PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
SCHOOL OF ENGINEERING

BUILDING A QUERY LANGUAGE FOR
THE WEB OF DATA: EFFICIENCY IN AN
OPEN WORLD

MARTIN I. UGARTE C.

Thesis submitted to the Office of Graduate Studies
in partial fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Advisor:

MARCELO ARENAS S.

Santiago de Chile, September, 2015

(© 2015, MARTIN UGARTE CARABALL

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
SCHOOL OF ENGINEERING

BUILDING A QUERY LANGUAGE FOR
THE WEB OF DATA: EFFICIENCY IN AN
OPEN WORLD

MARTIN I. UGARTE C.

Members of the Committee:

MARCELO ARENAS S.
CLAUDIO GUTIERREZ
JORGE PEREZ R.
JORGE BAIER A.
OSCAR CORCHO G.
JORGE VASQUEZ

Thesis submitted to the Office of Graduate Studies
in partial fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Santiago de Chile, September, 2015

© 2015, MARTIN UGARTE CARABALL

il

To those who stand against

intellectual property

ACKNOWLEDGEMENTS

I would like to thank, in no particular order:

Marcelo, for being a great advisor and an even better person. For taking the time to discuss
every time I stopped by his office and for patiently listening to my (not always good) ideas.
There is absolutely nothing bad I could say about my experience as his student, and I'm

sincerely grateful for everything he has done for me.

Juan Reutter and Jorge Baier, for always taking the time to listen, think and provide the

right advise. Was it about beer, logics or human beings.

Soledad, for her immense affection and invaluable administrative help. My experience as

a graduate student was really pleasant because of her.
Luis Dissett, for showing me a discrete path in a world of continuum.

Felipe, Benjamin and Raimundo, the former brightest students in my class and today my

friends, for believing in me and taking the time to develop ideas together.
Everyone at CSWR, the most cheerful research group I have ever come across.

Diego, Ignacio B., Anibal and Ignacio R., for sharing with me their enlightening lives and

thoughts. They are men of my own heart.

The great “boys and girls”, for being the best (and most stupid) group of friends that I

could have ever asked for.
Pedro, José, Jaime and their families, for always considering me as one of their own.

Alejandra, for sharing with me her love and joy during these years. For always having

time for me and for her support in everything I do.

My parents, my good brother, my sister and my little sister, for their unconditional love

and support. Without a doubt you are the best family. This work is for you.

My doctoral studies were partially funded by CONICYT Doctorate’s scholarship CONICYT-PCHA -
21120368 and the Millennium Nucleus Center for Semantic Web Research under Grant NC120004.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e iii
LISTOF TABLES s vi
LISTOFFIGURES o e vii
RESUMEN e viii
ABSTRACT e X
1. INTRODUCTION s e 1
1.1. The SemanticWeb 1
1.2. Accessibility and performance 3
1.3. Incomplete information 4
1.4. Learning from relational databases 6
1.5. Hypothesisandgoals 8
1.6. Summary of contributions oL oL 9
1.6.1. Well-designed graph patterns 9
1.6.2. A framework for the study of weak-monotonicity 9
1.6.3. Maximal answersin SPARQL 10
1.6.4. Monotonicity and CONSTRUCT queries 11
1.6.5. Computational complexity 11

2. PRELIMINARIES 13
2.1. RDF . . e 13
2.2, SPARQL syntax o i e 14
2.3. Semanticsof SPARQL o 16

3. INCOMPLETE INFORMATION IN THE SEMANTICWEB 19
3.1. The Open-World Assumptionin SPARQL 19

v

3.2. SPARQL and incomplete information 21

3.3. Well-designed graph patterns and weak-monotonicity 23
4. SYNTAX VERSUS SEMANTICS IN FIRST-ORDER LOGIC 27
4.1. Interpolation and preservation theorems 27
4.2. Lyndon’s interpolation and positive formulas 28
4.3. Otto’s interpolation and the L.os-Tarski preservation theorem 31
4.4. Preservation theorems and finite models 34
5. INTERPOLATION APPLIED TO WEAK-MONOTONICITY 36
5.1. From SPARQL to First-Order Logic 36
5.2. From existential positive FOto SPARQL 46
6. SYNTACTIC CHARACTERIZATIONS IN SPARQL 53
6.1. Removing subsumption: the NS operator 53
6.2. Simple patterns and subsumption-free patterns 55
6.3. Weak-monotonicity and ns-patterns 59
7. A LANGUAGE PRODUCING RDFGRAPHS 62
7.1. RDF graphs as input, mappings asoutput 62
7.2. Formalizing CONSTRUCT queries 65
7.3. Monotonicity and the open-world assumption 66
7.4. Well-designed CONSTRUCT queries 75
8. COMPUTATIONAL COMPLEXITY 80
8.1. Complexity Classes v i v i ittt e 80
8.2. Complexity of simple patterns, 81
8.3. Complexity of ns-patterns 84
8.4. Complexity of c-queries Lo 90
9. CONCLUSIONS AND FUTUREWORK 93
REFERENCES o 95

2.1

7.1
7.2

LIST OF TABLES

Tabular representation of an RDF dataset. All resources can be mentioned as

subjects, predicates or objects. oL 14

Tabular representation of mappings in the answer to a graph pattern. 63

Answers to the graph pattern of a c-query. The variable ?p occurs in all mappings

but is never mentioned in the template. L. 66

vi

1.1

2.1

2.2

3.1

7.1
7.2

LIST OF FIGURES

The Semantic Web Stack. SPARQL is recognized as a key element for accessing
datastoredasRDE. o 3
Graph representation of an RDF dataset. Each edge starts on a node s, passes
close to a node p, and points to a node o, representing the triple (s, p,0). . . . 14
The evaluation of a SPARQL graph patterns starts with the evaluation of triple
Patterns. e e e e e e e e 18
Graph (b) matches optional information that is not matched by graph (a) when
evaluating (?X, was_born_in, Chile) OPT (?X, email,?Y). 20
An RDF graph containing information about academic staff. 63
An RDF graph representing mappings from Table 7.1. This representation is

more concise, and the structure itself relates the mentioned resources. 64

vii

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
ESCUELA DE INGENIERIA

CONSTRUYENDO UN LENGUAJE DE CONSULTAS PARA LA
WEB DE DATOS: EFICIENCIA EN UN MUNDO ABIERTO

Tesis enviada a la Direccién de Postgrado en cumplimiento parcial de los requisitos para
el grado de Doctor en Ciencias de la Ingenieria

MARTIN IGNACIO UGARTE CARABALL

RESUMEN

Al consultar bases de datos incompletas es importante tener la posibilidad de
extender los resultados cuando hay informacion adicional disponible. Esta funcionalidad
ha sido ampliamente adoptada para consultar la Web Semantica, dado que la
informacién en la Web es inherentemente incompleta. Desafortunadamente, la
implementacién de esta funcionalidad en SPARQL, el lenguaje recomendado por el
World Wide Web Consotrium (W3C) para consultar datos en la Semantic Web, trae
consigo algunos efectos negativos. Dos de los mas importantes son un incremento en la
complejidad de evaluar consultas, y un conflicto entre SPARQL y el supuesto de mundo
abierto. Diferentes caminos han sido tomados para arreglar estos problemas, de los
cuales el mas adoptado ha sido restringir SPARQL a patrones bien-diseriados. Sin
embargo, aun sigue abierto el problema de determinar si éste es el enfoque correcto en

términos de complejidad de evaluacién y poder expresivo.

El punto de partida de esta tesis el estudio de las propiedades fundamentales que

debiese satisfacer un lenguaje de consultas para la Web Semantica, en particular

considerando que la informacién es incompleta. Para esto, investigamos las técnicas que

viii

han sido desarrolladas en la légica de primer orden para caracterizar sintécticamente
propiedades semanticas. Luego presentamos un marco tedrico que nos permite aplicar
estas técnicas al caso de SPARQL, definiendo lenguajes que resultan naturales para
capturar las propiedades deseadas. También estudiamos las propiedades computacionales

de estos lenguajes para entender su aplicabilidad en implementaciones del mundo real.

Lo primero que hacemos es mostrar que los enfoques adoptados anteriormente no
son suficientes para conciliar la seméntica de SPARQL con el hecho de que la
informacioén en la Web es incompleta. Luego definimos un nuevo operador para obtener
informacion opcional, el cual nace naturalmente de las técnicas que estudiamos en logica
de primer orden. Este operador nos permite definir fragmentos de SPARQL con buenas
propiedades en términos de poder expresivo y complejidad de evaluaciéon. Luego, nos
enfocamos en consultas SPARQL de tipo CONSTRUCT, que son aquellas que generan
como resultado el mismo tipo de estructuras que reciben como entrada (grafos RDF).
Bajo este fragmento somos capaces de definir un lenguaje de consultas que es simple y a
la vez captura las nociones semanticas de interés. Por tultimo, mostramos que este
lenguaje presenta, sorprendentemente, una menor complejidad de evaluacién que los

fragmentos que han sido presentados anteriormente.

Palabras Clave: SPARQL, Web Semaéntica, Informacién Incompleta, Lenguajes de
Consulta, Consultas CONSTRUCT, Complejidad Computacional

Miembros de la Comisiéon de Tesis Doctoral

Marcelo Arenas
Claudio Gutiérrez
Jorge Pérez R.
Jorge Baier A.
Oscar Corcho G.
Jorge Vasquez

Santiago, Septiembre, 2015

ix

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
ESCUELA DE INGENIERIA

BUILDING A QUERY LANGUAGE FOR THE WEB OF DATA:
EFFICIENCY IN AN OPEN WORLD

Thesis submitted to the Office of Graduate Studies in partial fulfillment of the
requirements for the Degree of Doctor in Engineering Sciences by

MARTIN I. UGARTE

ABSTRACT

When querying incomplete databases, a distinctive feature is the possibility of
optionally extending the results if additional data is available. This feature has been
widely adopted for querying the Semantic Web, given the inherent incompleteness of
Web data. Unfortunately, its implementation in SPARQL, the language recommended
by the World Wide Web Consotrium (W3C) for querying Semantic Web data, brings
some negative effects. Two of the most notable are an increase in the complexity of
evaluating queries, and a conflict between SPARQL and the underlying open-world
assumption of Web data. Many approaches for fixing these problems have been
proposed, being the most widely adopted that of restricting SPARQL to well-designed
graph patterns. Nevertheless, the question of whether this is the right approach in terms
of expressive power and evaluation complexity, remains an open problem since its

introduction.

The starting point of this dissertation is the study of the fundamental properties
that a language should have for querying incomplete data in the Semantic Web. We take

a close look at techniques developed in first-order logic for characterizing semantic

properties. We present a framework for applying these techniques to SPARQL, and for
defining natural languages capturing the desired semantic properties. Furthermore, we
study the computational properties of such languages in order to understand their

applicability for real-world implementations.

We begin this dissertation by showing that previous approaches fall short in
concealing the semantics of SPARQL with the incompleteness of Web data. Then we
define a new operator for obtaining optional information, which naturally originates
from applying techniques studied in first-order logic. This operator allows us to define
fragments of SPARQL with novel properties in terms of expressive power and
complexity of evaluation. Then, we focus on SPARQL CONSTRUCT queries, the set of
queries in SPARQL that takes the same structures as input and output. Under this class
of queries, we are able to define a clean language that precisely captures the desired
semantic notions, and, surprisingly, presents lower complexity of evaluation than

fragments presented before.

Keywords: SPARQL, Semantic Web, Incomplete Information, Query Languages,
CONSTRUCT queries, Computational Complexity

Members of the Doctoral Thesis Committee

Marcelo Arenas
Claudio Gutiérrez
Jorge Pérez R.
Jorge Baier A.
Oscar Corcho G.
Jorge Vasquez

Santiago, September, 2015

x1

1. INTRODUCTION

The amount of information in the Web has grown considerably. Just by looking at the
English Wikipedia we can find more than five million articles. The Wikileaks Foundation
has released hundreds of thousands of documents in a single day. The amount of websites
being served to the public has already surpassed one billion. The number of users on the
Internet has recently reached three billions and, in average, each of them sends more than

one email per day. And all this without considering advertising.

The information in the Web has grown without structure. There is plenty of informa-
tion that, although available, demands immense human resources to be accessed. Tasks as
simple as obtaining the list of Chilean researchers mentioned in Wikipedia are consider-
ably hard. Our best chance is that someone else has already created that list, which does
not mean that creating it did not take time. Moreover, the resources spent creating this
list are specific to this particular case; they will be of no use even when creating the list
of researchers in Wikipedia from a different country. With all the information available,
the demand of human resources seems baffling, specially considering that the machines
we carry in our pockets are capable of performing billions of operations and hundreds
of thousands of memory accesses every second. But the fact that information cannot be
easily accessed is not related to the lack of computational resources. Instead, the problem
is that a good deal of data in the Web is unstructured, stored to be understood by humans
and not by computers. If computers understand the information as we do, our everyday
laptops would be capable of navigating and retrieving relevant information in a couple of

seconds.

1.1. The Semantic Web

Tim Berners-Lee, one of the authors of the HTTP protocol and director of the World

Wide Web Consortium (W3C), describes the lack of accessibility to data as tremendously

frustrating. In 1998, there was already a discussion about a Semantic WWW, a World
Wide Web with “machine-understandable information” (Berners-Lee, Hendler, Lassila, et
al., 2001). The proposal was to build technology upon four basic principles, which gave
birth to what is known today as Linked Open Data. The first and most important of these
principles is to standardize the format for storing information across the Web. To this end,
the W3C recommended the Resource Description Framework (RDF) (Manola & Miller,
2004), a data model designed to store Web resources. Under this framework, every re-
source (including concepts and relations) should have a unique identifier conforming to
the HTTP protocol, in words of Berners-Lee, “one of those names starting with HTTP”.
These names would be related to each other by means of other names, because relation-
ships should also have identifiers. Moreover, they should allow dereferencing, meaning
that by only knowing the identifier of a resource one should be able to obtain all of its

available relationships with other resources.

The Semantic Web did not take long to materialize. Individuals and institutions
started publishing their data in RDF and adopting Linked Data technologies in the early
2000’s. By 2013 more than four million Web domains were part of the Linked Open Data
(Ramanathan, 2013). With the publication of information in the form of RDF came the
problem of accessing all of this data. Several designs and proposals were presented for this
purpose (see (Furche, Linse, Bry, Plexousakis, & Gottlob, 2006) for a survey). The one
that received the most attention was SPARQL (Prud’hommeaux, Seaborne, et al., 2006), a
SQL-flavoured query language for RDF data. SPARQL became a W3C standard in 2008
(Prud’hommeaux & Seaborne, 2008), and the current version (SPARQL 1.1) was issued in
2013 (W3C SPARQL Working Group, 2013). SPARQL is one of the key elements of the
Semantic Web initiative, and it is actually recognized as part of the Semantic Web Stack
(Figure 1.1). There are several SPARQL engines implemented available to industry and
public use, e.g. (Seaborne, 2010; Erling & Mikhailov, 2009; Harris, Lamb, & Shadbolt,
2009).

