reasons. Since their theoretical

prediction by Karl Schwarzschild in 1916 [10] until the early 1970s, it was believed that

black holes belonged purely to GR, as cold dark objects from which nothing could escape.

Therefore it came as a big surprise when Hawking, following the result from Bekenstein

that black holes possess an entropy proportional to their area [11], showed in his series of

seminal papers that black holes where in fact intimately connected to quantum mechanics

and thermodynamics [12–15]. Two simple formulas materialised this relation:

S =
A

4G~
, T =

κ

4π
(1.2)

The first one is the Bekenstein-Hawking ‘Area Law’ for the entropy of a black hole. Until

today, this formula remains one of the biggest riddles in quantum gravity. Although it

provides an explicit formula for computing the entropy associated to a black hole, it tells

us very little about what exactly are the microstates this multiplicity is supposed to be

counting. We shall comment more on this issue in later chapters. The second one is

the celebrated Hawking temperature. It asserts that black holes are in fact not black at

all! By studying the behaviour of quantum fields in the vicinity of a black hole horizon,

Hawking proved that an observer watching from far away will see the black hole emit

black-body radiation at temperature given by (1.2). And even more, they proved that

this entropy and temperatures are related via a first law of thermodynamics, where the
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energy is given by the mass of the black hole,

dM = TdS (1.3)

Last but not the least, Hawking further proved the famous Area theorem: in classical

GR, the area of the event horizon of a black hole can never decrease. We have the

second law of thermodynamics. These are remarkable discoveries, and it is fair to say

that the quantum nature of black holes stands as the main foundation of our primitive

understanding of quantum gravity. Whatever proposal for unification might be, it must

be consistent with these findings.

But despite of these great successes, many deep questions remain about the impli-

cations of putting quantum theory and gravity together. Let us just mention a few. In

quantum cosmology, the question of Cosmic inflation stands as one the key unsolved prob-

lems. Is inflation correct, and if so, what is the scalar particle (the ‘inflaton’) responsible

for it? [16, 17]. Then there is the longstanding problem of the Cosmological constant or

‘dark energy’: the ratio between the ‘natural’ expected value of Λ from QFT and its

measured value is roughly ΛQFT/Λexp ∼ 1080 [18,19], what has been dubbed as ‘the worst

theoretical prediction in the history of physics’ [20].

Amongst the many challenges that quantum gravity involves, there is one particular

direction that is most relevant for the purposes of this thesis. In recent years, there has

been increasing efforts in finding new ways to address one problem: the black hole interior.

Although the papers on which this thesis is based have not intended to tackle this problem

directly, we will see along the way how our work is connected to this question. The interior

of a black hole is mysterious for a variety of reasons. In the early days of GR, it was thought

that the horizon was ‘the end of spacetime’. Later it was discovered that the apparent

singularity occurring there was merely a poor choice of coordinates, and that indeed one

can shift to better coordinates and ‘discover’ much more of the manifold. However, the

interior generically contains a catastrophe: an unavoidable spacetime singularity that

leads to the breakdown of GR, and thus the predictability of the physics there. Many

ideas have been proposed as ‘resolutions’ of the singularity problem, but to what extent

they could be correct is far from being clear. We shall return to this point when discussing

higher spin theories - it has been shown that the enlarged higher spin gauge symmetry

could ‘gauge away’ singularities [21]. Of course, the Cosmic censorship conjecture [22] is
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closely related to these ideas.

However the horizon itself is not devoid of controversy. Indeed, the last decade has

seen a striking revival of old ideas, seen with a new light: the ‘Information loss paradox’

has sparked a lively debate on some very fundamental issues [23–26]. During the mid

1970s, there was a strong debate on wether the physical information that falls into a

black hole is ‘lost’ or not to an outside observer. While some argued (most notably

Hawking) that it was indeed lost, many others claimed that this could not be true for

it would violate the principles of quantum mechanics. Although with the advent of the

holographic principle (see below) the discussion was somewhat settled, the new findings

of the last decade relating spacetime to entanglement have brought this issue back into

the scene. In more modern language, the key question lies in the entanglement between

the fields living inside and outside the horizon.

After the discovery of the Ryu-Takayanagi formula for holographic entanglement en-

tropy [27](see below), it was realised that under certain circumstances, this could also

be used as a tool to study the black hole interior. In particular, Maldacena and Hart-

mann [28] showed that, by considering the entanglement entropy of a two sided black

hole, the minimal surfaces penetrate the interior and exhibited non-trivial time evolution.

This was the spark that motivated Susskind [29] to study a property that will be of great

importance in this thesis: complexity. In rough terms, Susskind’s ideas was that in a

maximally extended AdS black hole, there is a sense in which the Einstein-Rosen bridge

(ER) - or wormhole - connecting the two sides is ‘growing’ in volume along time. He

conjectured that this is dual to the growth of the state complexity of the dual boundary

theory which is in a generalisation of an Einstein-Podolsky-Rosen state (EPR) or Bell

state. Thus the acronym ‘ER=EPR’. We will come back to this topic in Chapter 5.

Thus it seems that, regardless of the shape it might take, any major breakthrough in

the study of the fundamental description of black holes will certainly require a modification

of one or more of some well established notions of spacetime and quantum theory and

the relation between them. Whether it’s QFT that must adapt to GR or the other way

around (or possibly some other ingredient not accounted for yet), one thing is clear: black

holes have put our basic notions of physics at test.
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1.2 The holographic principle and AdS/CFT

The Bekenstein-Hawking law for the entropy of a black hole (1.2), proportional to its area,

was the starting point for many developments. In particular, it provided of a hint into

what eventually came to be called the ‘holographic principle’. The surprising thing about

the area law is that, in usual thermodynamic systems like a gas, the entropy - which counts

the logarithm of the number of accessible microstates giving the same macrostate - scales

with the volume of the system rather than the area of the box where it is contained. It is

as if the microstates of the interior would be projected as a hologram on to its boundary

- the horizon.

Although quite vague, this principle was materialised very explicitly into what is known

as the AdS/CFT correspondence or gauge/gravity duality (see Chapter 2). It was first

proposed by Maldacena [30] in 1997 and since then has become a whole area of research

on its own. Maldacena realised that within 10-dimensional string theory there exists some

solutions containing D-branes hat had a very special property. If one takes a particular

‘decoupling limit’ one finds that the same physics should be described by two apparently

very distinct theories. One is a type IIB supergravity living on AdS5 × S5. The other

is a supersymmetric conformal cousin of QCD called N = 4 Super Yang Mills (we shall

explain all of this below). Moreover, the Super Yang Mills (SYM) theory lives on a flat

Minkowskian background R1,4, which happens to be precisely the conformal boundary

of the AdS5 space. It looks as if the gauge theory was living ‘on the boundary’ of the

supergravity theory, just as in the holographic principle of the black hole. The conjecture

claims that these two theories are actually the same theory, written in very different

variables. Having this duality at hand allows to explore the puzzles raised above from a

new perspective, and we have learnt a great deal about perturbative quantum gravity in

doing so in the last two decades.

This correspondence has passed a long series of non trivial checks, although it has not

yet been rigorously proven. It has been generalised in many different directions which we

shall not list here. We shall be interested in the lower dimensional version of it, that is

not in AdS5/CFT4 but rather in AdS3/CFT2, which we review in the next chapter. And

within that context, we shall focus on some specific aspects: its generalisation to include

higher spin fields and understanding computational complexity. We will see that even in
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such an apparently simple scenario, there are many things to learn about gravity and its

relation to quantum theory.

One result that pioneered the introduction of quantum information theory into holog-

raphy was the Holographic entanglement entropy formula by Ryu and Takayanagi [27].

This will be very important for some parts of this thesis, and we will review the proof

in Chapter 3 and use it again in Chapter 5. In quantum theory, the most fundamental

measure of bipartite entanglement is the entanglement entropy. Given a system with

a Hilbert space that factorises into H = HA ⊗ HB, where B = Ac is the complement,

and given a density matrix ρAB in that space, the entanglement entropy between the

subsystems A and B is computed as follows. First compute the reduced density matrix

ρA = TrBρAB, and then calculate its von Neumann entropy (the quantum version of the

classical Shannon entropy): SA = −TrA (ρA log ρA). In QFT, this is a very involved calcu-

lation, even in cases with high degree of symmetry. Thus it came as a great result, when

Ryu and Takayanagi proposed, motivated by the Bekenstein-Hawking area law, that in

holographic theories SA is computed in a simple way. It is given by a quarter of the area

of the minimal surface γRT that extends into the bulk, whose boundary coincides with the

A/B interface at the asymptotic boundary (Fig. 1.2). A quantum information problem

was converted into a geometrical one! We shall review this in more detail in Chapter 3.

Figure 1.2: The Ryu-Takayanagi surface measures entanglement entropy −TrρA log ρA.

Figure by R. Abt from [31].
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1.3 Summary of this thesis and main results

We now briefly review more specifically the topics covered in this thesis. We introduce

the key ideas, highlight the main results and comment on the new directions they suggest.

Chapter 3: Holographic Renyi entropies

We start by reviewing the original statement of the Ryu-Takayanagi conjecture. Next,

we show the proof of Lewkowycz and Maldacena [32] of that formula, and explain its

generalisation to Renyi entropies by Dong [33]. We then turn on to some applications of

these prescriptions, and show how they can be used in practice, in particular to understand

the phase diagram of the branched manifolds involved in the replica trick.

• We correct the Hawking-Page temperature to lowest order in the replica index (n−
1), for an arbitrary entangling region and dimension. It has a definite sign, implying

that the temperature always increases (decreases) for n > 1 (n < 1).

• Working in a smallness expansion, we use the torus Renyi entropy from CFT2 to

find the modification to the modular group phase diagram. The possibility of new

phase transitions is discussed.

• We match the CFT2 thermodynamic Renyi entropy computed from the partition

function, to the branched BTZ result, by integrating the area formula in the bulk.

Our analysis leaves many open questions regarding the thermodynamics of replicated

manifolds. The possibility of an ‘inverse’ HP transition at low temperatures and of the HP

‘disappearing’ at certain replica index deserve further investigation. The most interesting

open question is how to generalise the holographic Renyi entropies to non-holographic

scenarios, which would lead to very interesting physical applications in real-world situa-

tions.

Chapter 4: Thermodynamics of Higher spin black holes

In Chapter 4 we study the physics of higher spin black holes. This does not mean a black

hole with large angular momentum! It means a black hole that is embedded in a theory
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with higher spin symmetry, i.e. interacting with fields of spin greater than two. A long

standing question in both theoretical and experimental physics has been why haven’t we

detected particles of ‘higher-spin’ s > 2. Many beyond-Standard model theories seem to

require their existence, but on the other hand no experimental evidence has been found.

Is there some fundamental principle in Nature prohibiting their existence, or rather some

technical or theoretical limitation? As we review below, in flat space there is an argument

ruling them out: the theorems by Coleman-Mandula and Weinberg. However, these does

not generically apply in curved spaces, such as our universe!

We study the case of black holes in AdS3-like spacetimes interacting with fields of spin-

3 and spin-4. Why AdS3? Because it’s simple. Higher-spin theories in higher dimensions

are quite involved systems because in order to have a consistent theory one must couple an

infinite number of higher spins together. However, in 2 + 1 dimensions one can get away

with a finite number of spins. Why black holes? Again, because of simplicity. Although

extremely rich and still mysterious objects, in some sense black holes are surprisingly

simple spaces. Moreover, in three dimensions they can be understood to a large extent

by their topological properties.

In statistical mechanics, one must always specify in which ensemble one is working.

The more familiar black holes have ‘lower spin’ charges and associated potentials: e.g. the

mass is the spin-2 charge and temperature its conjugate variable. Similarly, higher-spin

black holes carry additional charges Q3, Q4 which are conjugate to higher spin potentials

µ3, µ4. We consider the grand-canonical ensemble, in which we fixed all the potentials of

the system.

• We prove that the stability of these systems is not guaranteed, and in the grand

canonical ensemble, a black hole whose highest spin potential is odd is unstable and

will radiate all its higher spin charge away. Thus we consider solutions with spin-3

and spin-4 charges, which are guaranteed to be stable under certain assumptions.

• The main result is to exhibit the phase diagram of these black holes, Fig. 1.3. This

is analogous to a T-P diagram in thermodynamics (intensive variables fixed).

• We discuss the existence of a first oder phase transition between black holes and

the vacuum, known as the Hawking-Page transition.
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• Next, within the phase space dominated by black holes, we find a first order transi-

tion between different black holes. It ends in a critical point, a second order phase

transition, indicating that the thermodynamics of this system is indeed rich.

8

Figure 1.3: Phase diagram of higher spin black holes, for fixed spin-2 potential µ and

varying spin-3 and spin-4 potentials. The color corresponds to the spin-2 charge value. It

has a discontinuity along the solid line, ending on a second order phase transition. Figure

from [34].

Many open questions remain. In the context of AdS/CFT, these higher spin theories

on AdS3 are conjectured to be dual to a specific kind of 1 + 1 dimensional CFTs called

‘coset minimal models’. Thus one should be able to describe the same physics purely from

the boundary theory and find a precise matching. Also, although we focus on the spin-4

case, one should generalise this analysis for arbitrary spin-N fields, and moreover as we

discuss below, extend it to continuos N .

Chapter 5: Holographic complexity and Tensor Networks

As we mentioned above, the problem of computational complexity is one of those topics

coming from quantum information theory, that in recent years has seen a huge develop-

ment in the gauge/gravity duality community. As we review in Chapter 5, this proposal

introduces new concepts brought from quantum information and computer science into

holography. In quantum computing, the central notion is the concept of a quantum
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circuit. This consists of a set of initial data attached to wires which transmit them, on

top of which one can apply quantum gates, a set of unitary operators acting on some

number of wires. Then, given an input state and an output state, one can ask about its

complexity: what is the minimal number of gates that we needed to turn the input into

the output, given a set of allowed gates? When the input state is some initial state (wave-

function or density matrix) and the output is the time evolution of it, this complexity is

a function of time.

We mentioned above that in AdS/CFT, the entanglement entropy of the boundary is

measured by certain minimal surfaces in the bulk. In an analogous manner, it has been

argued that the complexity of the boundary state as a function of time is also captured by

bulk observables. There are presently two competing proposals: ‘Complexity=Volume’

(CV) and ‘Complexity=Action’ (CA). The first one asserts that complexity is measured

by the spacetime volume of a particular codimension-1 Cauchy slice anchored at the

boundary. In the case of thermofield doubled states, this is closely related to the time

growth of the ‘size’ of the Einstein-Rosen bridge in the maximally extended black hole

spacetime. On the other hand, CA claims that complexity is given by the on-shell gravity

action evaluated within a particular subset of the manifold known as Wheeler-de Witt

patch.

Now there is a further proposal for complexity that has also gained much attention

within the last few years: subregion complexity. This is very relevant for us, for it is on

this quantity that we focused on in Chapter 5. As we mentioned above, the holographic

dictionary states that the area of the Ryu-Takayanagi codimension-2 surface measures the

entanglement entropy of the boundary theory. Then, it was proposed by Alishahiha [35]

that the volume of the codimension-1 slice Σ enclosed by the RT surface should be

capturing some form of complexity of the CFT (see Fig.1.2). However, to the best of our

knowledge, no justification was given in the literature up to now about why should this

quantity be associated with complexity. It is in this context that our work represents a

progress in this direction.

In order to maximise simplicity, we consider AdS3/CFT2. The main result of our

work was in providing an explicit and simple case in which we can understand why

codimension-1 volumes in the bulk are indeed related to the complexity of a quantum
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information problem on the boundary.

• By using the Gauss-Bonnet theorem in the bulk, we show that in 2+1 pure gravity,

subregion complexity is topological. We show that this implies, rather counterintu-

itively, that this complexity is independent of temperature.

• We interpret subregion complexity as the difficulty of a compression algorithm: to

perform a unitary map of the reduced density matrix into the Hilbert space of

smallest possible dimension.

• We generalise the construction of Random Tensor Networks [36] to the case of finite

temperature, thus mapping the complexity to the magnetisation of the bulk Ising

model, and confirm our analytic results by heat bath dynamics.

• We introduce the notion of ‘mutual subregion complexity’. We show that it is

UV-finite and measures the separability of the reduced density matrix.

• We provide a novel formula for bulk volumes using Kinematic Space, which allows

to express complexity explicitly as an integral over the entanglement entropies.

• We use the MERA network and showed how to define the complexity there. This

provides concrete evidence to link codimension-1 bulk volumes in AdS to a particular

measure of complexity in the boundary.

One of the most interesting questions our work opens up is understanding exactly

how is our calculation related to the original proposals for complexity measures. In our

analysis, the bulk volume as a ‘gate-counter’ is very transparent and natural. With this

in mind, one could guess that the codimension-1 volume proposed by Susskind should be

also counting some number of gates. But exactly which gates is it counting, and how our

compression-algorithm interpretation related to the complexity of time evolution is still

not clear. We see that many exciting developments are still ahead.

Chapter 6: Black holes with running couplings in AdS3

A different approach to quantum gravity is known as Asymptotic Safety, an idea orig-

inally proposed by Weinberg [37, 38]. The idea was that, although from dimensional
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analysis gravity is not perturbatively renormalizable, it might be the case that it is non-

perturbatively renormalizable. This cannot be in principle discarded, since the usual

diagrammatic approaches fail as we go to strong coupling. The conjecture is that Einstein

gravity hits a UV fixed point at finite couplings, instead of flowing to some ill defined curve

in theory space. This implies that the gravity couplings, such as the Newton and cos-

mological ‘constants’ are not constants but are allowed to vary with the renormalization

group scale k.

We consider an application of the above scenario, for the study of 2+1 AdS black holes

within the ‘Einstein-Hilbert truncation’. This means we restrict to curves in parameter

space in which the only couplings flowing are Gk and Λk. Now, instead of solving the

Wetterich equations directly, we follow the Brans-Dicke like approach of [39,40], where the

goal is to study an ‘improvement’ of the classical Einstein-Hilbert action, by associating

the scale with the spacetime location k = k(xµ), which induces a spacetime dependence

for the couplings G = G(xµ),Λ = Λ(xµ). The key point of our approach is that we avoid

the step of setting the scale k(x) which is usually done in the literature by resorting to

intuitive arguments. In fact, we ask a different question: whatever the solution to the

Wetterich RG equation and the scale setting are, what class of running couplings actually

satisfy the Einstein equations?

The main results of this section are the following:

• We analytically find the most general static spherically symmetric solution to pure

3d Einstein gravity that allow G = G(r),Λ = Λ(r), under the assumption that the

stress tensor induced by the RG flow saturates the null energy condition. They

include pure AdS3, and a generalisation of the BTZ solution.

• The improved BTZ solution develops a curvature singularity at the origin, which is

consistent with the known properties of BTZ under matter perturbations.

• In certain regimes, these black holes have very peculiar thermodynamic properties.

As the mass goes to infinity, the radius of the horizon and the temperature converge

to finite values. Moreover, in this limit the entropy scales as the perimeter squared,

instead of the usual area law.

The precise connection between our results from Asymptotic safety and AdS/CFT
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require further investigation.

This thesis is organised as follows. In Chapter 2, we provide a brief review to

the AdS/CFT correspondence. We describe its string theory origin, focusing on the

AdS5/CFT4 example, and then discuss the salient properties of AdS3/CFT2, which is

the one we will be concerned with. Chapter 3 is devoted to reviewing the holographic

entanglement entropy formula by Ryu and Takayanagi together with its Renyi generalisa-

tions. We also provide some simple results on the phase diagram of the replica manifold.

In Chapter 4 we introduce higher spin holography. We briefly review the Chern-Simons

formulation and the coset constructions of the Wn algebras in the CFT. After these pre-

ludes, we show our work on the phase diagram of spin-4 black holes. Chapter 5 is devoted

to holographic complexity. We begin by reviewing the holographic proposals, and then

describe the two tensor networks that are relevant for our thesis: MERA and Random

tensors. We then describe our work on subregion complexity from the gravity side, the

tensor networks and the CFT using kinematic space. Finally, Chapter 6 explores, still in

AdS3, an alternative approach to quantum gravity, that of Asymptotic Safety. After re-

viewing the Wetterich equation, we explore the Einstein truncation of the renormalisation

group equations, and describe black hole solutions in it. We discuss their thermodynamic

and geometric properties. We end with some conclusions. In Appendix A we describe the

construction of the hs[λ] algebra, relevant for the higher spin gravity.

Chapter 2 is partially based on [41], a review work done in collaboration with M.

Bañados. The results of Chapter 3 are based on a soon to be published work, in collabo-

ration with P. Fries. The contents of Chapter 4 are based on [34], done in collaboration

with M. Bañados, G. During and A. Faraggi. The discussion of Chapter 5 is based on [31],

work done together with R. Abt, J. Erdmenger, R. Meyer, Charles Melby-Thompson, C.

Northe and H. Hinrichsen. The results of Chapter 6 follow [42], done in collaboration

with B. Koch and A. Rincón.
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Chapter 2

Introduction to AdS/CFT

2.1 A precursor: boundary terms and conditions

Before going into the details of holography, in this section we start by reviewing the

importance of the boundary term analysis in gauge theories. To be very concrete, we

discuss the problem of how to define the energy in a system with gauge symmetry. Al-

though our aim is to focus on gravity, we shall frame the problem explicitly for 2 + 1

Chern-Simons theory and end by going back to GR. This example is ideal since it shows

clearly the role of the boundary conditions one chooses, and once this is done, how the

boundary terms determine the value of the Hamiltonian. We emphasize that by itself this

is not gauge/gravity duality yet, but these ‘boundary issues’ were one of the important

precursors of the correspondence.

How does one define the energy of a black hole in general relativity? The first answer

would be of course the Hamiltonian. However, the Hamiltonian of GR is given in the

ADM decomposition by

H0 =

∫
dDx

(
NH +NiHi

)
(2.1)

where N,Ni are Lagrange multipliers and H,Hi are constraints that vanish if the Einstein

equations are satisfied. Therefore, if we evaluate the Hamiltonian (2.1) on any metric

satisfying the e.o.m., it is equal to zero. This could be reasonable for pure Minkoswki

space, but how could it be true for a solution like a black hole? This problem was already

realised by Dirac [43], but it was not until the work of Regge and Teitelboim [44] that a
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satisfying explanation was provided. We shall not give a complete account of this story,

but rather focus specifically on the problem of the energy.

With this in mind, let’s dive into Chern-Simons theory and ask the same question.

Consider with the usual CS action in 3 dimensions,

k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(2.2)

In order to make the Hamiltonian discussion clear, one performs a space + time decom-

position Aµ = (A0, Ai). This involves integrating by parts and dropping some boundary

terms. One is left with the following action, which we will consider as our starting point:

ICS[A] =
k

8π

∫
M
d3x εij Tr

(
AiȦj − A0Fij

)
(2.3)

What are the equations of motion of this action? Let us find out by varying the action:

δICS =
k

8π

∫
d3x εijTr

(
−δA0Fij + δAiȦj − ȦiδAj − A0δFij +

���
���d

dt
(AiδAj)

)
= − k

8π

∫
d3x εijTr

(
δA0Fij + 2ȦiδAj + A0δFij

)
, (2.4)

where the time derivative vanishes since the initial/final configurations are held fixed, and

we used the cyclic property of the trace. Moreover, it is direct to show that εijTr (A0δFij) =

2εijTr [∂i (A0δAj)−DiA0δAj], where Di is the covariant derivative. Thus we obtain

δICS = − k

8π

∫
d3x εijTr

(
δA0Fij + 2

(
Ȧi −DiA0

)
δAj + 2∂i (A0δAj)

)
(2.5)

The first two terms give precisely the standard e.o.m. for CS, namely

CS e.o.m. F a
ij = 0 , Ȧai = DiA

a
0 (2.6)

The last term in (2.5) is a total derivative, which is the prototype of term that is as-

sumed to vanish in many field theory discussions. However, in general it doesn’t. Isolating

this term and using Stoke’s theorem, we have

δICS =
k

8π

∫
(e.o.m.)− k

4π

∫
dt

∫
r→∞

dϕ Tr
(

(A0δAϕ)
)
, (2.7)

Thus in order for the CS e.o.m. to be an extremum, we should pass the boundary term

in (2.7) to the left hand side and this should define a new action:

δICS +
k

4π

∫
dt

∫
r→∞

dϕ Tr
(

(A0δAϕ)
)

=
k

8π

∫
(e.o.m.) . (2.8)
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But this is equivalent to a redefinition of the Hamiltonian in the action. Calling H0

the ‘naive’ Hamiltonian H0 = k
8π

∫
εijA0Fij coming from (2.3) - which is the CS version

of the GR Hamiltonian (2.1) - the correct Hamiltonian must include an extra boundary

term E,

H = H0 + E , (2.9)

whose variation we know,

δE =
k

4π

∫
dt

∫
r→∞

dϕ Tr
(

(A0δAϕ)
)
. (2.10)

This E is by definition the boundary term that makes the functional H or equivalently

the action well-defined. We choose to call it E referring to ‘energy’, because it equals

the value of H on any solution of the equations of motion, since the bulk piece H0 is a

constraint. We would now like to ‘functionally integrate’ (2.10) to find E. But since δE

depends on the fields and their variations, we must now provide more information about

the system’s behaviour at the boundary.

Motivated by the black hole solution, let’s take the chiral condition that A0 = Aϕ as

r →∞. Then, (2.10) becomes a total variation in δ,

δE =
k

4π
δ

∫
dt

∫
r→∞

dϕ Tr

(
1

2
A2
ϕ

)
, (2.11)

from where we obtain

E[Aϕ] =
k

8π

∫
dt

∫
r→∞

dϕ Tr
(
A2
ϕ

)
, (2.12)

With these boundary conditions, this is the correct energy of the system.

Finally, let’s go back to the black hole. As we will review below, in the CS formulation

the euclidean BTZ black hole is given by a specific Aϕ, whose asymptotic value satisfies

(the holomorphic and antiholomorphic sectors considered) Tr
(
A2
ϕ

)
= 8π

k
M , and euclidean

time has period equal to one. Thus, we find that

EBTZ = M (2.13)

We conclude that although a naive look of the Hamiltonian of GR implied that black

holes have no energy, a careful analysis of the boundary degrees of freedom gives the right

answer.
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2.2 Maldacena’s AdS5/CFT4 conjecture

Let us start by simply stating Maldacena’s proposal [30] to list the ingredients, and

afterwards explain what it means. The conjecture claims that the following two theories

are equal:

• N = 4 Super Yang Mills in 3+1 dimensions, with gauge group SU(N) and coupling

gYM .

• Type IIB superstring theory with string length `s =
√
α′ and coupling gs on AdS5×

S5 with curvature radius L and N units of flux on S5 of the F5 form.

• The matching of the parameters on both sides is given by

g2
YM = 2πgs , 2Ng2

YM =

(
L

`s

)4

(2.14)

This is a weak-strong duality: if the effective t‘Hooft coupling λ = Ng2
YM of the gauge

theory is very large this implies that the AdS radius L is much larger than the string

length `s, so the background is very weakly curved. Conversely, if λ is very small we have

a perturbative SYM theory, dual to a strongly coupled string theory.

The duality: D-branes equal p-branes

The key insight that led to Maldacena materialising his conjecture was a result by Polchin-

ski [45] coming from superstring theory in 10 dimensions. He argued that two apparently

different objects within string theory, namely D3 branes and black 3-branes where

actually the same object, but in different regimes. This is very non trivial, since despite

of the coincidence in names, D-branes are boundary conditions for open strings, while

black p−branes are simply black holes in higher dimensions with planar horizons. It is

not at all obvious that they should be related! This is also referred to as the ‘open string

vs closed string perspectives’. Following the exposition of [46, 47], the argument goes

roughly as follows.

Open string story. String theory is not only a theory of strings. It also contains

objects known as D-branes, which are higher dimensional branes where the open strings

can be attached to in their endpoints. The D-branes also carry an action, known as the
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Dirac-Born-Infeld action (DBI). If we consider the regime where the interaction between

the closed and open strings is small, the effective action will be

Seff = Sclosed + Sopen + Sint (2.15)

where Sint refers to the open-closed string interaction. String theory contains in general

an infinite tower of states given by the possible vibration modes of the strings. However,

if we consider now the regime of low-energy α′ → 0 (recall the mass of the string modes

goes as 1/α′) string theory simplifies dramatically. What we get for the closed strings

is a Lagrangian known as type IIB supergravity in 10 dimensions - essentially Einstein’s

theory (plus a dilaton φ) in higher dimension with some extra fermionic fields such that

the theory has supersymmetry:

Sclosed ∼
1

α′4

∫
d10x
√−ge−2φ

(
R + (∂φ)2 + SUSY partners

)
+O(α′) (2.16)

In this same regime, the open sector contains a gauge field (much like a gluon) of

strength F that interacts with the dilaton and the D3 brane through the Dirac-Born-

Infeld (DBI) action,

SDBI ∼
1

α′2gs

∫
d4x e−φ

√
− det (P [g] + 2πα′F ) (2.17)

where P [g] is the pullback of the metric to the worldvolume of the brane (the induced

metric). Calling Xj the transverse coordinates to the brane (the remaining 6 dimensions),

one can perform a Taylor expansion of (2.17) in α′ and one finds,

Sopen ∼
1

gs

∫
d4x

[
1

4
F 2 +

1

2
∂µXj∂µX

j

]
+ SUSY partners +O(α′) (2.18)

Sint ∼
1

gs

∫
d4xφF 2 + . . . (2.19)

This action is studied around a flat R1,9 background, since this is perturbation theory

around flat space.

