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Abstract Gauge theories with general covariance are par-
ticularly reluctant to quantization. We discuss the example of
the Hamiltonian formulation of the relativistic point particle
that, despite its apparent simplicity, is of crucial importance
since a number of point particle systems can be cast into
this form on a higher dimensional Rindler background, as
recently pointed out by Hojman. It is shown that this sys-
tem can be equipped with a hidden local, symmetry gen-
erating, constraint which on the one hand does not bother
the classical evolution and on the other hand simplifies the
realization of the path integral quantization. Even though the
positive impact of the hidden symmetry is more evident in
the Lagrangian version of the theory, it is still present through
the suggested Hamiltonian constraint.
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1 Introduction

Symmetries have been the guiding principle of theoretical
physics throughout centuries. In particular local symmetries
have shown to be particularly useful for the description of
fundamental interactions. The description of all four known
forces of nature: electromagnetism, weak interaction, strong
interaction, and gravitation have been cast in this language.
However, the last member of this illustrious list poses serious
problems, when it comes to a quantum formulation of gravity.
Numerous attempts have been made to solve the problem
but, up to now, no conclusion could be reached (see [1,2]
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for a review). Clearly, one needs to better understand the
quantization of this theory, based on a particularly beautiful
and complicated symmetry called general covariance. Since
the rich structure of the full gravitational covariant system
appears to be too complicated to tackle the problem directly,
it seems instead that a wiser strategy is to learn more about
general covariance in simpler systems.

Probably, the simplest system with general covariance is
the relativistic point particle (RPP) [3–8]. Even though the
quantization of the RPP was achieved in the Hamiltonian
version of this theory, attempts to quantize the Lagrangian
version of the action of the relativistic point particle

S =
∫

dλ

√
dxμ

dλ

dxμ

dλ
(1)

lead to deep problems and inconsistencies. A Lagrangian
action is most naturally quantized in a path integral (PI)
approach, so in what follows we shall refer to this quanti-
zation method. The attitudes towards this problem that can
be found in the literature are:

(a) declare the Lagrangian action (1) to be wrong or at least
inadequate for the purpose of quantization, and stick to
the Hamiltonian version. This Hamiltonian version of
the action was first formulated in [6,9,10];

(b) stick to the straight forward PI quantization of (1) and
try to tackle the arising problems by a re-definition of the
usual interpretation of probability, the super-probability
[11,12];

(c) study the system on special manifolds [13] or use approx-
imations [7,8];

(d) realize that the action has a hidden symmetry, which,
when factored out of the PI solves the inconsistencies
and the quantization works just fine, giving the expected
results. The factorization was shown to work in a formal
Fadeev Popov construction [14] and in a purely geomet-
rical approach [15].
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Clearly the option (d) is the most favorable solution, due to
its straightforward conceptual interpretation and its effective-
ness at yielding the correct answers. The key point of this
solution was that it treated two paths which are connected
by the symmetry of local velocity rotations as physically
equivalent. Geometrically this symmetry transformation will
turn out to deform virtual paths orthogonal to the instanta-
neous momentum under the condition to keep the total action
S > Scl of this path constant. Factoring out those paths from
the naive PI calculation solved the aforementioned patholo-
gies. When one tries to connect this astonishing result with
the PI quantization of the corresponding Hamiltonian system,
several questions arise:

Is there a corresponding additional symmetry in the
Hamiltonian system? If it exists, can this additional sym-
metry be written in terms of a (local) constraint? If this can
be done, how does this constrain affect the PI construction
of the Hamiltonian system?

On the following pages, those questions will be answered.
The paper is organized as follows: We first start with a thor-
ough discussion of the different criteria that a Hamiltonian
formulation of the path integral for the RPP must meet, in
order to capture the symmetries involved. Then, we discuss
the consequences of treating a Hamiltonian formulation that
does not take into account the hidden symmetry. Finally,
we propose an ansatz to involve this symmetry explicitly
in the action, via a suitable constraint and a corresponding
Lagrange multiplier. Moreover, by explicit calculation of the
path integral, we show that this constraint does indeed allow
us to recover the correct result for the RPP propagator. At
last, we present the conclusions and possible extensions of
our formulation to other physical systems of current interest.

2 Hamiltonian PI for the RPP

The aim is to formulate a Hamiltionian theory for the rela-
tivistic point particle that meets several criteria.

Let us summarize those in the following table, where the
central column describes the criteria and the right column the
motivation.