User interface and applications |

| Trust

| Proof

[

| Unifying Logic |

| Ontologies: | | Rules: | o

Querying: OwWL RIF/SWRL 3

SPARQL - 'g,

| Taxonomies:RDFS | <@

=

g

| Data interchange: RDF | <
| Syntax:XML |

Identifiers: URI Character Set: UNICODE

FIGURE 1.1. The Semantic Web Stack. SPARQL is recognized as a key element
for accessing data stored as RDF.

1.2. Accessibility and performance

SPARQL was originally designed by looking at each desired feature in isolation, but
it turned out to be a rather complicated language when all of these features were put to-
gether, presenting structural and performance problems. Aware of this situation, in (Pérez,
Arenas, & Gutierrez, 2006a) the authors presented a formalization of the syntax and se-
mantics of SPARQL. This work was seminal for the mathematical study of this language,
and a good deal of research has been built upon this formalization. For example, stud-
ies about complexity of query evaluation (Schmidt, Meier, & Lausen, 2010; Losemann &
Martens, 2012; Arenas, Conca, & Pérez, 2012; Picalausa & Vansummeren, 2011), query
optimisation (Letelier, Pérez, Pichler, & Skritek, 2013; Pichler & Skritek, 2014; Chekol,
Euzenat, Geneves, & Layaida, 2012a, 2012b), federation (Buil-Aranda, Arenas, & Cor-
cho, 2011), expressive power (Angles & Gutierrez, 2008a; Polleres & Wallner, 2013), and
provenance tracking (Geerts, Karvounarakis, Christophides, & Fundulaki, 2013; Halpin
& Cheney, 2014).

The formal study of SPARQL has impacted the Semantic Web community in several

ways, influencing the form in which users query datasets and even the definition of the

SPARQL W3C standard. But despite the key importance of this language, we are still left
with fundamental open problems that prevent the further adoption of the Semantic Web.
In fact, the growth rate of the Linked Open Data has seen a drastic deceleration in past few
years (Hogan & Gutierrez, 2014). This deceleration is attributed mainly to performance

and availability issues.

Giving every user on the Web the power to query your infrastructure with a full-
featured query language is a huge step towards data sharing, but has obvious performance
consequences. The time needed to evaluate each query is of fundamental importance,
as one small inefficiency could compromise a whole infrastructure when multiplied by
a large number of users. In fact, this has been proved to be one of the key problems in
the Semantic Web (Aranda, Hogan, Umbrich, & Vandenbussche, 2013). Therefore, it is
natural to question whether SPARQL is the correct way of accessing information in the

Semantic Web.

1.3. Incomplete information

Another important issue in the Semantic Web is that information in the Web is in-
herently incomplete. This is not the case, for example, in relational databases, where the
information is considered complete and, therefore, unavailable information is assumed
to be false. On the contrary, RDF was designed as a framework in which nothing is
assumed about non-present data. This is known as the open-world assumption (OWA).
When working over complete data, one knows exactly what are the properties of the en-
tities, and therefore queries aim to retrieve specific properties. But this is not the case
over incomplete data. For example, a user may want to retrieve a certain list of people,
together with their nationalities. However, since data is incomplete, one could expect that
not all nationalities are available. This does not prevent the user from wanting to obtain
a complete list, including those people for whom nationalities are not known. Hence, the

query for retrieving this information would be translated into natural language as “give

me the list of people and, optionally, include the nationalities if they are available”. This

illustrates what is known as querying for optional information.

Unfortunately, there are SPARQL queries that behave contrary to the OWA, and hence
contrary to the design of RDF. This again rises the question of whether SPARQL is the cor-
rect language for querying the Semantic Web, and offers a negative answer. This problem
has been previously studied from a general perspective. In (Pérez, Arenas, & Gutierrez,
2009), the authors identify a high-level condition that is satisfied precisely by queries that
conform to the OWA. This is the notion of weak-monotonicity. Essentially, a query is
weakly-monotone if whenever new data is added to a dataset, the evaluation of such query
returns at least as much information as it did before. For example, the query presented
above that asks for a list of people and their nationalities is weakly-monotone: Assume
that we evaluate this query over a dataset, and obtain a certain list of people. Some of
the answers contain just a person, and some contain a person and a nationality. Suppose
now that new information is added to the dataset, and the query is evaluated again. Maybe
new answers will appear on the list, and maybe nationalities will be added to answers that
only contained a person, but no information will be lost. This implies that the query is
weakly-monotone, which intuitively corresponds to the idea of preserving the information

under data extensions.

Weak-monotonicity is also important as it prevents users from querying for negative
information. For example, consider a query that asks for “the list of people that are not
Chilean”. To answer this query, it is necessary to make an assumption over unavailable
data, as the nationality of some people is not known. We conclude that this query cannot
be answered properly over the OWA. Negative queries are not weakly-monotone, show-
ing that weak-monotonicity is a fundamental concept for querying RDF data. This is
reinforced by the fact that weakly-monotone queries preserve information under data ex-
tensions, property that has proven to be fruitful in several areas of databases. For example,
in the context of data exchange, queries preserving information under data extensions al-

low for a clean definition of the semantics (Libkin, 2006; Hernich, Libkin, & Schweikardt,

2011; Libkin & Sirangelo, 2011), and the same occurs in the context of data integration

(Fagin, 1996; Lenzerini, 2002; Abiteboul & Duschka, 1998).

The notion of weak-monotonicity does not provide any insight about how to effec-
tively write weakly-monotone queries. Moreover, one can show that there is no computer
program that can decide, given a SPARQL query, whether or not such query is weakly-
monotone. Hence, the problem of finding a practical fragment of queries that satisfies this
condition is instrumental in the search for a correct way of accessing Semantic Web data.
This problem has been addressed before, mainly by imposing certain restrictions on how
to write SPARQL queries, but none of these restrictions have been proven to characterize
the concept of weak-monotonicity. The most popular and adopted restrictions has been
allowing only for well-designed queries (Pérez et al., 2009). This condition aims to pre-
vent users from writing queries containing the aforementioned inconsistencies generated

by the OPT operator.

Whether the fragment of SPARQL well-designed queries characterizes the set of
weakly-monotone queries is still an open problem. However, well-designed queries are
considered to be a good fragment in practice because they also present good properties in
terms of evaluation efficiency. In terms of combined complexity (Vardi, 1982), evaluating
a well-designed queries (CO-NP-complete when disallowing disjunction and projection,
and Xf-coomplete in general (Letelier et al., 2013)) is easier than evaluating SPARQL

queries in general (PSPACE-complete).

1.4. Learning from relational databases

The relational model has dominated the area of databases for more than twenty years
(Abiteboul, Hull, & Vianu, 1995). The study of relational databases and its most popular
query language, SQL, is an area of Computer Science on its own. Our understanding of
the relational model relies on more than sixty years of research in mathematical logic,

and is far more developed than our knowledge about the elements of the Semantic Web.

Therefore, it is natural to look at the techniques and design principles used in the relational

model, and see whether they can be applied to the Semantic Web.

In SQL one answer to a query cannot contain more information than another answer
to the same query. Thus, as opposed to SPARQL, preserving information over data ex-
tensions in the relational model is the same as preserving answer. The idea of preserving
answers is known as monotonicity, and has played an important role in the development of
areas like consistent query answering (Bertossi, 2006) and data exchange (Libkin, 2006).
Just like in the case of weak-monotonicity, the problem of knowing if a query is mono-
tone is undecidable; meaning that there is no computer program that receives a query as
input, and can tell whether or not that query is monotone. Researchers have looked for
reasonable restrictions that enforce queries to satisfy monotonicity. It turns out that the-
orems developed in the context of first-order logic in the late 50’s can be applied to find
such restrictions (Feferman, 2008). Moreover, these restrictions are easily verifiable, and
are precise characterizations in the sense that a query satisfies the restriction if and only
if it satisfies the semantic notion. For example, it is a well-known result that a first-order
formula is monotone if and only if it is positive (Lyndon, 1959). Having this information,
it is natural to study the fragments of SPARQL in which one query can not contain more
information than another answer. Moreover, we could try to apply to SPARQL the same

techniques used to find characterizations in first-order logic.

Another difference between SPARQL and SQL is the structural discrepancy between
the input and the output of SPARQL queries. Evaluating an SQL query over a relational
database results in another relational database, but evaluating a SPARQL query over an
RDF dataset, in general, does not result in an RDF dataset. However, there is a frag-
ment of SPARQL that generates RDF graphs as output, the fragment of CONSTRUCT
queries. Given the structural similarity between CONSTRUCT queries and SQL it is con-
ceivable that much more insight can be obtained by applying techniques from the relational
model to this fragment. But rather surprisingly, and despite being an important part of the

SPARQL standard, these queries have received almost no theoretical attention. Therefore

we aim to study over CONSTRUCT queries the same problems about performance, ac-
cessibility and compliance to the OWA that were presented in the previous sections. It is
also interesting to mention that, in the context of CONSTRUCT queries, the correct notion
for capturing the queries conforming to the OWA is that of monotonicity. This presents
another similarity with SQL, and therefore we can expect that results over the relational

model apply more directly to the fragment of CONSTRUCT queries.

1.5. Hypothesis and goals

The main hypothesis of this dissertation is that the techniques developed in first-order
logic over the past fifty years can be of use to find an appropriate language for query-
ing the Semantic Web. More precisely, we hypothesize that by establishing a connection
between first-order logic and SPARQL, we could use a methodology similar to that of
proving preservation theorems by means of interpolation theorems to characterize the set

of SPARQL queries conforming to the open-world semantics of RDF.

Our general goal is to find a proper query language for the Semantic Web, that ad-
dresses the aforementioned problems of high complexity of evaluation and compliance to

the Open World Assumption. This derives on the following specific goals:

e To understand the techniques that have been developed in first-order logic for
characterizing semantic properties similar to weak-monotonicity. In particular,
to understand how are interpolation results used to prove Lyndon’s positivity
theorem (Lyndon, 1959) and the f.os-Tarski theorem (Hodges, 1997).

e To build a framework that establishes a connection between first-order logic and
SPARQL. This framework must allow us to apply the interpolation techniques
used in first-order logic to the case of SPARQL.

e To study what are the implications of applying interpolation to SPARQL. In
particular, to characterize languages satisfying the semantic properties required

by the open-world assumption.

e To understand if the defined fragments are suitable for real-world applications,
by studying the computational complexity of evaluating queries in those frag-

ments.

1.6. Summary of contributions

1.6.1. Well-designed graph patterns

We start by studying the fragment of SPARQL well-designed graph patterns including
disjunction at the top-most level, and whether this fragment is capable of capturing every
query conforming to the OWA and to the principles of RDF. We show that this is not the
case by providing a simple query that is weakly-monotone but that can not be equivalent
to any well-designed graph pattern. This presents a big advance in our understanding
of SPARQL and motivates the search for new ways of querying RDF data for optional

information.

1.6.2. A framework for the study of weak-monotonicity

We present a thorough and comprehensible introduction to Lyndon’s interpolation
theorem (Lyndon, 1959) and Otto’s interpolation theorem (Otto, 2000). We show in detail
how these results are applied to prove preservation theorems. By showing a correspon-
dence between SPARQL and first-order logic, we provide a framework for applying inter-

polation theorems to prove characterizations of weakly-monotone fragments of SPARQL.

It is important to mention that interpolation theorems are known to be valid under
arbitrary (finite and infinite) models. This implies that the characterization results derived
from interpolation only apply to queries that satisfy a semantic notion when considering ar-
bitrary models. To illustrate this difference, consider the characterization of monotonicity
in first-order logic. There are formulas that are monotone when restricting the structures to
finite models, but that are not monotone in general. These formulas are not characterized
by this theorem. This has to be considered in the case of the Semantic Web as the definition

of RDF applies to real-world datasets, which are finite collections. Hence, if we obtain a

10

characterization of weak-monotonicity using the presented framework, it would leave out
those weakly-monotone queries that are not weakly-monotone when extending to arbitrary
databases. Nevertheless, it is well-known that finding queries that satisfy a condition over
finite datasets but not under arbitrary datasets are not expected to derive from real-world
applications (Ajtai & Gurevich, 1987). Therefore, the framework we develop is a valid

tool for obtaining practical applications for RDF and SPARQL.

1.6.3. Maximal answers in SPARQL

We prove that given a weakly-monotone graph pattern P, there is a graph pattern Q
that does not mention the operator for obtaining optional information (OPT), and that is
equivalent to P in the set of maximal answers. Maximal answers are answers that contain
information that is not present in any other answer. We define a new operator called
Not-Subsumed used to obtain the maximal answers from a graph pattern. We prove that
the fragment of weakly-monotone graph patterns that only output maximal answers is
characterized by the set of patterns in which OPT is not mentioned, and Not-Subsumed
is only allowed at the top-most level. Graph patterns in this fragment are denoted simple
patterns. We also study the fragment of disjunctions of weakly-monotone graph patterns
that only output maximal answers. We prove that this fragment is, as expected, captured
by the fragment of disjunctions of simple patterns. Graph patterns in this fragment are

denoted ns-patterns.

Unfortunately, we are not able to deduce that ns-patterns cover the set of weakly-
monotone graph patterns. This derives from the application of interpolation techniques,
which is restrictive in preserving the answers that are not maximal. The problem of know-
ing if the set of ns-patterns captures the fragment of all weakly-monotone graph patterns

remains open.

11

1.6.4. Monotonicity and CONSTRUCT queries

The need for maximal answers derives directly from the application of interpolation,
but rely significantly on the fact that the evaluation of a SPARQL graph pattern over a
dataset does not produce an RDF dataset as output. Therefore we study a different frag-
ment of queries for RDF, namely CONSTRUCT queries. Although these queries have
been part of the official standard of SPARQL since its original definition, they have re-
ceived very little theoretical attention. We formalize this fragment and show that it has
practical advantages over other fragments of SPARQL. One of these advantages is that
monotonicity is the correct semantic notion for capturing CONSTRUCT queries that con-
form to the OWA. We show that, surprisingly, the fragment of monotone CONSTRUCT
queries is characterized by the set of CONSTRUCT queries in which only the operators
CONSTRUCT, AND, UNION and FILTER are allowed. Queries in this fragment are
denoted AUF CONSTRUCT queries.