In the open part, we have a U(1) gauge field kinetic term F 2 and a bunch of scalars

Xj, plus their supersymmetric partners. If instead of one D3 brane we have a stack of

N D3 branes, we get SU(N) instead of U(1), and the open action becomes exactly the

famous N = 4 Super Yang Mills theory in four dimensions, provided we identify

gs ∼ g2
YM (2.20)
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In the interaction, we see a vertex of one dilaton decaying to two gauge bosons.

The home-take message is that if you are an observer that lives on the brane and

cannot see the transverse directions, the endpoints of the strings will effectively look as

quark-like particles associated to a U(1) field. And if instead of one D-brane you happen

to live on top a stack of N D-branes, you will see instead an SU(N) gauge theory. But

along the transverse directions there will be a 10d supergravity decoupled from you, so

we have schematically,

Open strings for gsN � 1 4d N = 4 SYM + R1,9 IIB SUGRA

Figure 2.1: Left: at weak string coupling, the stack of D3 branes where the open strings

produce an effective N = 4 SYM on the worldvolume. This picture is valid for perturba-

tive λ. Right: at strong string coupling, we have black 3-branes in supergravity.

Closed string story. Polchinski noted that from a totally different perspective,

10d superstring theory also contains another kind of brane: the “p−branes” which were

known for a very long time. A black p−brane is simply a supergravity solution in higher

dimensions whose metric contains a planar horizon that looks like a brane. These are

‘non-perturbative’ solutions (just as any black hole is) related to the closed string sector,

and valid when gsN � 1. The SUGRA solution contains other fields, but the metric of

the black 3-brane is

ds2 =
ηµνdx

µdxν√
H(r)

+
√
H(r)

(
dr2 + r2dΩ2

5

)
, H(r) = 1 +

(
L

r

)4

(2.21)

where µ, ν = 0, . . . , 3 are the worldvolume brane directions, r = xixi and Ω5 spherical

coordinates in the i, j = 4, . . . , 9 remaining transverse directions, and L is simply an
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integration constant. Notice that as r → 0 the metric is singular - this is due to a causal

horizon and not a singularity. Now, Maldacena figured that the α′ → 0 limit that we

took in the open string picture actually corresponds to the r/L→ 0 limit in the p-brane

picture, which is called the ‘near-horizon region’. But in this regime, we clearly have√
H(r) ≈

(
L
r

)2
and thus the metric reduces to

ds2 =
( r
L

)2

ηµνdx
µdxν +

(
L

r

)2 (
dr2 + r2dΩ2

5

)
(2.22)

Finally, if we change coordinates to r = L2/z - where the brane horizon stands at z = 0

now - we get

ds2 =

(
L

z

)2 (
dz2 + ηµνdx

µdxν
)

+ L2dΩ2
5 (2.23)

The first factor is precisely AdS5 space with curvature radius L. The second is a 5-sphere

of radius L. We found the SUGRA in AdS5 × S5. Finally, if we are far away from the

horizon, r/L� 1 we recover flat 10d space in (2.21).

The home-take message from the closed strings regime is

Closed strings for gsN � 1 IIB superstring thy. on AdS5 × S5 + R1,9 IIB SUGRA

The conjecture. Maldacena’s audacious idea was the following. Strictly speaking,

we only know that the SYM description is valid when gsN � 1, while the AdS5 × S5 is

valid in the opposite regime where gsN � 1. But Polchinski showed that both pictures

can be thought of as the same system in different regimes. So if we assume that the SYM

description holds all the way up to the strong coupling regime, this means that SYM at

strong coupling must possess an alternative description as gravity in AdS5×S5. And the

same the other way around. We will not dig deeper into the details of the derivation but

from now on just take it for granted and review some implications.

One last comment is in order, regarding the matching of the symmetries on both sides.

The AdS5 × S5 geometry has two important symmetries: the SO(2, 4) symmetry coming

from AdS5 and the SO(6) coming from the 5-sphere1. Super Yang Mills is conformal and

supersymmetric. In four dimensions, the conformal group is precisely SO(2, 4). The fields

of the SYM theory, for the case of N = 4, can be arranged into a multiplet possessing a

SU(4) ' SO(6). So both theories have identical symmetries.

1This is the isometry group of AdS. Recall that AdSD is defined by embedding it into flat D+1-space,

and defining the hyperboloid there, which clearly has SO(2, D − 1) as its symmetry group.
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The ‘holographic dictionary’

After Maldacena’s paper containing the essential arguments, the conjecture was system-

atised into what is known as the ‘holographic dictionary’ that allows to translate the

supergravity calculations into the conformal field theory ones. The most important entry

of the dictionary was made precise by Witten [48], which initiated the way on how to

extract useful information from the conjecture. The main idea is simple to grasp. Clas-

sical fields propagating in AdS will behave in a certain way at the asymptotic boundary.

Then, specific modes of the fields will become sources and expectation values for the CFT

defined on the boundary. Calling Zgrav[φ0] the partition function of the supergravity or

string theory in AdS computed with the boundary condition that the field φ asymptotes

to the value φ0, the conjecture is

Zgrav[φ0] = 〈exp

∫
φ0O∆〉CFT (2.24)

where the right hand side is simply the generating functional of the CFT with the function

φ0 turned on as a source for the operator O∆ of scaling dimension ∆ is a definite function

of the field data (e.g. the mass). In the α′ → 0 limit, the string theory becomes classical

supergravity, and we approximate the gravity partition function by the on-shell value of

the gravity action in (2.24) by Zgrav[φ0] = exp (−Igrav[φ0]). From here one can compute

CFT correlation functions by taking functional derivatives,

〈O(y1) . . .O(yn)〉CFT =
δnZgrav[φ0]

δφ0(y1) . . . δφ0(yn)
(2.25)

Let us quickly work with the simplest example: the two-point function for a massless

scalar field φ propagating in AdSd+1, following [46–48] (we have ∆(m = 0) = d). We

must solve the e.o.m. of the field in the AdS background with the φ0 boundary condition,

plug it into the gravity action, and take some functional derivatives. We start from the

boundary value problem: we wish to solve

2~x,zφ(~x, z) = 0 subject to φ(~x, z → 0) = φ0(~x) (2.26)

We use the Green’s function method. The solution will be

φ(~x, z) =

∫
dd~y K(~x, z|~y)φ0(~x) (2.27)
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Figure 2.2: Sketch of the AdS/CFT dictionary: a scalar field of mass m propagates in

the bulk, with asymptotic value φ0. This becomes a source for an operator O∆ of the

boundary CFT: its generating functional is computed by adding
∫
φ0O∆ to the CFT

action. The scaling dimension ∆ of the operator is determined by the mass.

where K(~x, z|~y) is known as the bulk-to-boundary propagator, connecting a bulk point

(~x, z) with a boundary point (~y, z = 0). The kernel is determined by the equation

2~x,zK(~x, z|~y) = δd (~x− ~y) (2.28)

Using 2~x,z = 1/
√
g∂m

(√
ggmn∂nφ

)
and inserting the AdS metric in (2.23), we find

K(~x, z|~y) = Cd

(
z

z2 + (~x− ~y)2

)d
(2.29)

which in particular, as we go to the boundary z → 0 becomes a delta function: K(~x, z|~y)→
δd (~x− ~y). Cd is a dimension-dependent constant. Now we insert this into the supergrav-

ity action, where things simplify. Since we only want the two-point function in the probe

limit where the scalar only interacts via minimal coupling with the metric and doesn’t

backreact or interact with any of the other supergravity fields, it turns out that it suffices

to consider the kinetic piece of the scalar,

Igrav[φ0] =
1

2

∫
AdS

dd+1x
√
g∂µφ ∂

µφ (2.30)

= −1

2

∫
AdS

dd+1x
√
gφ2φ+

1

2

∫
AdS

dd+1x
√
g∂µ (φ∂µφ) (2.31)

=
1

2

∫
z=ε

ddx
√
γ φ~n · ~∇φ (2.32)

In the first step we integrated by parts (retaining the boundary term!) and cancelled the

first integral by the e.o.m. In the second term we used Stoke’s theorem to rewrite it as
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an integral over a regularised boundary - a slice of constant z = ε for very small ε. Here

γ is the induced metric on that slice, and ~n its normal vector. The induced metric on

this slice is easily computed from the AdS metric in (2.23) and gives
√
γ = z−d, while the

dot product yields simply ~n · ~∇φ = z∂zφ. The derivative is evaluated by using (2.27) and

(2.29), which give

z∂zφ (~x, z) −→
z→ε

dCd z
d

∫
ddy

φ0(~y)

|~x− ~y|2d (2.33)

Moreover, since φ→ φ0 as we approach the boundary, the action is

Igrav[φ0] =
dCd

2

∫
ddx ddy

φ0(~x)φ0(~y)

|~x− ~y|2d (2.34)

Finally, we compute the two-point correlation function using the dictionary (2.25),

and the final result is

〈O(~x1)O(~y2)〉 = − dCd
|~x− ~y|2d (2.35)

This result is quite remarkable. The falloff as |~x−~y|2d is exactly what we would expect

to get if we were computing a two-point function in a conformal field theory, for operators

of scaling dimension d! This is not a coincidence. Indeed, an analogous (although more

involved) calculation can be done for the 3-point function

AdS/CFT has become an entire industry of theoretical physics. We shall not review

it in generality any more. Instead, we turn now to a brief review of the case that will be

of more importance for us.

2.3 AdS3/CFT2

General relativity in 2 + 1 dimensions,

1

16πG

∫
d3x
√−g (R− 2Λ) (2.36)

is very peculiar. First, it has no gravitational waves, which follows from a simple counting

of degrees of freedom (d.o.f.). In the Hamiltonian formulation, we have: the three d.o.f.

coming from the metric gij at a space-like slice plus three from their conjugate momenta

πij, but we also have to satisfy the three constraints H = 0 = Hi (Einstein’s equations),

each of one carries an associate Lagrange multiplier which we fix at will (the choice of
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coordinates). Thus, the physically meaningful (gauge invariant) d.o.f. are completely fixed

and the Weyl tensor vanished identically: there are no gravitational waves. Moreover, all

solutions must be maximally symmetric spaces of constant curvature: Minkowski, de-

Sitter or Anti de-Sitter space. Finally, point masses experience no Newtonian attraction

between them [49].

Although a naive look at this would regard this theory as trivial, it is in fact far from

being so. Indeed, research in classical and quantum aspects of 2 + 1 gravity has been ex-

tremely active in the last decades, the most prominent being asymptotically AdS3 gravity.

There are several reasons for this. For one, pure gravity in AdS3 can be equivalently writ-

ten as a Chern-Simons theory [50, 51](Chapter 4). Moreover, even within classical GR,

AdS3 has an ‘enhanced’ asymptotic symmetry algebra: the Virasoro algebra instead of

SO(2, 2) which would be the naive guess [52]. Last but not the least, it possesses black

hole solutions [53], which share many of the properties of their higher dimensional analogs,

as well as a beautiful ‘zoo’ of topological cousins of it.

As it is well known, AdS space in any number of dimensions can be defined by solving

an hyperboloid equation in an embedding space. In three dimensions, this means starting

in R2,2,

ds2 = −
(
dX−1

)2 −
(
dX0

)2
+
(
dX1

)2
+
(
dX2

)2
(2.37)

Then AdS3 is defined as the solution to

−
(
X−1

)2 −
(
X0
)2

+
(
X1
)2

+
(
X2
)2

= −L2 (2.38)

We stress that this has a SO(2, 2) as its isommetry group.

Since (2.38) contains closed time-like curves, one usually slightly modifies the geometry

by considering its universal cover. In global coordinates, the metric of (the universal cover

of) AdS3 can be written in global coordinates as

ds2 = −
(

1 +
( r
L

)2
)
dt2 +

dr2

1 +
(
r
L

)2 + r2dφ2 (2.39)

where 0 ≤ r < ∞,−∞ < t < ∞, 0 ≤ φ < 2π. Now because of the above arguments, all

solutions to Einstein’s equations with a negative cosmological constant must locally be

AdS3, so the only way of producing different solutions is by quotienting - ‘cutting and

gluing’ along symmetry directions. The most prominent of such solutions is the BTZ
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black hole, after Bañados, Teitelboim and Zanelli [53] (for more details see [54,55]). With

mass M and angular momentum J , the metric is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dφ+Nφdt

)2
(2.40)

where

f(r) =

(
−8GM +

r2

L2
+

16G2J2

r2

)1/2

, Nφ = −4GJ

r2
(2.41)

As the Kerr solution, rotating BTZ has two horizons r±, located at

r± = 4GML2

1 +

√
1−

(
J

ML

)2
 (2.42)

Its Hawking temperature is given by

T =
r2

+ − r2
−

2πr+L2
(2.43)

and its Bekenstein-Hawking entropy is one quarter of its perimeter:

S =
2πr+

4G
= 2π

√
L

8G
(ML+ J) + 2π

√
L

8G
(ML− J) (2.44)

Another important orbifold of AdS3 are the ‘conical defects’. These correspond to

the solutions with a stress tensor coming from a point particle at the origin. These can

be constructed by identifying the angle variable φ ∼ φ + 2π
n

for a given integer n, with

the same metric (2.39). However, it is usually more comfortable to work in the same

coordinates as before in (2.39), but modifying the line element to

ds2 = −
(

1

n2
+
( r
L

)2
)
dt2 +

dr2

1
n2 +

(
r
L

)2 + r2dφ2 (2.45)

These actually correspond to BTZ solutions with J = 0 and 8GM = −1/n2, which are

‘naked singularities’ that fill the gap between the massless BTZ and AdS3 for n = 1. We

will encounter them again in this thesis.

The result of Brown and Henneaux was another of the important precursors of AdS/CFT.

The main idea was, again, to consider the importance of the boundary conditions. One

starts by choosing an asymptotic falloff for the fields at the boundary, that is physically

reasonable for the problem at hand. Brown and Henneaux identified the following condi-

tions, which allow finite shifts in the mass of the solution, but are constrained enough as
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to have well defined diffeomorphisms at the boundary,

gtt = − r
2

L2
+O (1) , gtφ = O(1) , gtr = O

(
r−3
)

grr =
r2

L2
+O

(
r−4
)

, grφ = O
(
r−3
)

, gφφ = r2 +O(1) (2.46)

Once the boundary conditions are fixed, we first ask what is the most general set of

transformations (here diffeomorphisms) that preserve these conditions. One can show

that these transformations are generated by the following vector field ξµ:

ξt = L
(
T+ + T−

)
+
L3

2r2

(
∂2

+T
+ + ∂2

−T
−)+O

(
r−4
)

ξφ = T+ − T− − L2

2r2

(
∂2

+T
+ − ∂2

−T
−)+O

(
r−4
)

ξr = −r
(
∂+T

+ + ∂−T
−)+O(r−1) (2.47)

where the lightcone coordinates are given by t/L± φ. The requirement that these diffeos

preserve the Brown-Henneaux conditions (2.46) imply that ∂±T
∓ = 0. These equations

classify the set of transformations ξµ into two different two different categories, called

proper and improper gauge transformations. Although all of them preserve the asymp-

totics, the proper gauge transformations do not change the physical state of the system,

while the improper ones do. For example, all ξµ such that ξt have the same T± but

differ only by terms O(r−4) are considered to be related by proper gauge transformations

(they constitute “pure gauge”). But two fields that differ by their values of T± are said

to be physically distinguishable. Since pure AdS has T± = 0, the group of diffeomor-

phisms with non-zero T±, modulo the proper gauge transformations, is known as the

Asymptotic symmetry algebra of AdS3.

Then, calling Ln and L̄n the generators of the diffeos (2.47) with T± = ein(t/L±φ) (i.e.

its Fourier modes), Brown and Henneaux showed that they satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m
(
m2 − 1

)
δn+m (2.48)

[L̄m, L̄n] = (m− n) L̄m+n +
c

12
m
(
m2 − 1

)
δn+m (2.49)

[Lm, L̄n] = 0 (2.50)

with the central charge given by

c =
3L

2G
(2.51)

37



This result was quite surprising at the time, since we must remember that the calcula-

tion was completely classical, in the sense that no quantum mechanics was involved. And

remarkably, the algebra (2.51) is precisely the Virasoro algebra, which is the conformal

algebra in 1+1 dimensions, with a non vanishing central charge, which is an indication of

a quantum field theory with conformal symmetry, rather than simply a classical conformal

theory.

One of the simplest and most beautiful demonstrations of the holographic principle

was worked out by Strominger [56], soon after the paper by Maldacena. Strominger’s

calculation is particularly nice, since it doesn’t involve either string theory nor supersym-

metry directly. The idea is to use the Cardy formula, which gives the universal result for

the entropy of a CFT2 for large values of the energy.

S(∆, ∆̄) = 2π

√
c

6

(
∆− c

24

)
+ 2π

√
c

6

(
∆̄− c

24

)
(2.52)

where ∆ and ∆̄ are the eigenvalues of the energy operators L0 and L̄0 of the right and

left moving sectors. The goal then is to compute the number of microstates associated to

a BTZ of mass M and angular momentum J , in the large M regime, by using only CFT2

techniques. The large M condition implies that ∆ + ∆̄ � c. Using the Cardy formula,

and replacing ∆, ∆̄ in terms of M,J and the Brown-Henneaux central charge (2.46) and

approximating, we have

S ≈ 2π

(√
c∆

6
+

√
c∆̄

6

)
= 2π

√
L

8G
(ML+ J) + 2π

√
L

8G
(ML− J) (2.53)

which is exactly the BTZ entropy (2.44)!

We end with a comment on the validity of the duality. We saw above that there is

an emergent CFT at the conformal boundary of AdS3. However, we never specified what

theory it was! In fact, there is an entire zoo of CFT2 that have been extensively studied

for decades. It turns out that to this question has not yet been settled, although there

have been many conjectures. So, we know the symmetry algebra, but we do not know the

Lagrangian. This is in contrast to Maldacena’s example, where we have a very specific

action in mind on both sides. Nevertheless, Hartmann, Keller and Stoica [57] have found

the requirements that a CFT2 must satisfy in order to have a 3d bulk dual. Consider

the density of states. It is clear that any CFT2 matches the 3d gravity results (BTZ

entropy) for infinite temperature or equivalently for infinite energy, simply because of the
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Cardy formula. What is special about holographic CFTs is that they also satisfy the

Cardy formula all the way up to the lowest temperature that makes sense, namely the

Hawking-Page transition. To be precise, they showed that

ZCFT (β) = Zgrav(β) (2.54)

iff two conditions are met:

c� 1 (2.55)

ρ(∆) ≤ exp 2π∆ for ∆ <
c

12
(2.56)

These are referred to as the ‘sparseness conditions’ on the spectrum.
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Chapter 3

Holographic Renyi entropies

As we know, entropy is a key notion in many areas of knowledge. In classical information

theory, the most important measure of information is the Shannon entropy [58]. Given a

probability distribution {pi}, its Shannon entropy is defined as

S = −
∑
i

pi log pi (3.1)

Although the Shannon entropy provides very important information about the system,

it is only one measure of the spectrum pi. A generalisation of it which extract much more

information are the Renyi entropies [59]. These carry an index n ≥ 0 and n 6= 1, and are

defined as

S(n) :=
1

1− n log
∑
i

pni (3.2)

One nice property of the Renyi entropies is that they include several other well known

measures as special cases. S(0) is commonly known as Hartley entropy, which measures

the cardinality of the set. The Shannon entropy is recovered via the limit limn→1 S
(n) = S.

The second Renyi entropy S(2) is sometimes referred to as ‘collision entropy’. And the

limit n→∞ is known as ‘Min-entropy’: S(∞) = − log maxi pi. Of course, the existence of

these limits depends in general on the analytic properties of the Renyi entropies, which is a

subtle issue. For our purposes, we will from now on assume that the analytic continuation

is well defined.

There exists a natural generalisation to the quantum case. We start with a density

matrix ρ whose eigenvalues are interpreted as a probability distribution. Then, the natural
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Figure 3.1: The entangling interval X in a single copy of the manifold M.

extension of the Shannon entropy (3.1) is defined as the von Neumann entropy,

S = −Tr (ρ log ρ) (3.3)

which is computed by diagonalising ρ. The quantum Renyi entropies are defined in the

obvious way,

S(n) =
1

1− n log
Tr (ρn)

(Trρ)n
(3.4)

where the denominator accounts for the normalisation.

For finite dimensional Hilbert spaces, the above calculations are in principle straight-

forward. The situation is much more delicate in QFT, which is the case we are interested.

There exists different methods to perform actual calculations of these entropies, but we

shall focus only in one: the Replica trick. Consider a QFT in euclidean signature in

some d-dimensional manifold M. We wish to compute the Renyi entropy of the reduced

density matrix ρX on some co-dimension 1 ‘entangling’ region X, see Fig. 3.1 in which

we illustrate the 1 + 1 dimensional case for simplicity.

The replica trick is particularly easy to grasp in the path integral formalism. A trace

over states is simply given by a euclidean path integral coming from asymptotic times

in the remote past and the far future. First we look for the reduced density matrix

ρX = TrY ρ where Y = Xc is the complement. This requires to cut a small ‘slit’ at X at

times t± immediately to the past and future of X as in the figure. Since this is a matrix, it

has two free indices (ρX)ij or equivalently, we get the matrix elements by projecting with

〈φ−|ρX |φ+〉 where φ±(x) are two states defined at the cuts. The reduced density matrix

ρX is therefore defined as the path integral over the entire manifold M, but keeping the

values of the fields φ(t±, x) = φ±(x) with x ∈ X fixed, which becomes a functional of
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φ±(x):

〈φ−|ρX |φ+〉 =

∫ M
φ(t±,x)=φ±(x)

Dφ e−I[φ] (3.5)

Now we wish to take the trace over X of the n−th power of this matrix. In index

notation, this amounts to

TrX (ρX)n = (ρX)i1i2 (ρX)i2i3 (ρX)i3i4 . . . (ρX)in−1

in
(ρX)ini1 (3.6)

We can do the same in the path integral. Instead of working in M, we consider the

manifold Mn, defined as shown in Fig. 3.2: we glue the t+ edge of the i−th copy to the

t− edge of the i+ 1-th copy, all in a cyclic manner (with t+ of the n is identified with t−

of the first). The manifold thus defined is an n−sheeted Riemann surface, which covers

the initial manifold n times. The replica prescription instructs us to now compute the

path integral inMn. This is accomplished by imposing cyclic boundary conditions at the

edges in the path integrals: we impose φ
(i)
+ (x) = φ

(i+1)
− (x), where φ(i) refers to the field

variable in the i−th copy. Notice this puts a restriction on the space of fields that enter

the path integral: they must be single valued in Mn. This path integral is denoted by

Z[Mn].

Thus we have

S(n)(X) =
1

1− n log
Z[Mn]

(Z[M])n
(3.7)

where the dependence on X in the right hand side is implicit in the definition of Mn.

The bottom line is that in QFT, the calculation of the Renyi entropies reduces to the

evaluation of the path integral in a funny manifold Mn.

As we mentioned before, the actual calculation of these partition functions is in QFT

is generically quite involved. The best known example is, of course, two dimensional

conformal field theories, because the large degree of symmetry allows to perform the

calculation. This method is described in many excellent references, e.g. [60]. Since we

wish to focus on the proof of the holographic RT formula and its generalisation to Renyi

entropies, we will not review the field theory calculation here. Instead, in Section 3.1 we

briefly review the Lewkowycz-Maldacena derivation of holographic entanglement entropies

[32], and in Section 3.2 show some simple applications for the phase diagram of the

replicated manifolds.
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Figure 3.2: The replicated manifold Mn. The copies are sewed cyclically, defining a

Riemann surface.

3.1 Holographic entanglement entropy

We consider for simplicity the static case, where the bulk geometry is time independent.

The Ryu-Takayanagi prescription is the following. We consider an entangling region X

with boundary ∂X, defined on a surface of constant time on the conformal boundary of

the asymptotically AdS space, as in Fig. 3.2. In the bulk, consider the set of all surfaces

γX such that ∂γX = ∂X and γX is homologous to X, i.e. that X ∪ γX define an ‘interior’

and ‘exterior’. Then, SX of the boundary is given by the area of the minimal surface,

S(X) = min
γX

Area(γX)

4G
(3.8)

Obviously, the RT formula (3.8) is inspired by the Bekenstein-Hawking formula. In

fact, it is a generalisation of it, that reduces to the black hole entropy in a particular case.

Although proposed in 2006, it was only in 2013 that it was finally proved by Lewkowycz

and Maldacena [32], following the previous insight by Fursaev [61]. In 2016 Dong [33]

provided the general argument for the static case in euclidean signature for the Renyi

entropies. For simplicity, we review the proof of the entanglement entropy.
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3.1.1 Derivation of holographic entanglement entropy

This argument is extremely elegant. It relies on three assumptions: 1) the semiclassical

approximation (Gibbons-Hawking) of euclidean quantum gravity, 2) the AdS/CFT dual-

ity, 3) no spontaneous breaking of the replica symmetry. We start by doing the replica

trick on the conformal boundary, as explained above. In gauge/gravity duality, this is

nothing but a very special set of boundary conditions for the fields as they approach the

asymptotic boundary Mn. Then, provided these boundary conditions, one is supposed

to solve the bulk Einstein equations, and find the saddle for those prescribed boundary

conditions, call it Bn, so that ∂Bn ∼ Mn (conformally equivalent). Once the bulk solu-

tion Bn is found, the partition function of the boundary Z[Mn] is computed according to

AdS/CFT by the partition function in the bulk Z[Bn]. In the semiclassical approximation

GN � 1, this is simply given by the on-shell action via the Gibbons-Hawking prescription,

Z[Bn] ≈ exp (−I[Bn]) (3.9)

which replaced into the Renyi entropy (3.7) yields

S(n) =
1

1− n log
Z[Bn]

(Z[B])n
(3.10)

=
1

1− n (nI[B]− I[Bn]) (3.11)

Now, the branched cover Mn possesses a discrete symmetry of cyclically permuting

the n replicas. We assume that this symmetry is not spontaneously broken in the bulk.

Since the gravity action (including all necessary boundary terms) is an integral of a local

quantity, replica symmetry in the bulk means that we can consider the quotient bulk

geometry

B̂n :=
Bn
Zn

(3.12)

and it will satisfy

I[Bn] = nI[B̂n] (3.13)

Plugging into (3.10) we finally find

S(n) =
n

1− n
[
I[B]− I[B̂n]

]
(3.14)
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Notice that the two actions in (3.10) are exactly the same functional, but evaluated

in different metrics. B = B1 is simply the bulk whose conformal boundary is M = M1

which was the original manifold, no replicas involved. On the other hand, Bn contains a

codimension-2 conical defect somewhere, because it was obtained by the quotient (3.12)

of a manifold that had a Zn symmetry. Indeed, locus of the conical defect is the region

of the original Bn that was a fixed point of the replica symmetry. This is essentially the

same as when we produce a cone by quotenting a disc: the center of the disk is mapped to

itself under the discrete symmetry, so the quotient (the cone) has a angle deficit around

there. This conical defect is the prolongation into the bulk of the branch points located

at ∂X on M.

Now the task is to engineer the metric on B̂n, with the desired conical defect. A

convenient way of producing this geometry is by adding a brane term to the action I ′ =

I + Ibrane where Ibrane = TnAn, where An =
∫
dd−1y

√
h is a Nambu-Goto action for the

area of the brane. Then the tension of the brane Tn = (n − 1)/4nG creates an opening

angle of 2π/n around it. The desired metric is the solution to the new problem

δI ′ = δI + δIbrane = 0 (3.15)

These are coupled equations: Einstein’s equations for the metric on B̂n with a massive

brane as a source, and the equation for the brane trying to minimise its area in the

backreacted geometry. Equation (3.15) must be satisfied for any variation of the fields,

so in particular it must hold when we consider a particular variation produced by varying

the value of n, so that δn = ∂n. Of course, n was originally thought of as an integer

(the number of replicas), but now that it’s given by the brane tension, we take it to be

continuous. This defined the analytic continuation.

Now we specify to entanglement entropy, by setting n = 1+ε with ε� 1. From (3.15)

we get, to first order,

∂εI
′ = ∂εI[B̂1+ε] + ∂ε

( ε

4G
A1+ε

)
(3.16)

=
I[B̂1+ε]− I[B̂1]

ε
− A1

4G
+O(ε) (3.17)

and thus we find the desired action,

I[B̂1+ε] = I[B] + ε
A

4G
(3.18)
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Finally, inserting this back into (3.14) we get the entanglement entropy as given by

the RT formula:

S(1) = −1

ε

[
I[B]−

(
I[B] + ε

A

4G

)]
=

A

4G
(3.19)

where A is the area of the minimal surface because of the equations of motion. Moreover,

it is a probe brane since in the limit n→ 1 the tension Tn vanishes.

The above argument was nicely generalised by Dong [33] for finite values of n. The

results is that the Renyi entropy satisfies

n2∂n

(
n− 1

n
Sn

)
=
An
4G

(3.20)

where An is the are of the backreacting brane as explained above.

We now turn to some simple applications of this formula, to understand how the

Hawking-Page critical point depends on the replica index n.

3.2 Phase diagram of replicated manifolds

This section is based on still unpublished work done in collaboration with Pascal Fries.

In [62], the authors investigated a similar problem by specifying n = 2.

As we saw in the previous Section, the calculation of entanglement entropies and in

general Renyi entropies involve considering a branched cover of the original spacetime

in question, and studying the backreaction of a codimension-2 brane on the background.

The question we wish to address in this Section is how does the replica index n affect the

Hawking-Page critical point. As we will see, this occurs because the actions of thermal

AdS and the AdS black hole evolve differently with n, which causes a shift in the critical

point as we move in n.