2.1 Hamiltonian without hidden symmetry: summary

The usual Hamiltonian action of the RPP is

S[x, p, n] =
∫ t f

t1
dt

[
ẋ · p − n(p2 − m2)

]
, (2)

where xμ is the position variable, pμ is the momentum vari-
able, and n is the Lagrange multiplier imposing the Hamil-
tonian constraint

H0 = φ = p2 − m2. (3)

Let’s summarize the most important properties of this action.
It is invariant under global transformations xμ → xμ + ξμ,
where ξμ is a constant. It is further invariant under the local
transformations generated by (3)

δxμ(λ) =
{
xμ(λ),

∫
dλ′ε(λ′)φ(λ′)

}
= 2ε(λ)pμ(λ), (4)

where the canonical Poisson bracket
{
xμ(λ), pν(λ

′)
} =

δ
μ
ν δ(λ − λ′) was used. The classical equations of motion

for (2) are

ṗμ = 0, (5)

ẋμ = 2npμ, (6)

p2 − m2 = 0. (7)

The path integral over (2) that defines the propagator

〈xμ
f − xμ

1 〉 =
∫ x(t f )=x f

x(t1)=x1

D[x(t)]D[p(t)]D[n(t)]ei S[x,p,n]

(8)

can be obtained from a straight forward calculation. Time
discretization is performed as usual over F-intervals, such
that ε = (t f − t1)/F is the size of each time-slice. Hence,
for t j = t1 + ( j −1)ε, (1 ≤ j ≤ F), the discrete coordinates
x(t j ) → x j , and momenta p(t j ) → p j , with fixed coordi-
nates at the ends x(t1) → x1 and x(t f ) → x f , respectively.

Similarly, the integration measure over paths becomes, in
the discretised form

D[x(t)]D[p(t)]D[n(t)] →
F−1∏
j=2

dd x j

F∏
j=1

dd p j dn j . (9)

For example, one can perform the
∫
dd x j integrals first,

which give delta functions in momenta, of the form δd (pμ
j+1−

pμ
j ). These delta functions allow to perform all the momenta

integrals
∫
dd p j , except for the final one. The integrals over

the Lagrange multipliers of the constraint
∫
dn j , would give

a delta function δ(p2
j −m2) each. In order to avoid this piling

up of delta functions, one fixes all but one n j , thus giving the
expected propagator

〈xμ
f − xμ

1 〉 = N
∫

dd pF e−i(x f −x1)·pF δ(p2
F − m2). (10)

2.2 Ansatz for the constraint

As listed above, one wants a constraint which reflects the
velocity rotations in the Lagrangian picture. Since velocity
is a vector, a scalar constraint is insufficient. One needs at
least a vector or tensor for this task. Further, in the equations
of motion (5–7) the velocity is associated to the momen-
tum, thus one might first attempt to formulate a constraint
which transforms the momenta pμ. In order to transform the
momenta with a Poisson bracket with φμ, one needs this
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Table 1 Summary of different criteria and corresponding motivation for symmetry-related constraints in the Hamiltonian formulation

Criterium Motivation

(1) The Hamiltonian action includes an additional constraint φμ

that reflects the local velocity rotations symmetry discussed
in the Lagrangian formulation

This is imposed because the original motivation is to find the
meaning of the local velocity rotations in the Hamiltonian
picture

(2) The constraint φμ generates local symmetry transformation of
the action

A local symmetry is needed in order to justify a later
factorization from the PI, similar to the known redundant
gauge configurations

(3) The equations of motion are in agreement with the classical
equations of the RPP

Only if the systems are classically equivalent, one is still
solving the same problem one was up for in the first place,
namely the quantization of the RPP

(4) The PI of the additional constraint can be done and the result
does not modify the expected Klein Gordon propagator

The factorization of the new symmetry is meant to act as
improvement of the naive PI approach and thus should not
introduce modifications where this naive approach already
works

constraint to depend on the positions φμ = φμ(x). How-
ever, when working out the equations of motion and alge-
bra, it becomes clear that such a position dependent con-
straint would have to be non-local in the position variables.
This can be done, but we prefer to avoid the problems that
come along with non-locality, and hence we search for a con-
straint that is local in momentum space but independent of
xν , namely φμ = φμ(p). Still a change in the momentum
can be achieved but in a different way, as will be seen.

The action with the new constraint is then

S[x, p, n, N ] =
∫ t f

t1
dt

[
ẋ · p − n(p2 − m2) − Nμφμ

]
.

(11)

Here, we propose

φμ = ẋμ

(
δH0

δp

)2

−
(

δH0

δp

)μ (
ẋ ·

(
δH0

δp

))

= ẋμ p2 − pμ(ẋ · p), (12)

where Nμ is the new Lagrange multiplier function that must
vanish at the endpoints and H0 = φ is the usual Hamiltonian
constraint.

Notice that the second constraint term in the action
Eq. (11) can also be written

Nμφμ = ẋμφ̂μ, (13)

where we have defined

φ̂μ = Nμ p2 − pμ(N · p). (14)

This second form of the constraint has the useful prop-
erty that it is by construction orthogonal to the momentum,
namely

pμφ̂μ = 0, (15)

which will lead to very useful simplifications as discussed in
the next section.