We define the fragment of well-designed CONSTRUCT queries, and we prove that
it is also equivalent to the fragment of AUF CONSTRUCT queries. We show an ef-
fective transformation from well-designed CONSTRUCT queries to AUF CONSTRUCT
queries. As this equivalence obviously holds when restricting to finite RDF graphs, we
conclude that well-designed CONSTRUCT queries precisely captures the set of CON-
STRUCT queries that are monotone under arbitrary RDF datasets.

1.6.5. Computational complexity

We analyze how suitable are the found fragments for real-world applications by study-
ing their evaluation combined complexity (Vardi, 1982). We show that the evaluation
problem for simple patterns is DP-complete. Then, we show that if we allow for a fixed
number of disjuncts in ns-patterns, the evaluation problem falls in different levels of the
boolean hierarchy (Wechsung, 1985). Specifically, if the amount of simple patterns in an
ns-pattern is restricted to a natural number k, then the evaluation problem turns out to be

complete for the class BH;, the 2k™ level of the boolean hierarchy. Then, we study the

12

evaluation complexity of ns-patterns with an arbitrary amount of disjuncts. We prove that
this problem is complete for the complexity class Plll\lp. This class contains all languages
that can be solved in polynomial time by a Turing machine that can issue a polynomial
amount of queries in parallel to an NP oracle. Finally, we show that the complexity of
evaluating AUF CONSTRUCT queries is NP-complete. From this result, and from the
fact that AUF CONSTRUCT queries characterize monotonicity, we conclude that AUF
CONSTRUCT queries are a proper language for querying RDF data.

13

2. PRELIMINARIES

We start by presenting the mathematical foundations of the Semantic Web. We follow
the algebraic formalization presented in (Pérez, Arenas, & Gutierrez, 2006b) extended
with projection. To refer to different fragments of SPARQL we borrow notation from

(Schmidt et al., 2010).

2.1. RDF

The Resource Description Framework is based upon identifiers representing Web re-
sources. To allow for constant values (like numbers or strings) and existential values
(resources with unknown identifiers), literal values and blank nodes, respectively, are in-
cluded in the framework. Assume there are infinite pairwise disjoint sets I, B and L. I 'is
a set of International Resource Identifiers (IRIs) (Durst & Suignard, 2005), B is a set of
Blank Nodes (Mallea, Arenas, Hogan, & Polleres, 2011), and L is a set of Literal Values.
A triple (s, p,0) € TUB) X I x (IUBUL)is called an RDF triple, and represents that the
subject s is related to the object o by the predicate p. An RDF dataset is simply a finite
collection of RDF triples. Throughout this document we disallow blank nodes and literal
values, considering only the set I and RDF triples in IXIXI. Most of the results presented
in this dissertation are not affected by this assumption. Whenever this is not the case it
will be explicitly stated. We also assume, for the sake of simplicity, that every string can

be used an identifier.

Example 1. Assume that we want to store information about the founders and sup-
porters of an organization. We need to state every relationship as an RDF triple (e.g., if a
person s founded an organization o, we store the triple (s, founder, 0)). Table 2.1 displays
such an RDF dataset. Notice that a resource mentioned in one triple as a property can

also be mentioned in another triple as subject or predicate, e.g., founder and supporter.

14

TABLE 2.1. Tabular representation of an RDF dataset. All resources can be men-
tioned as subjects, predicates or objects.

Subject Predicate Object
Gottfrid Svartholm founder The Pirate Bay
Fredrik Neij founder The Pirate Bay
Peter Sunde founder The Pirate Bay
founder sub_property supporter
The Pirate Bay stands_for | sharing rights
Carl Lundstrom supporter | The Pirate Bay

The previous example illustrates how to use RDF triples to store data. However, as
RDF triples are relations between entities, it is natural to represent RDF datasets as graphs.
Figure 2.1 represents the same dataset as Table 2.1. We indistinctly refer to RDF datasets
by RDF graphs.

2.2. SPARQL syntax

Queries in the core fragment of SPARQL are called graph patterns, given SPARQL

is essentially a pattern-matching query language for RDF graphs. To define the set of

Sharing rights

A
The Pirate Bay
A

A

[Gottfrid Svartholm

Fredrik Neij

> supporter

sub_ property

[Carl Lundstréom)

FIGURE 2.1. Graph representation of an RDF dataset. Each edge starts on a node
s, passes close to a node p, and points to a node o, representing the triple (s, p, 0).

15

SPARQL graph patterns, assume there is an infinite set V of variables, disjoint from I.

Elements of V are distinguished by using ? as a prefix (e.g. ?X is a variable in V).

DEFINITION 2.2.1. The set of SPARQL graph patterns is recursively defined as fol-

lows:

o A triplein TU V)X (XUV)Xx{UYV)isa graph pattern (called a triple pattern).

e [f Py, P, are graph patterns, then (P, UNION P,), (P; AND P,), (P, OPT P,)
are graph patterns.

o [f Pisagraph pattern and 'V is a finite subset of 'V, then (SELECT V WHERE P)
is a graph pattern.

o [f P is a graph pattern and R is a SPARQL built-in condition, then (P FILTER R)

is a graph pattern.

A SPARQL built in condition is a propositional formula where atoms are equalities
or inequalities over the set I U V plus other features (Prud’hommeaux & Seaborne, 2008).
We restrict to the fragment of built-in conditions presented in (Pérez et al., 2006a), which

is formally defined as follows:

e If?X,?Y € Vand ¢ €1, then bound(?X), ?X = ¢, 72X =?Y are built in-conditions.
e If R| and R, are built-in conditions, then (=R)), (R VR,) and (R; AR,) are built-in

conditions.

If O is an operator in {UNION, AND, OPT, FILTER, SELECT}, we say that a graph pattern
P is O-free if O does not occur in P. To refer to a fragment of SPARQL in which only
some operators are allowed, we use the first letter of AND, UNION, OPT and FILTER. For
the SELECT operator we use a superscript 7. For example AUOF represents the fragment
of SELECT-free graph patterns, while AF” is the fragment of graph patterns constructed
by using AND, FILTER and SELECT. Having defined the set of SPARQL graph patterns,

we proceed to define their evaluation over RDF graphs.

16

2.3. Semantics of SPARQL

To define the semantics of SPARQL we need to recall some further notation. If P is a
graph pattern, var(P) denotes the set of all variables mentioned in P, and I(P) is the set of
all IRIs mentioned in P. A mapping u is a partial function ¢ : V — I. The domain of u is
the subset of V where u is defined, and is denoted by dom(u). The image of a mapping u
is denoted by range(u). Given a mapping u and a triple pattern ¢ such that var(z) C dom(u),
u(t) 1s the result of replacing, for every ?X € var(t), every occurrence of ?7X by u(?X). A
mapping u; is said to be compatible with a mapping u», denoted by u; ~ p,, if for every
?7X € dom(u;) N dom(uy,) it is the case that u(?X) = ux(?X). In this case, u; U u, denotes
the extension of y; to the variables in dom(u;) \ dom(u,) according to u,. If two mappings

1 and u, are not compatible we write (; + .

Let Q; and Q, be two sets of mappings. Then the join of, union of, difference between,

and left-outer join of Q; and), are defined, respectively, as follows:

Qi = {uy Uy |y € Qp, pup € and py ~ po}

QU = {ulpeQoruel}

Q\Q, = {ueQ| forall i’ € Q, itis the case that u » '}
Q> = (Q x) U\).

Finally, given a mapping u and a set V C V, the expression py represents the mapping

that results from restricting u to dom(w) N V.

We have now the necessary notions for defining the answer to a SPARQL graph pat-

tern over an RDF graph G. The formal semantics of SPARQL is defined as follows:

DEFINITION 2.3.1. Let G be an RDF graph and let P be a SPARQL graph pattern.
The evaluation of P over G is denoted by [Plg, and is a set of mappings recursively

defined as follows:

17

e [f P is a triple pattern then [Pl = {u | dom(u) = var(t) and u(t) € G}
e If Pis (Py AND P;) then [Plc = [Pl ™ [P:]c

o [f Pis (P OPT P,) then [Pl = [Pillc ><[P:]lc

o [fPis (P; UNION P,) then [Plc = [P1lc Y [P.]c

o if Pis SELECTV WHERE P’ then [Pl = {uy | 1 € [P’}

e if Pis P" FILTER R then [Pl = {u | n € [P']lg and u = R}

Given a mapping u and a built-in condition R, we say that u satisfies R, denoted by

U E R, if one of the next conditions hold:

e Ris bound(?X) and ?X € dom(u)

e Ris 7X = ¢, 72X € dom(u) and u(?X) = c

e Ris 72X =7Y, 7X,?Y € dom(u) and u(?X) = u(?Y)
e Ris(RiVRy)anduERioru E R,

e Ris(RiARy)anduERyandu E R,

e Ris(—mR')and u [~ R'.

Two graph patterns P; and P, are said to be equivalent, denoted by P, = P,, if for every
RDF graph G it is the case that [P;]¢c = [P.lc. Given a mapping p with dom(u) =
{?X1,...,7X,}, we sometimes refer to u by [?X; — u(?X,),...,?X, = u(?X,)].

The following example illustrates the syntax and semantics of SPARQL.

Example 2. Let G be the RDF graph illustrated in Figure 2.1. Assume we want to
query for all the founders and supporters of organizations that stand for sharing rights.

This would be achieved by the following graph pattern:

P = SELECT {?p} WHERE [(?0, stands_for, sharing rights) AND

((?p, founder, 70) UNION (?p, supporter, 70))]

The evaluation of P over G is performed in a bottom-up fashion. We first evaluate the

triple patterns, obtaining the sets of mappings shown in Figure 2.2. Then, from the UNION

18

[(?p, founder, 20)\c =

[(?0, stands_for, sharing rights)]lg =

[(?p, supporter, 20)]c =

?0
The Pirate Bay @)

4y ?0
Gottfrid Svartholm | The Pirate Bay
Fredrik Neij The Pirate Bay
Peter Sunde The Pirate Bay

i) 70
Carl Lundstrom | The Pirate Bay

(b)

(c)

FIGURE 2.2. The evaluation of a SPARQL graph patterns starts with the evalua-

tion of triple patterns.

pattern we obtain the mappings in both (b) and (c). These mappings are matched against

the only mapping in (a), generating the result of the AND pattern. In this particular case,

the evaluation of the AND pattern also contains the mappings in (b) and (c). Then, the

SELECT operator projects the mappings to ?p, generating the desired list of people.

Although each of the defined operators might seem simple when looked separately,

SPARQL turns to be a very powerful and complex query language. Moreover, the OPT

operator can introduce some problems when combined in certain ways with other opera-

tors. In the next chapter we formally introduce these problems, and show how previous

attempts to solve them fail in some particular cases.

19

3. INCOMPLETE INFORMATION IN THE SEMANTIC WEB

In this chapter we discuss the main issue of this dissertation, namely the conflict
between SPARQL and the open-world semantics of RDF. To this end, we first recall the
definition of monotonicity and weak-monotonicity. Then, we present the definition of
well-designed patterns, which is one of the most adopted fragments for querying RDF
graphs. We analyze whether this approach is the correct query language for SPARQL,
and prove that the fragment of well-designed graph patterns is not expressive enough to

capture weak-monotonicity.

3.1. The Open-World Assumption in SPARQL

Intuitively, a query language is said to conform to the Open-World Assumption if its
semantics is defined in a way such that, when evaluating queries, nothing is assumed about
non-present information. This is particularly important when considering information over
the Web, where it is common to find incomplete data. The formal notion that captures this
intuition for relational databases, First Order Logic, Datalog, and several other database
formalisms, is that of monotonicity. Essentially, a query is said to be monotone if, when-
ever it outputs an answer over a dataset, it outputs that same answer over all extensions of

that dataset. The formal definition of this concept over SPARQL is as follows:

DEFINITION 3.1.1. Let P be a SPARQL graph pattern. P is said to be monotone if for
every two RDF graphs G, and G, such that G, C Gy, it is the case that [P]g, € [Plc,-

However, and contrary to the previously mentioned formalisms, monotonicity over
SPARQL does not capture the desired property of concealing the semantics with the Open-
World Assumption. This occurs precisely because SPARQL graph patterns allow for op-
tional information, and hence one answer (mapping) can contain more information than

another answer. This does not occur, for example, in relational databases, where every

20

was_born_in -
— —| Chile

Claj)

was born in
| Juan — — Chile

(a) (b)

juan@puc.cl

FIGURE 3.1. Graph (b) matches optional information that is not matched by
graph (a) when evaluating (?X, was_born_in, Chile) OPT (7X, email, 7Y).

answer is an atomic piece of information. The next example illustrates that this is not the

case for SPARQL.

Example 3. Consider the graph pattern
P = (?X,was_born_in, Chile) OPT (?X, email, ?Y).

Let Gy and G, be the RDF graphs (a) and (b) illustrated in Figure 3.1, respectively. No-
tice that G, is an extension of G| by adding the triple (juan, email, juan@ puc.cl). On
one hand, the answer to P over G, contains only the mapping u; = [?X — juan], as
(?X, email, 7Y) does not match any triple in G,. On the other, the evaluation of P over
G, also contains one mapping: p, = [?X — juan,?Y — juan@ puc.cl]. We can con-
clude that the pattern P is not monotone, as the mapping p; is not present in the answer
to P over G,. However, all the information in u, can be retrieved from u,, and hence we
can safely say that no information was lost when evaluating P over the extension of the

original dataset.

In the previous example, it is clear that no assumption was made about non-present
information when evaluating the graph pattern over the first dataset: the mapping [?X —
Jjuan] is part of the answer because the pattern (?X, was_born_in, Chile) matches the triple
(juan,was_born_in, Chile), and does not rely on the occurrence of other triples in the

dataset. Intuitively, this implies that P does conform to the incompleteness of Web data.

21

We conclude that monotonicity is not the correct notion capturing the desired set of graph

patterns.