We start by briefly reviewing the Hawking-Page (HP) transition, which will also be

important in future Sections. We work in arbitrary dimensions in the canonical ensemble,

i.e. we start by fixing the euclidean time to have period τ ∼ τ + β, where β is some

fixed number. One fixes the asymptotic boundary conditions by giving the metric at the

boundary ∂B = M. However, this needs not uniquely determine the interior solution,

B. The HP transition is the statement that there exists two exact solutions to the e.o.m.
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at fixed β: thermal AdS (B = A) and the AdS black hole (B = B). Thus, the partition

function, in the semiclassical approximation takes the form

Z(β) =
∑
B

e−IB(β,) ∼ e−IA(β) + e−IB(β) + . . . = e−βF (β) (3.21)

The reason for this is that the gravitational action carries a factor of 1/G, so that in

the limit G→ 0 all but the classical solutions ( which minimise the action if the variational

principle is well posed) are exponentially suppressed.

Here Ibulk is assumed to include all correct boundary terms needed in order to extremize

the action on the equations of motion, provided the boundary conditions. The usual HP

temperature, call it β1, is defined as the point where these two terms exchange dominance,

i.e. the solution to the equation

∆I(β) ≡ IB(β)− IA(β) = 0 → β = β1 (3.22)

Now let’s do the same analysis for the replicated manifolds. The physics of the replica

trick introduces two extra parameters: the entangling region X and the replica index n.

Let us assume that the analytic continuation of both the AdS and BH solutions exist and

are well defined for arbitrary (X,n). Moreover, again we focus on the region of phase

space where all other saddles are subdominant. We denote by I (B, β,X) the on-shell

action at temperature β for either of the saddles Bn = An, Bn (black hole and thermal

AdS) defined by the entangling region X and index n. We now we define the critical point

as the solution to

∆I[n, β,X] = I [Bn, β,X]− I [An, β,X] = 0 (3.23)

This is one constraint on the set of variables (β,X, n), any of which we can think of

functions of the other two, such that (3.23) is satisfied. But now we can express these in

terms of the Renyi entropies using (3.10)

I[Bn, β,X] = nI[B, β] + (n− 1)S(n) (β,X) (3.24)

Inserting (3.24) back into (3.23), it follows that the HP transition occurs at

∆I[n, β,X] = n∆I[β] + (n− 1)∆S(n) (β,X) = 0 (3.25)
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It is worth clarifying that the first term ∆I[β] has nothing to do with the replica trick,

it is simply the difference in the on-shell actions of the black hole and thermal AdS in the

usual analysis at a given temperature. It is the entropy term that carries the information

about the entangling region X and number of replicas n. As we take n→ 1, the entropy

contribution disappears, and we are left with ∆I[β] = 0 which is the usual HP condition.

It is the second term that modifies the transition temperature. In principle, one could

simply solve (3.25). However, in practice the Renyi entropies are only known in very

simple cases. Therefore, we will in the following resort to some approximations in order

to grasp some of the physics. In the CFT, the HP transition is understood as the dual of

the confinement-deconfinement transition in the gauge theory [63]. Although we have not

investigated this here, it would be interesting to understand the meaning of the confining

phases of the replicated manifolds.

3.2.1 Expansion around n = 1

In the vicinity of n = 1 + ε, we can get a general result for the variation of the transition

temperature. Recall β1 is the usual HP temperature, i.e. the solution to (4.1), and now

call β = β1 + δβ the solution at n = 1 + ε. Expanding (3.25) to lowest order in ε, we find

(1 + ε)∆I[β1 + δβ] + ε∆S(1+ε) (β1 + δβ,X) = 0 (3.26)

⇒ ∆∂βI
∣∣∣
β1
δβ + ε∆S(1)(β1, X) = 0 (3.27)

where we used that ∆I[β1] = 0 by definition. Thus, we find

δβ = −ε∆S
(1)(β1, X)

∆〈E〉(β1)
(3.28)

where ∂βI = −∂β logZ = 〈E〉 is the expectation value of the energy, so ∆〈E〉 is simply

the difference the ADM masses of the two solutions, i.e. ∆〈E〉 = M(β) where M is the

black hole mass for bulk dimensions d ≥ 4. For d = 3, ∆〈E〉 = M(β) + 1 due to the BTZ

mass gap.

It is interesting to note that δβ has a definite sign: clearly ∆〈E〉 = M > 0 and

∆S = S(black hole)− S(AdS) > 0 also. This implies that δβ = − 1
T 2 δT < 0 for ε > 0, so

the critical temperature increases (decreases) for ε > 0 (ε < 0) perturbatively in n = 1+ε.
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3.2.2 The AdS3 case

In the case of 3d gravity, the Hawking-Page transition adopts a particularly beautiful

form, as described by Maloney and Witten [64]. We consider the euclidean system in the

canonical ensemble, with τ = (θ + iβ) /2π the modular parameter of the torus, where β is

the inverse temperature and θ is the angular potential. The task is to find the transition

locus in the complex τ plane. We first re-derive the phase diagram of [64] by the reasoning

described above, since it will allow us to easily generalise this to the replicated spacetimes.

We start from the black hole partition function

Z =
∑
M,J

exp (−βH + iΘj + S(M,J)) (3.29)

The entropy is

S(M,J) = 2π

√
c

6

(√
M + J

2
+

√
M − J

2

)
(3.30)

In these variables, the physical mass m is 8mG = M and the physical angular mo-

mentum j = J/8G, and c is the central charge.

From these equations, it is easy to show that by using the saddle point equations that

the on-shell value of the action for the black hole is given by

I[B, τ, τ̄ ] = βm− iΘj − S =
c

12
(βM − iθJ)− S

= −iπc
12

[
1

τ
− 1

τ̄

]
(3.31)

On the other hand, for thermal AdS, we have M = −1, J = 0, so its on-shell action is

I[A, τ, τ̄ ] = − c

12
β = − c

12
iπ (−τ + τ̄) =

c

12
iπ (τ − τ̄) (3.32)

The HP transition occurs when both exponentials in (3.21) are equal:

∆I(τ, τ̄) = I[B, τ, τ̄ ]− I[A, τ, τ̄ ] (3.33)

= −iπc
12

[
1

τ
− 1

τ̄

]
− c

12
iπ (τ − τ̄) (3.34)

= −iπc
12

(
1

τ
+ τ − 1

τ̄
− τ̄
)

= 0 (3.35)

which reduces to the unit circle

τ τ̄ =
1

(2π)2

(
θ2 + β2

)
= 1 (3.36)
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The phase diagram is shown in Fig. 3.3 (figure from [64]), in the complex τ ∼ θ + iβ

plane. Although euclidean 3d gravity has many first order transitions, we are restricting

to the HP, which corresponds to the segment of the unit circle. The grey lines indicate

the fixed point of the modular group, i.e. the boundaries of the fundamental domains.

The phase transitions lie on a subtesselation of it.

Figure 3.3: The phase diagram of 3d gravity in the complex plane of τ (figure from

[64]). The solid black lines indicate first order phase transitions, where the unit circle

corresponds to the HP.

In the next section, we study the analogous phase diagram for the replicated manifolds,

and find to first order in a smallness expansion, how these lines are deformed.

Torus Renyi entropy: small interval expansion

We now consider the case of one interval on the torus. Although the general formula for

the Renyi entropy is not known, there are expressions for the small interval expansion

[65]. We shall work at the lowest non-trivial order in the length of the interval x, in

the approximation that x is much smaller than both cycles of the torus. Furthermore,

we restrict our attention to the holomorphic factor in the partition function, since the

antiholomorphic analysis is completely analogous. Then, according to [65], the Renyi

entropy to lowest non trivial order is given by

S(n)(x) =
c

6

(
1 +

1

n

)
log

x

ε
− 1

12

(
1 +

1

n

)(
〈T 〉+ 〈T̄ 〉

)
x2 (3.37)

=
c

6

(
1 +

1

n

)
log

x

ε
+

1

12

(
1 +

1

n

)
2πi (∂τ − ∂τ̄ ) I(τ, τ̄)x2 (3.38)
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where we have written the average energy in terms of the on-shell action of either solution.

The black hole - thermal AdS difference of Renyi entropies for a small interval is then

∆S(n) =
1

12

(
1 +

1

n

)
2πi (∂τ − ∂τ̄ ) ∆I1(τ)x2

= − 1

12

(
1 +

1

n

)
2πix2 iπc

12
(∂τ − ∂τ̄ )

(
1

τ
− 1

τ̄
+ τ − τ̄

)
= − 1

12

(
1 +

1

n

)
2πix2 iπc

12

(
2− 1

τ 2
− 1

τ̄ 2

)
(3.39)

Plugging back into the HP equation,

∆I(τ, τ̄) +

(
1− 1

n

)
∆S(n)(τ, τ̄ , x) = 0 (3.40)

we have(
1

τ
+ τ − 1

τ̄
− τ̄
)

+

(
1− 1

n

)
1

12

(
1 +

1

n

)
2πix2

(
2− 1

τ 2
− 1

τ̄ 2

)
= 0 (3.41)

or equivalently

1

τ
− 1

τ̄
+ τ − τ̄ + iδ

(
2− 1

τ 2
− 1

τ̄ 2

)
= 0 (3.42)

where δ =
(
1− 1

n2

)
πx2/6 is the smallness parameter. This of course reduces to the usual

HP quadratic equation (3.36) when n = 1.

For n > 1, we plot in Fig. 3.4 the solutions to (3.42) in the complex plane of τ , where we

have plotted the entire curves, but they should be thought as to end at a given point that

we have not determined here and not very relevant for the discussion. The uppermost blue

semicircle corresponds to the usual HP transition as in Fig. 3.3. The figure shows some

very interesting features, although in this case we do not claim any decisive conclusion.

For any δ > 0, we see the appearance of a new critical line which is developing from the

origin, and at around δ ≈ 0.3 the usual HP point disappears. However, both phenomena

must be dealt with care, since it is possible that the approximation of the small interval

is no longer valid in this regime. We leave this as a motivation for further study.

On the other hand the case for 0 < n < 1 is even more interesting. For then −∞ <

δ < 0 is negative and unbounded, no matter what the size of the interval is. In Fig. 3.5

we plot the curves. The situation is clear from (3.42): as δ → −∞, the usual HP line

gets pushed towards infinity, whereas there appears a new HP line (the green curve in the
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Figure 3.4: HP transition in the τ plane, for increasing values of δ in (3.42), for δ =

0, 0.1, 0.25, 0.32.

plot), located at

2 =
1

τ 2
+

1

τ̄ 2
(3.43)

This curve is an instance of the well known Lemniscate,

r2 = cos(2ϕ) (3.44)

written in polar coordinates τ = r exp (iϕ).

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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1.2

Figure 3.5: HP transition for 0 < n < 1, for δ = 0,−0.1,−0.2,−2. The lower curves

converge to the green one as n→ 0+.

As we see, we have found some interesting results which deserve further investigations.

From the holographic dual point of view, these results are quite interesting. Recall that

the Renyi entropy is related to the area of a massive backreacting brane attached to the

boundary. The modification of the HP curve is related to the interaction between the

brane and the horizon of BTZ.
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Matching Renyi CFT to AdS

We close this section by performing a simple match of the thermal Renyi entropies com-

puted directly from the CFT and the AdS sides. We work in the large central charge limit

c→∞ and above the HP transition, and for simplicity we consider the non-rotating case.

This can be readily generalised to higher dimensions and charges. By thermal Renyi en-

tropy we simply mean that we take the entangling region to be the entire spacelike region

in the CFT at a fixed time, in the CFT2 this is simply a circle X = S1
CFT . So we are

working in the opposite limit as before, where X was very small with respect to the circle.

We start with the CFT side. We wish to compute the Renyi entropy of the full circle,

but for that we must first take a look at the usual partition function in this regime. Due

to modular invariance τ → −1/τ (here β → (2π)2/β) the torus partition function at high

temperature β → 0 has the symmetry

Z[β] = Tr e−βH = Tr e−(2π)2/βH (3.45)

But the last equality corresponds to very low temperature, in which case Z is domi-

nated by the vacuum contribution. As it is well known, the Casimir energy in the torus

is E0 = −c/12, which comes from the vanishing Casimir energy on the complex plane.

Therefore, the dominant contribution to the partition function is

Z[β] ≈ exp

(
cπ2

3β

)
(3.46)

which of course matches exactly the BTZ saddle point approximation (3.31). Then, it is

immediate to see that the Renyi entropy is given by

S(n)(β) =
1

1− n log
Tr e−nβH

(Tr e−βH)n

=
1

1− n
cπ2

3β

(
1

n
− n

)
=

(
1 +

1

n

)
cπ2

3β

Since the usual thermal entropy is recovered for n = 1, we find that in this case, the

Renyi entropy is actually proportional to the thermal entropy:

S(n)(β) =
1

2

(
1 +

1

n

)
S(1)(β) (3.47)
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We emphasise that this is in general not true. Indeed, one can by similar methods as

shown here, prove that the CFT3 problem does not satisfy this equality.

Let us now turn to the gravity side. To compute the Renyi entropy in the bulk, we

follow Dong’s recipe as explained in in Section 3.1.1. We are supposed to consider the

same manifold as before (here the euclidean BTZ solution), but adding a tension-full

brane whose boundary is attached to ∂X, the boundary of the entangling region. Next,

we must solve the coupled equations of motion of the gravity+brane system, and finally

compute the area of the brane.

This procedure simplifies in the particular case at hand. First, since we are in 2 + 1

dimensions and the brane is always codimension-2, it is a tension-full string (or worldline).

Furthermore since the entangling region X = S1
CFT is the entire circle in the CFT, ∂X = ∅

is the empty set, so the brane is no longer attached to the boundary. However, due to

the homology condition, it must still wind once around the black hole. Due to spherical

symmetry, the brane will lie at a constant radius rb. Now, the e.o.m. for the brane imply

that it must minimise its area in the backreacted geometry, which will only occur at the

origin of the coordinates, which is the horizon in euclidean signature. We conclude that

the brane will sit not at a finite distance but precisely at the horizon, rb = r+, creating

a angle opening of 2π/n around it, instead of 2π as is imposed in the usual derivation of

Hawking’s temperature. It cannot shrink further since the BH interior does not exist in

euclidean signature.

In the canonical ensemble, the presence of the conical defect does not modify the

temperature, but rather the mass and location of the horizon. The solution to the coupled

e.o.m. is simply

f(r) = −M + r2 , β =
4π

nf ′(r+)
(3.48)

It is convenient to write everything in terms of the horizon radius,

r
(n)
+ =

2π

nβ
, M =

(
2π

nβ

)2

(3.49)

The black hole ‘shrinks’ with increasing n. The area of the brane is

An
4G

=
πc

3
r

(n)
+ (3.50)
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Now we must integrate the holographic Renyi entropy equation (3.20), that is

n2∂n

(
n− 1

n
Sn

)
=
An
4G

(3.51)

These is readily done and we obtain(
1− 1

n

)
S(n) =

∫ n

1

dm
Am
4m2

=
πcr

(1)
+

3

∫ n

1

dm

m3

=
1

2
S(1)

(
1− 1

n2

)
(3.52)

which is precisely the CFT result (3.47).

56



Chapter 4

Higher spin holography in

AdS3/CFT2

One of the most fundamental discoveries of physics during the XXth century was the

concept of spin. Although initially discovered as an unexpected property of the electron

passing through a magnetic field, with time we eventually understood that it is an intrinsic

property of all particles we know in Nature. The role that spin has played in modern

physics, particularly in as one of the key concepts providing a bridge between experimental

physics and the mathematical area of group theory cannot be overestimated.

The road to understanding spin usually begins in undergraduate quantum mechanics

courses by studying the role of su(2) in non-relativistic quantum mechanics. Later, one

learns that in relativistic classical and quantum field theory, spin is intimately connected to

the representations of the Lorentz group. All fields in the Standard Model are assumed to

be covariant under Lorentz transformations, as special relativity demands. The difference

between different spins is simply the way in which we choose to represent the Lorentz

group acting on these fields. We see that spin acts as an organising principle giving

structure to our understanding of Nature.

In principle, particles exist with any value of integer or half-integer spin. Indeed, the

theory of massless free higher spin fields is well understood. There is an algorithmic way

of constructing such theories, put forward by Fronsdal [66]. Let us consider integer spins

for simplicity. For each value s of the spin, we have a field with s indices that satisfies a

certain second order differential equation of motion and has an associated gauge symmetry.
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For example, for s = 1, 2 we have as examples the photon Aµ and the graviton hµν :

s = 1 2Aµ − ∂µ∂νAν = 0 δAµ = ∂µξ (4.1)

s = 2 2hµν + ∂µ∂νh− ∂µ∂σhσν − ∂ν∂σhµσ = 0 δhµν = ∂µξν + ∂νξµ (4.2)

Following the same logic, one can study fields ϕµ1...µs that are symmetric in all the indices,

that satisfy a corresponding e.o.m. (i.e. all possible contractions involving two derivatives

with appropriate signs) and have a gauge symmetry given by δϕµ1...µ2 = ∂(µ1ξµ2...µs). The

fermionic construction follows the same lines, but one must contract using extra Dirac

matrices. So we basically know how to deal with free theories of any spin. But we all

know s = 2 has something special. Why have we detected only a handful of different

spins within the SM, and only up to s ≤ 2? In fact we know very well how to construct

interacting theories with s ≤ 2. The real problem comes we we wish to write down

interacting theories involving s ≥ 3. The problem? In flat space... they do not exist!

This subject has a long and complicated story, which we will not review in this thesis.

Let us just comment on the main results. The main obstacle is the famous no-go theorem

from Coleman and Mandula [67] and related work by Weinberg [68]. In brief, the question

they were asking was wether it is possible to have a theory in which the generators of

the spacetime symmetries (the Poincare group) don’t commute with the generators of

the gauge symmetries. In other words, wether we can have symmetries that mix both

the spacetime and the internal transformations simultaneously. In short, the Coleman-

Mandula theorem states that under some assumptions, the most general Lie algebra of

the S-matrix must be a direct product of the Poincare algebra and the internal gauge

algebra.

As pointed out by Weinberg [68], Lorentz invariance puts very strong constraints on

the possible outcome of scattering processes in 3 + 1 flat space. The argument is very

nice since it doesn’t rely on a particular Lagrangian. It only assumes invariance under the

‘little group’, together with the fact that for massless fields one can always take the soft

limit (low momenta). By analysing what happens to the density matrix when we couple

it to a massless spin-1 field, one can prove this implies that the total spin-1 (electric)

charge of the incoming particles must be conserved during the interaction. The same

reasoning for a spin-2 field (the graviton) implies that gravity is universal, i.e. that all

particles couple to gravity with the same strength
√
G. This happens because the spin-2
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field implies a ‘larger’ gauge invariance, so the conservation law is more stringent. But

when we try a spin-3 field, we go too far: it implies that all individual momenta must be

conserved during the process - no interaction at all!

This line of reasoning led people to believe for a long time that higher spin theories

didn’t exist at all. However, that was not the end of it. Vasiliev showed that, because the

hypothesis of the theorems fail to hold in curved spaces, higher spin theories can still exist.

In fact he showed precisely how to construct them explicitly in AdS space. Moreover, in

1 + 1 dimensional flat spacetime there’s a further caveat and the preceding arguments do

not hold either. That’s provides a perfect window for AdS3/CFT2 higher spin holography

to work!

In this chapter, we have made a choice. We will not go deeper into the story of the

subject. Instead, we choose to focus from now on in the specific scenario at hand, namely

AdS3/CFT2, in order to explain in more detail the mechanism oh higher spin holography

in this particular case.

4.1 The tensionless limit of AdS/CFT

As we discussed in Chapter 2, each side of the correspondence possesses two independent

parameters. The mainstream philosophy has been traditionally to work in the gs →∼
g2
YM → 0 limit, but keeping λ = Ng2

YM = (L/`s)
4 � 1. The benefit of this approach is

that, by using a theory we do understand well (classical supergravity weakly curved) we

can gain some insight into aspects of the physics of a theory we do not understand very

well (strongly coupled gauge theories). This means using gravity to understand gauge

theories.

However, there’s an alternative perspective: we could choose to use our knowledge

about perturbative gauge theories to learn something about strongly curved quantum

gravity. This requires now to work in the limit where L ≈ `s, meaning that the strings

become ‘long’ with respect to the curvature scale and loose tension. But a long, tensionless

string will vibrate in very low energy modes, i.e. from the target space point of view these

excitations look like massless particles. But since the string vibration contains arbitrarily
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higher spin modes, we will end up with a theory containing massless higher spin fields.

A systematic theory of higher spin gauge fields was first described by Fronsdal [66].

As we are already familiar with ‘lower’ spin theories, massless fields come with a gauge

symmetry: the photon has spin 1 and is associated to a U(1) symmetry, while the graviton

has spin 2 and is associated to spacetime diffeomorphisms. Now a physical system with a

symmetry will always be more constrained than the same system without that symmetry.

Since each one of these new higher spin fields implies an additional symmetry, it follows

that consistent higher spin theories must be very much constrained, so much so that for a

long time it was believed that only free higher spin theories could exist. However, it was

the work of Vasiliev [69] that proved that interacting higher spin theories can exist!

In the context of AdS/CFT, higher spin theories where first realised explicitly by

Klebanov and Polyakov [70]. The idea is that, in the large N limit, a Vasiliev theory

(including all infinite higher spins) in AdS4 is dual to a vector model CFT3. For a review

see [71].

Vasiliev theory in AdS4 ←−−−−−−−−−−−→ O(N) vector model in R1,2 (4.3)

Although very interesting by itself, we will not be concerned with it un this work.

Rather, let’s give a lighting review of the duality which we will be concerned with, that

of AdS3/CFT2. The concrete form of the proposal was put forward by Gaberdiel and

Gopakumar [72]. The idea is that a Vasiliev theory in AdS3 is dual to a special kind of

conformal field theory in 1 + 1 dimensions called ‘coset minimal models’.

HS gravity in AdS3 WN , k minimal model coset CFT2

CS theory for hs[λ] ⊕ hs[λ] ←−−−−−−−→ su(N)k ⊕ su(N)1

su(N)k+1

(4.4)

λ =
N

N + k
,

3L

4G
= cN,k

We will explain all the ingredients of this below. Here we anticipate that the HS theory

in AdS3 will be constructed as a Chern-Simons (CS) theory with Lie algebra hs[λ]. In

Appendix A we review the construction of hs[λ]. For now, we should only keep in mind

that hs[λ] is the generalisation of sl(N,R) from N ∈ Z to continuos value, N ∈ R. On

the other hand, the CFT is constructed by taking two decoupled CFTs and ‘removing’

some of the elements of the algebra (represented by the quotient in (4.4)). The gravity
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side has two parameters: the curvature radius L and a real number λ that parametrises

‘how many’ higher spin fields there are, while the CFT has a level k and the dimension

N of its matrices.

4.2 AdS3 as a Chern-Simons theory

In this section we briefly review the Chern-Simons formulation of pure gravity in AdS3,

highlighting the main properties that will be useful later to construct its higher spin

cousins. As we already commented above, pure gravity in 2+1 dimensions is a topological

theory. There are no gravitational waves, and point particles feel no Newtonian attraction.

Moreover, there exists a plethora of beautiful different solutions to Einstein’s equations,

all differing by their global (or topological) properties. However, it still comes a surprise

to lear that pure gravity in 2 + 1 dimensions can be completely recast (at the classical

level) as another three dimensional topological field theory: Chern-Simons. We start this

section by reviewing this connection.

The bridge between 2+1 gravity in the metric formulation and Chern-Simons theory is

provided by the vielbein (tetrad) formalism. The idea is that, instead of working directly

with the metric components gµν(x), one defines at each event in space-time an object

e a
µ (x) such that

gµν(x) = e a
µ (x)e b

ν (x)ηab (4.5)

The vielbeins tell us exactly what matrix takes locally gµν and turns it into a flat metric.

While the metric is constructed explicitly in terms of a given coordinate system by use of

the tangent vectors, the vielbeins are referred to as a ‘non-coordinate’ basis because they

require no coordinate system to be defined.

In the metric formalism, the (Christoffel) connection plays a key role by ‘correcting’

the partial derivatives with respect to flat space, thus enabling to define a covariant

derivative. In the vielbein formalism, this role is played by the spin connection ω a
µ b(x).

This object is defined exactly as one would expect: if we take a tensor but now written

in its flat components, the spin connection must correct the partial derivative,

∇µV
a
b = ∂µV

a
b + ω a

µ cV
c
b − ω c

µ bV
a
c (4.6)
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This then fixes its relation to the Christoffel connection:

ω a
µ b = e a

ν e
λ
bΓ

ν
µλ − eλb∂µe a

λ (4.7)

The beautiful link between 2+1 gravity and Chern-Simons theory was first discovered

by Achucarro and Townsend [73], and subsequently developed further by Witten [74]. On

the one hand side, we have the Einstein-Hilbert action

IEH =
1

16πG

∫
M3

d3x
√
|g| (R− 2Λ) (4.8)

On the other hand, we have two independent Chern-Simons fields, each one valued in the

algebra sl(2,R), with their associated action

ICS[A] =
k

4π

∫
M3

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
(4.9)

The statement is that up to a boundary term, we have

IEH = ICS[A+]− ICS[A−] (4.10)

provided we make the identification

A± = ω ± 1

L
e , k =

L

4G
(4.11)

or equivalently

ω =
1

2

(
A+ + A−

)
, e =

L

2

(
A+ − A−

)
(4.12)

where the spin connection with two indices is defined via ω a
ν = 1

2
εabcωνbc. Using this

‘dictionary’, the metric elements are obtained by

gµν =
1

2
Tr (eµeν) (4.13)

where again the trace refers to the sl(2,R) algebra (here we will only consider the funda-

mental representation).

What about the equations of motion? On the CS side, since A+ and A− are indepen-

dent, we have two sets of equations. It is easy to see that they are simply:

F± = 0 (4.14)
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where F is the field strength,

F± = dA± + A± ∧ A± (4.15)

So the CS connections are in fact flat! Does that mean that the theory is trivial? Of

course not. Although locally ‘trivial’ in the sense that there are no local excitations (like

gravitational waves), a theory with vanishing field strength is not necessarily trivial due to

its global or topological properties. In fact, this is not related to the non-abelian nature

of the sl(2) algebra, but happens even for the abelian case. This is precisely the case

behind the celebrated Aharanov-Bohm effect. In that context, the field strength - the

electric field - is everywhere zero, but the remotion of a point (or a line) from spacetime

changes the topology of the problem. This is precisely the same that’s happening here,

with the extra ingredient that we’re looking at a non-abelian gauge symmetry, instead of

the abelian U(1) associated to the electric charge.

Although written in very different variables, the equations (4.14) are in fact very

familiar to us. Adding and subtracting them, we have

F+ + F− = 0 (4.16)

F+ − F− = 0 (4.17)

Written in the metric variables, the first equation is simply

Rµν − Λgµν = 0 (4.18)

that is simply Einstein’s equations! The second one gives instead

Γµνρ − Γµρν = 0 (4.19)

This is the condition of having no torsion in spacetime, which is something that we

assumed (implicitly) when solving Einstein’s equations to get AdS3 or BTZ.

We thus see that in the special case of three dimensions, one theory can be written

equivalently in two very different languages. We emphasize here that this statement is true

on-shell: although the e.o.m. are identical, this does not ensure that the quantization of

both theories gives the same result. This is an entire topic by itself, and in this these we

will not come back to it.
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Having provided the dictionary relating the metric and the CS languages, it is natural

to ask how do the particular solutions that we know on the gravity side look like from

the CS perspective. Let us here for convenience use the complex coordinates w± = φ± it
to parametrise the boundary directions. The most general exact solution to pure gravity

in three dimensions is [75]

ds2 = dρ2 + 8πGL
(
L+dw+2 + Ldw−2

) (
L2e2ρ/L + (8πG)2 L+L−e−2ρ/L

)
dw+dw− (4.20)

Although in general L±(w±) can be arbitrary functions of the holomorphic/antiholomorphic

coordinates, in this these we will restrict to the case of constant L±.

Now let’s see how this looks on the CS side. We choose the following basis for both

sl(2,R),

L−1 =

 0 1

0 0

 , L0 =
1

2

 1 0

0 −1

 , L1 =

 0 0

−1 0

 (4.21)

The associated CS connections read

A± =

(
eρL±1 −

2πL±
k

e−ρL∓1

)
dw± ± L0dρ (4.22)

The meaning of this is the following: take the space-time dependent sl(2,R) matrices

(4.22) and plug them into (4.12) to find e. Now take the matrix e and compute the metric

elements using (4.13). This will give you exactly (4.20). One can of course also check

that they are indeed flat connection, i.e. they satisfy the e.o.m. (4.14) F± = 0.

The main message of this section is that in 2 + 1 dimensions, a Chern-Simons theory

for the algebra sl(2,R) is (classically) equivalent to a theory of pure gravity, that is, a

massless spin-2 field, the metric. The remaining part of this chapter is devoted to the

question of

• What physics do we get if we replace sl(2,R) by sl(N,R) or its generalisation, hs[λ]?

• What form does the AdS/CFT correspondence take in this case?

• How does one define black holes in these theories, and what are their thermodynamic

properties?
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4.3 AdS3 higher spin gravity

We saw in last section how pure gravity in AdS3 is related to a CS theory for sl(2).

There exists an algorithmic way of constructing higher spin theories from it, developed by

Campoleoni, Fredenhagen, Pfenninger and Theisen [76]. Instead of sl(2), we take sl(N)

for integer N , or more generally hs[λ], both of which always contain sl(2) as a subalgebra,

thus ensuring that we have the gravitational field as before. This can be consistently done

for any finite N , without the need to include the infinite Vasiliev tower of higher spins.