2.3 Equations of motion

One can derive the equations of motion for this system in the
variables xμ, pμ, and Nμ. Then, we find that Nμ ∼ pμ and
thus that the equations of motion are equivalent to the usual
ones.1 This can be seen more elegantly if one notes that pμ is
not the canonical momentum πμ any more since introducing
(14) gives

πμ = pμ − φ̂μ. (16)

This is the change in the momentum variable we have been
seeking. Thus, in order to derive the equations of motion
for the system with πμ, one would like to rewrite the whole
action in terms of πμ instead of pμ. By using (15) and (16),
one finds that

p2 = π2 − φ̂2 = π2 − p2Nμφ̂μ. (17)

Let us now reformulate the constraint Eq. (14) in terms of the
new canonical momenta πμ, by considering the expression
in the action:

Nμφ̂μ = N 2 p2 − (N · p)2

= Nμ

[
Nμπ2 − (N · π)πμ

]

−φ̂μ
[
N 2φ̂μ − Nμ(N · φ̂) − 2(N · π)Nμ

]
.

(18)

While the first term represents the original constraint expre-
ssed in terms of the new canonical momenta, the second
term is clearly proportional to φ̂μ and can be reabsorbed
into thedefinition of the Lagrange multiplier Nμ by a trivial

1 It is important to realize that this classical reduction to the usual
equations of motion fails for the non-relativistic theory, because in this
theory the classical relation between ẋ and p is fixed and an arbitary N
which is just proportional to p would break this relation.
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shift. Therefore, after shifting and rescaling Nμ → Ñμ =
Nμ

√
np2 , the action (11) can be written as

S[x, π, n, Ñ ] =
∫ t f

t1
dt

[
ẋ · π − n(π2 − m2) − Ñ · φ̃

]
,

(19)

where

φ̃μ = Ñμπ2 − πμ(Ñ · π). (20)

After a variation with respect to δxμ, δπμ, δn, and δ Ñμ, the
equations of motion are respectively

π̇μ = 0, (21)

ẋμ = 2nπμ + 2(πμ Ñ 2 − Ñμ(Ñ · π)), (22)

π2 − m2 = 0, (23)

φ̃μ = 0 = Ñμπ2 − πμ(Ñ · π). (24)

Note that, in order to compare this with (5–7), one should
now relabel πμ → pμ. One notes then, that the equations
(5) and (7) are unchanged with respect to (21) and (23). The
equation (22) acquired an additional term with respect to (6).
However, this modification vanishes on-shell due to the new
equation (24), which forces Ñμ to be parallel to φ̃μ. Thus,
the extended action (19) is equivalent to the action (2) at
the classical level. Also all classical symmetries of (2) are
present in (19), just as required.

We remark that the introduction of the new constraint φ̃μ,
Eq.(20) does not affect the classical dynamics of the rela-
tivistic point particle, since after Eqs. (23) and (24), we solve

Ñμ = Ñ · π

m2 πμ. (25)

Substituted into Eq. (23), yields

ẋμ = 2nπμ, (26)

that leaves the usual time-reparametrization λ = 2nx0 as
the only degree of freedom to be fixed, to recover the usual
classical dynamics

dxμ

dλ
= πμ,

d2xμ

dλ2 = dπμ

dλ
= 0. (27)

2.4 The algebra of local transformations

The term φ̃ = Ñμ · φ̃μ generates local transformations. The
algebra (with ∂/∂π i instead of ∂/∂pi ) is simply
{
φ̃(t), φ̃(t ′)

}
= 0. (28)

Canonical momenta are unchanged under this constraint
{
πμ(t), φ̃(t ′)

}
= 0, (29)

but it generates a local transformation of the position vari-
ables

δxμ =
{
xμ(t),

∫ t f

t1
dt ′φ̃(t ′)

}
= 2(Ñ 2πμ − (Ñ · π)Nμ).

(30)

One realizes that this transformation is orthogonal to the
instantaneous momentum direction

δx · π = 0. (31)

Thus, δxμ reflects the spirit of the velocity rotations in the
Lagrangian formulation [14,15]. The constraint further gen-
erates a variation of the action

δφ̃S =
∫ t f

t1
dt

[
δ(ẋ · π) − δφ̃

]

=
∫ t f

t1
dt

[
d

dt

(
Ñ 2π2 − (Ñ · π)2

)

−2(Ñ · (
˙̃N + δ Ñ ))π2 + 2(Ñ · π)((

˙̃N + δ Ñ ) · π)

]
.