In (Pérez et al., 2009), the authors addressed this issue and introduced the notion of
weak-monotonicity, a semantic condition intended to capture the graph patterns conform-
ing to the open-world semantics of RDF. We proceed to recall the formal definition of this
notion. Weak-monotonicity is defined in terms of subsumption of mappings. Given two
mappings u and y’, the mapping u is said to be subsumed by ', denoted by p < ¢/, if it is
the case that dom(u) € dom(u’) and u(?X) = p’(?X) for every ?X € dom(u). We say that u
is properly subsumed by y’ (denoted by u < ') if u < ¢/ and ¢’ # p. To deal with answers
to SPARQL graph patterns, these definitions are extended to sets of mappings. Given two
sets of mappings Q; and Q,, Q, is said to be subsumed by ,, denoted by Q; C Q,, if for
every mapping u; € €, there is a mapping u, € Q, such that u; < u,. Now we recall the
definition of weak-monotonicity, which will play a key role throughout the next chapters

of this dissertation.

DEFINITION 3.1.2. Let P be a SPARQL graph pattern. P is said to be weakly-

monotone if for every two RDF graphs G| and G, such that G; C G, it is the case
that [[P]]G1 C [[P]]Gz-

As discussed earlier, in the answer to a graph pattern the atomic piece of information
is not a mapping, but an assignation of a variables to an IRI. Hence, it is not hard to see
that the definition above correctly captures the property of not losing information when
new data is added to a dataset. In particular, notice that the non-monotone graph pattern

of Example 3 is indeed weakly-monotone.

3.2. SPARQL and incomplete information

In the previous section we discussed the open-world semantics over RDF, and how
the Semantic Web takes into consideration that data in the Web is incomplete. We also

recalled the definition of weak-monotonicity and explained why it correctly captures the

22

desired property of making no assumptions about unknown information. Unfortunately
(and somewhat surprisingly), there are SPARQL graph patterns are not weakly-monotone.

Consider the following example:
Example 4. Let P be the graph pattern defined as
P = (?X, awas_born_in, Chile) AND ((?Y,was_born_in, Chile) OPT (7Y, email, 7X))

Let Gy and G, be the RDF graphs (a) and (b) of Figure 3.1, respectively. When evaluating
P over Gy, both triple patterns (?X,awas_born_in, Chile) and (1Y, awas_born_in, Chile)
matches the triple (Juan,was_born_in, Chile). As the pattern (?Y,email, 7X) does not
match any triple in G, we obtain [Pllg, = {[?X — Juan], [?Y — Juan]}. If we evaluate P
over G,, we obtain the same results from the triples mentioning the IRI was_born_in. But

now the triple (1Y, email, 7X) matches (Juan, email, juan@ puc.cl), and hence we obtain
[(?Y, was_born_in, Chile) OPT (?Y, email, 7X)]g, = {[?Y — Juan,?X — juan@ puc.cl]}.

As [(?X,was_born_in, Chile)]g, = [?X — Juan], the mappings coming from the two sides
of the AND are not compatible. We conclude that [Pllg, = 0. This implies that P is not
weakly-monotone: G| C G, but [Pllg, Z [Plc,-

In the example above, when evaluating P over G, the triple (2, c,d) was assumed
to be a false piece of information. As shown in the evaluation over G,, if this triple
represented a true relation then the mapping [?X — 1,?Y — 1] would have not been in
[Pllg,. This example shows that there are SPARQL graph patterns that are not weakly-
monotone, which intuitively conform neither to the open-world semantics of RDF nor to

the incompleteness of Web data.

The graph pattern P of Example 4 is somewhat unnatural. The triple (?Y, email, 7X)
offers optional information to (?Y, was_born_in, Chile), but at the same time is intended to
match the results of (?X, awas_born_in, Chile). Therefore, whenever (?Y, email, 7X) does

not match any triple in the graph, every mapping in the evaluation of the OPT pattern

23

will be compatible with every mapping from the left-hand side of the and. Nevertheless,
adding a new triple to the dataset makes ?X appear in the evaluation of the right-hand side.
Hence, mappings in the evaluation of the left-hand side now share the variable ?X with

mappings in the evaluation of the right-hand side, so they may be incompatible.

3.3. Well-designed graph patterns and weak-monotonicity

SPARQL graph patterns that do not satisfy the weak-monotonicity condition are the
patterns in conflict with the open-world assumption. But as shown above, some non-
weakly-monotone graph patterns (like the one presented in Example 4) have a rather
unnatural syntactic form: optional information offered to a subpattern can cause an in-
consistency with the mappings resulting from the evaluation of other subpatterns. Hence,
a natural step towards capturing the set of weakly-monotone SPARQL graph patterns is
to disallow this syntactic form. In (Pérez et al., 2009), the authors introduce the concept
of well-designedness, a syntactic restriction intended to allow only for weakly-monotone

graph patterns.

DEFINITION 3.3.1. Let P be a SPARQL graph pattern. P is said to be UNION-free

well-designed if it belongs to AOF and satisfies the following conditions:

e for every subpattern of P of the form (P’ FILTER R), it is the case that var(R) C
var(P"), and
e for every subpattern of P of the form (P, OPT P,), the variables in var(P;) \

var(Py) are not mentioned in P outside (P; OPT P,).

As shown in (Pérez et al., 2009), this condition indeed allows only for weakly-monotone
graph patterns. However, the lack of disjunction makes UNION-free well-designed graph
patterns a somewhat restrictive fragment. The concept of well-designedness is extended

to include UNION. A graph pattern in AUOF is well-designed if it is of the form

P; UNION P, UNION --- UNION P,,

24

where every disjunct P; is a UNION-free well-designed graph pattern. These patterns
have been widely adopted as a good practice for writing SPARQL queries (see, e.g,
(Pichler & Skritek, 2014)). Notice that UNION-free well-designed graph patterns were
originally called well-designed graph patterns. By the definition above, in the following

well-designed graph patterns are allowed disjunction at the top-most level.

Unfortunately, the definition of well-designed graph patterns does not provide a good
insight on their expressive power. In fact, the question of whether every weakly-monotone
graph pattern in AUOF is equivalent to a well-designed graph pattern is still open. The
first contribution of this dissertation is to show that this is not the case. To formally prove
that well-designed graph patterns are not capable of expressing every weakly-monotone

graph pattern in AUOF, we use the following two lemmas.

LEMMA 1. (Pérez et al., 2009) Let G be an RDF graph and let P be a graph pattern

in AOF. Then, for every two distinct mappings u,, 1> € [Pllg, it is the case that y, + .

LEMMA 2. Let P = P; UNION P, UNION ... UNION P, be a well-designed
graph pattern and Gy, G, be two RDF graphs such that G, C G,. Then, for every P;
(1 <i < n) and every two mappings [, o, if 41 € [Pillg, and p, is the only mapping in
[Pl, subsuming p,, then p, € [Pilc,.

PROOF. As P;is weakly-monotone and G| C G, there must be a mapping subsuming

p1in [Pi]l,. Since [P;]lg, € [Ple,, that mapping must be ;. O

Now we are ready to prove the aforementioned result. Instead of directly showing that
well-designed graph patterns are not capable of expressing every weakly-monotone graph

pattern, we provide a stronger result.

THEOREM 1. There is an AUOF weakly-monotone graph pattern that cannot be ex-

pressed as a disjunction of AOF weakly-monotone graph patterns.

25

PROOF. Consider de graph pattern
P =(7X,a,b) OPT ((?X,c,?Y) UNION (?X,d, 12)).

It is immediate to show that P is weakly-monotone since both sides of the OPT are
monotone. Now we prove that P is not equivalent to any well-designed graph pattern.

Define the following RDF graphs

G, = {(1,a,b)}

G, = {(1,a,b),(1,c,2)}

G; = {(l,a,b),(1,d,3)}

Gy = {(1,a,b),(1,c,2),(1,d,3)}.

By semantics of SPARQL we have:

[P,
[[P]]Gz

[Pllg, = {[?7X = 1,7Z — 3]}

{{?X — 1]}

{?’X - 1,?7Y - 2]}

[[P]]G4

{[?X - 1,?7Y - 2],[?X — 1,?2Z — 3]}
Assume for the sake of contradiction that
P = P, UNION P, UNION --- UNION P,,

where every P; is a weakly-monotone graph pattern in AOF. By semantics of UNION,
there must be an i for which [P;]lg, = {[?X — 1]}. Without loss of generality we can
assume i = 1. Now, since [P]lg, = {[?X — 1,?7Y — 2]} and G, € G,, by Lemma 2 we
know that [P]lg, = {[?X — 1,?Y — 2]}. Moreover, as [Pllg, = {[?X — 1,?Z — 3]} and
G, C Gs itis the case that [P]lg, = {[?X — 1,?Z — 3]}.

26

Since [7X — 1,?Y = 2] € [P1]g,, G2 € G4 and [Pllg, = {[?X — 1,?7Y = 2],[?X —
1,?Z — 3]}, by Lemma 2 we have [?X — 1,?Y — 2] € [P;]ls,.- The same analysis over

G and the mapping [?X — 1,7Z — 3] shows that [?X — 1,?Z — 3] € [Pi]g,.

We conclude that [P]lg, = {[?X — 1,?Y — 2],[?X — 1,?Z — 3]}. But since P, is
in AOF, by Lemma 1 the evaluation of P; over G, cannot contain two distinct compatible
mappings. Thus, we obtain a contradiction and we conclude that P cannot be expressed

as a disjunction of weakly-monotone AUOF graph patterns. O

As well-designed graph patterns are weakly-monotone and are in AUOF, we obtain

the aforementioned result as a direct corollary.

COROLLARY 1. The fragment of well-designed graph patterns does not cover the set

of all weakly-monotone AUOF graph patterns.

The previous corollary and the proof of Theorem 1 improve our understanding of the
expressive power of weakly-monotone and well-designed graph patterns. This negative
result motivates the search for new weakly-monotone fragments with more expressive
power than that of well-designed graph patterns. To find such fragments, in the next
chapter we study techniques developed in first-order logic to capture semantic properties
using syntactic conditions. In the subsequent chapters we will show how these techniques

can be applied to weak-monotonicity over SPARQL.

27

4. SYNTAX VERSUS SEMANTICS IN FIRST-ORDER LOGIC

Syntactic characterizations have played a key role in the development of logic, model
theory and database theory. For example, the connection between positivity and mono-
tonicity in first-order logic has served for developing several areas of database systems,
e.g. consistent query answering (Bertossi, 2006), data exchange (Libkin, 2006), query
rewriting (Nash, Segoufin, & Vianu, 2010) and query plans over views (Benedikt, ten
Cate, & Tsamoura, 2014). We present an overview of the fundamental techniques used to

prove these characterizations, and then recall in detail two results of interest.

We assume the reader is familiar with basic first-order notation and concepts like free
variables, predicates, constants, tuples, vocabularies, etc. See (Abiteboul et al., 1995;

Enderton & Enderton, 2001) for definitions.

4.1. Interpolation and preservation theorems

During the 1950’s, William Craig proved his famous interpolation theorem, in which
he established that given two formulas ¢ and ¢ over vocabularies £, and £, if E ¢ — ¥,
then there is a formula 6 (called an interpolant) over the vocabulary £; N £, such that
F ¢ — 6and F 0 — . This theorem was a real breakthrough in the theoretical study
of logics, and immediately proved to have important consequences. Craig showed, for
example, that his theorem allows to give a simple proof of Beth’s definability theorem
(Craig, 1957). It did not took long for the logic community to realize that the relation
between the interpolant and the two original formulas played a key role in terms the ap-
plications that can be obtained from interpolation. In fact, looking for stronger conditions
over the interpolant has been an active area of research from Craig’s original prove until
today (see (Feferman, 2008) for a good survey, and (Benedikt et al., 2014) for a recent
interpolation theorem). In this chapter, we present two interpolation theorems that will
be particularly useful for studying weak-monotonicity in SPARQL. The reason because

this theorems will be of use is that they allow for giving simple proofs of preservation

28

theorems, which characterize sets of formulas satisfying a semantic property. Preserva-
tion theorems receive their name from the fact that the semantic properties involved are
defined in terms of preservation. For example, the homomorphism preservation theorem
states that a formula is preserved under homomorphism (it behaves equally under every
two homomorphic structures) if and only if it is logically equivalent to a positive existential

formula (a syntactic condition over first-order formulas).

The first interpolation theorem we present in detail was proved by Roger C. Lyndon in
1959. Lyndon generalized Craig’s techniques by restricting the polarity of the occurrences
of predicates in the interpolant. This allows to prove what is known as Lyndon’s positivity
theorem (also considered one of the preservation theorems), which states that positive
formulas characterize the set of monotone formulas. The second interpolation theorem we
are interested in, was proved by Martin Otto (Otto, 2000). This theorem further generalizes
Craigs’s interpolation theorem by using relativized first-order formulas. Otto proved that
his theorem unifies a good number of preservation and interpolation theorems, including
Lyndon’s interpolation. We will show, in particular, how Otto’s theorem is applied to
give a straightforward proof of the L.os-Tarski preservation theorem, a classical result in
model theory which states that a formula is preserved under extensions if and only if it is

equivalent to an existential formula.

4.2. Lyndon’s interpolation and positive formulas

We start by showing how Lyndon’s theorem is used to characterize monotonicity with
the set of positive formulas. To formally state this result we need to recall the following

definition.

DEFINITION 4.2.1. Let P be a predicate and ¢ a first order formula not mentioning
{—,<}). An occurrence of P in ¢ is said to be positive (negative) if it is under an even
(odd) number of nested negations. Moreover, ¢ is said to be positive (negative) in P if

every occurrence of P in ¢ is positive (negative).

29

Lyndon’s interpolation theorem relates the positive/negative occurrence of predicates
in the interpolant with positive/negative occurrence of predicates in the initial formulas (¢

and). Its original statement, after modernizing the notation, is as follows:

THEOREM 2. (Lyndon, 1959) Let ¢ and W be sentences of a vocabulary L such that
E ¢ — Y. Then, there is a sentence 0 of L such that = ¢ — 0, E 0 — , and that if a
relation symbol occurs positively (negatively) in 6, then it occurs positively (negatively) in

both ¢ and Y.

The characterization of monotonicity by means of positivity in first-order logic is one
of the most famous and immediate applications of Lyndon’s interpolation theorem, and
is therefore known as Lyndon’s positivity theorem. To formally recall the proof of this

characterization, we need the definition of monotonicity for first-order logic:

DEFINITION 4.2.2. A first-order formula ¢ over a vocabulary L is said to be mono-

tone in a predicate P if for every two L-structures W and B, if

o every element of L\ {P} has the same interpretation in W and B, and

° P‘)I gp%’

then it is the case that W = ¢ implies B = .