Now, it turns out that there are different inequivalent ways of embedding sl(2) into sl(N),

but we will not discuss this here. Instead, lets give an example. Suppose we take sl(3),

which has 8 generators: Ln = L±1,0 and Wn = W±2,±1,0. The explicit representation of

the algebra is not relevant here. The Lie brackets are

[Lm, Ln] = (m− n)Lm+n , [Lm,Wn] = (2m− n)Wn+m (4.23)

[Wm,Wn] =
1

3
(n−m)

(
2m2 + 2n2 −mn− 8

)
Lm+n (4.24)

The Ln are the generators of the spin-2 symmetry, while the Wn generate the spin-3

symmetry. Now, just as we are used to with other algebras like the su(2) or the Lorentz

algebra, it is customary to define linear combinations Ja and T ab = J (aJ b) which are

particularly useful. Then, the vielbein and spin connection take the form

e = eaJa + eabT ab , ω = ωaJa + ωabT ab (4.25)

Recall that Ja and T ab are simply some particular 3× 3 matrices. This is simply decom-

posing the 8 generators into 8 = 3⊕ 5 multiplets, similar as in quantum mechanics when

we decompose 1/2⊗ 1/2 = 3⊕ 1.

Just as we did with the metric (4.13), we can now define higher spin fields in a similar

way. For instance, the spin-3 field is defined via

gµνρ ∼ Tr
(
e(µeνeρ)

)
(4.26)

One way of seeing that this corresponds to what we would normally call a higher spin

gauge theory (Fronsdal), is to look at its equations of motion. For any algebra, the e.o.m.

of Chern-Simons theory are simply zero field strengths, but now for both the spin-2 and

spin-3 components independently,

F±a = 0 , F±(ab) = 0 (4.27)
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Again, by adding and subtracting these equations, we get the spin-3 generalisation of the

Einstein equations and the torsion free equations. Consider for instance the former,

F+ + F− = dA+ + A+ ∧ A+ + dA− + A− ∧ A− = 0 (4.28)

In the absence of the spin-3 piece, this would simply be Einstein’s equation in the vacuum,

i.e. the dynamical equations for the spin-2 field. However, because of the extra spin-3

terms in (4.25), we see that when we take the commutators involved in A± ∧ A±, we

will get terms involving the spin-3 fields A±(ab). These enter precisely as sources in the

Einstein equations, so the spin-3 field is interacting with the metric. Moreover, consider

the following spin-3 field configuration,

hµνλ ∼ e ab
(µ ēνaēλ)b (4.29)

where ē are the values of the AdS3 vielbeins. This is a linearised version of the full spin-3

field. Then, we can plug this into the equations of motion for the spin-3 field, namely

F+(ab) + F−(ab) = 0 (4.30)

and what one finds are precisely Fronsdal’s equations, on the fixed background of AdS.

Now what about the boundary? In Chapter 2 we reviewed the Brown-Henneaux

result [52]: the asymptotic symmetry algebra for pure gravity in AdS3 is two copies of

the Virasoro algebra with central charge c = 3L/2G, which was an important precursor

of holography. Indeed Bañados showed that this exercise was very natural in the CS

language [75]. That’s what happens if we take the Chern-Simons theory with gauge

algebra sl(2)⊕sl(2). So what if we take sl(N) or hs[λ]? This question was also answered by

[76] and subsequently extended by others [77,78]. The answer is, in ascending generality,

Asymptotic symmetries

SL(2, R)× SL(2, R) −−−−−−−−−−−−→ Virasoro× Virasoro

SL(N,R)× SL(N,R) −−−−−−−−−−−−→ WN ×WN

hs[λ]× hs[λ] −−−−−−−−−−−−→ W∞[λ]×W∞[λ]
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4.4 CFT2 with higher spin symmetries

In the introduction to this chapter, we mentioned that in 3+1 flat spacetimes dimensions,

we cannot have theories with higher spin fields s ≥ 3. They reason why we will consider

them in this chapter is that these arguments do not hold in 1 + 1 dimensions. This opens

the door for the study of higher spin theories in low dimensions! We are all familiar with

a spin-2 current: the energy-momentum tensor Tµν . However in general it is possible for

a theory to possess conserved currents of spin higher than 2. The simplest examples are

provided, of course, by free bosons and free fermions. We start by reviewing them quickly

to get a grasp on what this means. Later, we turn into the more interesting interacting

CFTs in 1 + 1 dimensions. We loosely follow the exposition of Rajesh Gopakumar given

at [79].

Higher spin current algebras: free bosons and fermions

Consider the well known free boson theory,

IB =

∫
d2z ∂φ ∂̄φ (4.31)

Now construct the following spin−s object:

W(s)
B (z) ∼

s−2∑
j=0

an,j∂
s−j−1φ∂j+1φ (4.32)

This contains in total exactly s derivatives, implying this transforms as a spin s tensor.

The an,j are constants which are irrelevant for our discussion. By the e.o.m., this current

is automatically conserved,

∂̄W(s)
B (z) = 0 (4.33)

and is therefore conserved. Why is this object interesting? Well, given the OPE for

the primary fields, i.e. the rules of how to contract the fields (or more properly their

first derivatives), this will completely fix the OPE between the currents W . That is a

straightforward calculation, and the result is schematically

W(s)
B W

(s′)
B ∼ #Ws+s′−2

B + #Ws+s′−4
B + . . .+ csδss′ (4.34)
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Recall that in CFT we can always translate an OPE into an algebra satisfied by the

Laurent modes. Well, it turns out that the algebra (4.34) has a name, and actually, we

already know it! It is W∞[λ = 1].

What about free fermions? As you would expect, a very similar construction is possi-

ble. In that case, the higher spin current is given by

W(s)
F (z) ∼

s−1∑
j=0

bs,j∂
s−j−1ψ̄∂jψ (4.35)

and again, the OPE of the fields determines the OPE of the currents. Similarly, the

algebra satisfied by (4.35) OPE again has a name, and we also know it, it’s W∞[λ = 0].

So we learnt two important lessons for the apparently harmless free bosons and

fermions:

1. They possess higher spin currents which form known algebras, and they are not the

same algebra.

2. They both involve W∞: this means that the algebra only closes if we include all

s = 2, . . . ,∞. From the perspective of the higher spin theory, this makes these

apparently ‘simple’ theories very complicated.

However from the HS theories in AdS3 we learnt that the current algebra associated

to sl(N) closes including only spins from 2 to N . So in order to find the CFT dual of

AdS HS theories, the key question now becomes: how do we construct interacting CFTs

that have a finite number of conserved higher spin currents? The answer turns out to

be the Coset CFTs! Unfortunately, this is a rather technical subject, but we will try to

make it as down-to-earth as possible. The first step is to review the concept of an affine

(or Kac-Moody) algebra.

Affine Lie algebras

In physis, affine Lie algebras usually appear as the algebra satisfied by conserved currents

of some Lagrangian. In CFT, a current is defined a chiral fields j(z) that has conformal

dimension h = 1, and similarly for the anti chiral sector. Now suppose we have several cur-

rents labelled as J(i)(z), and the expand them in a Laurent series Ji(z) =
∑

n z
−(n+1)J(i)n.
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Then, one can show that after a simple redefinition of the components J(i)n → J in (a

rotation and dilation of the currents), these satisfy the Kac-Moody algebra:

[J im, J
`
n] = f ij`J `m+n + kmδijδm,−n (4.36)

This is an interesting equation. First, one notices that the f ijk are actually the struc-

ture constants of some Lie algebra g. They must be, because if we set m = 0 = n in

(4.36), we recover precisely the Lie algebra bracket. But now we have more: the second

term is called the ‘central extension’ of level k, because the identity is in the center of any

group. It is in this sense that the Kac-Moody algebra (4.36) is a ‘affine’ algebra denoted

gk - it is an extension of the g algebra defined by its structure constants.

A simple example is provided by the free boson (4.31). Consider the set of three

currents given by J(z) = i∂φ and the two vertex operators J±(z) =: e±i
√

2φ :. By

expanding in Laurent modes and doing the redefinitions mentioned above, the modes

satisfy the algebra

[J im, J
j
m] = i

√
2εijkJkm+n +mδijδm,−n (4.37)

The structure constants correspond to the algebra su(2), and the level is k = 1.

Therefore, we lear that the free boson has currents that satisfy a su(2)1 affine algebra.

How do we get a more general su(N)k algebra? A well known option it the Wess-

Zumino-Witten model (WZW). The WZW is a very important example for many reasons.

For one, it is an interacting CFT2 that is exactly solvable. It is also closely related to 3d

Chern-Simons theory, although we will not review that here. Its action is

IWZW = − k

4π

∫
∂M

d2zTr
[(
g−1∂g

) (
g−1∂̄g

)]
− ik

12π

∫
M

d3xTr
[(
g−1∂g

)3
]

(4.38)

For our discussion, the only purpose of exhibiting the WZW action is to show an

explicit example of a theory where a Kac-Moody algebra is realised. The symmetries of

the WZW action satisfy precisely a Kac-Moody algebra. Therefore an action of the type

(4.38) where g ∈ su(N) would be a good example of any of the su(N)k terms appearing

in the coset that we are concerned of.

The Sugawara construction

How to define a stress tensor if we have no metric? The concept of a stress tensor relies

on that of a metric, either by viewing it as the Noether current generating global Poincare
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symmetries or as the functional derivative of the action with respect to the metric. But

in a topological field theory (such as WZW) there is no metric, so how do we define a

stress tensor? This becomes even more relevant in the case of conformal field theories,

since the very term ‘conformal’ refers to the stress tensor satisfying the Virasoro algebra.

Sugawara showed how to do this in a restricted case - if we are given the current

algebra. Suppose that the only thing we know is that the currents satisfy an affine Lie

algebra of the form (4.36). Then, Sugawara showed that the following objects

LSugn ≡ 1

k + hν

∑
a,n

: Jan−mJ
a
m : (4.39)

constitute the Laurent modes of a CFT stress tensor - indeed they satisfy the Virasoro

algebra, with a central charge given by

cSug =
k dim(g)

k + hν
(4.40)

In (4.39) hν is the dual Coxeter number, which depends on the algebra chosen. For the

case of interest of su(N)k we have

cSug [su(N)k] =
k(N2 − 1)

N + k
(4.41)

The coset construction: quotienting an algebra = gauging a field

Now that we have reviewed all the main ingredients, let’s explain how to put them into

the quotient

su(N)k ⊕ su(N)1

su(N)k+1

(4.42)

So we start from a theory that is simply the sum of two actions: e.g. a WZW at level

k and a WZW at level 1, so the Lie algebra is g = su(N)k ⊕ su(N)1. Now comes the

important step - we form a coset: we choose a subalgebra h of g, in this case h = su(N)k+1.

Let us call Ka
n the generators of su(N)k and Jan the generators of su(N)1. Then, it is

easy to see that the generators of su(N)k+1 take the form Ma
n = Ka

n + Jan. Here of course

the K’s and J ’s commute since they are independent algebras. We define the coset

algebra as the set of all generators of the numerator (K’s and J ’s) that commute with

the generators of the denominator (K + J)’s.
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From the physicist point of view, this quotenting actually corresponds to gauging the

field g - we introduce extra terms coupling the original field to a new gauge field A valued

in h = su(N)k+1 with no kinetic term, and then declaring that field configurations related

by gauge transformations are physically equivalent. This is completely analogous to what

we do in Yang-Mills theories by replacing ∂ → ∂+ iA, although a bit more involved since

the action is non linear. To be specific, we add the following term to the action, involving

a gauge field A and Ā interaction between

− k

2π

∫
d2zTr

[
Ā
(
g−1∂g

)
− A

(
∂̄g
)
g−1 + AĀ− g−1AgĀ

]
(4.43)

where we have gauge the currents, i.e. g−1∂g → g−1Dg.

So we started with the sum of two CFTs, but then we quotiented by a particular

subgroup, so is the resulting theory also a CFT? The answer if of course Yes! Why? Well,

the symmetry algebra (4.42) contains many generators, and it is a simple exercise to show

that the particular combination

Ln ≡ LSugn (K) + LSugn (J)− LSug(K + J) (4.44)

satisfies precisely the Virasoro algebra, with central charge

cN,k = cN,k + cN,1 − cN,k+1 = (N − 1)

[
1− N(N + 1)

(N + k)(N + k + 1)

]
(4.45)

Finally we come to the main point of this whole construction. The quotenting process

not only produces a Virasoro algebra, but in fact realises exactly what we were looking

for: the coset theory contains higher spin currents, exactly up to spin N ! As an example,

the spin-3 generator is schematically of the form

W(3) ∼ J3 + J2K + JK2 +K3 (4.46)

with relative coefficients fixed by the condition that [W(3), J+K] = 0 (due to the definition

of the coset). So the result is exactly what we were looking for: the coset models with

contain exactly one higher spin current W(s)(z) per spin, and only for s = 2, . . . , N . The

current algebra closes within a finite number of spins!

The coset CFTs

su(N)k ⊕ su(N)1

su(N)k+1

contain higher spin currents for s = 2, 3, . . . , N
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One take-home lesson of this section is that, although it’s very easy to find theories

with infinitely many higher spin currents (in the sense that the algebra closes), it is

actually quite hard to construct theories with a finite number of higher spins! This might

be one reason why this area is often perceived as rather cryptic.

Finally we have all the ingredients to write down the Gaberdiel-Gopakumar conjecture

in a concrete way.

HS gravity in AdS3 WN , k minimal model coset CFT2

CS theory for hs[λ] ⊕ hs[λ] ←−−−−−−−→ su(N)k ⊕ su(N)1

su(N)k+1

λ =
N

N + k
,

3L

4G
= cN,k

Although this is the conjecture in full generality, in the next chapter we will restrict

to the case of λ = 4, and thus work with SL(4, R) × SL(4, R), whose dual possesses a

W4 ×W4 asymptotic symmetry algebra.

4.5 The phases of higher spin black holes

4.5.1 What is a higher spin black hole?

In Lorentzian signature, the most natural notion of a black hole comes from the study of

spacetime horizons and causality in a manifold. The black hole region is defined as the

set of events in spacetime from which signals will never reach a far away causal observer.

Nonetheless, Hawking showed that the thermodynamic properties of black holes have a

very natural interpretation from the euclidean path integral representation of gravity.

This becomes even more transparent in the case of 2 + 1 gravity, due to its topological

nature.

There exists by now many derivations of Hawking’s celebrated formula for the black

hole temperature,

T =
~κ
2π

(4.47)

where κ is the surface gravity.

Since the CS theory is topological, there are no physically meaningful local quantities.

If there were, we could always gauge them away. For instance, suppose we gave an
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interesting profile for the gauge field A in some sufficiently small region in spacetime.

Then, by simply performing a gauge transformation, we could always map this field to a

non-interesting field since F = 0. The point is that, although possible locally, this cannot

be done globally. Therefore, the only ‘interesting’ observables must be non-local, and the

most obvious non-local object in gauge theory is a Wilson loop, which is by construction

gauge invariant

HolΓ = P exp

∮
Γ

A (4.48)

where Γ is some closed loop in the manifold. If Γ encloses a simply connected manifold and

A is smooth in it, then the holonomy must be trivial, i.e. the resulting matrix must belong

to the centre of the group. Now, the gauge group of the CS theory is SL(2, R)×SL(2, R),

rather than the isometry group of AdS3 which is SL(2, R) × SL(2, R)/Z2. Both 1 and

−1 are in the center of the former, but not in the latter. In fact, the correct value of

the holonomy around the temporal cycle is −1, the minus sign coming from the spin

structure of the CS theory, corresponding to the minus sign a fermionic particle picks

around the cycle. We will use this property below. If instead, we take the gauge field

along a non-contractible cycle, the holonomy will give some other value that is not in the

centre and will not be very relevant in our discussion.

The topology of BTZ is that of a solid torus, since both euclidean time and the angular

variable are periodic, whereas the radius coordinate is non compact. Thus, we have two

interesting cycles in which to compute the Wilson loop, the angular and the temporal.

Moreover, the L± that give the BTZ metric are given by

L+ + L− =
ML

8πG
, L+ − L− =

J

8πG
(4.49)

So let’s study the holonomies of the BTZ solution (4.22) together with (4.49). Well,

it turns out that by performing a gauge transformation

A± = b∓1a±(w±)b±1 + b∓1db± (4.50)

where b = eρL0 and a±(w±) are holomorphic and antiholomorphic fields, we can actually

gauge away the radial dependence of the connections A± and work with the simplified

connections,

a± =

(
L±1 −

2πL±
k

L∓1

)
dw± (4.51)
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As we mentioned earlier, the BTZ modes L± in (4.49) are simply constants, so eval-

uating the integrals is trivial. However we must remember here that in the euclidean

formulation, the euclidean time variable does not range in a ‘definite’ interval, but rather

t ∈ [0, iβ) where β is the inverse temperature. The holonomy around the temporal cycle,

evaluated on a constant φ gives (using the matrices (4.21) explicitly):

Holt(a
+) = exp

∮
dt

(
L1 −

2πL+

k
L−1

)
(4.52)

= exp β

(
L1 −

(2π)2L+

k
L−1

)
(4.53)

= exp β

 0 −2πL
k

−1 0

 (4.54)

and a similar expression for a−. To evaluate the exponential, we first diagonalising the

matrix to get

Holt
(
a+
)

= exp
(
PDP−1

)
= P exp(D)P−1 (4.55)

Next, we wish to impose that the diagonal matrix is −1 as explained above, which will

imply Holt = −1. The eigenvalues are simply λ± = ±iβ
√

2πL/k which we then impose

to be ±iπ. Finally we insert back L+ from (4.49). Following the same procedure for a−,

we get left and right temperatures,

β± =
L

r+ ± ir−
(4.56)

The Hawking temperature is determined in terms of these as β = πL (β+ + β−), that is

T =
2πL2r+

r2
+ − r2

−
(4.57)

which is precisely the BTZ temperature (2.43) as described in the Introduction. Thus we

see that in the CS formulation, the themodynamics of the black hole can be defined

4.5.2 Canonical partition function and stability

Soon after black hole entropy [80, 81] and radiation [82] were discovered, Gibbons and

Hawking [83] showed that these properties can be derived directly from the Euclidean

gravitational action. Black holes are now understood as part of a thermodynamical system
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with an associated semi-classical partition function

Z(β) =
∑
M

e−βM+S(M) . (4.58)

For Schwarzschild black holes the entropy takes the famous value S = Area/(4G) =

4πGM2 1.

This partition function can be extended to more general black holes in various di-

mensions. Of particular interest in recent years has been a relatively new family of

configurations, namely, three-dimensional black holes carrying higher spin charges [84].

In this thesis we study the thermodynamics of higher spin theories by emphasizing

the role of the partition function (4.58). We uncover a rich structure with several in-

teresting features: i) the existence of Hawking-Page transitions from black holes to the

AdS3 background; ii) discontinuous phase transitions among black hole states with dif-

ferent macroscopic properties (van der Waals-like); and iii) a second order transition and

a critical point. For related work see [85–88].

We start by reviewing some applications of (4.58). The partition function is dominated

by the configuration that minimizes the action

Γβ(M) = βM − S(M) . (4.59)

In a more general setup, Γ will depend on additional charges and chemical potentials. This

function, related to the mean field free energy, encodes the thermodynamic structure

of the gravitational system and will be our main tool to analyze its phases. Consider

Schwarzschild black holes, for example. A quick look shows that Γβ(M) does not have

a minimum at all; the value M = β/(8πG) is a maximum, revealing the well-known

instability of this system in the canonical ensemble.

The instability of Schwarzschild black holes can be cured either by putting the system

in a box [89] or by adding a negative cosmological constant [15], the latter case leading to

the celebrated Hawking-Page transition. It is instructive to understand this phenomenon

from the point of view of the action (4.59).

In Figure 4.1 (left) we plot Γβ(M) for 3+1 Schwarzschild-AdS black holes for different

1We work in natural units ~ = c = kB = 1.
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values of β 2. At high temperatures (burgundy curve, small β), there is a clear minimum

satisfying

β =
∂S(M)

∂M
. (4.60)

As the temperature drops, however, the solution to this equation ceases to be the global

minimum of Γβ(M). For β > βc, the AdS4 background with M = 0 is the preferred state.

This transition from the black hole dominated phase to the vacuum is called Hawking-

Page transition. Notice that the minimum of Γβ(M) is continuous at β = βc but its

derivative is not.

Figure 4.1: Hawking-Page transition in 3 + 1 Schwarzschild-AdS black holes (left) and

2 + 1 BTZ black holes (right). The red dots represent the AdS4 (M = 0) and AdS3

(M = −1/(8G)) ground states, respectively. The dashed curve has no local minima but

plays no role in the analysis. Figure from [34].

The analysis for three-dimensional BTZ black holes is similar, except that the AdS

vacuum is now a bound state separated from the black hole continuum by a mass gap.

In Figure 4.1 (right) we plot Γβ(M) = β(M −MAdS) − S(M) for three values of β 3.

For convenience we have shifted the action such that Γβ(MAdS) = 0. We see that a local

2The entropy of 3 + 1 Schwarzschild-AdS black holes is S(M) = πr2+(M)/G, where r+(M) is the

unique real solution to the equation 1− 2GM/r+ + r2+/`
2 = 0. In particular, S(0) = 0; the AdS4 vacuum

has no entropy. The critical temperature is βc = π`.
3The entropy of 2+1 BTZ black holes is S(M) = `π

√
2M/G. In this normalization the AdS3 vacuum

corresponds to M = −1/(8G). Of course, it carries no entropy. The critical temperature is βc = 2π`.
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minimum satisfying (4.60) exists for all temperatures but only for β < βc does this state

have less action than AdS3 space.

4.5.3 The higher spin grand canonical ensemble

We now move on to study the phase structure of three-dimensional higher spin gravity.

This theory is topological in nature and does not have a known description in terms of

metric fields (gµν , gµνρ, etc.). Instead, it must be formulated as a Chern-Simons theory

where the basic variables are sl(N ;R) (N × N , real, traceless) matrices Aµ. In a radial

gauge, and restricting to static and circularly symmetric configurations, one is left with

two such matrices, At and Aϕ, satisfying

[At, Aϕ] = 0 . (4.61)

This is the remnant of the Chern-Simons equations of motion. We refer the reader to the

extensive literature on this subject for more details.

The gauge invariant information carried by the fields is characterized by the N − 1

charges

Qn =
1

n
Tr
(
Anϕ
)
, n = 2 , . . . , N . (4.62)

The possible values these charges can take depend on the spatial topology of spacetime.

We shall consider two classes of solutions. First, there is the AdS3 vacuum, for which the

spatial topology is a plane and the cycle ϕ ∼ ϕ + 2π is contractible. As a consequence,

the eigenvalues of Aϕ are imaginary and quantized, so as to render a smooth field 4:

Eigen
(
AAdSϕ

)
=
i

2
(N − 1, N − 3, . . . , 1−N) . (4.63)

The corresponding charges can be computed from (4.62). Notice that QAdS
n = 0 for odd

n. For N = 4, which will be our main example, we find

QAdS
2 = −5

2
, QAdS

3 = 0 , QAdS
4 =

41

16
. (4.64)

The time direction is non-compact so the matrix AAdSt is only restricted by (4.61) and not

by regularity. This is important. The residual freedom in AAdSt is just what is needed in

4The holonomy is Pe
∮
AAdS

ϕ = (−1)N−11N×N .
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order to match the chemical potentials of AdS3 to those of black holes (just like thermal

AdS and Schwarzchild-AdS can both be put at the same temperature).

The second class of solutions we are interested in are black holes. The spatial topology

in this sector is a semi-infinite cylinder, with the boundary at r = 0 corresponding to the

horizon. This space is homeomorphic to the punctured disk. Since the cycle ϕ ∼ ϕ+ 2π

is not contractible, Aϕ (and therefore Qn) is left unrestricted. We take the eigenvalues of

Aϕ to be real for black hole configurations, in consistency with the definition given in [90]

in a supersymmetric context. For N = 4 we parametrize the eigenvalues as

Eigen (Aϕ) =
1

2
(2λ1 + λ2, 2λ1 − λ2,

−2λ1 + λ3,−2λ1 − λ3) . (4.65)

It follows that the black hole charges read

Q2 = 2λ2
1 +

1

4
λ2

2 +
1

4
λ2

3 ,

Q3 =
1

2
λ1 (λ2 − λ3) (λ2 + λ3) ,

Q4 = λ4
1 +

1

32

(
λ4

2 + λ4
3

)
+

3

4
λ2

1

(
λ2

2 + λ2
3

)
. (4.66)

In this sector, the matrix At is constrained by regularity to be 5

Eigen (At) =
1

2
(N − 1, N − 3, . . . , 1−N) . (4.67)

This is because the time cycle t ∼ t+2π is contractible in the black hole topology. Finally,

black holes have an entropy given by [91–94]

S(Q) = Tr (AtAϕ) . (4.68)

For N = 4 this yields

S(λ) =
1

2
(8λ1 + λ2 + λ3) . (4.69)

We are now ready to display the grand canonical partition function 6 we aim to

calculate:

Z(µ2, µ3, ...µn) = 1 +
∑
{blackholes}

e−kΓµ(Q) , (4.70)

5The absence of the factor of i in (4.67) is due to the Euclidean continuation. It reappears in the

holonomy Pei
∮
At = (−1)N−11N×N .

6Higher spin gravity is actually described by two independent copies of the sl(N) Chern-Simons action.

Since the total partition function factorizes, we focus on one sector only.
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where the action is

Γµ(Q) =
N∑
n=2

µn
(
Qn −QAdS

n

)
− S(Q) . (4.71)

The first term ‘1’ in (4.70) corresponds to the AdS3 bound state, whose contribution has

been subtracted in (4.71) so that Γµ(QAdS) = 0. The AdS charges have fixed values (for

N = 4, see (4.64)). The sum is then taken over the spectrum of black holes, that is, over

all charges consistent with real eigenvalues of Aϕ. Also, for convenience we have factored

out the coupling constant “k” (Chern-Simons level). This parameter is related to the

central charge by

k =
2πc

N(N2 − 1)
, c =

3`

2G
,

and is a measure of the number of degrees of freedom in the system. The steepest descent

approximation is justified in the limit k ∼ c → ∞. The real parameters µn are chemical

potentials conjugate to Qn. See [91] for details on this. The case of pure gravity is

recovered for N = 2 after identifying µ2 = β/(2πl) and Q2 = 2GM .

We emphasize that the study of the partition function (4.70) represents a well-posed

problem on its own right, independent from its relation to Chern-Simons theories and

higher spin black holes. In fact, this problem has striking similarities with the mean field

description of some condensed matter systems such as liquid crystals [95–97].

Notice that, for any N , the charges Q2n are always semi-positive while Q2n+1 have no

definite sign. This explains why even N can yield a stable partition function but odd N

cannot. Indeed, the action (4.71) is a polynomial of degree N in the eigenvalues of Aϕ.

Since the leading terms enter as Γµ(λ) = µNQN(λ) + · · · , the conditions N ∈ 2N and

µN > 0 guarantee that Γµ(λ) is bounded from below. The sum (4.70) then converges.

It turns out that N = 4 is the simplest, non-trivial, stable theory; N = 2 exhibits a

Hawking-Page transition but no transitions between black hole states, and N = 3 is

unstable. From now on we concentrate on N = 4.

In principle, the computation of (4.70) involves a sum over the charges Qn. This is

inconvenient because the entropy (6.39) has a very simple form in terms of the eigenvalues

but not as a function of the charges themselves. Expressing S as a function of Qn would

involve inverting (4.66). Happily, this is not necessary. We shall now argue that the sum

over charges can be traded for a sum over eigenvalues, up to logarithmic corrections that

we discard in large k limit.
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From (4.66) we find that the Jacobian for the change of variables Qn → λi is

∣∣∣∣∂Q∂λ
∣∣∣∣ =

1

32
λ2λ3 (4λ1 + λ2 + λ3) (4λ1 − λ2 + λ3)

× (4λ1 + λ2 − λ3) (4λ1 − λ2 − λ3) . (4.72)

We see that
∣∣∂Q
∂λ

∣∣ = 0 happens precisely when two or more eigenvalues of Aϕ coincide. In

that case, Aϕ is non-diagonalizable and the solution becomes extremal [90]. Of course,

we restrict our attention to solutions bounded by extremal black holes; the points where

the map Qn → λi is not invertible are never touched. For orientation, recall that in the

spectrum of 2+1 black holes, the angular momentum J is bounded by −M < J < M , with

J = ±M corresponding to extremal solutions. The map Qn → λi fails to be invertible at

the extreme points J = ±M . Going back to the general case, the domain of λi should lie

within any of the “wedges” defined by the planes
∣∣∂Q
∂λ

∣∣ = 0. Different wedges correspond

to different branches of the inverse map Q → λ(Q) and have different entropy functions

S(Q). We will work in the wedge that includes the BTZ black hole (λ1 = λ2 = λ3 > 0),

for which all the factors in (4.72) are positive.

So, given a set of values for the chemical potentials µ2, µ3 and µ4, we want to compute

the values of λ1, λ2 and λ3 that minimize the action Γµ(λ). This configuration will

dominate the partition function (4.70). In particular, we would like to study the continuity

of the λi obtained in this way as one varies µ2, µ3 and µ4.