(32)

This variation reduces to a boundary term if the Lagrange
multiplier transforms as

δ Ñμ = − ˙̃Nμ. (33)

Thus, φ̃ generates a local symmetry of the action S.

2.5 Path integral

For the PI one uses Nμ without rescaling, which in the dis-
cretized version reads

S[xμ, πν, n, Nα] =
F∑

i=1

ε
(

(πi · (xi+1 − xi )) /ε

−ni (π
2
i − m2) − niπ

2
i (Ni · φi )

)
.

(34)

The functional integrals are∫
Dx = Π F−1

i=2

∫
dd xi (35)

∫
Dπ = Π F

i=1

∫
ddπi (36)

∫
Dn = Π F

i=1

∫
dni (37)

∫
DN = Π F−1

i=1

∫
dd−1No,i · Ωi . (38)

Here, we have split the vectors Nμ
i into a part orthogonal to

π
μ
i and a part parallel to π

μ
i

Nμ
i = Nμ

o,i + Nμ
i,||. (39)
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Clearly, in the PI one should only integrate over the orthogo-
nal part Nμ

o,i , since the parallel part does not contribute to the
action (19). The properly chosen measure for this integration∫
dd−1No,i is Ωi . Note that this adjustment of the measure is

not unusual, since it is known that canonical transformations,
similar to those generated by Nμ

o,i , can result in a change of
the path integral measure [16–18].

As mentioned after (11) we further impose that the
final Nμ

o,F = 0. Let us perform the integrals (35–38)
blockwise for each time step. The first block contains∫
dd x2

∫
ddπ1

∫
dn1

∫
dd−1N1Ω1 which will now be inte-

grated in the same order

〈xμ
f − xμ

1 〉 =
(∫

dd x2

∫
ddπ1

∫
dn1

∫
dd−1No,1

)

·ei
[
((x2−x1)·(π2−π1))−εn1(π

2
1 (1+N2

1 )−m2)
]
. . . .

(40)

Now, integrating over
∫
dd x2 gives a δ-function in πμ, which

can be used to integrate
∫
ddπ1. Then integrating in

∫
dn1

gives another δ-function

δ(π2
2 (1 + N 2

o,1) − m2), (41)

which can be used to evaluate the “radial” part of the∫
dd−1No,1 integral (the angular part is just normalization).

For a proper choice of the measure Ω1, all integrals in this
set have canceled each other and the contribution is just a
multiplicative one. This procedure continues until the final
integrals, which have no

∫
dd xF and no

∫
dd−1No,F , and

which thus read

〈xμ
f − xμ

1 〉 = N ′ ·
∫

ddπF

∫
dnF e−i

(
(x f −x1)·pF−εnF (π2

F−m2)
)

= N
∫

ddπF e−i((x f −x1)·πF) δ(π2
F − m2), (42)

where N ′ and N are just normalization constants. This is the
desired usual result (10).

It is very interesting to note, that in this PI construction
the integrals of the two constraints canceled each other and
thus, we did not even have to fix some gauges explicitly as in
the usual case. This non-trivial impact on the PI formulation
gives further evidence, that the new constraint, even though
“hidden” at the classical level, is not “trivial” at the level of
the quantum mechanical path integral formulation.

3 Discussion summary and outlook

We have presented a new constraint (12) for the RPP and
shown that it reflects all the nice features demanded in table 1.
In particular, it generates a non-trivial local symmetry of the
action without altering the classical equations of motion of
the system. This new PI formulation worked out in a straight

forward way. Based on our results, we can conclude that the
local symmetry of the Lagrangian version of the RPP action
(1), which was discussed in [14,15] can also be implement
in the Hamiltonian version (19).

In the discussion of constraints, it is a useful exercise to
count the degrees of freedom. For the symmetry presented
in this paper, this discussion has to be differentiated between
classical paths S = Scl and quantum paths S > Scl . For the
former it has been shown that the additional constraints are
ineffective, leaving the usual degrees of freedom of a rela-
tivistic point particle. For the latter, however, the constraints
become effective. In this case, three of the four conditions
are independent, reducing the degrees of freedom for a given
action S to zero. As shown in Sect. 2.5, this leaves, after
applying the constraints, only one integral corresponding to∫
dS itself for the path integral.
This seems to be a very isolated result, only valid for a

very particular system with general covariance. However, as
recently shown by Hojman, there is a very large class of point
particle systems which can be cast in the form of the free RPP
which is living on a higher dimensional Rindler background
[19,20]. Thus, we believe that our results might be appli-
cable to a much larger class of problems. Further, it would
be interesting to explore certain similarities of the presented
constraint with constraints imposed in delta-theories such
as delta gravity [21]. Finally, our result encourages further
investigation on more complicated covariant systems such
as quantum cosmology [22] or ultimately quantum gravity
in the canonical formulation [23] analogous to (2/19).
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