Monotone formulas play an important role in first-order logic, for example they are
fundamental to the definition of fixed-point logics (Gurevich & Shelah, 1986; Libkin,
2013; Immerman, 1982; Vardi, 1982). However, the problem of deciding if a first-order
formula is monotone is undecidable. Thus, it is natural to look for a decidable syntactic
restriction that captures all monotone formulae. Lyndon’s theorem precisely allows to find

such a characterization.

THEOREM 3 (Lyndon’s positivity theorem). Let L be a vocabulary and let P a predi-
cate in L. For every L-formula ¢, if ¢ is monotone in P then there is an L-formula that

is equivalent to ¢ and is positive in P.

30

PROOF. Let £ be a vocabulary and let P be a predicate in £. Denote by £’ the
vocabulary that results from extending £ with a new predicate P’ of the same arity as P.

Let ¢ be an L-formula that is monotone in P. Consider the following £’-formula:
[p(P) AP C P’ = ¢(P).

This formula explicitly states that if ¢ is satisfied and P’ contains more information than
P, then ¢ is satisfied when replacing P by P’. It is clear that this is just a reformulation of

saying that ¢ is monotone in P, and hence | [¢(P) A P C P'| — ¢(P").

Now we apply Lyndon’s interpolation theorem. Define the formulas ¢ = ¢(P)AP C P’
and ¥ = ¢(P’). Since F ¢ — i, we can deduce the existence of a formula 6 such that
E ¢ — 0, = 8 — ¢ and that every predicate mentioned positively (negatively) in 6 is
mentioned positively (negatively) in both ¢ and . Now, since P is not mentioned (either
positively or negatively) in ¥, it cannot be mentioned in 6. Hence we denote 8 by 8(P").
Moreover, P’ can only occur positively in 6 as it is only mentioned positively in ¢. We

conclude that the formula 6(P’) is positive in P’.
We prove now that 6(P) is equivalent to ¢(P).

o [=] Let A be an L structure satisfying O(P). Let A’ be the structure that results
from extending A to L’ by making P’ = P. Since P and P’ have the same
interpretation, A" satisfies O(P’) and hence ¢(P’) (as = 6 — ¢). Again, as P and
P’ have the same interpretation, we have that U’ satisfies ¢(P). As ¢(P) does not
mention P’, ¢(P) is also satisfied by U.

o [<] Let A be an L structure satisfying ¢(P). Let A’ be the structure that results
from extending A to £’ by making P’ = P. Since in U’ it is the case that P C P’,
we know that A’ satisfies ¢(P). Hence, A’ satisfies O(P’) as = ¢ — 6. But since
in A’ the predicates P and P’ have the same interpretation, 2" also satisfies O(P).

Since 6(P) does not mention P’, we have that (P) is also satisfied in 2.

31

We have that the original formula ¢(P) is equivalent to 8(P). This concludes the proof as

O(P) is positive in P. O

This ends the first application of interpolation theorems to preservation theorems.
Next we proceed to show how Otto’s interpolation theorem can be applied to prove the

F.os-Tarski preservation theorem.

4.3. Otto’s interpolation and the f.os-Tarski preservation theorem

Otto’s interpolation states that if the two original formulas are relativized with respect
to a set of unary predicates, then so is the interpolant. In this section we show in detail

how this result allows to prove the L.os-Tarski preservation theorem.

DEFINITION 4.3.1. Let L be a vocabulary, and let U be a set of unary predicates in

L. An L-formula ¢ is said to be U-relativized if each quantification in ¢ is of the form
Ax(Ux) Ag(x)) or Yx(=UX) V §(x)),

for some U € U.

Otto’s interpolation theorem asserts that, given two U-relativized formulas ¢ and ¢
such that = ¢ — ¥, there is a U-relativized interpolant satisfying Lyndon’s conditions.
Moreover, he explicitly includes free variables in his theorem, and proves that the result
holds with and without equality. We are particularly interested in the version in which

equality is allowed:

THEOREM 4. (Otto, 2000) Let L be a vocabulary, and let U be a set of unary pred-
icates in L. Let ¢ and be U-relativized formulae such that = ¢ — . Then there is a

formula 6 such that

(1) 8 satisfies the conditions of Lyndon’s interpolation theorem w.r.t. ¢ and ,
(2) 6is U-relativized,

(3) the free variables of 0 occur as free variables in both ¢ and .

32

Next, we show how Otto applies his theorem to prove the L.os-Tarski preservation

theorem. We need to introduce the concept of extension for first-order structures.

DEFINITION 4.3.2. Let L be a vocabulary and let W and B be two L-structures. B is

said to be an extension of U, denoted by A C B, if

o the domain of W is a subset of the domain of ‘B,
e for every predicate P € L, the relation P* contains exactly the tuples in P®
which only mention elements in the domain of U,

o ¢ = c® for every constant c € L

A formula ¢(X) is said to be preserved under extensions if for every tuple a and every
two structures A and B such that A C B, if A E ¢(a) then B E ¢(a). The Los-Tarski
preservation theorem states that a formula is equivalent to an existential formula if and
only if it is preserved under extensions. Existential formulas are of the form Jx¢ where ¢

is free of quantification.

THEOREM 5. (Los-Tarski preservation theorem) Let L be a vocabulary and let ¢ be
an L-formula. Then, ¢ is equivalent to an existential formula if and only if it is preserved

under extensions.

PROOF. It is easy to show using induction that an existential formula is preserved
under extensions, we only prove the opposite direction. Let £’ be the vocabulary that
results from extending £ with two new unary predicates U, and U,. Let U = {U}, U,}, and
let ¢ be a formula that is preserved under extensions. Define @Y be the result of relativising
¢ to U, i.e. replacing every existential quantification dxy(x) by Ix(U(x) A¥(X)) and every
universal quantification Vxiy(x) by Yx(U(x) — ¥(X)). By using the fact that ¢ is preserved

under extensions, one can prove the next implication to be a tautology:

[V (W010) = U200) A U1i(3) A ¥ ()] > ().

33

Hence, we can find an U-relativized interpolant with the properties mentioned in Theo-
rem 4. Note that since U, is only mentioned positively in the left-hand side, then U, can
only be mentioned positively in the interpolant. Moreover, U; is not mentioned in the
right-hand side, so it cannot be mentioned in the interpolant. We conclude the existence
of a {U,}-relativized formula 8Y2(x) in which U, is only mentioned positively. Notice that
in 8Y2(X) no existential quantifier can be under negation, as this would contradict the fact
that every occurrence of U, is positive. It is a well-known fact that, given a formula ¢
without universal quantifiers in which all existential quantifiers are mentioned positively,
one can construct an equivalent existential formula by transforming ¢ into Prenex normal
form (Abiteboul et al., 1995). Thus, we can assume w.l.o.g. that #Y2(¥) is an existential
{U,}-relativized formula. Let 6(x) be the result of replacing every occurrence of U, by
True in 8Y2(X). We have that 6(%) is also existential and is not relativized. We show that 6

is equivalent to ¢.

o [=]Let A be an L-structure, and let a be a tuple such that A = ¢(a). Let A’ be
the £'-structure that results from adding to U the unary predicates U}' and Uy
satisfying Vx(U;(x) A U,(x)), and maintaining everything else. It is easy to see
that

W E Vy(Ui(y) = Ux(0) A Ui@ A ¢%' @)

which implies that 2 & 6Y2(a). But since in A’ the relation U, is the domain of
A’, we know that the relativized and unrelativized versions of the quantifiers are
equivalent. Hence, we have A’ = 6(a). Since 6 does not mention U; or U,, we
obtain A | O(a), which was to be shown.

e [<]Let A be an L-structure, and let a be a tuple such that A = 6(a). Let A’ be
the £'-structure that results from adding to U the unary predicates U} and Uy
satisfying Yx(U;(x) A U,(x)), and maintaining everything else. It is easy to see
that A | 8Y2(a), which implies that A’ E ¢U2(a). But since in U’ the relation U,

has every element, we know that the relativized and unrelativized versions of the

34

quantifiers are equivalent. Hence, we have U’ = ¢(a). Since ¢ does not mention

U, or U,, we obtain A = ¢(a), which was to be shown.

We have that ¢(X) is equivalent to (%), completing the proof. O

This concludes the second application of interpolation to preservation theorems that

will be used in the next chapter.

Before adapting the presented techniques to weak-monotonicity and SPARQL, we
need to discuss the validity of preservation theorems when we restrict only to finite models,

as RDF graphs are defined as finite sets of triples.

4.4. Preservation theorems and finite models

The two interpolation theorems presented above were originally proved assuming no
restriction over the first-order structures. In particular, they assume that (the domain of)
structures can be either finite or infinite. Although assuming arbitrary structures might
seem more general, for the interpolation theorems it turns out to be a restriction: Given
two formulas ¢ and ¢, it can be the case that £ ¢ — ¥, but every finite structure satisfying
@ also satisfies . If this is the case then we say that ¢ — is a tautology under finite
models, and write gy ¢ — . Notice that if = ¢ — ¢ then we immediately have gy
¢ — . However, it can be the case that Frny ¢ — ¥, but B £ ¢ — ¢ for some infinite
structure B. In particular, this has its consequence over monotonicity and preservation
under extensions. A formula could be monotone or preserved under extensions over finite
models, but not when considering arbitrary models. The interpolation theorems provide
the existence of an interpolant with the desired properties only when ¢ — i is a tautology
over arbitrary structures, but this does not not imply the existence of an interpolant when
Frn @ — .

The study of properties over finite models might seem just a mathematical problem,

but it is of particular interest in the formal study of databases, essentially because databases

are finite collections. It is interesting to mention that the study of finite model theory has

35

widely diverged from the study of classical model theory (Libkin, 2013). The reason
relies on the fact that some of the fundamental theoretical tools over arbitrary models fail
when restricting to finite models. The most notable example is probably the compactness
theorem proved Kurt Godel in 1929, which fails for finite models. To the best of our
knowledge, the compactness theorem is used in most proofs of interpolation theorems.
Given that some classical techniques fail in the finite case, it is natural to ask whether the

interpolation and preservation theorems hold in the finite.

The homomorphism preservation theorem is considered to be an exception, as it was
recently proved to hold in the finite case (Rossman, 2008). Unfortunately, the same cannot
be affirmed for the two results that will be applied to weak-monotonicity. The failure
of the Los-Tarski theorem in the finite case (Tait, 1959) immediately implies that Otto’s
interpolation theorem does not hold in the finite case either, as otherwise the presented
proof of the f.os-Tarski theorem would also hold under finite models. It is also known that
Lyndon’s positivity theorem fails when considering only finite models (Ajtai & Gurevich,
1987), which implies that Lyndon’s interpolation theorem also fails in this case. However,
it is well-known that the counterexamples to show that the results fail in the finite case are

hard to construct, and hence it is not expected to find them in real-world applications.

The fact that positivity does not characterize monotonicity over first-order logic in the
finite case does not imply that it is not possible to find such characterization. However,
finding a characterization for monotonicity over finite models has proven to be a hard
problem, and is in fact still open. We aim to apply interpolation to the case of weak-
monotonicity in SPARQL over infinite models. Therefore, in the next section we start by
introducing the concept of infinite RDF graphs, which will allow us to present a framework

for applying interpolation techniques to SPARQL.

36

S. INTERPOLATION APPLIED TO WEAK-MONOTONICITY

In the previous chapter, we presented in detail two applications of interpolation the-
orems to the characterization of semantic properties. Next, we present a framework that
allows us to extend these results and find such characterizations in SPARQL. In this frame-
work, we establish a connection between SPARQL and FO using ideas similar to those
presented in the translation from SPARQL to non-recursive Datalog with safe negation

developed in (Angles & Gutierrez, 2008b) and (Polleres & Wallner, 2013).

As already discussed, to correctly apply interpolation to SPARQL we need to work
over arbitrary first order models. Hence, we extend the definition of RDF graphs by allow-
ing every nonempty subset of I X I X I. It easy to see that the definition of the syntax and
semantics presented in Chapter 2 are not affected by this extension, nor are the definition
of properties like weak-monotonicity and monotonicity. Notice, however, that a graph pat-
tern that is (weakly-)monotone under the original definition of RDF, namely finite graphs,

may no longer have this property under arbitrary models.

5.1. From SPARQL to First-Order Logic

The application of Lyndon’s and Otto’s interpolation theorems to prove preservation
theorems can be divided into three fundamental steps. First, create a formula defining the
corresponding semantic property, over which the interpolation theorem can be applied.
Second, prove a specific relation between the interpolant and the original formula. Third,
show that the interpolant belongs to some syntactic fragment of interest. In this section,
we present a translation from graph patterns to first-order formulas that will allow us to
perform these three steps over SPARQL graph patterns. Moreover, this translation is sim-
pler than those presented before, and therefore it is also a contribution of this dissertation.

To apply interpolation and translate the obtained results to SPARQL, we will also need a

37

transformation from first-order logic to SPARQL, which will be presented in the next sec-
tion. We now start establishing the transformation from RDF and SPARQL to first-order

structures and formulas.

Given a fixed set I C I of IRIs, define £} as the first-order vocabulary containing
a ternary predicate 7, a unary predicate Dom, a distinct constant ¢; for each i € I, and
a new constant n. We first define a correspondence between RDF graphs and first-order

structures.

DEFINITION 5.1.1. Let G be an RDF graph, and let I(G) be the set of IRIs occurring

)

in the triples of G. We say that an .Ez(g;,—stmcture A = (D, T", Dom™, {c*

*Yier, n) corre-

sponds to G if:

o for every i € I(G) it is the case that C?I =i
o G is the set of triples in T* N (Dom™ x Dom™ x Dom™),
e There is an element N € D such that n* = N.

e N ¢ Dom™ and N does not occur in T".

Notice that the correspondence above is not one-to-one in the sense that two structures
can correspond to the same RDF graph G. This is a consequence of the introduction of the
predicate Dom, which will be fundamental to define relativized quantifiers when applying

Otto’s interpolation.

Next, we need to state a correspondence between mappings and first-order tuples. To
this end, we assume a total strict order < over all variables in V. Given a finite subset X of

V, denote by X the tuple of variables in X ordered under <.

DEFINITION 5.1.2. Let u be a mapping and let X a finite subset of dom(u). Then,
u[X] is the tuple that results from replacing in X every component in X N dom(u) by its

image under u, and removing every other component.

To transform a SPARQL graph pattern P into a first-order formula, we take an inter-

mediate step: we create one formula for each subset of var(P). Intuitively, the formula

38

corresponding to a subset X of var(P) will output the tuples corresponding to mappings
that bind exactly X. We abuse notation by not distinguishing between FO and SPARQL

variables. We also abuse notation by assuming u(i) = i for every mapping ¢ and i € 1.