First, we have checked explicitly, within a wide range of chemical potentials, that the

minimum of Γµ(λ) is never achieved by extremal black holes. The minimum either occurs

for the AdS3 groundstate, with Γµ(QAdS) = 0, or it lies in the interior of the BTZ wedge

7. We do not need to worry about extremal solutions.

4.5.4 The higher spin Hawking-Page transition

Next, we separate the region in the space of chemical potentials where black hole states

dominate from the region where the AdS ground state is preferred. The interface between

7We have also checked that if one does not restrict the eigenvalues to any particular wedge, the global

minimum of Γµ(λ) in the black hole sector is always found in the BTZ wedge and not in any other.
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these two regions is defined by the equation

min
{blackholes}

Γµ(Q) = Γµ
(
QAdS

)
, (4.73)

and its graphical representation is shown in Figure 4.2.

Figure 4.2: Hawking-Page surface for the sl(4;R) theory. The minimum is located at

µ2 = 1, µ3 = 0, µ4 = 0. This coincides with the critical temperature of 2 + 1 BTZ black

holes after identifying µ2 = β/(2π`). Figure from [34].

The interior of the surface corresponds to the AdS dominated phase. Outside black

holes dominate. Crossing this surface in any direction gives a first order Hawking-Page

transition.

4.5.5 Transitions amongst black holes, critical point

Let us now concentrate on the region of black hole dominance and look for the global

minimum satisfying

∂Γµ(λ)

∂λi
= 0 . (4.74)

(Recall that Γµ(λ) is built from (4.71) after using (4.66) to write the charges in terms of

the eigenvalues, together with the expressions (6.39) for the entropy and (4.64) for the

background charges). These equations can be simplified by setting µ2 = 5µ and rescaling

µ3 → µ3µ
2, µ4 → µ4µ

3 and λi → λi/µ. The µ dependence then drops out from (4.74),

reducing the black hole thermodynamics to a two dimensional phase diagram.
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8

Figure 4.3: Phase diagram of the N = 4 system, with the second order critical point in

red and the first order critical line in black. The complete diagram is symmetric with

respect to the vertical axis. µ = µ2/5. Figure from [34].

Figure 4.3 shows the phase diagram for the charge Q2. Similar results are obtained for

the other two charges. One observes that from the origin stems a critical line across which

the system exhibits a first order phase transition between two macroscopically different

black hole states. The line ends at a critical point (in red). We now show that at the

critical point a second order phase transition takes place in which the minima of Γµ(λ)

become degenerate.

For systems with a single order parameter a critical point occurs when the first, second

and third derivatives of the free energy vanish. The simplest generalization to the case with

multiple order parameters is to demand that the Hessian matrix has one null eigenvalue,

with the rest being strictly positive. Calling vi the corresponding normalized eigenvector,

we further require that the third derivative of Γµ(λ) along vi vanishes. Thus, in addition

to (4.74), the critical point must satisfy

vj
∂2Γµ(λ)

∂λi∂λj
= 0 , vivjvk

∂3Γµ(λ)

∂λi∂λj∂λk
= 0 . (4.75)

To ensure that we still have a minimum, the fourth derivative along vi should be positive.

Following this approach we find that the N = 4 higher spin theory exhibits two mirror
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critical points, the first of which is located at

µ2 = 5µ , λ1 =
0.3299

µ
, v1 = −0.2061 ,

µ3 = 8.7184µ2 , λ2 =
0.0854

µ
, v2 = 0.0349 ,

µ4 = 2.9299µ3 , λ3 =
1.0259

µ
, v3 = −0.9779 , (4.76)

and corresponds to the one displayed in Figure 4.3. The second point (not shown in

Figure 4.3) is obtained by exchanging λ2 ↔ λ3 (Q3 → −Q3) and µ3 → −µ3, which is a

symmetry of the action (4.71). The values of the charges and the entropy at the critical

points can be computed directly from (4.66) and (6.39). One can check that in the range

1.0886 < µ < 6.3591 the second order phase transition takes place inside the Hawking-

Page surface and is therefore not relevant. The endpoints of this interval correspond to

the intersection of the critical point with the Hawking-Page surface.

The phase diagram “µ3-µ4” is qualitatively similar to a “P-T” diagram for a liquid-gas

transition. Therefore, a Van der Waals-like equation of state is expected to describe the

different phases. Figures 4.4 and 4.5 are the analog of plotting ‘isotherms’ in a “P-V”

diagram for a liquid-gas system. A drastic change in the derivatives ∂µ/∂Q is observed

when crossing the critical line. Thus, we could identify the different regions as a ‘liquid’

phase, in which the black holes are highly sensitive to any change in the charges, and a

‘gaseous’ phase, characterized by considerably smaller values of ∂µ/∂Q.

It is important to notice that the phase transitions always occur between black hole

states with Q4 6= 0, as seen explicitly in the “µ4-Q4” diagram (figure 4.5). This fact

guarantees that the solutions between which the system is transitioning have the same

asymptotic (UV, far from the horizon) structure 8; it is the spin of the highest spin charge

that sets the value of the AdS radius and the central charge. As argued in [88], the

corresponding asymptotic symmetry algebra for N = 4 is a W-algebra associated to the

(2, 1, 1) non-principal embedding of sl(2) in sl(4).

4.5.6 Conclusions and future directions

In this thesis we have studied the thermodynamic phase space properties of sl(N ;R)

higher spin black holes. We have identified the even-N theories as those having well-

8We thank one of the referees for pointing out this issue.
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|Q3|µ3

µ3

µ2

Figure 4.4: µ3 - Q3 diagram with iso - µ4 curves. Figure from [34].

defined (finite and stable) partition functions in the ensemble under consideration. These

theories exhibit Hawking-Page transitions, just like any black hole coupled to a negative

cosmological constant. Moreover, we find first order phase transitions between different

higher spin black holes, as well as a second order transition and a critical point.

Our work left many interesting future directions to pursue. On the gravity side, an

obvious question is to generalise our method to consider sl(N,R), and, more interestingly,

to hs[λ]. In principle, we see no fundamental impediment to achieve this goal.

On the other hand, our thesis was mainly concerned with the gravity side of the

duality. So a very intriguing direction would be to understand how to extract the same

phase diagram, but working directly with the higher spin CFT. Where exactly the CFT

partition function do we find the information of the relevant saddles that we see in gravity?

Even for the N = 4 case at hand, there remain some interesting lines to explore.

For instance, we only discussed the grand canonical ensemble, in which we fix all the

potentials. But how does the phase diagram change if we change the ensemble? This is

in general a non-trivial question which can have interesting physics behind. For example,

it is well known that black holes carrying electric charge (i.e. spin-1 charge) behave very

differently if we fix the electric potential, or the electric charge [98]. In the latter case,

this includes a second order phase transition but with anomalous critical exponents.
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Figure 4.5: µ4 - Q4 diagram with iso - µ3 curves. Figure from [34].

Another point worth mentioning for the N = 4 case is very existence of a second

order phase transition. This of course implies that the system possesses an emergent

conformal symmetry at that point. Understanding the meaning of this extra Virasoro

symmetry (which is of course not originated in the Virasoro defining the CFT) would be

very interesting.
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Chapter 5

Complexity from Tensor Networks in

holography

The Ryu-Takayanagi formula reviewed in Chapter 3 has opened an entire new subarea

in high energy physics. By providing a link between the geometry of the bulk spacetime

and the entanglement structure of the boundary theory, it suggested that there could

be entire field of physics underlying its mechanics: (quantum) information theory.

Although entanglement entropy has received by far most of the attention, in recent years

some other concepts have also been the subject of intense study.

One such quantity is computational complexity. The original motivation by Susskind

[29] was the following. In a generic quantum theory, in the process of time evolution the

system will eventually thermalise, and quantities such as the entanglement entropy of any

subregion will stop growing and saturate. However, it was known due to the results of

Nielsen [99,100] that even in that regime, the wavefunction continues to move non-trivially

in the Hilbert space for a much longer time, implying that the computational complexity

keeps growing. Does AdS/CFT capture this phenomenon? And if so, how? This will be

the topic of this chapter.
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5.1 Computational Complexity and its holographic

proposals

In order to understand the notion of complexity in holography, we first need to review

what it means in quantum mechanics. This requires to introduce some notions from

information theory.

First let’s review what the idea of a circuit is. Actually, this is a very old concept

that comes from computer science. The main difference between classical and quantum

circuits is the class of gates that we are allowed to use. A circuit consists of a set of initial

data (let’s say classical bits or qubits), each of one is transmitted via a wire, and a set of

gates that can act on those channels. By taking the initial data as an input, we act on it

by a given sequence of gates and this will produce some final output. In Fig. 5.1 we see

a simple example.

Figure 5.1: A simple 3-qubit circuit. First the Hadamard gate is applied, followed by a

par of cNOT.

Here we read the circuit from left to right. We see two very frequently used gates: H

and cNOT. The Hamard gate H acts on a single qubit, and in the basis |0〉, |1〉 it takes

the form

H =
1√
2

 1 1

1 −1

 (5.1)

The usefulness is of course that, given a basis state, it produces superpositions of states

with equal probability. In the circuit, after H is applied, we see two successive applications

of the controlled-NOT (cNOT) gate. By itself, the NOT gate is a single-qubit gate that

corresponds to the ⊕ symbol and is simply equal to the Pauli matrix X,

X =

 0 1

1 0

 (5.2)
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The reason for the name NOT is that X is the quantum analog of the classical NOT gate:

it the input is |0〉 it gives |1〉 and viceversa - so it returns the ‘opposite’ of the input. Now,

the controlled-NOT in the figure is the prototype for multi-qubit gates. In this case, it is

a 2-qubit gate that has one control qubit (the upper one) and a target qubit (the bottom

one). The function of the gate is the following: if the if the control qubit takes the value

0, then the target qubit is flipped. Otherwise it is untouched. In matrix language, we can

represent it like this: choose the 2-qubit basis in this order: {|00〉, |01〉, |10〉, |11〉}, where

the first qubit corresponds to the control and the second to the target. Then, the cNOT

gate looks like this

cNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (5.3)

This is a very simple example to grasp the key ideas of quantum circuits. Of course,

this an entire field in computer science and quantum information theory which is indeed

extremely interesting. Now, one important concept is that of a universal set of gates.

In both classical and quantum computing, this is roughly defined as a set of gates such

that any possible operation on the computer can be achieved by a finite sequence of gates

within that set. Of course, strictly speaking this is impossible since the set of gates in

uncountable, whereas the number of finite sequences of a finite set of gates is countable.

Thus, technically one always asks wether it is possible to approximate any given state to

a finite tolerance. There are many interesting results about universality. For example, an

important theorem by Kitaev one states that the set {Hadamard, cNOT, phase, π/8} is

universal [101]. We shall encounter again the question of the set of gates when we discuss

Tensor Networks and our results on compression complexity.

Having introduced the general idea of quantum circuits, we are in better shape to

define the notion of computational complexity. In rough term, complexity captures

how ‘difficult’ it is to perform a given task. Now, in information theory there are many

different notions of complexity. In this section, we are interested in the following definition.

Suppose we are given a set of n qubits, an initial reference state |ψi〉, a final state |ψf〉 and

a finite universal set of gates {gj}. The gj are unitaries are some collection of matrices in
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SU(2n) (the space of all possible allowed operations). Then, complexity is defined as the

minimal number of applied gates needed within the set that will produce the final state

starting from the initial reference:

|ψf〉 = U |ψi〉 (5.4)

where U = . . . g2g1. Since we assume the gate set is universal, the existence of at least

one circuit that implements U is guaranteed. However, this circuit might be very far from

optimal for it could include various redundancies, etc. The question is to find what is the

minimum number of operations we need, using the allowed gates, to produce the unitary

U .

Some clarifications are in order. This form of complexity contains a large degree of

arbitrariness. First, it clearly depends on the reference state in a way that is hard to

quantify. Moreover, it depends on the choice of gates: given a particular set, if we add

gates to it, the complexity cannot increase, since there are now new operations allowed

that weren’t available before. In particular, if we allowed for the set of all arbitrary-qubit

gates, the complexity of any state would be equal to one, since one could always find

a gate complicated enough that did the job in a single shot. Of course that would be

meaningless from both the theoretical and practical point of view. In reality, computers

work on the basis of a few ‘simple’ gates (which can be made more precise). The art of

this science is to construct circuits that achieve what we want, using only this restricted

set of gates.

There exist relatively few known results on complexity. It is a young field that is just in

its infancy. How is it then, that a concept coming from information science made its way

to AdS/CFT? Here the work of Nielsen [100,102] was fundamental. He asked the question:

“What is the minimal size quantum circuit required to exactly implement a specified n-

qubit unitary operation, U, without the use of ancilla qubits?” [100]. He showed that a

lower bound is given by the minimal geodesic length between U and the identity, where

the metric is computed via a Finsler metric on SU(2n). Thus, he provided the means of

geometrizing complexity, which opened the way for the application of differential geometry

technology to tackle a question about quantum information.

In particular, they considered the question of the evolution of complexity along time.

Given a Hamiltonian in quantum mechanics, and given an arbitrary initial state |ψ(0)〉,
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then what is the complexity (as defined above) of the wavefunction |ψ(t)〉 = e−iHt|ψ(0)〉?
Under some assumptions, they were able to prove using the geometrical approach that

a lower bound for the complexity scales linearly with time. Now comes the holographic

story. Since the discovery of the Holographic entanglement entropy formula, there was

a very strong focus on studying the time evolution of entanglement. However, Susskind

proposed that ‘Entanglement is not enough’ [29]. Why? Susskind argued [29, 103, 104]

that since this should hold for general quantum systems (such as CFTs) and moreover it

remains to be valid even long after a system thermalises. So, if we start with a holographic

system out of equilibrium (say some black hole which we perturb in some way), it will

take some time to reach the thermal limit, and complexity will be increasing along that

process. However, once it already reached equilibrium, the entanglement entropies in

the bulk stabilise and stop growing. Therefore he proposed that there must be another

observable in the bulk that captures the complexity of the boundary state.

The proposals are simpler to formulate for thermofield doubled states (TFD) in the

CFT, which are dual to maximally extended AdS black hole solutions [28]. Consider a

thermal state density matrix

ρ =
1

Z

∑
i

e−βEi |Ei〉 (5.5)

This is a mixed state. A purification of the state corresponds to a pure state in an

extended Hilbert space, such that, when the extension is traced out, we recover the state

(5.5). The TFD is a particularly useful purification, in which the extra Hilbert space is

simply the copy of the first one. Calling the eigenstates in the copy space |E ′〉, we choose

the particular pure state

|TFD〉 ≡ 1√
Z

∑
i

e−βEi/2|Ei〉|E ′i〉 (5.6)

The AdS/CFT interpretation of this state is depicted in Fig.??. There are two asymptotic,

disconnected, conformally flat boundaries (left and right). Although there’s no interaction

amongst them, the quantum state is entangled, as can be seen explicitly in (5.6).

The first proposal is the so called ‘complexity=volume’. Susskind argued [29] that

the complexity of |TFD(t)〉 should equal the spacetime volume of a codimension-1 slice

on the bulk, whose asymptotic time coincides with the boundary time. More precisely,

start by fixing the time t in the right boundary, and time −t in the left boundary(recall
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Figure 5.2: The TFD state (5.5) on the two disconnected (but entangled) CFT boundaries

is dual to the maximally extended AdS black hole bulk solution.

they evolve in opposite directions on both sides). Now define a Cauchy slice such that it’s

‘anchored’ at those times at the boundary. Now, one can vary the slice at will, keeping

the condition that it stays spacelike. This defines a min-max problem, when we compute

the induced volume of the slice. The conjecture states that the volume of the maximal

volume slice is dual to the complexity of the boundary state, see Fig.??

Figure 5.3: Susskind’s complexity=volume proposal: one looks for the bulk slice that has

maximum (Lorentzian) volume.

These are the conjectures for the bulk. What about the boundary? Is it possible to

match these results to some actual CFT calculation of the complexity of the time evolved

state? This question has been addressed by several groups in recent years. The main

progress has been done for the special case of gaussian states in QFTs [105]. Probably

the best understood example is the case of the free massive boson. The essential physics
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of this problem is captured by that of two coupled harmonic oscillators. This system has

a ground state, which has non-trivial entanglement between the two oscillators. Now, as a

reference state, it is natural to take an unentangled state. Next one must specify what is

the set of unitary quantum gates that are allowed. This choice is of course arbitrary (as the

reference state), but a natural choice made in [105] was to choose simple operations with

the position and momentum operators, for example U = exp (iεxipj) which corresponds to

‘shifting xj by εxi’, thus introducing entanglement between the two oscillators. In this way

they were able to compute, by using Nielsen’s geometric approach described above, the

computational complexity of the target state. Other relevant developments have applying

the Fubini-Study metric as a measure of complexity [106], and understanding the UV

divergent structure of complexity [107].

5.2 Tensor networks for holography

The recent developments in Tensor Networks have gained much attention in the holog-

raphy community, due to their close connection to quantum information and numerical

quantum lattice models. In this section, after briefly reviewing the basics, we discuss the

two tensor networks we use in our work: the Multi-Entanglement-Renormalization-Ansatz

(MERA) [108] and the Random Tensor Networks (RTN) [36].

Tensor networks were developed originally as algebraic variational tools (ansatz) to

numerically find the ground states of local Hamiltonians. In sharp contrast to classical

computing, quantum computing is far more complex: given a set of n classical bits, it

requires n bits to completely specify the state of the system, because a classical string of

data can only be in one state at a time. On the other hand, a system of n qubits requires

a much larger 2n classical bits to specify the state, namely all the values of the coefficients

Ci1...in

|ψ〉 =
∑
{i}

Ci1...iN |i1 . . . in〉 (5.7)

because the wavefunction can in general be an arbitrary linear superposition of the tensor

product basis. If the problem at hand is to diagonalise a Hamiltonian of a lattice of say

100 sites, the complexity of this problem is already out of reach of any present or near

future classical computer. The great insight that led to tensor networks is that, although
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the size of the Hilbert space grows exponentially with the number of degrees of freedom,

if we are interested only in the ground state and small perturbations around it, it might

be possible to ‘restrict’ the numerical search into a much smaller region of the Hilbert

space. Therefore, the strategy is to make an educated ansatz of how the ground state

should look like, and then run a numerical algorithm to find the minimal energy state.

The first tensor network developed in this way is called Matrix-Product-State (MPS).

This ansatz is particularly useful for finding ground states of 1 + 1 dimensional quantum

spin models (a typical example is the 1d quantum Ising model). The MPS ansatz for n

qubits reads

|Ψ〉 =
∑
i1,...,in

Tr (Ai1 . . . Ain) |i1 . . . in〉 (5.8)

where Aij are complex square matrices, all of local dimension χ.

Tensor networks are very frequently represented diagrammatically, see Fig.5.4. A

tensor Mµ1...µj is depicted as a vertex or node with j legs attached to it. Two tensor

connected by a single line indicates that this particular index is being summed over,

whereas free legs are physical input/output data. The range χ over which a particular

index ij runs (ij = 1, 2, . . . , χ) is called the ‘bond dimension’ χ and is not shown in the

graph, which is related to the entanglement of the state.

Figure 5.4: The common diagrammatic representation of a tensor network, here an MPS.

Each node represents a tensor, and its legs represent the indices.

An explicit example of a MPS wavefunction is the Greenberger-Horne-Zeilinger (GHZ)

state for n particles,

|GHZ〉 =
1√
2

(
|0〉⊗n + |1〉⊗n

)
(5.9)
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This is constructed using matrices all of local bond dimension χ = 2, that is ij = 0, 1,

and the seed matrices

A0 =

 1 0

0 0

 , A1 =

 0 0

0 1

 (5.10)

Inserting this into the MPS wavefunction (5.8), one obtains (5.9).

Multi-Entanglement-Renormalization-Ansatz (MERA)

The problem that motivated Vidal to introduce the MERA network was that of finding

the RG flow of quantum states in systems with high degree of entanglement [108]. One

starts with a given state |Ψ〉 and performs the Wilson-Kadanoff idea of block spinning two

pairs of sites. Now, the ground state |Ψ〉 of a CFT is highly entangled: the entanglement

entropy of a subregion of x sites scaling as log x. Vidal realised that, if we naively apply

only block spinning, the averaging procedure in each RG step causes the short-range

entanglement (say between nearby qubits) to get mixed with the entanglement at the

subsequent layers, and produces an entanglement spectrum that is not the one exhibited

by a CFT ground state. Thus, he proposed to add an extra layer of unitaries at each

step, before the block spin takes place, such that it removes local entanglement first, and

then we block. Repeting this procedure, we get a network that looks like Fig. 5.5. The

squares with four legs represent the disentanglers, which are 2-qubit gates. An example

of such a gate would be U such that U |00〉 = (|00〉+ |01〉) /
√

2.

Figure 5.5: MERA network: the free bottom legs correspond to the physical degrees of

freedom (e.g. spins on a 1d chain), which are then flowed through layers of disentanglers

(squares) and isometries (triangles). This produces a final state at the upper layers.

Each triangle with 3 legs represents a block-spin or isometry. As it stands, it is not a

unitary map (it’s not even a square matrix), but it can be made unitary by attaching to it
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a fourth leg with some prescribed state, typically |0〉. With that addition, MERA can be

viewed alternatively as a quantum circuit that starts in the upper layer with a completely

unentangled state such as |000 . . . 0〉 and maps it unitarily by running the circuit from top

to bottom. Given a specific Hamiltonian, one then numerically optimises the exact gates

by running a sweeping algortithm [108], which produces an approximation of the ground

state.

The reason why MERA became so popular in the AdS/CFT community was an ob-

servation by Swingle [109]. Swingle noted that in MERA, the circuit direction acts as

a renormalisation scale, in striking similarity as what happens in holography. Moreover,

the entanglement entropy of an interval on a given boundary state produced by a tensor

network is bounded from above by the minimum number of ‘cuts’ of any line crossing the

circuit connecting the interval endpoints, see Fig. 5.6. This defines ‘geodesics’ γ in the

network, where the length of one leg cut is given by the local bond dimension of that link.

But due to the scale invariant geometry of MERA, the length of the minimal-cut line

|γ|min scales precisely as log n, where n is the number of lattice sites of the subinterval

whose entropy we are computing.

S ≤ |γ|min logχ |γ|min ≈ log(n) (5.11)

Figure 5.6: Minimal cut line or ‘geodesic’ in MERA.

Although it is a bound, this formula has a striking similarity with the Ryu-Takayanagi

prescription for AdS3 reviewed in Chapter 3. This has led to a variety of developments

in the field [110–114].
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Random tensor networks

Observables of the random tensor networks of [36] are defined by averaging over tensor

network states built from random tensors living on a fixed graph. The main result of

their work is that, in a tensor network lattice with a boundary, the average value of the

second Rényi entropy of a subregion A, tr(ρ2
A), can be expressed as the partition function

ZA of an Ising model whose boundary conditions are determined by A. The temperature

of the Ising model vanishes as the bond dimension D becomes large, in which case the

Ryu-Takayanagi surface manifests as a domain wall in the spin system. In this picture,

the subregion complexity of A is mapped to the magnetization of the Ising model.

Let us briefly review their construction. The network lives on a graph Γ, with boundary

consisting of dangling edges ∂Γ. Each edge e of a vertex x has associated to it a vector

space He. We assume all He to have fixed dimension D. The tensor at vertex x is a unit

vector |Vx〉 ∈ Hx =
⊗

e∈∂xHe, whose probability distribution is invariant under unitary

transformations of Hx. An edge 〈xy〉 attaching x to y corresponds to projection onto a

maximally entangled state |xy〉 in Hxy ⊗Hyx. The result is a state

|Ψ〉 =

(⊗
〈xy〉

〈xy|
)
·
(⊗
x∈Γ

|Vx〉
)

(5.12)

in the boundary Hilbert spaceH∂ =
⊗

e∈∂ΓHe, to which we can associate a density matrix

ρ = |Ψ〉〈Ψ|.
Given A ⊂ ∂Γ, we can use the swap trick to write the second Rényi entropy of A as

e−S2(A) =
tr
[
(ρ⊗ ρ) · FA

]
tr
[
ρ⊗ ρ

] =
Z1

Z0

, (5.13)

where the trace is over H∂ ⊗H∂, and FA is the swap operator reversing the order of the

tensor product in the subspace HA.

The average value of ρ ⊗ ρ is found by integrating over |Vx〉. It can be evaluated by

noting that it is linear in |Vx〉〈Vx| ⊗ |Vx〉〈Vx|, hence all we require is the average

|Vx〉〈Vx| ⊗ |Vx〉〈Vx| =
Ix + Fx
D(D + 1)

(5.14)

where Ix and Fx are the identity and flip operators, respectively, on Hx ⊗ Hx. Expand

this into a sum over terms involving either Ix or Fx, and define a spin variable sx which is

1 (−1) if the term contains Ix (Fx). We further introduce a boundary function hx equal
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to −1 for x ∈ A, and 1 otherwise. For large bond dimension we can approximate

S2(A) = − log
Z1

Z0

, (5.15)

where Z0,1 are now expressed as partition functions

Z1 =
∑
{sx}

e−A[{sx},{hx}] , Z0 =
∑
{sx}

e−A[{sx},{hx=1}] . (5.16)

The explicit form of the statistical Hamiltonian A was derived in [36], and (up to constant

shift) takes the form

A[{sx}] = −1

2
logD

(∑
〈xy〉

sxsy +
∑
x∈∂Γ

sxhx

)
; (5.17)

this is an Ising model on Γ, whose boundary spins are held fixed to the values {hx}. As is

well known, the most probable configuration consists of the domain wall separating two

regions of opposite spins that has smallest possible length. This domain wall coincides

with the RT surface.

Figure 5.7: Left: Ising model resulting from a RTN on a tesselation of H2. The domain

wall mimics the RT surface. Right: representation of the swap trick used in the derivation.

5.3 Compression complexity from topology in AdS3/CFT2

This section is based on [31], in joint collaboration with R. Abt, J. Erdmenger, H. Hin-

richsen, Charles Melby-Thompson, R. Meyer, and C. Northe.

We consider subregion complexity within the AdS3/CFT2 correspondence. We rewrite

the subregion volume proposal, according to which the complexity of a reduced density
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matrix is given by the spacetime volume contained inside the associated Ryu-Takayanagi

(RT) surface, in terms of an integral over the curvature. Using the Gauss-Bonnet theorem

we evaluate this quantity for general entangling regions and temperature. In particular,

we find that the discontinuity that occurs under a change in the RT surface is given by a

fixed topological contribution, independent of the temperature or details of the entangling

region. We offer a definition and interpretation of subregion complexity in the context

of tensor networks, and show numerically that it reproduces the qualitative features of

the holographic computation in the case of a random tensor network using its relation

to the Ising model. Finally, we give a prescription for computing subregion complexity

directly in CFT using the kinematic space formalism, and use it to reproduce some of our

explicit gravity results obtained at zero temperature. We thus obtain a concrete matching

of results for subregion complexity between the gravity and tensor network approaches,

as well as a CFT prescription.

5.3.1 Introduction

Since the proposal of Ryu and Takayanagi [60, 115] that entanglement entropy in a

holographic conformal field theory (CFT) is measured by the area of minimal surfaces

in asymptotically AdS spacetimes, the connection between the AdS/CFT correspon-

dence [30] and quantum information has seen many exciting developments. In recent

years, these ideas have found applications ranging from tensor networks [109] and quan-

tum error correcting codes [116,117] to the emergence of spacetime [118].

One research topic that is receiving increasing attention is the notion of complexity

[119]. Roughly speaking, the complexity of a pure quantum state is the minimal number

of gates of any quantum circuit built from a fixed set of gates that produces this state

from a given reference state. Complexity was first studied within the framework of the

AdS/CFT correspondence in the context of time-dependent thermal state complexity,

which was proposed to be dual either to the volume of the Einstein-Rosen bridge [103], or

the action of a Wheeler-DeWitt patch [120]. Recently, additional insight has been gained

into both proposals from more detailed holographic studies [107,121,122].

The present work is concerned with the subregion complexity of the reduced density

matrix of a finite subregion A. While the area of the Ryu-Takayanagi (RT) surface γRT of
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A is known to give the entanglement entropy of A [115], it was proposed in [35, 123, 124]

that the subregion complexity should correspond to the volume of the co-dimension 1

region Σ enclosed by γRT and the cutoff surface (fig. 5.8). Other recent proposals relate

bulk volumes to Fisher information [125] and fidelity susceptibility [126–129].

The particular object of study of this work is the behavior of subregion complexity

in AdS3/CFT2. We study a slightly different quantity than [35]: we define the subregion

complexity of A to be the integral over Σ of the scalar curvature R,

C(A) ≡ −1

2

∫
Σ

Rdσ . (5.18)

The minus sign accounts for the negative curvature of asymptotically AdS spaces.

Figure 5.8: The subregion complexity is computed from the regularized volume contained

in the region Σ, enclosed by γRT and the segment γε of the cutoff surface. Figure by R.

Abt from [31].

The examples studied in the present work have constant spatial curvature, so that our

definition coincides with the proposal in [35]. However, the definition in (5.18) has several

advantages. On the one hand, it is particularly natural in AdS3, as the resulting quantity

is dimensionless without introducing an ad hoc scale. On the other hand, we will see

below that, due to the appearance of
∫

Σ
R in the Gauss-Bonnet theorem, the quantities of

primary interest to us are determined purely by topological data. For this reason we may

refer to the subregion complexity as defined by (5.18) as topological complexity. Finally,

the idea of defining the subregion complexity as an integral over a local complexity density

proportional to the scalar curvature is conceptually interesting on its own.
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The aim of this article is to develop and compare three complementary points of view

on subregion complexity in AdS3/CFT2: within gravity, using tensor networks, and its

computation using CFT quantities. Our approach has two main foci. The first is the

study of transitions and temperature dependence of subregion complexity from both the

point of view of gravity and of tensor networks. On the gravity side, the Gauss-Bonnet

theorem yields an elegant result: when the total length of the entangling region is held

fixed, the subregion complexity (5.18) varies only by discrete jumps determined purely by

the topology of Σ. This holds true for any number of entangling intervals at both zero

and non-zero temperature, and for variations of temperature as well as the shape of the

entangling region. In the latter case the change in complexity during topological transi-

tions of the Ryu-Takayanagi surface is in particular independent of temperature. While

the two-interval subregion complexity was originally computed in [130], the computation

for arbitrary numbers of intervals at both zero and non-zero temperature is new.