LEMMA 3. For every graph pattern P, there is a set {¢X(X)}xcyarp) of formulas in
ng} such that, for every mapping u and RDF graph G, it is the case that u € [Pllg if and
only if U goi}m(ﬂ)(y[)_(]) for every L}e(g}-structure A corresponding to G.

PROOF. Let P be a SPARQL pattern. We proceed by induction on the structure of P.

e Let P = (1,1, t3) be a triple pattern and let U be an ng;—structure corresponding

to G. Since for every RDF graph G and mapping ¢ € [P]l¢ we have var(P) =
dom(u), define %(X) as a contradiction for every X ¢ var(P). For X = var(P)
define

ok(X) = T(t), 1, t3) A Dom(t,) A Dom(ty) A Dom(ts).

A mapping u belongs to [P]l¢ if and only if (u(t), u(t,), u(t3)) belongs to G. But
this occurs if and only if u(t;), u(t), u(t3) € Dom™ and (u(t,), (), u(t3)) € T

e [et P = P; UNION P, and let A be an ng;—structure corresponding to G. For
every X C var(P) define goi()_() as

X)) = R XV g2 (X).

Let u be a mapping and X = dom(u). By semantics of UNION, u € [P]g if
and only if u € [Pi]lc U [P>]lc. Hence, by hypothesis we have u € [P]¢ if
and only if A | L' (u[X]) or A | L2 (u[X]), which is the semantic definition of
W Qi XD V @ ulXD).

e [et P=P; AND P, and let A be an ng)},-structure corresponding to G. For
every X C var(P) define the formula ¢%(X) as

kD= \/ e A,

X1UX=X

39

Let G and u be an RDF graph and a mapping, respectively, and let X = dom(u).
If u belongs to [P]s, then there are two compatible mappings u; € [P]l¢ and
U € [P2llg such that u = py U up. Let X7 = dom(u;) and X, = dom(uy,).
By hypothesis, we know that % | ¢! (ui[X]) and A £ @32 (u2[X5]) which is
equivalent to A goii(,ul[)fl]) A 902(/12[)52]). As X; UX, = X we have U |
@ (ulX1).

For the converse, if A & 90§omw)(/1[)_(]) then there are two sets X; and X, such that
X, UX;, = X and both A (,02 (u(X))) and A = (,05;(#()22)) hold. Define u; as u
restricted to X; (i € {1,2}). It follows from the hypothesis that u; € [P;]l¢ and
U € [P>]lg- Since uy and w, are compatible (they are both restrictions of u) and
M=y Uy, this implies u € [Pllg.

Let P = P; OPT P, and let A be an ng;—structure corresponding to G. For

every X C var(P) define the formula ¢%(X) as

(X)) = 90? AND P2 (%) v ¢"nus xX)

where ¢},\us x(X) is defined as

erX A\ 3(X'\X>[N\ Dom(x') A gip(X) |

X'Cvar(P) Xex’
Notice that in the definition of the MINUS formula, the mention of Dom is not
necessary because elements coming from g0§3 (X’) are already binded to Dom".
However, this mention allows us to directly conclude that a graph pattern is
transformed into a {Dom}-relativized formula. Now we proceed with the proof.

Let G and u be an RDF graph and a mapping, respectively, and let X = dom(u).
By definition, u belongs to [Py AND P,]lg or to [P]lg \ [P2]. In the first case,
we know that U = oF" AP P2(u[X]). It remains show that if u € [P1]6 \ [P2]lc
then A | ¢’ wus x@IX]D). As u € [Pi]g, we know U | @4 (u[X]), so we only
need to prove that there is no set X’ C var(P,) such that 2 = cp§3 (1'[X’]) for some

40

p’ compatible with p. But if this was the case then ¢ would be in [P;]lg, which
contradicts the fact that u € [P]l¢ \ [P2]c (since ¢’ and yu are compatible).

For the converse, assume A £ @4 (u[X]) where X = dom(u). If it is the case
that A E @i *° P2 (u[X]), we know by the AND case that u € [P; AND P;]i
and hence u € [P]lg. The remaining case is when U SDPMINUS X(y[)_(]). If this
is the case, by hypothesis it readily follows that 4 € [P;]lc. Now we have to
prove that u is not compatible with any mapping in [P,]s. Proceed by contra-
diction. Assume there is a mapping u’ € [P,]l¢ compatible with u. We know
A = (pi?(g’[)?]) where X’ = dom(u’). Since y and ' are compatible, y’ can
be obtained by extending the assignments in g, and thus 2 would not satisfy
(lDPMINUS X(/J[X]), which leads to a contradiction.

Let P = SELECTV WHERE Q and let A be an ng)F—structure corresponding
to G. For every X C var(P) such that V ¢ X, the formula ¢§(X) is defined as
a contradiction. It is immediate to show that this satisfies the equivalence, as P
cannot output variables not mentioned in V. Now, for every X C var(P) NV

define the formula ¢%(X) as

= \/ H(Y\X)(ADom(y)/\gog(f’)]

YCvar(P)|XCY yeY
As in the OPT case, including Dom is not necessary but allows us to state that
the resulting formula is {Dom}-relativized. Let G and u be an RDF graph and
a mapping, respectively, and let X = dom(w). If u belongs to [P]lg, then there
is a mapping ¢’ € [Q]lg such that u/y = p. Let Y = dom(u’). We have by
hypothesis that A | @2(u/[¥]). Since w/[¥] is a tuple extending u[X], we have
that A = (Y \ X)gog(,u’[f/]) when replacing the free variables in X according to
ulX]. It readily follows that A | @ (u[X]).
For the converse, if A & gogom(#)(y[)_(]), there must be a tuple a that extends u[X]
and a set of variables ¥ with X C ¥ C var(P), such that A = gog(c‘z). Let i’ be the

tuple corresponding to @ (i.e. 'y, = @). By hypothesis, we have that ' € [Q].

41

But since y’ corresponds to @, and a extends u[X], we have that My = . We
conclude that 4 € [SELECT V WHERE Q];.
e Let P = P, FILTER R and let A be an ng)F-structure corresponding to G. For

every X C var(P) define ¢4 (X) as
Prv\ _ Pi/v v
Px(X) = @' (X) A pr(X)

where @r(X) is inductively defined as follows:

— If R is an equality and var(R) € X, then ¢ = False.

— If R is an equality and var(R) C X, then g = R.

— If R = bound(x) and x ¢ X then ¢ = False.

— If R = bound(x) and x € X then g = True.

— If R is of the form =R, Ry A Ry, or R; V R, for filter conditions R; and R,,

then ¢y is the corresponding boolean combination of ¢g, and ¢g,.

Let D and u be an RDF dataset and a mapping, respectively, and let X = dom(u).
It is easy to see from the definition of @ that A | px(u[X]) if and only if u = R.
By hypothesis we have y € [P;]s if and only if A gof;;mw(,u[)_(]), and hence

it readily follows that A = 90§<1>m(#)(ﬂ[)_(]) A @r(X) if and only if u € [P,]g and

U = R, which was to be shown.

O

The previous Lemma allows us to take a graph pattern P and construct a set of formu-
lae that together, in a sense, are equivalent to P. We now need to transform such set into
one single formula. The main issue in this transformation is that variables might not be
binded by mappings, producing a problem in the set of free variables. Here is where we

need the constant n and the element N in the domain of structures.

DEFINITION 5.1.3. Let u be a mapping and X a finite subset of V. Assume X =
{x1,...,x,} and that i < j implies x; < x;. The tuple representing u over X, denoted by

,Lf,fo, is defined as (a;)_, where a; = u(x;) if x; € dom(u) and a; = N otherwise.

42

This definition allows us to output tuples corresponding to mappings with different
domains from a single FO formula. We abuse notation and write ,u{io instead of ,u;a(;(P),
as we are particularly interested in those cases when the set of variables comes from a
graph pattern. For the sake of simplicity, we introduce the notion of equivalence between

SPARQL graph patterns and first-order formulas:

DEFINITION 5.1.4. Let P be a graph pattern and let ¢ be an £gg}—f0rmula. We say
that P and ¢ are equivalent, denoted by P = ¢, if for every RDF graph G and mapping
W, it is the case that u € [Pl if and only if A go(yﬁo) for every .E}e(g}-stmcture A

corresponding to G.

Now we are ready to formally state the aforementioned transformation from SPARQL

to FO.

THEOREM 6. Let P be a SPARQL graph pattern. There is a first-order formula ¢p in

LMD which is equivalent to P,

PROOF. Let P be a SPARQL graph pattern. Let {¢%(X)}xcvarp) be the formulas ob-
tained from applying Lemma 3 to P. Now, define the first-order formula ¢p(var(P)) as

follows:

ervarP) = \/ |k N y=n

XCvar(P) yevar(P)\X

We show that P = ¢p. Let A be an ng;-structure corresponding to G.

e [=] Let u € [Pllg and let X = dom(u). Since uf is a tuple that extends X
by making variables in var(P) \ X equal to n, we have A = y = n for every
y € var(P) \ X when evaluated over ,u{jo. Also, we know from Lemma 3 that
A E ¢y (u[X]). Hence, we have that A = ¢p(u[X]), which was to be shown.

e [<] Let u be a mapping such that A [= ¢,(uf,). Since the variables equal to n

in pf, are precisely those not in dom(u), the only disjunct that can be satisfied

43

is that in which X = dom(u). Hence, we know that U | gog’omw)(u[)_(]). From
Lemma 3 this directly implies u € [P]lg, concluding the proof.

Notice that the previous transformation creates an FO formula with the same set of

free variables that the original graph pattern.

Having a transformation from SPARQL to FO, we can now apply the interpolation
techniques explained in Section 4.1. Notice that the formula resulting from a graph pattern
might have equalities, and hence we use the version of Otto’s interpolation theorem in
which equalities are allowed. It is worth mentioning that Lyndon’s interpolation theorem
can be extended to allow for equalities, but Lyndon did not explicitly included them in
the original statement. The first extension to Lyndon’s interpolation theorem that included

equalities! was presented in (Oberschelp, 1968).

To apply interpolation we need to write a formula expressing weak-monotonicity in
our FO setting. Given two tuples X = (xy,...,x,) and y = (y1,...,y,) of the same length,

define the formula x < j by

=
IA
<

1]

(xi =y Vx; = n.

i=1

It can be seen that given two mappings u; and uj, it is the case that y; is subsumed
by u, if and only if :“11‘;0 < u2¥0 for every set V of variables. We use the relation < to say
that a first order formula is weakly-monotone. We also use, for every I C I, the extended

vocabulary L{{DF' = Lrpr U{T", Dom’}, where T" is a new ternary predicate and Dom’ is

a new unary predicate. Let I C I and let ¢ be an £} -formula. The next £ ."-formula

asserts that ¢ is weakly-monotone over structures that correspond to RDF graphs.

[o(T, Dom,x) NT C T A Dom C Dom’] = Ay(x <3 A o(T', Dom’, y)). (5.1)

I'The interpolation property over the polarity of predicates does not hold for equalities. However, there is a
weaker condition for the interpolant over the occurrences of equalities and inequalities.

44

However, if ¢ corresponds to a weakly-monotone graph pattern, the previous formula is
not necessarily a tautology. This occurs because there are structures that do not correspond
to any RDF graph, and we do not know how ¢ will behave over those structures. To

actually create a tautology, define the following L, .-sentence:

1
RDF
2RDF = /\ci FnA /\ci # ¢; A =Dom(n).

icl i#j
It is easy to see that an L{QDF-structure satisfies Zgpr if and only if it corresponds to some
RDF graph. Hence, the following formula states that ¢ is weakly-monotone over structures

that correspond to RDF graphs.

[Zrpr A (T, Dom, %) AT C T A Dom C Dom’'] — A3(x < y A o(T', Dom’,y)). (5.2)

1(P)

Assume now that we have a weakly-monotone graph pattern P, and let ¢ be the Ly .-

formula obtained from applying Theorem 6 to P. Since ¢ is equivalent to P (which is
weakly-monotone), we know that the above implication is a tautology. Therefore, we can
obtain an interpolant 6(7T", Dom’, X) satisfying the conditions from Ottos’s interpolation
theorem. Unfortunately, and as opposed to the applications of interpolation in FO, this
interpolant is not necessarily equivalent to ¢. In particular, we will see that the interpolant
it is not only weakly-monotone, but also monotone. However, there is a strong connection

between ¢ and 6, which is formalized by the following definition.

DEFINITION 5.1.5. Let P be a graph pattern and let ¢ be an Lgpp-formula. P is said
to be equivalent in maximal answers to ¢, denoted by P =yx ¢ if for every RDF graph G
and mapping u, it is the case that u is a maximal mapping (w.r.t. <) in [Pl if and only
if :“?0 is a maximal tuple (w.rt. <in FO) such that A = go(,ul{fo) for every Lgpp-structure

corresponding to G.

Now we are ready to prove the main result obtained from translating SPARQL to FO

and applying interpolation.

45

THEOREM 7. Let P be a weakly-monotone graph pattern. There is an existential

ng}-formula W that is positive in both T and Dom, and such that P =y.x V.

PROOF. Let P be a weakly-monotone graph pattern and let ¢ be the ng)}:—formula
obtained from Theorem 6. Since ¢ is equivalent to P, which is weakly-monotone, we
know that formula 5.2 is a tautology. Then, there is an interpolant 6 that satisfies the next

conditions:

(1) [Zrpr A (T, Dom, %) AT C T' A Dom € Dom'] — &(T', Dom’, %),
(2) (T", Dom’, x) — A9(x <y A (T, Dom’, ¥)),

(3) 6 only mentions the predicates 7" and Dom’,

(4) 0 is positive in both 7" and Dom’.

As ¢ and Xrpr are {Dom, Dom'’}-relativized and Dom is not mentioned in 6, we can
deduce that 6 is {Dom’}-relativized. Moreover, Dom’ is mentioned positively in 6 from

which we conclude, as in the first-order case, that 0 is an existential formula. Now it

1(P)

only remains to show that ¢ and # coincide in their maximal answers. Let % be an Ly .-

structure corresponding to an RDF graph G. Define U’ as the structure in ng;’ that results

from extending A with 7" = T and Dom’ = Dom.

e [=] For this direction we prove a stronger result: every answer to (7T, Dom) is
also an answer to 6(T, Dom). Let a be a tuple such that A = (T, Dom, a). Since
@(T, Dom,) does not mention 7" nor Dom’, we know that ' | (T, Dom, a).
We also know that both 7 C 7" and Dom C Dom’ hold in 2, so by (1) we have
that W = (T, Dom’, a). It immediately follows that A = 6(T, Dom, a).

e [<] Let a be a maximal tuple such that A = 6(T, Dom, a). Since 6(T, Dom, X)
does not mention 7" not Dom’, and in A’ we have T = T" and Dom = Down?,
we know that U | 6(T', Dom’,a). By (2), there must be a tuple b subsuming
a such that A £ o(T', Dom’,b). From [=], we know that this implies A’
6(T', Dom’, b). Since a is a maximal tuple satisfying A’ E (T, Dom’, %), we

46

have that @ = b. We conclude that that ' | (T, Dom’,a). It immediately
follows that A = (T, Dom, a).

We have that 6 is a positive existential formula that is equivalent in maximal answers

to P, concluding the proof. O

The previous theorem establishes what we obtain from applying interpolation to for-
mulas related to weakly-monotone SPARQL graph patterns. We now know that given a
weakly-monotone SPARQL graph pattern P, there is a positive existential formula ¢ that

is equivalent in maximal answers to P.

5.2. From existential positive FO to SPARQL

We have proved that given a graph pattern P in SPARQL, there is an existential posi-
tive formula ¢ such that P =yax ¢. In this section, we discuss how to transform such for-
mula ¢ back into SPARQL, and what is the syntactic form of the obtained graph pattern.
In this transformation we do not need the equivalence for all structures that correspond to
RDF graphs. Instead, we use a weaker notion of equivalence in which the correspondence

between the formula and the graph pattern only holds in very specific structures.

DEFINITION 5.2.1. Let G be an RDF graph. The first-order structure that represents
G is denoted by Grp, and is defined as the only ng}-structure with domain I(G) U {N}

that corresponds to G.

Notice that in a structure representing a graph G, Dom is interpreted as I(G) and
T corresponds precisely to the triples in G. Now we define the notion of equivalence
that will hold when transforming a first-order positive existential formula into a SPARQL

graph pattern.

DEFINITION 5.2.2. Given an L};g}—formula ¢ and a graph pattern P, we say that P

and ¢ are equivalent in RDF structures, denoted by P =gpr ¢, if for every mapping u and
RDF graph G, it is the case that u € [Pl if and only if Gro E go(,uﬁo).

47

We also use the relation =gpg between two FO formulas to assert that they coincide in
every structure representing an RDF graph. Now we proceed to define the aforementioned
transformation: given a positive existential formula ¢, we construct a graph pattern P such
that ¢ =gpr P. To this end, we first transform our formula into a union of conjunctive
queries (UCQ) with inequalities. A UCQ with inequalities is a formula of the form ¢(X) =

910151, %) V -+ -V IV,0,(V,, X), where for every i € {1,...,n}:

e ¢, 1s a conjunction of equalities, inequalities, and positive occurrences of predi-
cates, and

o the set of free variables in ¢; is precisely the set of free variables in ¢.

Denote by UCQ? the set of all UCQs with inequalities. Before proceeding with our trans-
lation, we need to prove that positive existential formulas can be translated to UCQs with

inequalities under certain conditions.

LEMMA 4. Let I C I and let ¢ be a positive existential formula in Lk, .. There is an
Lh o ~formulay in UCQ” such that

e The predicate Dom does not occur in vy,

o Every equality and inequality in 'y contains at least one variable,

® =gpr Y-

PROOF. Let ¢ be a positive existential formula in £} .. Define

Adom(x) = AyAz(T(x,y,2) V T(y, x,2) V T(y, 2, X))

and let ¢7 be the result of replacing in ¢ every occurrence of Dom by Adom. It is clear that
@r 1s also a positive existential formula and that it does not mention the predicate Dom. It
is also clear that o7 =rpr @, since in every structure representing an RDF graph Dom and
Adom are equivalent. Since @7 is positive existential, we can assume w.l.o.g that ¢7(x) =
910151, X1) V- - -V I9,0,(V, X)) where each ¢; is a conjunction of equalities, inequalities,

and positive occurrences of predicates (Abiteboul et al., 1995) . Notice, however, that the

48

free variables in the disjuncts are not necessarily X. Let ¢ be the result of applying the next

procedure over ¢r:

(1) remove every equality between two equal constants,
(2) remove every disjunct with an occurrence of 7 mentioning the constant n,

(3) remove every disjunct with an equality between two distinct constants.

Since equalities between equal constants are tautologies, the first operation does not
alter the formula. In a structure corresponding to an RDF graph, the element associated
with the constant n does not appear in any occurrence of the predicate 7, so the second
operation preserves the equivalence =gpg. Moreover, in structures corresponding to RDF
graphs every two constants have different interpretation, and hence the third operation
also preserves the equivalence in these structures. It follows that ¢; =gpr . Finally, we
transform ¢ into a formula y such that every disjunct of y has the same free variables as .
Assume that (x) = Ay (Y1, X1) V- - - V Ay0,(V,, X)), where X is the set of free variables

in ¢ and ; is the set of free variables in ;. Fori € {1,...,n} define

yi®=\/ W\ [\ Adomon N\ x=n

XCx\X; xeX xex\(x;UX)
Finally, let y(X) = y1(X) V - - - V ¥,,(X). We show that y(X) =rpr ¥(X).

e Let G be an RDF graph and let a be a tuple such that Ggo = 7y(a). Hence,
Gro E vi(a) for some i € {1,...,n}. This implies that Ggo E Iy;(¥(a;, y:)),
where @; is the tuple that results from restricting a to X;. By the definition of i,
this implies that Ggo F Y(a).

e Let G be an RDF graph and let a be a tuple such that Ggo E ¥(a). Hence,
Gro F dyi(¥(a;,y;)) for some i € {1,...,n}, where a; is the tuple that results
from restricting a to X;. Let X be the set of variables in a \ a; that are assigned to

elements mentioned in 7. Since the only element not mentioned in 7°%° is N,

49

and N is assigned to the constant , it is clear that
Gro b |05 50 A [\ Adomx)n N\ x=n
xeX xex\(x;UX)
and hence Ggp F y(a).

We have that y satisfies the desired conditions. In particular, the set of free variables

in every disjunct of y is X. This concludes the proof since ¢ =rpr ¢7 =rpF ¥ =RDF Y-

Having this equivalence, we can now present the main transformation from positive
existential formulas to SPARQL. As previously mentioned, we are particularly interested

in the syntactic form of the resulting graph pattern.

THEOREM 8. Let ¢ be a positive existential formula. There is a graph pattern P in
AUF” such that ¢ =gpr P.

PROOF. By Lemma 4 we can assume w.l.o.g. that (1) ¢ is in UCQ?, (2) in ¢ the predi-
cate Dom is not mentioned, (3) the constant n is not present in any occurrence of 7, and (4)
every equality and inequality mentions at least one variable. We proceed by transforming

the disjuncts of ¢ into SPARQL graph patterns. Suppose that ¢ is the following formula
(%) = 11 (Y1, D V-V AV (55, X).
Fix k € {1, ..., j} and assume
@ = T, vi,wi) A== A T(Up, Vi, W) A
a :bl /\"'/\Clm:bm/\C] ¢d1 /\"'/\C[id[

Where u;, v; and w; are either variables or IRIs, and «a;, b;, ¢; and d; are either variables, IRIs
or the constant n (for 7 in the suitable intervals). For every equality a; = b;, define the filter

condition R; piecewise as —bound(?X) if {a;, b;} = {n, 72X} and a; = b; otherwise. For every

50

inequality ¢; # d;, define the filter condition §; piecewise as bound(?X) if {c;, d;} = {n, 7X}

and ¢; # d; otherwise. Define the graph pattern Q; as

Qk = ((M],V],W]) AND --- AND (Mn,Vn,Wn)) FILTER (R1 ANRRE: /\Rm/\Sl ANERR /\Sg)

By the conditions of Lemma 4 this graph pattern is well-defined, and the free variables

in ¢ and Q; are exactly X. We now need to prove that ¢; =gpr Ok.

e [=] Let G be an RDF graph and u € [Q«llc. This implies that u((u;, v, w;)) € G.

By the definition of Ggo and ulng(Q"), we have Gro E T(u;, v;,w;) for each i €
. . . r(Q) .
{1,...,n} when replacing variables according to ,u;i‘) ¥ . Nowleti e {l,...,n}.

Recall from Definition 5.1.4 that variables that are not binded in u are asigned to

N in ,u;g(Q"). Hence, as u = R; and u | S, it is easy to see that Ggo = (a; = b))

and Ggo E (c¢; # d;) when replacing variables according to /Jl%. We conclude
that Ggo satisfies each conjunct of ¢, when variables are replaced according to

U, and therefore Ggp gok(,ugc") .
Var(Qk))
Fo

var(Qx)
FO ?

e [<] Let G be an RDF graph and let u be a mapping such that Ggo | @i (u
We have that Ggo E T(u;, v;, w;) when replacing variables according to u
and hence u((u;, vi,w;)) € G foreachi € {1,...,n}. Again, the variables assigned

to N by ulvfg(Q") are precisely those variables not binded by u. Hence, as Ggo E
Ok

FO®
easy to se that u = R; and u |= S ;. By the semantics of AND and FILTER , we

(a; = b;) and Gpo E (¢; # d;) when replacing variables according to w55, it is

conclude that u € [Q«llG-

We have transformed the conjunctive part of each disjunct of ¢ into a first-order for-
mula. Now we need to include in our transformation the existential quantification. This is

achieved by means of SELECT.

Define the pattern P, as SELECT x WHERE Q,. We show that P; =grpr 3Vr¢i(Vk, X).
Let G be an RDF graph.

51

o [=] Let u € [Pillc. By the semantics of SELECT, there must be a mapping
€ [Qillg such that ,ul’)_(= u. Since Qy =rpr ¢, this implies that Ggo E
gok(y’iéy “). Since the projection of u’igy “to X is precisely y,, we have that Ggo
Ay Gk, Hr)» concluding the first direction.

e [<] Let u be a mapping such that Gro = 35xc(r, i) Then, there is a tuple
a that extends y;, by assigning an IRI or the value N to each variable in .

1 XYk

Fo for some mapping u’. Since Gro F gok(y’;éy “) and

Hence, a corresponds to u
¢r =rpr Ok, this means that u” € [P]lg. As the restriction of u’ to x is u, we

have that 4 € [SELECT x WHERE P;];.

Having for each disjunct ¢ an equivalent graph pattern, we finally proceed to create a
graph pattern that is equivalent to ¢. This graph pattern is defined, as expected, as the di-
junction between the previously constructed patterns. Let P = P; UNION --- UNION P;.
It is immediate to prove that P =grpr ¢: Let G be an RDF graph. A mapping u belongs to
[Pl if an only if there is a k € {1,..., j} such that u € [P]lc. We already proved this is
the case if and only if there is a k € {1,..., j} such that Ggo E Vi (Fk, uéo), concluding
the proof.

O

At this point we have one transformation from SPARQL to FO and one transformation
from FO to graph patterns in AUF”". Unfortunately, the composition of these two transfor-
mations does not preserve all the answers, but only the maximal ones. Notice that this is
expected, as it is well known that graph patterns in AUF”" are not only weakly-monotone,
but also monotone. However, we will see in the next chapters that maximal answers play
an important role in the evaluation of graph patterns. We say that two graph patterns P and
Q are equivalent in maximal answers if for every graph G, the set of maximal mappings

(w.r.t. <) in [P]; coincides with the set of maximal mappings in [Q]¢.

THEOREM 9. Let P be a weakly-monotone SPARQL graph pattern. There is an graph

pattern Q in AUF" that is equivalent in maximal answers to P.

52

PROOF. Let P be a weakly-monotone SPARQL graph pattern. Let ¢ be the existential
first-order formula such that P =yax ¢ obtained from applying Theorem 3. Denote by ¢
the UCQ with inequalities equivalent to ¢ constructed by applying Theorem 4. Now let
Q be the graph pattern such that Q =gpr ¢ obtained from applying Theorem 8. We prove

that Q is equivalent in maximal answers to P.

e [=] Let G be an RDF graph and let 4 be a maximal mapping in [P]lg. Then,
we know that Gro E ¢(uf,) and hence Gro E ¢(uf,). It readily follows that
i€ [0l

e [«&] Let G be an RDF graph and let 4 be a maximal mapping in [Q]s. This
implies that xf, is a maximal tuple (w.r.t. <) such that Gro F ¢(ub,). Since ¢

and P are equivalent in maximal answers, we conclude that u € [P]s.

O

The previous theorem concludes our application of interpolation theorems to weak-
monotonicity over SPARQL. It is interesting to mention that this theorem can be easily
proved for well-designed graph patterns, but it is not clear how to prove it over weakly-
monotone graph patterns without going through the presented translation to first-order
logic. In the next two chapters we will see that this theorem is a powerful tool for char-
acterizing and capturing semantic properties over different fragments of SPARQL. It is
important to mention that the theorem provides, for every weakly-monotone pattern P,
a new graph pattern Q that is monotone. Hence, we will need some further work we to

deduce properties over weakly-monotone graph patterns.

53

6. SYNTACTIC CHARACTERIZATIONS IN SPARQL

After studying how interpolation is used to establish preservation theorems, we have
managed to build a relation between SPARQL and FO. From this relation we proved that
every weakly-monotone graph pattern is equivalent in maximal answers to an OPT-free
graph pattern. In this chapter we study the main consequences of this result, focusing on
finding weakly-monotone fragments that are more expressive than well-designed graph
patterns, as motivated in Chapter 3. We study the expressive power of different fragments
of SPARQL, and introduce an operator that replaces OPT with a different way of obtain-

ing optional information.

6.1. Removing subsumption: the NS operator

Theorem 9 asserts that given a graph pattern P, there is a graph pattern Q in AUF”"
that is equivalent to P in maximal answers. However, Q provides no information about
what subsumed mappings could P output. Therefore, it is natural to start our study by
focusing on graph patterns that never output subsumed mappings. We say that a graph
pattern P is subsumption-free whenever for every RDF graph G and every two mappings

Ui, 1z € [Plg, it is the case that u; £ u.

Assume a graph pattern P is subsumption-free, and Q is the result from applying
Theorem 9 to P. Hence, P and Q are equivalent in maximal answers. But since P is
subsumption-free, the maximal mappings coming from Q are exactly the set of mappings
coming from P. Thus, if we defined an operation for removing subsumed mappings, we
could retrieve all the information of P from Q. It is interesting to notice that this opera-
tion naturally arises from the applications of interpolation theorems, but at the same time
is just a different way of obtaining optional information. In fact, an operator for obtain-

ing maximal answers called minimal union relation was already studied in the context

54

of incomplete information under relational databases (Galindo-Legaria, 1994). We intro-
duce a new operator for querying RDF datasets by extending the syntax and semantics of

SPARQL:

DEFINITION 6.1.1. If P is a SPARQL graph pattern, then NS(P) is a graph pattern.
Moreover, given an RDF graph G,

INS(P)llg = {u € [Pl | there is no u" € [Pllg such that u < u'}.