In the context of tensor network/AdS proposals, we interpret the subregion complexity

as the complexity of the map that optimally compresses the reduced density matrix of A.

Using the map between random tensor networks and the Ising model proposed in [36], by

numerical simulations we reproduce the qualitative behavior at the transitions observed in

gravity. Our numerics reproduce to a good approximation the temperature independence

of the subregion complexity as measured by the volume under the Ryu-Takayanagi-surface,

as well as the jump in subregion complexity when the Ryu-Takayanagi surface undergoes

a topological transition for large boundary interval sizes.

Our second focus is the computation of subregion complexity within CFT2. In con-

tinuum CFT we cannot compute complexity from first principles, because a satisfactory

definition of complexity in QFT is not yet available. (See however [105, 106, 131, 132]

for recent work in this direction.) Here we seek to approach this problem from a differ-

ent angle by outlining the definition of a quantity using the kinematic space formalism

of [133] which, in the case of CFT2 with a holographic dual, we expect to reproduce the

holographic subregion complexity for states sufficiently close to the vacuum. We apply

our prescription to compute the complexity of the vacuum when the entangling region

is the entire spatial boundary, and find that it matches the gravitational computation.

As the kinematic space measure is built from entanglement entropy, this suggests that
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complexity can be recovered from entanglement entropy, at least for states sufficiently

close to the vacuum.

The chapter is organized as follows. In section 5.3.2 we consider the subregion com-

plexity of an arbitrary number of entangling regions for locally AdS3 solutions. We ob-

tain explicit expressions from the proposal (5.18) for these geometries. In section 5.3.3

we study subregion complexity from the viewpoint of tensor networks. In section 5.3.4

we use the kinematic space formalism of [133] to define a quantity in CFT2 that, when

a weakly curved gravitational dual exists, coincides with the subregion complexity. Our

conclusions are summarized in section 5.5.

5.3.2 Subregion complexity from gravity

We begin with the computation of the subregion complexity (5.18) in asymptotically

AdS spacetimes of constant spatial curvature. Using the Gauss-Bonnet theorem, we

derive a simple and general expression for the subregion complexity of any collection

of intervals and for arbitrary geometries of constant spatial curvature. We illustrate

this formula in detail for the specific cases of vacuum AdS, static BTZ black holes, and

conical defect geometries. In vacuum AdS we illustrate this formula in the case of the two-

interval subregion complexity originally computed in [130], while in black holes and defect

geometries we focus on the mass dependence of single interval complexity. In general, we

find that the jump in complexity that occurs when the dominant Ryu-Takayanagi surface

undergoes a transition comes “quantized” in integer multiples of a fixed value, independent

of geometric parameters of the background such as interval size or black hole temperature.

We work on constant time slices of asymptotically AdS3 solutions. One first fixes an

entangling region A at the boundary, whose RT surface consists of geodesic(s) connecting

its endpoints. As usual, one places a cutoff slice γε near the boundary for regularization.

As depicted in fig. 5.8, this defines a compact two dimensional manifold Σ with boundary

∂Σ = γRT ∪ γε.
The Gauss-Bonnet theorem allows us to express the topological subregion complexity (5.18)

in a simple form:

C(A) = −1

2

∫
Σ

Rdσ =

∫
∂Σ

kgds− 2πχ(Σ) , (5.19)
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where χ is the Euler characteristic of Σ and ds is the line element along ∂Σ. The geodesic

curvature kg, defined in (5.21) below, measures how much the curve ∂Σ deviates from a

geodesic. If ∂Σ is piecewise smooth, then
∫
∂Σ
kgds is the sum of the integral along the

smooth portions of ∂Σ, plus the sum of the corner angles at its turning points (where kg

has delta function singularities).

We now compute (5.19) for entangling regions on AdS3, BTZ black holes and the

conical defects. The time slices of these solutions have constant curvature R = − 2
L2 ,

where L is the AdS radius.

Zero temperature (AdS)

Consider first a set of two entangling intervals of lengths x1 and x2 in the vacuum state

of a CFT2, which is dual to global AdS3 (fig. 4.3) with metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2 , (5.20)

with f(r) = 1 +
(
r
L

)2
and φ ∼ φ + 2π. We choose lCFT/r as our defining function,

corresponding to a CFT metric ds2
CFT = l2CFT(−L−2 dt2 + dφ2), and hence a CFT spatial

circle of length 2π lCFT.

The entanglement entropy of the two subregions is known to exhibit a transition

between two configurations depending on a conformal ratio of their sizes and separation

[134, 135]. In standard analogy with statistical mechanics we refer to such competing

configurations as “phases”. In particular, while the entanglement entropy is continuous

across a transition, its first derivative jumps (this is, however, smoothed out at finite

c). On the CFT side, this transition can be explained as the exchange of dominance

between the s and t channels in the four point function of the twist fields. On the gravity

side, this corresponds to the two different ways of connecting the interval endpoints by

geodesics (see fig. 4.3). In these two configurations, referred to as phase I and phase II,

the total length of the corresponding geodesics is generally different. The RT prescription

states that the actual entanglement entropy is given by the configuration for which this

length is minimal, meaning that the transition occurs at the point where lengths in both

phases coincide. Interestingly, we find that the volume of Σ exhibits a discontinuity at

the transition.
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Figure 5.9: The two phases of a system with two subregions. For phase I, Σ is the union

of the colored regions. Figure by R. Abt [31].

We now apply eq. (5.19) to compute the subregion complexity in phase I. Here Σ is

the union of two disjoint regions. Since the Euler characteristic is additive, we obtain

χ(Σ) = 2, since each region is topologically like a disk.

Next we compute the integral of the geodesic curvature around the smooth parts of

∂Σ. Since the geodesics γRT do not contribute, we only have to integrate along γε, which

is a segment of a circle at radius r = LlCFT/ε ≡ rε with ε � lCFT. For a constant time

slice of a metric of the form (5.20), it is easy to show that the geodesic curvature along a

circle of radius r is simply

kg =

∣∣∣∣Duds
∣∣∣∣ =

√
|f(r)|
r

, (5.21)

where u is the unit vector tangent to the curve. For asymptotically AdS spaces, where

f(r)→
(
r
L

)2
as r →∞, we obtain∫

γε

kgds =

√
|f(rε)|
rε

∫
γε

ds =
x1 + x2

ε
+O(ε) , (5.22)

where x1 and x2 denote the lengths of the intervals. Finally, the contributions coming

from the corner angles between γRT and γε have to be taken into account. Since γRT

is known to terminate perpendicularly at the boundary [60], any joint of γRT with γε

contributes with a term of π/2 to (5.19) when ε→ 0. Summarizing all contributions, the

subregion complexity for two disjoint intervals of length x1 and x2 is simply given by

CI({x1, x2}) =
x1 + x2

ε
− 2π . (5.23)

Similarly we can compute the subregion complexity in phase II, the only difference being

that the Euler characteristic is now χ(Σ) = 1:

CII({x1, x2}) =
x1 + x2

ε
, (5.24)
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Since both phases differ by a constant topological term

∆C = CII − CI = 2π , (5.25)

the subregion complexity exhibits a discontinuous jump at the transition, although the

entanglement entropy is continuous. This was already computed in [130] by direct inte-

gration of the volume form.1

The generalization to an arbitrary number of entangling intervals is straightforward.

Consider a set of q disjoint intervals of length xi in the vacuum state of a CFT2 (see

fig. 5.10). Depending on their configuration, γRT can take many possible forms, giving

rise to various phases. Applying once again the Gauss-Bonnet theorem, each corner angle

contributes π/2, hence the subregion complexity is given by

C({xi}) =
x

ε
+ πq − 2πχ , (5.26)

where x =
∑q

i=1 xi is the total entangling length on the boundary of the q intervals, and

χ the total Euler characteristic.

Figure 5.10: Example of a configuration of RT surfaces for a several entangling intervals

(q = 7) in the vacuum. Figure by R. Abt [31].

At any transition of γRT , all contributions to (5.19) remain the same except that the

Euler characteristic χ changes, thus

∆C = −2π∆χ . (5.27)

This is the first main result of this section: if the entangling intervals are varied while the

sum of their lengths is held fixed, then subregion complexity varies discretely in multiples

of 2π. We shall see below that the same is true for a finite temperature state.

1In [128] hyperbolic polygons lying in spatial slices of AdS3 were considered in context of holographic

complexity. The Gauss-Bonnet theorem was consulted to confirm their computations. Our prescription

(5.19) reproduces their findings as a special case.
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In particular, the subregion complexity of the entire time slice of AdS3 is obtained

when a single entangling region covers the entire boundary circle. Setting q = 0 (no

corner angles) we obtain the result

C (circle) = 2π

(
lCFT

ε
− 1

)
, (5.28)

which will be derived in terms of CFT quantities in sec. 5.3.4.

Finite temperature and conical defects

We now consider a single interval of length x in a CFT2 on a circle at finite temperature

T . This is dual to the BTZ black hole [53], where the metric is again of the form (5.20),

but now with

f(r) = −M +
( r
L

)2

, (5.29)

where M is the black hole mass (in units of 8GN = 1) which is related to the temperature

by T = L
√
M . It is well known that M > 0 corresponds to black holes while M = −1

reproduces AdS3. The geometries for −1 < M < 0 correspond to conical defects in AdS,

i.e. naked singularities with no horizon.

In the presence of a black hole γRT is known to exhibit two different phases a and b, as

shown in fig. 5.11, provided that the entangling region is larger than half of the boundary

perimeter. In phase b the geodesic γRT remains homotopic to the entangling region, while

in phase a it is given by the geodesic of the complement plus a surface wrapping around

the horizon of the black hole. Again the physically realized phase is the one where the

entanglement is minimal. For low temperatures the black hole is small so that γRT,b is

shorter than γRT,a while for large temperatures it is the other way round. Both phases

are separated by a transition point M = M∗ where the entanglement in both phases

coincides.

The calculation of the subregion complexity in each phase is analogous to the vacuum

case. Indeed, in phase a the result is identical to that of a single interval in the vacuum,

namely

Ca(x) =
x

ε
− π , (5.30)
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Figure 5.11: The two phases a and b of γRT for a single interval (red line) in the presence

of a black hole. Figure by R. Abt [31].

independent of the mass of the black hole. Thus, our second main result is that the topo-

logical nature of the subregion complexity (5.18) implies it is independent of temperature.

Although the entanglement entropy has a strong temperature dependence (γRT changes

with the black hole size), it changes in precisely such a way as to leave the volume inside

constant. Note that this is not true in higher dimensions, and is due to the fact that the

BTZ geometry is locally isometric to AdS3.

As we lower the mass, the black hole gets smaller, until we hit the phase transition

and pass to phase b, as shown in fig. 5.12. The geodesic curvature of the horizon vanishes,

and so all contributions to (5.19) remain unchanged except for the Euler characteristic,

which is now χ(Σb) = 0, as Σb is topologically an annulus. Therefore the corresponding

complexities differ by

∆C = Cb − Ca = 2π , (5.31)

as derived earlier in [130] by direct integration.

As we continue reducing the temperature, we hit massless BTZ (extremal), and pass

to the ‘naked singularity’ sector. Solutions with negative M correspond not to black holes,

but to solutions of Einstein’s equations when we place a point particle of mass M at the

origin. This generates a conical defect geometry, where the deficit angle is 2π(1−
√
−M).

There is no horizon, and the curvature is still R = − 2
L2 everywhere except at the origin,

where it has a Dirac delta peak.

The entanglement entropy for conical defects in AdS3 was studied in [136]. We now

consider their subregion complexity. When the horizon disappears at M = 0, it would

seem that the topology of Σ changes since it would no longer have any hole. However,
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Figure 5.12: Subregion complexity as function of the black hole mass, for a fixed entangling

region. Figure from [31].

it remains the same: given that there arises a singularity at the origin, and in order

to be consistent with the homology condition for the RT surface, one must remove an

infinitesimal disk around the singularity, compute the subregion complexity, and finally

take the disk radius to zero. This introduces another boundary, whose geodesic curvature

is again given by (5.21) but now with f(r) = −M +
(
r
L

)2
. The integral around the disk is∮

kgds = 2π
√
f(r) −→

r→0
2π
√
−M , M < 0 . (5.32)

All other contribution to (5.19) remain the same, so the subregion complexity for the

naked singularity is

C =
x

ε
+ π − 2π

√
−M , M < 0 (5.33)

For M = −1 the AdS vacuum is recovered where (5.33) reduces to (5.30), and the subre-

gion complexity again approaches the same value as in phase a.

To summarize, for a single entangling region of a given size we find three different

phases depicted in fig. 5.12. Although the entanglement entropy varies non-trivially with

temperature in all phases, the Gauss-Bonnet theorem ensures that the subregion com-

plexity in phase a and b are constant, exhibiting a jump of 2π at the transition. This

changes once we cross to the conical defect sector, in which a naked singularity appears

which causes the subregion complexity to vary smoothly.

Finally, the subregion complexity for q intervals at finite temperature is again analo-

gous to (5.26), and the natural generalization of (5.33) for the conical defect case.
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5.3.3 Tensor networks

The aim of this section is to suggest a physical interpretation of the holographic subre-

gion complexity discussed in section 5.3.2 by defining an analogous quantity for tensor

networks, and to illustrate for a particular class of tensor networks that this quantity has

the same qualitative behavior found in section 5.3.2.

The advantage of this approach is that tensor networks are equipped with a natural

notion of complexity, allowing us to define subregion complexity explicitly for a certain

class of tensor network states. Motivated by this definition, we compute subregion com-

plexity in random tensor networks via numerical simulations of the Ising model realization

of the second Rényi entropy derived in [36]. Our simulations reproduce the qualitative

behavior found in section 5.3.2 for the subregion complexity in CFT at finite temperature.

Subregion complexity for tensor network states

The first goal of this section is to define an analogue of the holographic subregion com-

plexity for network states. This quantity roughly measures the difficulty of building the

reduced density matrix. The remainder of this section will investigate the properties of

this definition in the particular case of random tensor networks.

We begin by briefly reviewing the definition of complexity and its relation to tensor

networks. Complexity is an information-theoretic quantity that can be defined as follows.2

Starting with a Hilbert space H with a decomposition into local units, one chooses a set

{Ui} of quantum gates, i.e., unitary operators acting locally on H. The complexity of an

arbitrary unitary operator U is the minimal number of gates required to represent U by

a product of Ui’s. The complexity of a state |Ψ〉 in H — or a density matrix, which can

be understood as a state in H⊗H — is then the smallest complexity of all unitary maps

sending a fixed reference state |Ψ0〉 to |Ψ〉.
A useful definition of complexity in continuum field theory is currently unavailable.

A sharper picture is, however, provided by tensor network states [137]. It is known that

some tensor networks are relevant to CFT: the Multi-scale Entanglement Renormaliza-

tion Ansatz (MERA) is a tensor network known to accurately approximate CFT ground

states [138]. These networks live on discretizations of hyperbolic space, and, as a result,

2References, and a geometric approach to this problem, can be found in [99].
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many statements from holography have a natural realization in such states. In particular,

their entanglement entropies are bounded from above by the RT formula [109]. Other net-

works can satisfy tighter bounds, for example the quantum error-correcting codes of [117],

where it was shown that, for a single entangling interval, the discretized Ryu-Takayanagi

formula holds exactly.3

As observed in [139], the ‘complexity=volume’ conjecture is naturally realized in tensor

network constructions by associating a fixed spatial volume to each tensor. In this picture,

one drops the focus on the fixed Hilbert space H, working instead with maps between

two Hilbert spaces that are built out of tensors. We still require the tensors (gates)

to act locally, but the output dimension is now allowed to be smaller than the input

dimension. The subnetwork of tensors Σ connecting the (discretized) RT surface to the

boundary entangling region A can be interpreted as defining a map ıA from HRT , the

Hilbert space of the legs cut by the RT surface, to HA, the Hilbert space of region A.

The RT surface is characterized by the property that it has the smallest Hilbert space

for any cut through the tensor network bounded by ∂A, and the number of tensors C(ıA)

measures the complexity — with respect to tensors of a given size and locality — of the

corresponding map. In general, the resulting tensor network may not be the map with

the smallest number of tensors, so that this number only constitutes an upper bound on

complexity.

We define subregion complexity CA to be C(ıA). For certain networks — for example,

for A a single interval on the boundary of a perfect tensor network [117] — the reduced

density matrix ρA can be recovered directly from ıA, so that CA describes the complexity

of ρA itself. In general, we expect that at large central charge the complexity of building

ρA is well parametrized by CA.

Our main interest in this section is the behavior of CA under transitions in the (dis-

cretized) RT surface. Some tensor networks, such as the perfect tensor networks of [117],

are guaranteed to exhibit discretized versions of the jumps in complexity observed in

section 5.3.2. A more interesting illustration is given by random tensor networks [36],

in which the RT formula is satisfied only in the limit of infinite bond dimension. Using

3This paper applied the Gauss-Bonnet theorem to hyperbolic tesselations to make a distinct but

related computation, whose aim was to quantify multipartite entanglement associated to a partition of

the whole system into several components.
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numerical simulations, we will see in what follows that the qualitative behavior of the

transitions is preserved at finite bond dimension.

Ising model reproducing the subregion complexity for BTZ black holes

The analogy of Ryu-Takayanagi surfaces and domain walls of an Ising model suggested

in [36] assumes a constant bond dimension D, meaning that all coupling constants Jx;y

in the corresponding Ising Hamiltonian H = −1
2

∑
<x,y> Jx;ysxsy take the same value

Jx;y = J and that βIsing →∞ in the limit of a large central charge. In this setup the bulk

geometry is taken into account by arranging the tensors (Ising spins) in such a way that

their geodesic distance is constant. However, such regular tessellations are only known for

few special cases as, for example, the hyperbolic plane. In particular, we are not aware of

a regular equidistant tessellation of the bulk geometry in presence of a BTZ black hole.

To circumvent this problem, we suggest here that the bulk geometry can also be taken

into account for any arrangement of the Ising spins by assigning non-constant couplings in

such a way that the energetic cost of domain walls reproduces the correct geodesic length.

In the following we consider the example of a non-spinning BTZ black hole, reproducing

the transition between the phases a and b illustrated in fig. 5.11. The generalization to

other examples is straight forward.

To reproduce the transition in the BTZ case, we first map the standard coordinates

(r, φ) in a constant-time slice of the metric (5.20),(5.29) to conformal coordinates (η, φ)

with cos η = T/r defined on a rectangle η ∈ [0, π/2), π ∈ [−π, π), turning the metric into

ds2 = sec2(η)
(
L2 dη2 + T 2 dφ2

)
. (5.34)

In these coordinates, the black hole horizon and the conformal boundary correspond to

η = 0 and η = π/2.

Next, we embed a square lattice of N × N Ising spins in this rectangle, as sketched

in fig. 5.13. Labeling the lattice sites by two indices i, j ∈ {0, 1, . . . , N − 1}, the spins

sx = si,j = ±1 are located at

φ = 2π
2i+ 1

2N
, η =

π

2

2j + 1

2N
. (5.35)

At the top and the bottom row of the lattice the Ising spins are fixed by the boundary
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conditions

si,j :=

−1 if j = 0

sign
(
Nφ
4π
−
∣∣i− N

2

∣∣) if j = N − 1 ,

(5.36)

where φ = x/L is the size of the entangling region.

Figure 5.13: BTZ black hole (left) with radial coordinate arctan(r/L) mapped to con-

formal coordinates φ, η (right) where an Ising model on a square lattice is embedded.

The top and the bottom row of spins are fixed according to the respective boundary

conditions (red=↑, blue=↓) while the green spins are allowed to fluctuate. Figure by H.

Hinrichsen [31].

Each horizontal (angular) bond cuts a vertical line element of a domain wall with

∆φ = 0,∆η = π/2N , corresponding to the geodesic length ∆s ≈ L sec(η)∆η. Likewise

each vertical (radial) bond cuts a horizontal line element ∆φ = 2π/N,∆η = 0 with the

geodesic length ∆s ≈ T sec(η)∆φ, where η corresponds to center of the bond. Thus,

assigning the coupling constants

horizontal: Ji,j;i+1,j :=
πL

2N
sec
(π

2

2j + 1

2N

)
vertical: Ji,j;i,j+1 :=

2πT

N
sec
(π

2

j + 1

N

)
,

(5.37)

the energy contribution of a domain wall is approximately proportional to its geodesic

length while the total magnetization would reflect the enclosed volume. However, it should

be noted that the rotational invariance of the Ising model is broken on a square lattice at

low temperatures, preferring domain walls that are aligned with the lattice. As we will

see below, this causes the simulated domain wall to deviate slightly from the analytically

expected RT surface. Nevertheless, the results from the Ising model can be used as a

good approximation which qualitatively reproduce the results derived above.
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Figure 5.14: Left: Snapshot of a typical configuration of Ising spins on a lattice with

256x256 sites near equilibrium. The white curve marks the theoretically expected RT

surface. Center: Magnetization averaged over many independent configurations. Right:

Average magnetization mapped back to the Poincaré disk. Figure by H. Hinrichsen [31].

Simulation results

In order to find the equilibrium configuration of the Ising model numerically, we use a

standard heat bath dynamics at very low temperature. First we measure the entanglement

E(x) for a constant mass M and varying subregion size φ = x/L. In the Ising model the

entanglement is given by the energy difference

E(x) ≈ −1

2

∑
<x,y>

Jx;y(sxsy − 1) (5.38)

which has to be compared with the exact result

Eb(x) = 2 log
[ 2L√

Mε
sinh

(√Mx

2L

)]
Ea(x) = E(2πL− x) + 2π

√
M

(5.39)

in the phases a and b. Here ε is the cutoff distance of γε at the conformal boundary which

is expected to scale with the lattice spacing. The transition takes place at a subregion

size x∗ where Ea(x
∗) = Eb(x

∗), giving

x∗ = Lφ∗ = − L√
M

log
(

1− tanh(π
√
M)
)
. (5.40)

As shown in the left panel of fig. 5.15, the numerically estimated entanglement in the two

phases reproduces the expected behavior and the two curves intersect accurately at the

expected value of x∗, which is marked as a vertical dashed line in the figure.

Next we compute the complexity Ca,b(x) in the two phases. As can be seen in the right

panel, the numerical results nicely reproduce the predicted linear law C(x) = x/ε+ const.
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Figure 5.15: Numerical results on a lattice with 200×200 sites for a BTZ black hole with

mass M = 0.1. Left: Numerically measured entanglement of the two solutions as func-

tions of the subregion size. As can be seen, the lines cross precisely at the theoretically

expected transition point, marked by the vertical green dashed line. Right: Correspond-

ing complexity, reproducing the linear law. The inset shows a magnification where the

discontinuous jump occurs. Figure by H. Hinrichsen [31].

Both lines are separated at a constant distance, leading to a discontinuous jump of the

complexity at the transition. However, the magnitude of the jump ∆C ≈ 4.0 ± 0.3 is

clearly smaller than 2π, reflecting the limitations of the model.

Finally, we repeat the simulation for varying mass M between 0 and 1 for a fixed

subregion size. Here one has to take into account that the lattice implicitly determines

the cutoff ε and that it varies with M . In order to determine ε, we compare the integrated

bulk volume with the total sum of site volumes on the lattice. Then we subtract the

expected influence of the cutoff left and right of the expected transition point. The result

is shown in fig. 5.16. As can be seen, the simulations fairly reproduce the finding that the

complexity is independent of the mass. At the transition the jump with ∆C = 3.8(3) is

again smaller than 2π.

So far we cannot explain why ∆C deviates from 2π. The deviation could be related

to the fact that the use of a square lattice at low Ising temperature breaks the rotational

symmetry of the Ising model, so that domain walls aligned with the lattice and diagonal

ones behave differently. This is reminiscent of the situation in the MERA, where the

minimal cut line is not unique.
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Figure 5.16: Left: Numerically determined entanglement for varying mass measured

on a lattice with 1202 sites and a fixed subregion size φ = x/L = 5.31946 for which

the transition is expected to take place at M = 0.5. Right: Numerically determined

complexity as a function of the mass, where the implicit mass dependence of the cutoff ε

has been removed (see text), reproducing Fig. 5.12 for M > 0. Figure by H. Hinrichsen

[31].

5.3.4 Subregion complexity from the CFT

The subregion complexity of [35] comprises a refinement of the holographic “complexity

equals volume” (C=V) proposal [103], in the sense that it depends on a choice of entangle-

ment region A, while reducing to the C=V proposal when A is all of space. However, there

is as yet no satisfactory independent definition of subregion complexity in field theory,

leaving open the question of what, if anything, this quantity tells us about field theory.

Section 5.3.3 offered a picture in the tensor network language for how this quantity should

be interpreted: as the number of tensors required to compress the information contained

in ρA to a Hermitian operator acting on a Hilbert space associated to the Ryu-Takayanagi

surface.

In this section, we address this problem from a different perspective. Rather than

demanding a definition from first principles, we ask instead, how does one compute the

subregion complexity within field theory? Our proposal is this: for states sufficiently close

to the AdS vacuum, the subregion complexity can be computed from the entanglement

entropy using the kinematic space formalism [133]. In this section we verify this proposal

for the simplest case, where the state is the vacuum and the entangling interval is the

entire spatial slice.4 Results for excited states and non-trivial entangling intervals will

4Recent work [112,113] has proposed a boundary prescription for reproducing the “complexity equals

action” proposal within field theory in terms of the Liouville action, and [113] develops a relationship to
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appear in upcoming work [?].

The goal of [133] was to derive a CFT expression for the perimeter of an arbitrary bulk

region using kinematic space K, the space of geodesics of the constant time slice. When

the bulk is a weakly curved dual to a large-c CFT, the Ryu-Takayanagi prescription gives

a correspondence between points in kinematic space and entangling regions in the CFT.

Using the differential entropy of [140], [133] showed that the perimeter can be expressed as

the integral over a region in kinematic space, with respect to a measure defined in terms

of the entanglement entropy. Here, we extend this result (in the case of vacuum AdS)

by expressing the bulk volume in terms of an integral, with respect to an appropriate

measure, over a region in K ×K.

We begin by reviewing the construction of [133]. We then propose an expression for the

volume in terms of entanglement entropy, which we apply to pure AdS3.5 Evaluating our

expression explicitly in the case where the entangling region covers the entire boundary

space, we find that it agrees with equation (5.28).

Kinematic space

We write the metric of a spatial slice of vacuum AdS in the form

ds2 = L2(dρ2 + sinh2ρ dφ2) , (5.41)

related to the coordinates in (5.20) by sinh ρ = r/L. The geodesics are parametrized

conveniently by

cos(α) = tanh(ρ) cos(φ− θ) , α ∈ (0, π) , θ ∈ S1 , (5.42)

where 2α is the opening angle of the geodesic and θ the center of the region subtended by

the geodesic (fig. 5.17). Each complete oriented geodesic is specified uniquely by a pair

(θ, α), making this a global coordinate system on the kinematic space K. Note that the

orientation reversal of the geodesic (θ, α) is (π + θ, π − α).

kinematic space. As of yet it is not clear how to generalize this approach to subregion complexity, nor

what its explicit relation to our prescription is. This is an interesting direction for future study.
5We restrict our attention to pure AdS since the kinematic space has been worked out in great detail.

However, there has been recent work on kinematic spaces corresponding to conical defects [141] and black

holes [142,143].
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Figure 5.17: Oriented geodesics. We associate the geodesic given by (θ, α) with the

entangling region A and the orientation given by the red arrow. The geodesic (θ+π, π−α)

on the other hand is associated with Ac and the orientation given by the blue arrow. We

have chosen the orientation of geodesics in such a way that it matches the one assigned

to them in section 5.3.2. Figure by R. Abt [31].

An oriented geodesic in the bulk is naturally associated to an entangling interval (u, v)

in the CFT, where

u = θ − α , v = θ + α . (5.43)

Flipping the orientation of a geodesic is thus associated with exchanging the entangling

region with its complement (fig. 5.17). In the limit α → 0 the geodesic (θ, α) shrinks

to a point on the boundary of the spatial slice. We may therefore identify the boundary

(θ, α = 0) of kinematic space with the circle on which the CFT lives. Note that we work

with the same metric on the spatial circle as in section 5.3.2, ds2
S1 = l2CFTdφ

2.

Our discussion will make extensive use of the concept of a point curve, the one-

parameter family of geodesics passing through a point. Given a point (ρ, φ), its point

curve is the set of (θ, α) in K satisfying (5.42). Each point in the AdS spatial slice is

therefore encoded by a point curve in K (see fig. 5.18).

To recover information about the geometry of AdS requires a geometry on K. The

required object is the density of lines, which is a volume form on kinematic space [133]

ω =
∂2S

∂u∂v
du ∧ dv = −1

2
∂2
αS dθ ∧ dα =

c

6

1

sin2(α)
dθ ∧ dα . (5.44)

Here, c is the central charge of the dual CFT, while S is the field theory entanglement
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Figure 5.18: Point curves in kinematic space. A given point p in AdS (LHS) is associated

with a point curve αp(θ) in kinematic space (RHS). This point curve is formed by all

geodesics that intersect p. This graphic was generated using [144] with permission of the

authors.

entropy on circle of length 2π lCFT obtained by Cardy and Calabrese [145]

S =
c

3
log

(
2lCFT

ε
sin
(v − u

2

))
=
c

3
log

(
2lCFT sin(α)

ε

)
. (5.45)

Equipped with the volume form ω, kinematic space now allows us to reconstruct bulk

geometric objects from CFT entanglement entropies. This was done in [133] for the length

of bulk curves: to any bulk curve γ we can associate a two-dimensional region Gγ of K
consisting of the geodesics intersecting γ. Using the differential entropy of [140], it was

shown that the length of γ is proportional to the integral, with respect to the measure

ω, of the intersection number of the geodesic with γ. For instance, the geodesic distance

λ(p, p′) between two points p, p′ of the spatial slice is given by the integral

λ(p, p′)

4GN

=
1

4

∫
αp4αp′

ω . (5.46)

The integration region αp4 αp′ is the region bounded by the two point curves αp(θ) and

αp′(θ) of the points p and p′, respectively, and is comprised of all geodesics intersecting

the geodesic arc between p and p′ (fig. 5.19).

Of course, our interest in this thesis is in the computation of bulk volumes. In what

follows we will illustrate how to compute bulk volumes in terms of chord lengths and

therefore, using (5.46) and (5.44), in terms of entanglement entropy.
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Figure 5.19: The distance between two points p, p′ in the bulk (LHS) is given by an integral

over the region enclosed by the point curves αp, αp′ (RHS). This graph was generated

using [144] with permission of the authors.

Figure 5.20: In order to obtain the volume of some set Q in terms of kinematic space

quantities, we formulate it as an integral over all geodesics G that intersect Q. The chords

G ∩Q are red colored. Figure by R. Abt [31].

Bulk volumes at zero temperature

Equation (5.46) is based on the Ryu-Takayanagi formula expressing the length of a

geodesic in terms of the entanglement entropy of the corresponding region,

`

4GN

= S , (5.47)

so we may also write

ω = − 1

8GN

∂2
α` dθ ∧ dα . (5.48)

We compute the volume of a bulk region Q as follows. In analogy with (5.46), we wish

to express it as an integral over all geodesics intersecting Q (fig. 5.20). We will see that

the correct expression is
vol(Q)

4GN

=
1

2π

∫
GQ
λQ ω . (5.49)

Here GQ is the set of all geodesics G ∈ K intersecting Q, while λQ(G) is the length of the

intersection G ∩ Q (depicted in red in fig. 5.20). Observe that λQ(G) is an integral over
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K (see (5.46)). Therefore (5.49) is an integral over K ×K.

General expressions of this type are known in the integral geometry literature (see e.g.

chapter 17 of [146]). Let us briefly sketch how to prove (5.49). The first step is to confirm

the formula for disks centered at the origin. This can be done via an explicit calculation

that we show below. The second step is to verify certain properties of volumes, such as

additivity, for the integral on the right hand side of (5.49). They allow us to generalize

the validity of (5.49) to arcs of annuli. In the infinitesimal limit we recover the volume

element of the (ρ, φ) coordinates, allowing us to recover the Riemann integral from (5.49)

for arbitrary regions. We will present a more detailed discussion of this proof in future

work [?].

We now show that (5.49) holds for disks DK of radius K around the origin (fig. 5.21).

The chord length is straightforward to compute and takes the form

Figure 5.21: To calculate the volume of the disk DK we need to consider all geodesics G

that intersect it. Their opening angle 2α introduces another opening angle 2αK on the

boundary of the disk in a natural way. The angle α∗ corresponds to a geodesic that is

tangential to DK . Figure by R. Abt [31].

λDK (θ, α) = L arcosh
(

1 + 2 sinh2(ρK) sin2(αK)
)
, (5.50)

where sinh(ρK) = K/L and 2αK is the opening angle of the geodesic (θ, α) on the bound-

ary of DK (fig. 5.21). αK is related to the boundary angle α via

tanh(ρK) cos(αK) = cos(α) . (5.51)

As we sketched above, to establish (5.49) it suffices to prove

vol(DK) = − 1

4π

∫ 2π

0

dθ

∫ π−α∗

α∗

dα λDK∂
2
α` , (5.52)
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where α∗ corresponds to a geodesic tangent to the boundary of DK (fig. 5.21). Geodesics

with a smaller opening angle do not intersect DK and therefore do not contribute. This

α∗ is given by (5.51) with αK set to zero,

tanh(ρK) = cos(α∗) . (5.53)

It is convenient to express (5.52) as an integral over αK . Using

∂2
α` dα = ∂2

αK
λDKdαK (5.54)

leads to

vol(DK) = − 1

4π

∫ 2π

0

dθ

∫ π−α∗

α∗

dα λDK∂
2
α`

= −1

2

∫ π

0

dαKλDK∂
2
αK
λDK

= 2πL2
(√

1 +
K2

L2
− 1
)
,

(5.55)

reproducing the well-known result for the volume of the disk DK and thereby confirming

(5.52).

As a special case of (5.52), (5.55) can be directly compared to the complexity of the

entire CFT circle (5.28) that we derived using the Gauss-Bonnet theorem. Since the

scalar curvature R is constant, the expression (5.18) for complexity is proportional to the

volume of the time slice. This complexity is computed by (5.55) with K set to the cutoff

radius rε = L lCFT/ε:

C(circle) = −1

2
R vol(Drε)

=
2GN

πL2

∫
GDrε

λDrεω

= 2π
( lCFT

ε
− 1
)

+O(ε) .

(5.56)

This successfully reproduces the complexity computed in (5.28).

We can now combine the volume formula (5.49) with the formula for distances (5.46)

to obtain a volume formula for any region Q in terms of entanglement entropy. To do so

we apply (5.46) to the chord length λQ:

vol(Q)

4G2
N

=
1

2π

∫
GQ

(∫
αp4αp′

ω
)
ω

=
1

8π

∫
GQ
dθdα

∫
αp4αp′

dθ′dα′∂2
αS(α)∂2

α′S(α′) .

(5.57)
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Here p(θ, α) and p′(θ, α) are the points where the geodesic (θ, α) intersects the boundary

of Q. Note that we have assumed that each geodesic intersects the boundary of Q exactly

twice, so that (5.57) holds only for Q convex.

Equation (5.57) is the main result of this section. It computes the volume of any convex

region Q, and thus reproduces the subregion complexity upon setting Q = Σ (which is

always convex). Therefore, (5.57) constitutes an explicit expression for the holographic

subregion complexity purely in terms of CFT quantities, namely entanglement entropies.

We emphasize that this result is not the end of the story. While (5.57) will reproduce

the volume of any convex bulk region, determining a valid integration region without

knowledge of the bulk region it corresponds to is in general a difficult problem. Fortu-

nately, in the case of an entangling region, which is bounded by geodesics, this problem

is considerably simplified. Explicitly verifying the general formula (5.26) is an interesting

problem, whose details will be presented in upcoming work. More generally, it would be

helpful to understand this problem in the case of finite temperature and for time slices of

non-constant curvature.

Mutual complexity

The quantities we have been mostly investigating have some degree of arbitrariness, which

is very familiar from entanglement entropy: the UV cutoff dependence. One way of

getting rid of this dependence and define a UV finite object is to define relative or mutual

quantities. Mutual information is one of them. Given two subregions A and B, the

mutual information is defined by

I(A|B) ≡ S(A) + S(B)− S(AB) (5.58)

This is a very important observable in information theory.

In the case of subregion complexity, it is very natural to define an analogous quantity.

We dub this mutual subregion complexity, and define it in the obvious way:

∆C(A|B) ≡ C(AB)− C(A)− C(B) (5.59)

The interpretation of this quantity in holography is very nice and intuitive. It measures

how much more complex it is to compress the density matrix ρAB than to construct

122



individually ρA and ρB by separate. The signs are chosen such that ∆C in (5.59) is non-

negative. This is simply because the product state ρA ⊗ ρB is a particular case of the

general ρAB which generically doesn’t factorise. From the bulk point of view, this is due

to a property of the RT surfaces known as entanglement wedge nesting [147, 148]. This

is the statement that, if A ⊆ B or more precisely if the domain of dependence of A is

contained in that of B, then the entanglement wedge of A is contained in that of B. For

our purposes, the entanglement wedge can be thought of as the region Σ discussed above.

The difference in bulk volumes in (5.59) is depicted in Fig.5.22. In the tensor network,

it counts the (finite) amount of gates needed to compress ρA ⊗ ρB into ρAB. We will

perform this calculation in MERA explicitly in Section 5.4.

Figure 5.22: Depiction of the mutual complexity ∆C(A|B) defined in (5.59).

One very interesting question is how exactly does one compute the mutual complexity

in the CFT. Although we ignore the procedure, this is a very well posed problem that could

be addressed in a concrete way, thus shedding light over a difficult-to-get-a-handle topic

as complexity. Indeed, given a reduced density matrix over some set of regions {Ai},
∆C({Ai}) essentially measure the number of direct product that exist in the density

matrix ρ({Ai}). Therefore, we see that it is a separability problem [149]. We leave these

inquiries for further investigation.
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5.4 Counting gates in AdS/MERA

The results of this section are based on still unpublished work in collaboration with J.

Erdmenger, P. Fries and H. Hinrichsen.

In Section 5.2 we studied subregion complexity by using a random tensor network

model. Although this provides new insight into the problem, one could wonder wether

a more direct measurement is possible for comparison. This is indeed the case that we

consider in this section. From the point of view of the AdS/MERA perspective, it is very

natural to associate the subregion volume to simply counting gates in the MERA network.

This has several benefits. First, the problem of the set of gates doesn’t arise, since the

gate set is fixed: we only consider disentanglers and isometries. Second, the calculation

is in principle completely straightforward: given a subregion on the boundary layer of the

network, how many gates are contained within the minimal cut line?

This is not as naive a question as it seems, and there are two reasons for it. The first

reason is that, although not emphasised in the literature, minimal cut lines (geodesics)

in MERA are not unique. Actually, they are very far from being unique. Indeed, the

number of minimal lines (their degeneracy) actually diverges as we increase the size of the

selected interval. The spectrum of lines actually has a quite interesting structure which

we will explore in detail below. For now, the problem at hand is to understand how to

define the subregion complexity ∼ gate counting in the network. If the minimal cut line

is not unique but instead we have a family of minimal lines, which one should we choose

in order to count the gates it encloses?

In Fig. 5.23 we illustrate this problem. Even a small interval of 10 sites possesses

O(102) different minimal cut lines, all of the same length, but generically containing a

different number of enclosed tensors.

The second reason is that MERA is not translationally invariant: if we move both

endpoints with the length of the interval fixed, the network geometry probed by the

minimal paths varies, and we get a different family of geodesics. If we move them far

enough we will indeed come back to the same configuration, due to the discrete scale

invariance of the graph.

We propose to deal with these two problems by one simple prescription: we define

the complexity as obtained by averaging the number of enclosed tensors over all minimal
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Figure 5.23: Degeneration of minimal cut lines for an interval in MERA. Any combinations

of segments respecting the direction indicated by the arrows constitutes a minimal path.

lines, which includes all geodesics for any endpoints with a fixed interval length. This

prescription is motivated by the physics we already discussed in the Random Tensor

Network model. In that case, the minimal line - the domain wall separating opposite

spins - is also not unique. All of them contribute in the partition function, and the key

point is that they all come weighted by the same Boltzmann factor, namely e−|γ| where

|γ| is the length of the wall. In other words, one must perform a path integral of the form

CMERA(n) :=

∫
n
DγminV (γmin)∫

n
Dγmin

(5.60)

where n is the length of the interval, γmin a minimal cut line and V (γ) the number of

gates enclosed by γ. The integral
∫
n

indicates a sum over all minimal paths that connect

two points separated by n sites. With this setup in mind, let us recall that the exact

gravity result for the subregion complexity is

C =
x

ε
− π (5.61)

where x is the length of the entangling region and ε a UV cutoff. The most natural

identification between the AdS and the MERA variables is to set n ∼ x/ε: the number of

lattice points should be proportional to the size of the region. However, we have not been

able to determine the exact proportionally constant. Notice that there is no logarithmic

divergence ∼ log(n). It is this scaling that we aim at reproducing this scaling behaviour.

To illustrate the method, consider again the case shown in Fig. 5.23, with the end-

points fixed. We have chosen a particularly symmetric configuration, such that we are
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able to perform analytic calculations. Amongst all the minimal lines, two are special: γ+

and γ− are defined as the geodesics that enclose the largest and smallest number of gates

V (γ+) and V (γ−) respectively.

Consider an interval as in the figure with n = 2N sites for some large N . Let a±k

be the number of tensors trapped at each layer, starting from k = 0 as the first row of

disentanglers. Then, it is easy to see that they satisfy the recursion relations,

a±2k =
1

2
a2k−1 , a±2k+1 = a±2k ± 1 (5.62)

The calculation simplifies if we count pairs of layers, i.e.

b±k ≡ a±2k + a±2k+1 = 2a±2k ± 1 (5.63)

Then the recurrence relation for bk becomes,

b±k+1 = 2a±2k+2 ± 1

= 2 · 1

2
a±2k+1 ± 1

=
1

2

(
b±k ± 3

)
This recurrence relation is easily solved. One must provide the initial condition b±0 = n±1

at the boundary of the graph. Then, the solution is

b±k = ±3 +
n∓ 2

2k
(5.64)

Now comes a technical point: from the figure we see that this law will remain valid as

we move upwards along the network, until we hit the value a2K+2 = 3, for some K. After

that, there always comes a row of two isometries and then one final disentangler at the

tip. But since bk counts bay pairs of layers, it is convenient to use the analytic law (5.64)

up until a2K+1, and then add ‘by hand’ the last 6 gates. Notice that since 2K + 2 is even,

a2K+2 = 3 = 1
2
a2K+1 ⇒ a2K+1 = 6.

For γ+, we have then a+
2K+ = 5, and thus we sum until b+

K+ = 5 + 6 = 11. For γ−, we

have then a−2K− = 7, so we sum until b−K− = 7 + 6 = 13. This gives two equations that

determine K±,

b+
K+ = 3 +

n− 2

2K+ = 11 (5.65)

⇒ 2K
+

=
2N − 2

23
=

2N−1 − 1

22
(5.66)

⇒ K+ = log2

(
2N−1 − 1

)
− 2 (5.67)
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And similarly for γ−,

b−K− = −3 +
n+ 2

2K−
= 13 (5.68)

⇒ 2K
−

=
2N + 2

24
=

2N−1 + 1

23
(5.69)

⇒ K− = log2

(
2N−1 + 1

)
− 3 (5.70)

We find that the number of gates V (γ±) enclosed by the geodesics γ± satisfy

V (γ±) = 6 +
K±∑
k=0

b±k (5.71)

= 6 +
K±∑
k=0

(
±3 +

n∓ 2

2k

)
(5.72)

= 6± 3
(
K± + 1

)
+ (n∓ 2)

K±∑
k=0

1

2k
(5.73)

Here we must pause to make our point. We expect that, if any matching between

the tensor network and the AdS side is possible, it should in any case occur in the limit

of large intervals n = 2N � 1. But in this limit it is clear from (5.67) and (5.70) that

K± ∼ ± log(n). This contribution is precisely the subleading divergence that we should

not have. Happily, it turns out that the same logarithmic divergence appears for both γ+

and γ− but with the opposite sign.

As argued above, the key step is then to compute the average value, where the sub-

leading divergences cancel:

2V ≡ V (γ+) + V (γ−) (5.74)

= 12 + 3
(
K+ −K−

)
+ (n+ 2)

K+∑
k=0

1

2k
+ (n− 2)

K−∑
k=0

1

2k
(5.75)

Here we see that

K+ −K− = 1 + log2

(
2N−1 − 1

2N−1 + 1

)
(5.76)

and thus contains no extra finite terms in the limit n = 2N →∞. However, the sums still

contain finite terms. Indeed, we have

n
K±∑
k=0

1

2k
= n

(
2− 1

2K±

)
(5.77)
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which gives

n

(
2− 8

n− 2

)
→ 2n− 8 , γ+ (5.78)

n

(
2− 16

n+ 2

)
→ 2n− 16 , γ− (5.79)

Since we have taken into account all finite contributions, we can take the limit n =

2N →∞ safely, yielding

2V = 12 + 3 + 4n− 24 = 4n− 9 (5.80)

Thus, the average number of gates contained, taking into account only the lines that

contain the maximum and minimum number of tensors is

V (n) = 2n− 9

2
(5.81)

In order to attempt a more precise matching with the results of the gravity side, there

is still the issue of the overall normalisation, which we have not solved in this work.

Nevertheless, (5.81) is a very interesting result. An educated guess would be simply

n = x/ε. Then, the constant term we get from MERA is 9/4 which is not far from the

exact value π.

5.5 Outlook

In this thesis we took steps toward understanding the properties of subregion complexity

in CFT2 from three points of view: the original holographic proposal of [35], the definition

and study of a tensor network analogue, and a prescription for computing it directly within

CFT2.

Within gravity, we studied a modified “topological complexity” proposal. Using the

fact that for locally hyperbolic spaces, the curvature R = −2/L2 is constant, we rewrote

the holographic volume proposal as an integral of the curvature scalar. Such a definition

of complexity density may be reflective of the loss of degrees of freedom along an RG flow.

For the case of AdS3/CFT2, the new form is readily evaluated using the Gauss-Bonnet

theorem, giving a simple universal formula (5.26) valid for an arbitrary number of en-

tangling intervals and at any temperature. Particularly interesting was the change in
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complexity during transitions between topologically distinct RT surfaces. At these tran-

sitions, the subregion complexity jumps by a discrete quantity proportional to the Euler

characteristic of a bulk region bounded by geodesics. In particular, the jump comes in

integral multiples of a basic unit (2π in our normalization), irrespective of the geometry

of the entangling region or black hole temperature. Surprisingly, our result also implies

that complexity in the black hole background is independent of the size of the black hole,

and hence of temperature.

Interesting questions for the future include generalizing this approach to higher di-

mensions; understanding subregion complexity using the optimization approach of [112–

114, 150]; relating our approach with the holographic renormalization properties of the

different proposals for complexity [107, 151]; and studying subregion complexity in time-

dependent systems [121].

Turning to tensor network states, we proposed that their subregion complexity should

be understood as the number of local tensors required to build the map embedding the the

Hilbert space cut by the RT surface in the Hilbert space of the entangling region A. The

observed jumps in holographic subregion complexity are then understood to arise from

qualitative jumps in the form of the optimal compression of ρA to a Hilbert space of smaller

dimension. We studied this complexity for the random tensor networks of [36] in the

presence of a black hole using its map to an Ising model. Using numerical computations

we reproduce the discontinuous jump of subregion complexity in this approach, although

our numerical value ∆C = 4.0± 0.3 differs from the gravity result ∆C = 2π. We leave it

as an interesting question for future research to track down the origin of this discrepancy.

Reassuringly, fig. 5.16 displays independence on temperature to a good approximation.

The non-vanishing but small slope is another limitation of this model deserving further

investigation.

Finally, we gave a prescription for computing the subregion complexity directly in

CFT based on the kinematic space formalism. Our prescription expresses complexity as

an integral built from entanglement entropies. We showed that, at zero temperature, our

formula coincides with the gravity result, and verifyied the computation explicitly in the

case A = S1. If the subregion complexity proposal of [35] provides a useful measure of the

complexity of the reduced density matrix, our results suggest a deeper relationship be-
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tween complexity and entanglement. To investive this relation further, it will be necessary

to gain a deeper understanding of the field theory interpretation of subregion complexity.

Another interesting generalization is to extend our prescription to finite temperature by

working with kinematic space for black hole geometries.

It is promising that we find coinciding results for the subregion complexity in concrete

examples from three perspectives — gravity, tensor networks, and CFT — and we are

optimistic that we will see more progress along these lines in the near future.
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Chapter 6

Black holes with running couplings

in AdS3

6.1 Asymptotic safety for quantum gravity

In the preceding sections of this thesis we have focused a on a particular approach of

quantization, namely a special area of string theory - the AdS/CFT duality. Although

this is likely the most popular approach, there exist many other which are very interesting

by themselves [152–168] (for a review see [169]). In this Chapter, we will focus on another

well known alternative, called Asymptotic Safety, after its first proposal by Weinberg

[170]. Even though many approaches to quantum gravity are very different, most of them

have the common feature that the resulting effective action of gravity acquires a scale

dependence. This means that the couplings appearing in the quantum- effective action

(such as Newtons coupling G0, or the cosmological term Λ0) become scale dependent

quantities (G0 → Gk, Λ0 → Λk). There is quite some evidence that this scaling behavior

is in agreement with Weinberg’s Asymptotic Safety program [37,171–177].

Let us quickly review the big picture of this proposal [178]. The idea is that, although

gravity in more than two dimensions is not perturbatively renormalizable, Weinberg

argued that it might be non-perturbatively renormalizable, and thus the UV completion

of Einstein gravity might hit a non trivial but well defined, finite UV fixed point. In

order to test this, one uses the Functional Renormalization Group technique [178]. As

in perturbative QFT, one defines an effective action Γk. This represents the ‘effective’
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action that we see at the scale k, which contains in principle an infinite series of allowed

couplings gα(k) which flow with k. In this sense, Γk[{gα(k)}] describes a curve in ‘theory

space’, the space of all possible Hamiltonians, spanned by their coupling constants.

The difference with the usual QFT effective action is that now there’s an extra RG

scale k such that Γk contains the functional integral of all fields with momenta p larger

than k, and no contribution from the fields with momenta p lower than k. In practice,

this is implemented by adding an extra ‘mass term’ to the action, containing an IR cutoff

function Rk(p
2):

Ik[φ] =
1

2

∫
p

φpRk(p
2)φ−p (6.1)

where we have generically called the fields φ (in gravity these would include the metric).

The IR cutoff function is to a large extend arbitrary, but it must satisfy: i) Rk → 0 as

k → 0 to recover the standard 1PI action in the deep IR, ii)Rk(p
2) goes quickly to zero for

p� k, so as to leave the momenta above k untouched, iii) Rk(p
2) ≈ k2 for p2 � k2 which

freezes these modes by giving them a very large mass. This defines a scale dependent

generating functional

Zk[J ] =

∫
[dφ] exp

(
−I[φ]− Ik[φ] +

∫
p

Jφp

)
≡ exp (−Wk[J ]) (6.2)

where S is the bare action, J a source for the field φ and Wk the scale-dependent generator

of connected diagrams. And via the usual Legendre transformation, this defines a scale-

dependent effective action

Γk[φc] = Wk[J ]− Sk[φc]−
∫
x

Jφc (6.3)

where φc is the classical or average field φc = δWk[J ]/δJ . Then, it is not difficult to show

that the effective action satisfies the Wetterich equation:

∂kΓk =
1

2
Tr

[
∂kRk

(
Rk + Γ

(2)
k

)−1
]

(6.4)

where Γ(2) refers to the second functional derivative with respect to the fields, and the

trace simply refers to summing over all momenta. Since the cutoff function is given, (6.4)

provides a first order differential equation for Γk that in principle doesn’t rely on any

perturbation theory, and can be directly solved provided an initial condition. Notice that
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However, in practice it is not easy to solve, so one resorts to a truncation method on the

couplings. Suppose we expand the effective action in a complete set of basis functionals

(‘action terms’) Pα,

Γk[φ] =
∞∑
α=1

gα(k)Pα[φ] (6.5)

For instance, one term could be P1[φ] =
∫

(∂φ)2, i.e. a kinetic term, etc. Now, by

expanding the Pα in terms of their beta functions βα, the Wetterich equation (6.4) can

be rewritten as

k∂kgα(k) = βα (g1, g2, . . .) (6.6)

Provided initial conditions, these equations completely determine the evolution of all the

couplings gα(k), which fixes a curve in space and determines the UV behaviour - wether

there’s a fixed point or not. However, in practice this is impossible since (6.6) consist

of an infinite set of coupled differential equations. In order to get a finite system, one

truncates the series as α = 1, 2, . . . , P and solves the P coupled equations numerically.

A particularly important result in this direction was due to Reuter and Saueressig [174].

They considered the ‘Einstein truncation’, in which the only two couplings allowed to run

are Newton’s constant (the Planck scale) and the cosmological constant. The result is

plotted in Fig. 6.1. The arrows point in the IR direction, and we clearly see the presence

of a UV fixed point, which moreover is an attractor, such that all initial data with positive

Gk flow towards it. Although very appealing, this result is not decisive, since improvement

of the truncation might imply that other couplings in parameter space blow up.

6.2 Black holes in AdS3 asymptotic safety

The effective action and running couplings in three dimensions have been studied in

[180,181]. In any case, scale dependent couplings can be expected to produce differences to

classical general relativity, such as modifications of classical black hole backgrounds [182–

202].
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Figure 6.1: RG flow 3 + 1 in space g, λ, for the Einstein-truncation. The arrows point

towards the IR. The non gaussian UV fixed point is clearly exhibited. Fig. from Andreas

Nink, [179].

6.2.1 The setup

In this thesis the possible effects of scale dependence on the black hole in three dimensional

gravity will be investigated in the light of the effective action approach. We will use

the scale-field method applied to the Einstein-Hilbert truncation, which allows to derive

generalized Einstein equations for the case of scale dependent couplings [40, 203–205].

The theoretical uncertainty concerning the functional form of the scale dependence of

Gk and Λk will be avoided. Instead, the most general stationary spherically symmetric

solution without angular momentum, which is in agreement with the common “null energy

condition” for the effective stress energy tensor, will be derived. It is further shown that

this solution corresponds also to the most general case which is in agreement with the

“Schwarzschild relation” gtt = −1/grr.

The chapter is organized as follows: In subsection 6.2.2 the concept of effective action

with scale dependent couplings is reviewed. In section 6.3 those techniques will be used

to derive and discuss a new black hole solution in three dimensions with scale dependent

couplings. In subsection 6.3.1 the “null energy condition” for the effective stress energy

tensor is formulated and its connection to the “Schwarzschild relation” is reviewed. The

solution is presented in subsection 6.3.2, in subsection 6.3.4 the asymptotic behavior of
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the solution is discussed, the horizon structure is analyzed in subsection 6.3.5, and the

thermodynamic properties are discussed in subsection 6.3.6. Results are summarized in

section 6.4.

6.2.2 Scale dependent couplings and scale setting

This subsection summarizes the equations of motion for the scale dependent space-times in

three dimensions. The notation and scale setting procedure is according to [40,203–206].

The scale dependent effective action is

Γ(gµν , k) =

∫
d3x
√−g (R− 2Λk)

Gk

. (6.7)

By varying (6.7) with respect to the metric field one obtains

Gµν = −gµνΛk + 8πGkTµν . (6.8)

The effective stress energy tensor Tµν contains the actual matter contribution Tmµν and a

contribution ∆tµν induced by the possible coordinate dependence of Gk [40]

Tµν = Tmµν −
1

8πGk

∆tµν , (6.9)

where

∆tµν = Gk (gµν2−∇µ∇ν)
1

Gk

. (6.10)

By varying (6.7) with respect to the scale-field k(x) one obtains the algebraic equations[
R
∂

∂k

(
1

Gk

)
− 2

∂

∂k

(
Λk

Gk

)]
= 0. (6.11)

The above equations of motion are consistently complemented by the Bianchi identity,

reflecting invariance under coordinate transformations

∇µGµν = 0. (6.12)

6.3 Scale dependent non-spinning solution

Let us now turn to solving the system of equations (6.8-6.12) assuming a stationary space-

time with rotational symmetry and no angular momentum. The most general line element
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in agreement with this symmetry is

ds2 = −f(r) dt2 + g(r) dr2 + r2dφ2. (6.13)

Apart from the two functions f(r) and g(r), the system has to be solved for the scale field

k(r). In principle this is possible, as soon as the functional form of the scale dependent

couplings Gk and Λk is known, for example from some Functional Renormalisation Group

(FRG) equation. Those functions have been calculated by using various methods and

approximations. However, it has up to now not been possible to obtain an exact and

scheme independent expression of the effective average action. Therefore, the functional

form of Λk and Gk is subject to very large theoretical uncertainties. This problem is

aggravated by the fact that most functional forms of Λk and Gk are either only valid

in the UV or in the IR. Given those drawbacks we will proceed with a method that

has been previously applied in four dimensions [40, 203–205]: The first step is to realize

that the only appearance of the scale field k(r) is within the couplings and that for any

solution of the system the functions Λk and Gk will inherit a radial dependence from

k(r). Thus, one might try to solve the system for {f(r), g(r), Λ(r), G(r)} (instead of

solving for {f(r), g(r), k(r)}). However, since one dealt one unknown function k(r) for

two unknown functions Λ(r) and G(r), the system is underdetermined. In order to obtain

a determined system again one has to impose an additional condition.

6.3.1 The null energy condition

The most common type of conditions in classical general relativity are energy condi-

tions [207–209], where one typically distinguishes between the dominant, weak, strong,

and null condition. The less restrictive of those conditions is the null energy condition,

which states that for a null vector field lν the matter stress energy tensor satisfies

Tmµνl
µlν ≥ 0. (6.14)

Since we are interested in black hole solutions it is crucial to note that the energy condition

(6.14) is actually necessary for the proof of fundamental black hole theorems such as the

no hair theorem [210] or the second law of black hole thermodynamics [211]. Therefore, if

one is looking for black hole solutions that are in agreement with those two fundamental
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theorems, it is natural to impose that appearance of scale dependence does not spoil or

alter this property for the effective stress energy tensor

Tµνl
µlν

!
= Tmµνl

µlν ≥ 0. (6.15)

A physical interpretation of this condition is that one imposes that not even a light-like

observer can observe a difference between the energy density due to the presence of matter

and the effective energy density due to the combined matter and scale dependence effects.

The relation (6.15) holds if one maintains the standard matter condition (6.14) and one

further imposes that the extra contribution to the stress tensor (6.10) induced by the

variation of the couplings satisfies

∆tµνl
µlν = 0. (6.16)

In a spherically symmetric setting one can solve this condition for the scale dependent

coupling (6.13) without the use of the equations of motion (6.8) giving

G(r) = a

[∫ r

r0

√
f(r′) · g(r′) dr′

]−1

, (6.17)

where a and r0 are constants. The next step consists in finding the metric functions f(r)

and g(r) which appear in this integral. This can be achieved by a straight forward argu-

ment following Jacobson [212]: one can choose the null vector field to be lµ =
{√

g,
√
f, 0
}

.

Combining the equations of motion (6.8) for this vector field with the condition (6.15)

gives in regions without external matter (Tmµν = 0)

Rµνl
µlν = (f · g)′

1

2rg
= 0 (6.18)

and thus f ∼ 1/g. By making use of time reparametrization invariance, this allows to

write f(r) = 1/g(r), which corresponds to the so called Schwarzschild relation. It is

interesting to note that this common relation further ensures that the radius coordinate

is an affine parameter on the radial null geodesics [212]. With this relation the line element

is

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dφ2 (6.19)

and the equations of motion can be completely solved for the three functions {f(r), Λ(r), G(r)}.
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6.3.2 A non-trivial solution for scale dependent couplings

Based on (6.15) one finds that the equations (6.8) are solved by

G(r) =
G2

0

G0 + εr(1 +G0M0)
, (6.20)

f(r) = f0(r) + 2M0G0

(
G0

G(r)
− 1

)[
1 +

(
G0

G(r)
− 1

)
ln

(
1− G(r)

G0

)]
, (6.21)

Λ(r) =
−G(r)2

`2
0G

2
0

[
1 + 4

(
G0

G(r)
− 1

)
+

(
5M0G0

`2
0

r2
+ 3

)(
G0

G(r)
− 1

)2

+

+6M0G0
`2

0

r2

(
G0

G(r)
− 1

)3

+

+ 2M0G0
`2

0

r2

G0

G(r)

(
3

(
G0

G(r)
− 1

)
+ 1

)(
G0

G(r)
− 1

)2

ln

(
1− G(r)

G0

)]
,(6.22)

where G0,M0, `0, ε are four integration constants. This represents a family of solutions

that includes the classical BTZ black hole: the choice of the integration constants was

made by demanding that the classical BTZ solution is recovered when one dimensionless

constant (labeled ε) vanishes. Indeed, one easily verifies that

lim
ε→0

G(r) = G0 , lim
ε→0

f(r) = −G0M0 +
r2

`2
0

, lim
ε→0

Λ(r) = − 1

`2
0

(6.23)

which justifies the naming of the constants (G0,M0,Λ0 = −1/`2
0) in terms of their meaning

in the absence of scale dependence. The connection between the new solution and the

BTZ solution is given in terms of the difference between the “running” G(r) and the fixed

G0. One further verifies the transition to empty AdS3 space for the classical “mass gap”

relation M0 → − 1
G0

lim
M0→−1/G0

G(r) = G0 , lim
M0→−1/G0

f(r) = 1 +
r2

`2
0

, lim
M0→−1/G0

Λ(r) = − 1

`2
0

Note that in this limit, all dependence on ε vanishes. Thus, AdS3 constitutes the appro-

priate vacuum of the theory, which is invariant under perturbations due to the running

of the couplings controlled by ε. In terms of the RG flow, this suggests that AdS would

be a fixed point of the RG group. Note further that M0 is the mass of the black hole only

if ε→ 0, while for ε 6= 0 it is much harder to determine the mass. We will come back to

this point at the end of section 6.3.

Since the constant ε controls the strength of the new scale dependence effects, in some
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cases it is useful to treat it as small expansion parameter

G(r) = G0 − ε · (1 +G0M0)r +O(ε2), (6.24)

f(r) = −G0M0 +
r2

`2
0

+ 2ε ·M0(1 +G0M0)r +O(ε2),

Λ(r) = − 1

`2
0

− ε · 2r

`2
0G0

(1 +G0M0) +O(ε2).

In figure 6.2 the lapse function f(r) is shown for different values of ε in comparison to the

classical BTZ solution.

1 2 3 4 5 6
r

-1.0

-0.5

0.5

1.0

1.5

f HrL

Figure 6.2: Radial dependence of the lapse function f(r) for `0 = 5, G0 = 1 and M0 = 1.

The different curves correspond to the classical case ε = 0 solid red line, ε = 0.02 short

dashed green line, ε = 0.09 dotted blue line, ε = 0.5 dot-dashed magenta line, and ε = 100

long dashed brown line. Plot from [42].

As can be seen in the solution (6.20)-(6.22), one observes that f(r) is monotonically

growing for all chosen values of ε, that limr→0 f(r) = −G0M0 independent of ε, and that

all functions grow as ∼ r2 for large values of r. One further notes that, even though

limε→0 f(r) = −G0M0 + r2/`2
0, the first derivative of f(r) at the origin is strongly depen-

dent on ε. As discussed below, the non vanishing of this derivative induced by ε produces

a curvature singularity at the origin proportional to ε.

6.3.3 Curvature singularity

For small radial coordinate a new singularity appears, which is absent in the classical

BTZ solution. This can be verified by evaluating for example the invariant Ricci scalar
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in the limit of r → 0, where one finds that the leading terms are

R = −4M0ε(1 +G0M0) · 1

r
−
(

6

`2
0

+ 10
M0

G0

(1 +G0M0)2ε2
)

+O(r1). (6.25)

This quantity is divergent for ε 6= 0 and it is finite for ε = 0. In particular, when ε = 0

one recovers the classical Ricci scalar for BTZ solution RBTZ = −6/`2
0. This demonstrates

how sensible the curvature singularity of BTZ is. Indeed, only the choice G0M0 + 1 = 0

renders the origin smooth. Any deviation from it, no matter how small, will produce a

singularity at the origin.

In fact there is a natural expectation that this should be the case. The non-rotating

BTZ spacetime, although devoid of a curvature singularity at r = 0, has a causal singu-

larity there. Moreover, it is well known that the smoothness of the manifold at that point

is unstable under the inclusion of matter fields in the dynamics. Now, as we have seen

above, the extra contribution (6.10) to the stress tensor induced by the scale dependence

of Newton’s constant can be thought of as a matter source.

6.3.4 Asymptotics

Concerning the limit r →∞, the exact solution (6.21) is asymptotically AdS3: f(r) ∼ r2

`20

at leading order in r. But although asymptotically the metric behaves as BTZ, neither

Λ(r) nor G(r) mimic their BTZ analogs. Indeed, Λ(r) = −3/`2
0 = 3Λ0 at r → ∞.

This ’effective’ cosmological constant at infinity arises from the extra term in Einstein’s

equation. Evaluating this term for the solution in the large r regime, one has

∆tµν |r→∞ =
2

`2
0

gµν . (6.26)

When analyzing such asymptotics one has to be careful since even though ε is a small

dimensionless parameter, other quantities like εr/G0 might actually become large at large

radial coordinates. On the other hand, it is clear from (6.20) that the behavior of G(r)

possesses two very different regimes: for εr(1 + M0G0) � G0, it behaves effectively as

a constant G0, while for εr(1 + M0G0) � G0 it falls to zero. To consider this latter

non-standard regime, one performs an expansion of the lapse function (6.21), where the
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smallness parameter is G(r)
G0
� 1. This yields, at first order,

fG�G0(r) ≈
(
r

`0

)2

− 2

3
M0G(r)

=

(
r

`0

)2

− 2

3
M0G0

G0

(1 +M0G0)εr
. (6.27)

where `0 remains arbitrary. We shall use this approximation for the analysis of the next

sections.

6.3.5 Horizon structure

Horizons are crucial for understanding the structure of a black hole. Unfortunately, the

zero of the lapse function (6.21) implies a transcendental equation for r, which can not

be solved analytically. We approach this problem in three different ways: First, we study

the leading corrections with respect to the classical regime (ε small). Second, we focus on

a specific region of parameter space that exhibits a particularly interesting strong scale

dependence effects, namely G(r)/G0 � 1, that display some novel features. Third, those

two approaches are compared with a numerical analysis.

• Expansion in ε � 1: For weak scale dependence one can use the expansion (6.24),

for which one finds the horizon

rh|ε�1 =
√
G0M0`0 − ε`2

0M0(1 +G0M0) +O(ε2). (6.28)

Unfortunately, an analytic result is again limited to order ε. One sees that the scale

dependence tends to decrease the apparent horizon radius.

• Expansion in G(rh)/G0 � 1: from (6.20), Newton’s coupling evaluated at the

horizon will be much smaller than its classical value provided that

εrh(1 +M0G0)� G0 (6.29)

In this limit the horizon can be obtained from (6.27). It is the real root of

r3
h|G(r)/G0�1 ≈

2

3

M0G
2
0`

2
0

(1 +M0G0)ε
. (6.30)

For consistency, this must satisfy (6.29), yielding a condition over the parameters:

M0(1 +M0G0)2ε2`2
0

G0

� 1 (6.31)
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A particularly interesting region of the parameter space is M0G0 →∞. Indeed, the

radius of the horizon converges to a finite value,

r3
h|G(r)/G0�1 &M0G0�1 ≈

2

3

G0`
2
0

ε
(6.32)

for any ε`2
0 > 0, as required by (6.31). We thus see the crucial difference with

its constant-coupling counterpart: for a fixed cosmological constant, the radius of

the horizon remains finite as M0 → ∞. As we show below, this has important

consequences on the thermodynamic properties of the solution (note however that,

as ε → 0, the horizon radius becomes unbounded). In the light of this result one

should keep in mind that M0 is only the mass parameter for the classical solution

and it is not the actual mass of the black hole. However, in the next section we show

that for the particular case when (6.32) is valid, the physical mass indeed diverges

as M0 →∞, and nevertheless the horizon remains at finite constant distance from

the origin.

• Numerical analysis: For given values, the above analytical estimates can be com-

pared with a numerical solution of f(r)
!

= 0. In figure 6.3 the horizon rh is shown

as a function of the classical mass parameter M0.

One observes that for small M0, the horizon is in agreement with the classical result.

Finally, one notes that for very large values of M0 the numerical value of the horizon

saturates at constant rh which is given by the horizontal line in accordance with the

G� G0 approximation (6.30).

6.3.6 Thermodynamics

After having gained knowledge on the horizon structure one can now turn towards the

thermodynamic properties of the solution (6.20-6.22). The temperature of a black hole

with the metric structure (6.19) is given by

T =
1

4π

∂f(r)

∂r

∣∣∣∣
r=rh

. (6.33)

Leaving the horizon radius implicit one finds

T =
1

2πr

G2
0M0

G0 + rε(1 +G0M0)

∣∣∣∣
r=rh

. (6.34)
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Figure 6.3: Apparent black hole horizon rh as a function of M0 for `0 = 5, G0 = 1

and ε = 0.2. The different curves correspond to the classical case (solid red line) the

expansion (6.30) for small G/G0 (long dashed green line) the expansion (6.32) for small

G/G0 and large G0M0 (dotted blue line), and the numerical solution (thick solid black

line). The expansion (6.28) for small ε is not shown since for the given numerical values

it would only be reliable for very small M0 < 0.2. Plot from [42].

Inserting the perturbative value for the horizon radius (6.28) one finds that the O(ε)

corrections to the temperature cancel out and that the leading correction to the classical

temperature enters at order ε2

T |ε�1 =

√
G0M0

2π`0

+O(ε2). (6.35)

The transcendent structure of the solution does not allow to go straight forwardly beyond

this O(ε) approximation. However, in the opposite limit the lapse function becomes

polynomial again, and one can again explore the case considered above, (6.29)-(6.32),

G� G0 and one finds from (6.27) that

T |G�G0 ≈
1

4π

(
18

M0G
2
0

`4
0(1 +G0M0)ε

)1/3

, (6.36)

so in particular, the temperature of the black hole with fixed `0 and M0 →∞ converges

to a constant,

T |G�G0 &G0M0�1 ≈
1

4π

(
18
G0

`4
0ε

)1/3

. (6.37)

for any finite ε, `0. Those analytical results can again be compared to a numerical solution

of (6.34). In figure 6.4 the numerical temperature is shown as a function the parameter
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M0 in comparison to the analytical and classical results. One finds that the temperature

behavior as a function of M0 is actually a rescaled version of the horizon radius in figure

6.3. This is a particularity of the three dimensional case. One further sees that for small

M0, the numerical curve of the new solution approaches the behavior of the classical BTZ

case. However, in the opposite limit of large M0 the temperature of the new solution

saturates at the values given by the approximations (6.36 and 6.37).
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Figure 6.4: Temperature Th as a function of M0 for `0 = 5, G0 = 1, and ε = 0.2. The

different curves correspond to the classical case (thin solid red line), the expansion (6.36)

for small G/G0 (dashed green line), the expansion (6.37) for small G/G0 and large G0M0

(dotted blue line), and the numerical solution (thick solid black line). Plot from [42].

Another window for the understanding the thermodynamic properties of a black hole

is its entropy. As it is well known from Brans-Dicke theory [213–217], the entropy of black

hole solutions in D+ 1 spacetime dimensions with varying Newton’s constant is given by

S =
1

4

∮
r=rh

dD−1x

√
h

G(x)
, (6.38)

where hij is the induced metric at the horizon rh. For the present spherically symmetric

solution this integral is trivial. The induced metric for constant t and r slices is simply

ds = rdφ and moreover G(x) = G(rh) is constant along the horizon. Therefore, the

entropy for this solution is

S =
2πrh

4G(rh)
=

2πrh
4G0

[
1 +

(1 +G0M0)εrh
G0

]
. (6.39)

As expected, the entropy behaves differently in the two regimes highlighted above. Those

two regimes can be addressed by the corresponding approximations ε� 1 or G� G0. For
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very small scale dependence effects (ε � 1) one finds that the O(ε) contribution cancels

out which leaves the classical entropy up to subleading corrections

S|ε�1 =
π

2

√
M0

G0

`0 +O(ε2). (6.40)

This means that for small black holes, the entropy obeys the holographic principle ac-

cording to the Bekenstein-Hawking law. This result can also be read directly from (6.39)

in the limit of (1 +G0M0)εrh � G0.

The opposite limit is more interesting. When (1 + G0M0)εrh � G0 or equivalently

(6.31), namely if the parameters satisfy
M0(1+M0G0)2ε2`20

G0
� 1, the holographic principle

is not satisfied and the dominant contribution to the entropy is proportional to the area

times the radius, as it can again be seen directly from (6.39). This transition from an “area

law” to an “area × radius law” is a very striking consequence of the simple assumption of

allowing for scale dependent couplings. Since our initial input was the condition (6.15),

it would be very interesting to analyze this result in future studies in the context of the

“Quantum Null Energy Conjecture” [218–222]. By insertion of (6.30) into (6.39) one can

obtain the entropy in this limit as

S|G�G0 ≈ π

[
`4

0M
2
0 (1 +M0G0)ε

18G2
0

]1/3

. (6.41)

Please, note that by considering the case where M0G0 � 1, the entropy is linear respect

to the classical Black Hole mass M0, and therefore one has:

S|G�G0 &G0M0�1 ≈ πM0

(
`4

0ε

18G0

)1/3

. (6.42)

Since the entropy (6.39) is directly given from the knowledge of the horizon radius rh it is

straight forward to implement the graphical analysis of the approximations (6.30, 6.32) in

comparison to the numerical result. This is done in figure 6.5. One notes again that the

classical behavior is dominant for small M0, while for large M0 a different scaling behavior

appears, which is given by the approximations (6.41 and 6.42).

Lets now come back to the physical mass of the black hole M . As the discussion above

showed, the classical mass parameter M0 is actually only the mass of the black hole if

G→ G0

M |G→G0 = M0. (6.43)
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Figure 6.5: Entropy as a function of M0 for `0 = 5, G0 = 1, and ε = 0.2. The different

curves correspond to the classical case (thin solid red line), the expansion for small G/G0

(dashed green line), the expansion for small G/G0 and large G0M0 (dotted blue line), and

the numerical solution (thick solid black line). Plot from [42].

In general the physical mass differs from the mass parameter, M 6= M0, but it is a very

difficult task to express it in a closed form. However, for the non-classical regime G� G0

considered above, we posses analytic expressions. What is the actual mass in this regime?

This question can be answered by integrating the thermodynamic relation

dM = TdS, (6.44)

which yields

M −m =
1

4

(
M0 +

1

G0

− 1

3G0

ln(1 +M0G0)

)
(6.45)

where m is a constant of integration independent of M0, irrelevant for these purposes.

This proves the statement claimed earlier, that for fixed values of ε, G0, `0 the limit of

M0 →∞ implies, according to (6.45), that the physical mass diverges as M ∼M0 →∞,

while the horizon converges to the finite value given in (6.32).

6.4 Summary and Conclusion

We have investigate the quantum properties of the BTZ black hole, in the framework of

the asymptotic safety approach. The most prominent feature is that it presents certain

non-standard properties in the limit of very large mass.
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A possible scale dependence of the gravitational coupling introduces an additional

contribution to the stress energy tensor of the generalized field equations (6.8). By im-

posing that the usual “null energy condition” is not modified by this contribution it is

shown that in those cases any stationary solution with spherical symmetry necessarily

follows the “Schwarzschild relation” gtt = −1/grr ≡ f(r). Based on this observation an

exact spherically symmetric black hole solution for three dimensionally gravity with scale

dependent couplings is derived. It is shown that the functional form of f(r), of Newtons

coupling G(r), and of the cosmological coupling `(r) is completely determined by the field

equations. The properties of the solution are analyzed from various perspectives. Par-

ticular attention is dedicated to a meaningful interpretation of the integration constants

which is given in terms of the classical parameters G0, `0, M0 and one additional constant

ε, that parametrizes the strength of scale dependence. Asymptotic spacetimes, horizon

structure, and black hole thermodynamics are discussed in detail. It is found that the

large r asymptotic is AdS3 and that the r → 0 asymptotic has a singular behavior. It is

found that for fixed values of ε, G0, `0 the horizon radius saturates for M0 →∞ to a finite

value given by (6.32). Although M0 is not equal to the physical mass of the black hole in

general, in the limit of G� G0 &G0M0 � 1 the physical mass M grows without bound

as M0 →∞, while the radius of the horizon still converges to (6.32). The analysis of the

thermodynamics showed another novel result. Whereas for small black holes, the usual

“area law” holds up to order O(ε), the opposite limit (which occurs when G(r) deviates

strongly from G0) follows an “area × radius law”. This apparent deviation from the holo-

graphic principle is probably the most interesting feature of this new black hole solution

with scale dependent couplings. Finally, it would be interesting to understand this point

further, since it appears that black holes with varying couplings have more entropy - and

therefore more quantum microstates - than their constant coupling counterparts.
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Chapter 7

Outlook

In this section we end by making more precise some further directions that we suggested

in the main text.

7.1 Holographic Renyi entropies

We showed some applications of the holographic Renyi entropies to understand the phase

diagram of semiclassical gravity in AdS spaces. One of the most interesting directions

is to explore how the constraints coming from information theory determine some gen-

eral properties of the phase diagram. It is well known that Renyi entropies satisfy the

inequalities

Sn ≥ 0

∂nSn ≤ 0

∂n

(
n− 1

n
Sn

)
≥ 0

∂n ((n− 1)Sn) ≥ 0

∂2
n ((n− 1)Sn) ≤ 0

Do these properties tell us some general lesson about the nature and existence of the

HP transition? Does the HP transition disappear at any point? And if so, how does that

occur? Is there any second order transition?

It would also be interesting to study in more detail the approximations involved in

the torus partition function and go beyond the first order expansion, to see if the results
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suggested by the naive extrapolation of our equations actually hold or not.

A particularly interesting direction is to understand the possibility of defining Renyi

entropies in classical GR without AdS/CFT. This would indeed be very exciting, since

it could find much more realistic applications within asymptotically flat or de Sitter

spacetimes. The main difficulty to be overcome is to understand how to perform the

replica trick in the bulk, without doing reference to the conformal boundary.

7.2 Higher spin black holes

We showed that already the spin-4 black hole has an intricate grand canonical phase

diagram. At this level, an obvious question that we did not address was the exact meaning

of the second order phase transition. As we know, this implies the emergence of an extra

Virasoro symmetry that does not come from the original CFT symmetry but rather from

a fine tuning of the potentials. On the other hand, we should also study the partition

function of the higher spin CFT directly in order to exhibit, in the c � 1 regime, the

same phase transitions. Moreover, the HP higher spin transition should appear as the

natural generalisation of the modular invariance of the higher spin partition function.

More generally, it would be very interesting to perform the same systematic analysis

that we did but for the algebra hs[λ] instead of sl(4). In the case of sl(2N), we expect

to find phase transitions up to order N . Understanding the physics of these black holes

would be very exciting.

7.3 Holographic complexity

We showed how holographic subregion complexity can be understood from its topological

properties in AdS3. It would be very interesting to further pursue the connection with

compression algorithms, in particular in relation to Shannon’s source coding theorem, and

Schumacher’s quantum version of it. These theorems give an estimate on the size of the

compressed ‘file’ in terms of the original source, but they don not directly give a measure

of how complex it is to actually perform the compression.

Although we showed a clear connection between the bulk AdS volume and the number

of gates in the MERA network, this line requires further investigation. Indeed, the discrete
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nature of MERA puts a limit on how close one can get with this proposal. It should be

studied if better results can be achieved by using other networks, for instance the HaPPY

code [223] or related graphs.

Our results concerning the Random tensor network approach leave a quite intriguing

possible direction. We showed that volume complexity can be mapped to the magnetisa-

tion of the Ising model in the bulk. However, we only studied the c → ∞ limit of this

relation. However, it has been conjectured that the saturation of the growth of complexity

should come from quantum fluctuations of the slice as it probes the region close to the sin-

gularity for a long time. This could be an analogue to the Faulkner-Lewkowycz-Maldacena

result for the subleading terms in the holographic entanglement entropy,

Sboundary =
〈A〉
4G

+ Sbulk +O(G) (7.1)

Therefore, a more in-depth analysis of the finite temperature magnetisation of the spin

system could shed some light on this fascinating question.

7.4 Black holes with running couplings

We exhibited the properties of black hole spacetimes in which G and Λ are allowed to have

spacetime variations. A very important future work concerns checking how this approach

contrasts with other quantum gravity results, namely AdS/CFT.

Also from the purely Asymptotic safety perspective, we should investigate how do our

exact solutions relate to the scale-setting proposals present in the literature. Moreover,

even without scale-setting, how do our black holes fit in the bigger picture of Einstein

truncation? Since the RG flows are known, do these constrain in any way our solutions?

7.5 Further thoughts

In this these we have presented several aspects of the quantum properties of black holes

in AdS3.

As we saw, higher spin theories in lower dimensions exhibit a very interesting struc-

ture. Either we detect higher spin particles experimentally or not, this subject is a very

interesting one to explore. If we do detect them in the near future, then there’s no need
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to explain the importance of this analysis. But even if experimental physics would rule

them out in some way, it would still be of fundamental importance to understand exactly

why is this the case in our universe.

One of the main lessons of this thesis is to acknowledge the great relevance that

quantum information theory concepts have developed in recent years. Although until

now the community has focused mostly in bipartite entanglement (mainly entanglement

entropies), it is remains an open question to understand more sophisticated measures of

entanglement on the boundary CFT and how are they related to the geometry in the

bulk. As we saw, another concept new in holography and even classical gravity has been

that of computational complexity. This remains largely an unexplored territory, even in

QFT, where progress has just started to appear very recently, and only for non interacting

theories. Moreover, it seems that Renyi entropies could have a much more important role

to play, even in classical gravity. Generalising the classical theorems by Hawking and

Penrose to their Renyi versions would be a fascinating area to explore. Certainly, one

of the most interesting developments to follow in the next years will be this connection

between quantum information and gravity.

Finally, the case for a possible UV completion of quantum gravity via a non-trivial

fixed point is a possibility that should definitely be investigated further. If correct, this

would point high energy physics and quantum gravity in a very different direction as has

been the mainstream stringy-oriented fashion in the last decades.
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Appendix A

Generalising sl(N,R): the hs[λ]

algebra

In this Appendix we summarise the construction of the hs[λ] algebra. Recall that this was

relevant in the AdS3/CFT2 higher spin duality of Chapter 4. We follow the discussion by

Mathias Gaberdiel presented at the ICTS Advanced Strings School 2015 [224].

As we already previewed, the HS theory on the gravity side is supposed to be con-

structed in terms of a very particular algebra called hs[λ]. We are all familiar with sl(N)

when N is a natural number: in the fundamental representation, this algebra contains

the set of all N ×N matrices of unit determinant. Is there a way to generalise this notion

to continuum real values of λ = N?

In order to understand this algebra one must first introduce the notion of an associative

algebra. This will be defined as

U(sl(2))

〈C2 − 1
4
(λ2 − 1)1〉 (A.1)

Here U(sl(2)) stands for the universal enveloping algebra of sl(2). This is quotiented by

the Casimir squared. Let us go step by step explaining the ingredients.

We start from the familiar sl(2): we can represent the algebra by the three generators

L±, L0 already introduced in 4.21.

In rough terms, the idea of a universal enveloping algebra is the following. Starting

from a Lie algebra g (in this case sl(2)), we can construct an auxiliary associative alge-

bra A such that the symplectic operation of the bracket in g corresponds simply to the
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commutator xy− yx in A. Although in general there are many ways to perform this em-

bedding, there exist a ‘largest’ A, and this is defined as the universal enveloping algebra

of g. One important point is that, in A, the elements corresponding to the basis in g

(i.e. the elements associated to the three generators L0,±) satisfy the same commutation

relations as the algebra does, but no other relations. What does this mean?

A neat way of describing the associative algebra is in terms of ‘words’. In the example

of sl(2), the associative algebra will be composed of all the ‘words’ that one could write

down using only three letters: L0, L+, L−. Suppose we call these letters A,B,C respec-

tively. Then, consider the set of words of arbitrary length, e.g. A,BB,CBAACAC . . ..

Next we use the commutation relations between the letters to bring any word to an canon-

ical form, where all the A’s go first, then all B’s and then all C’s. Then, one can associate

two words by simple placing one after the other, and bringing it again into the canonical

form.

The phrase above saying that in the enveloping algebra the letters satisfy no ‘extra’

relations means that, we cannot construct the enveloping algebra from the explicit genera-

tors L0,± since they will obey some other unwanted relations. For example, L2
0, L

4
0, . . . ∼ 1,

but we do not want the words AA,AAAA, . . . to collapse to the empty word! We wish

to keep them as non trivial independent words. This implies that the enveloping algebra

cannot be constructed simply using the elements of the original algebra, hence the idea

of constructing ‘words’. Operating in this way one can construct a (infinite) list of all

possible words.

Finally there’s the quotient by the Casimir. This simply means that, whenever we

encounter a string of letters corresponding to the Casimir (which for sl(2) is the well

known total angular momentum operator L2
0 − 1

2
(J+J− + J−J+)), we replace it by λ2−1

4
.

Why would the number λ matter, if its multiplying an identity? That’s because it will

not in general appear as a global factor but rather as a relative factor between different

words that are being identified. So different λ’s will not change the vector space but they

will change the commutators between elements.

In this way we get an infinite set of elements which serve as a basis for U(sl(2)). Any

arbitrary unordered word can be written as linear combination of these basis vectors.

Moreover, this algebra is equipped with a commutator and a multiplication of elements,
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which is simply concatenating and ordering. Here’s a list of the first few elements,

# of letters words # of elements

0 1 1

1 A,B,C 3

2 AA,AB,AC,CC,BC,BB 5
...

How does hs[λ] emerge from this construction? It turns out that every time we have

an associative Lie algebra, we can construct a Lie algebra out of it: define the commutator

in the Lie algebra as the commutator but evaluate it in the associative algebra. For sl(2),

the Lie algebra constructed in this way takes the form of a direct sum,

C ⊕ hs[λ] (A.2)

The first term is a the trivial algebra corresponding to the subspace of ‘no word’. All the

rest, that is, the Lie algebra that is constructed by taking all non-trivial words and their

commutators (evaluated in the associative algebra) is known as the hs[λ] algebra!

So finally: what is the relation between hs[λ] and sl(N)? Let us avoid very long

formulas and state the result. One can compute the commutators of words of any length

with other words of any other length, and write the result in the basis of hs[λ]. Now, and

this is the key point, the values of the commutators depend on the value of λ as mentioned

before. And in the case that λ is a natural number, many cancellations occur that produce

the emergence of an ideal (a subspace such that the commutator of anyone else with

someone in that subspace belongs to the subspace). More concretely, for λ = N ∈ N, all

generators with at least N letters form an ideal: their commutators with any generator

with strictly less than N letters contains only words with at least N letters. But whenever

we have a Lie algebra containing an ideal, we can quotient out that ideal to produce a

subalgebra. For λ = N , this subalgebra is precisely sl(N)!

For example, for λ = 2, all words with two or more letters become an ideal; once we

get rid of the ideal we are simply left with the three 1-letter words: that is precisely sl(2)!

For λ = 3, all words with at least three letters form an ideal that we quotient out, and

we are left with the three 1-letter words plus the five 2-letter words: together, they form

sl(3). An so on.
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