For a given fragment of SPARQL (e.g, AUF"), denote the extension of such fragment
with the NS operator by adding ‘NS’ as a subscript (e.g, AUF{y). It can be seen from
the previous discussion that whenever we have a subsumption-free graph pattern, we can
obtain an equivalent OPT-free graph pattern that only uses the NS operator at the top-
most level. The following fragment is therefore a natural set for capturing the set of

subsumption-free weakly-monotone graph patterns:

DEFINITION 6.1.2. A graph pattern is called simple if it is of the form NS (P), where
P is in AUF”.

As already mentioned, we are interested in finding fragments that only contain weakly-

monotone graph patterns. We show that this is the case for simple patterns.

LEMMA 5. Every simple graph pattern is weakly-monotone.

PROOF. It is trivial to show that if Q is a weakly-monotone graph pattern, then NS(Q)
is weakly-monotone. Since every AUF”" graph pattern is weakly-monotone, it immediately

follows that every simple pattern is also weakly-monotone. m|

We now proceed to study the expressive power of simple patterns.

55

6.2. Simple patterns and subsumption-free patterns

A first consequence of the definition of simple patterns and Theorem 9 is that this

fragment covers the fragment of all subsumption-free weakly-monotone graph patterns.

THEOREM 10. Let P be a subsumption-free weakly-monotone SPARQL graph pat-

tern. Then, there is a simple pattern that is equivalent to P.

PROOF. Let P be a subsumption-free weakly-monotone SPARQL graph pattern, and
let Q be the AUF™ graph pattern that result of applying Theorem 9 to P. We know that P
and Q are equivalent in maximal answers. But since P only outputs maximal mappings,
we have that for every RDF graph G and every mapping y, it is the case that 4 € [P]s if
and only if x4 is a maximal mapping (w.r.t. <) in [Q]l¢. As the maximal mappings in [Q]ls
are precisely the mappings in [NS(Q)]lg, we obtain that P is equivalent to NS(Q), which

is a simple pattern. O

Recall that in Chapter 3, we proved that the fragment of well-designed graph pat-
terns (including disjunction at the top-most level) does not cover weak-monotonicity over
SPARQL. It is interesting to notice that the counterexample used in that prove is actually

subsumption-free:
(?X,a,b) OPT ((?X,c,?Y) UNION (?X,d, ?2)).
This graph pattern is equivalent to
NS [(?X, a, b) UNION ((?X, a,b) AND (?X, ¢, ?Y))
UNION ((?X,a,b) AND (?X,d,?Z))], (6.1)

which is a simple pattern. We obtain as a corollary that there are simple patterns that

cannot be expressed as well-designed graph patterns.

56

On the other hand, from Theorem 10 we can directly deduce that weakly-monotone
graph patterns in AOF can be translated into simple patterns (given that AOF is subsumption-

free (Pérez et al., 2009)).

COROLLARY 2. The fragment of UNION-free well-designed graph patterns is prop-

erly contained in the fragment of simple patterns.

We would also like to establish containment in the opposite direction, showing that
fragments mentioning NS can be translated into fragments of SPARQL. To this end, we
start by showing a more general result: SPARQL and AUF{¢ have the same expressive
power. It is trivial to prove that SPARQL is contained in AUF, given that P; OPT P, is
equivalent to NS (P; UNION (P; AND P,)). To prove the other direction, we make use
of the fact that every graph pattern can be translated into an equivalent pattern in UNION-
normal-form. A graph pattern P is said to be in UNION-normal-form if P is a disjunction
of UNION-free graph patterns. In (Pérez et al., 2006a) the authors proved that every graph
pattern in AUFO can be transformed into UNION-normal-form. We extend this proof to
show that this is also the case for SPARQL graph patterns including SELECT.

LEMMA 6. Every SPARQL graph pattern is equivalent to a graph pattern in UNION-

normal-form.

PROOF. Let P be a SPARQL graph pattern. We proceed by induction over the struc-
ture of P. We only consider the case in which P = SELECTV WHERE Q, as the other

cases have already been completed in the original proof' for AUOF (Pérez et al., 2006a).

Assume P = SELECTV WHERE Q. By induction hypothesis we can assume that
Q = Q; UNION --- Q, where each disjunct is UNION-free. We prove that

P = (SELECTV WHERE (Q;) UNION -.- UNION (SELECTV WHERE Q,).

Let G be an RDF graph and ¢ be a mapping.

I'The original proof had an issue in the OPT case, it was later corrected in errata by the authors.

57

e [=] Assume u € [P]lg. Then, there is a mapping ¢’ € [Q]¢ such that ,ul’v = U.
implies there is an i € {l1,...,n} such that ¢’ € [Q;]g. It follows that u €
[SELECT V WHERE Q;]s.

e [<] Assume u € [SELECTV WHERE Q] fori € {1,...,n}. Then, there is
a mapping y' € [Qillg such that yf;, = p. It follows that 4" € [Q]lg, and hence

p € [Pl

To prove that AUF{ is contained in SPARQL we actually make use of a stronger
version of UNION-normal-form. We abuse notation by writing D € P whenever P is a

graph pattern in UNION-normal-form and D is a disjunct of P.

LEMMA 7. Let P be a SPARQL graph pattern. Then, there is a graph pattern P’ in
UNION-normal-form that is equivalent to P, and that satisfies the following condition: for
every D € P’ there is a set of variables V, C var(P) such that, for every RDF graph G and
every u € [Dlg, it is the case that dom(u) = Vp.

PROOF. Let P be a SPARQL graph pattern. For every V C var(P), define the graph

pattern

P, = PFILTER /\ bound(?X) A A —bound(?X)|.
2XeV ?Xevar(P)\V

Notice that for every graph pattern G, [Pyl is the set of mappings u in [P]lg such that
dom(u) = V. Now, define the pattern P/, as the transformation of Py into UNION-normal-
form. Itis clear that the domain of every mapping that comes from the disjuncts of P{, must
be exactly V. Define P’ as the disjunction (by means of UNION) of every P|, (V C var(P)).
We prove that P is equivalent to P’. Let G be an RDF graph and u € [P]s. It is clear that
M € [Paomll, and hence u € [[Péom(#)]](;, which implies u € [P’]ls. For the converse, let
u € [P']lg. There is a set V of variables such that u € [P}]lg, and hence u € [Py]g, which
implies u € [P]lg. Finally, as P’ is a disjunction of graph patterns in UNION-normal-form,

P’ is also in UNION-normal-form. Moreover, the disjuncts in the UNION-normal-form

58

version of Py can only output mappings whose domain is precisely V, which concludes

the proof. O

In simple words the previous lemma allows us to distinguish what are the variables
that bind the mappings coming from each disjunct. In the following we use the operation

MINUS , which is defined as follows:
P, MINUS P, = (P; OPT (P, AND (?x1, ?x3, ?x3))) FILTER —bound(?x,).

Given an RDF graph G, P; MINUS P, retrieves the mappings in [P;]; that are not

compatible with any mapping in [P;]s.

Now we are ready to prove the containment in the remaining direction.

LEMMA 8. Every AUFY graph pattern can be transformed into an equivalent SPARQL

pattern.

PROOF. Let P be a graph pattern in AUFY4. We proceed by induction over the struc-
ture of P. The basic case is trivial as a triple pattern is already in SPARQL. For the
inductive step to succeed, we actually need to prove a stronger property: every graph pat-
tern in SPARQLys can be translated into SPARQL. Assume P = NS(Q), which is the
only nontrivial case. By hypothesis we can assume Q is in SPARQL (it might mention
OPT). From Lemma 7 we can suppose that Q is in UNION-normal-form and, moreover,
that each disjunct of Q can only output mappings binding a fixed set of variables V. Let
Q’ be a disjunct of Q, and assume Q;, ..., O, are all disjuncts of Q such that Vo C V..

Define the graph pattern
Oys = Q" MINUS (Q; UNION --- UNION Q,).
We prove that NS (Q) is equivalent to the graph pattern defined as

R = UNION QO%..
0'c0 Ons

59

e [=] Let G be an RDF graph and let u € [NS (Q)]lc. We have that u € [Q'] for
some disjunct Q' of Q, and that there is no mapping y’ € [NS (Q)]l¢ subsuming
. It follows that there is no disjunct Q” of Q and mapping y’* € [Q”] such
that Vo € Vi and p ~ u”, from which we can deduce that u € [Q{slc-

e [<] Let G be an RDF graph and let 4 € [R]lc. We have that u € [Q{]lc for
some disjunct Q" of Q. Then, u € [Q’ll¢ and there is no disjunct Q" of Q and
mapping u” € [Q"]l¢ such that Vo € Vy» and u ~ p’. This obviously implies
that there is no mapping in [Q] subsuming i, and hence u € [NS (Q)]s.

This concludes the proof as the inductive step is trivial in the other cases. O

From the previous proof we conclude that the NS operator can be removed by intro-
ducing MINUS , which is defined in terms of OPT . With this result we can finally deduce

the aforementioned equivalence as a corollary:

COROLLARY 3. The languages SPARQL and AUF} are equivalent in expressive

power.

This equivalence has some further implications. Given a simple pattern P, we can now
construct a SPARQL graph pattern Q that is equivalent to P. But since P is subsumption-

free, Q is also subsumption-free. Hence, we can deduce the following

COROLLARY 4. The fragment of simple patterns is equivalent in expressive power to

the fragment of subsumption-free weakly-monotone graph patterns.
6.3. Weak-monotonicity and ns-patterns

Now that we have characterized the fragment of weakly-monotone graph patterns in
which subsumption is not allowed, we proceed to allow subsumption by means of disjunc-

tion at the top-most level.

DEFINITION 6.3.1. A graph pattern P in AUF is an ns-pattern if it is a disjunction

of simple patterns.

60

It is trivial to see that all ns-patterns are weakly-monotone, as they are a disjunction of
weakly-monotone graph patterns. It is also easy to see that the fragment of ns-patterns is
actually more expressive than simple patterns, as simple patterns are subsumption-free. As
a final result of this chapter, from the definition of ns-patterns and Corollary 4 we obtain

the following.

COROLLARY 5. The fragment of ns-patterns has the same expressive power as the

fragment of disjunctions of subsumption-free weakly-monotone graph patterns.

So far, we have shown that the fragment of well-designed patterns falls short in terms
of expressive power, and we presented a new operator that allows us to define more ex-
pressive syntactic fragments of weakly-monotone graph patterns. Moreover, we found the
semantic notions characterized by those fragments. These results present substantial ad-
vances in out understanding of the expressive power of weakly-monotone SPARQL graph
patterns. However, they are not as general as we would like, since the captured fragments
include in their definitions the notion of being subsumption-free. Weak-monotonicity is a
desired feature in SPARQL (as we have widely discussed) but disallowing subsumption is
a restriction that arises as a necessity for finding characterizations from applying interpo-
lation. This is actually what prevents us from finding a syntactic fragment that captures
the set of all weakly-monotone graph patterns, problem that remains open. Actually, the

problem of whether ns-patterns characterize weak-monotonicity is also open.

Provided the tools we have developed, one could try to directly find a fragment char-
acterizing weak-monotonicity by using the following method: Given a weakly-monotone
graph pattern P, construct a weakly-monotone graph pattern Q such that for every RDF
graph G, the mappings in [P]s corresponds to the maximal mappings in [Q]lg. This cor-
respondence could be defined, for example, by adding new variables to Q in a way such
that every mapping in [P]l; can be obtained by projecting a maximal mapping in [Q]¢ to
var(P). This would imply the equivalence P = SELECT var(P) WHERE (NS(Q)). Then,

by applying Theorem 9 we could construct a graph pattern Q” in AUF”" that is equivalent

61

in maximal answers to P, which would imply P = SELECT var(P) WHERE (NS(Q")).
Therefore, this syntactic form would be a characterization of weak-monotonicity. This
procedure was performed several times using different types of correspondences, but the
touchstone was to define a procedure that given a graph pattern P constructs a weakly-
monotone graph pattern Q, such that the maximal mappings from Q correspond to all the

results from P.

In the next chapter we will argue that the notion of being subsumption-free is only
necessary because graph patterns output table-like structures (mappings) while querying
graph-like structures. While this condition is inherent to SPARQL graph patterns, there is
also a class of queries that output RDF graphs. We will formalize these queries, and study
the corresponding semantic properties they should satisfy to conform to the OWA. Under

this new class of queries, we are actually able to find much more general results.

62

7. A LANGUAGE PRODUCING RDF GRAPHS

In the previous chapter, we characterized semantic properties of interest using the NS
operator and simple syntactic fragments. Unfortunately, we were unable to find a query
language that captures weak-monotonicity, mainly because when applying interpolation
it is not clear how to maintain the subsumed answers. In this chapter, we formalize a
different set of SPARQL queries. These queries take RDF graphs as input and produce,
instead of mappings, RDF graphs as output. This is the set of CONSTRUCT queries.
We show that these queries have several novel properties, and actually we are able to
characterize the fragment that conforms to the open-world assumption. According to this
result, we present the syntactic fragment of this characterization as a proper language for

querying RDF graphs.

7.1. RDF graphs as input, mappings as output

In this section we discuss what are the consequences of querying RDF graphs and
generating sets of mappings as output. This will later serve as a motivation for defining
the fragment of CONSTRUCT queries. Assume P is a SPARQLyg graph pattern and G is
an RDF graph. We start by discussing two consequences from the definition of [P]s. The
first is that the set of mappings [P]ls is not a concise representation of the information
obtained from querying G with P, and the second is that no relation can be established
between the resources mentioned in [Pl by only inspecting [P]lg. To illustrate these

issues, we present a simple example.

Example S. Let G be the RDF graph presented in Figure 7.1. Assume that we want
to query for the names of professors and the establishments they work at, and optionally

(only if available) their emails. To get this information, we would write the following

63

q cris@puc.cl
ema!

Cristian U Oxford

PUC Chile

FIGURE 7.1. An RDF graph containing information about academic staff.

SPARQL graph pattern:

P = SELECT {?n, ?e, T7u} WHERE

(((?p,name,) AND (?p,works_at, lu)) OPT (?p, email, ?e))

The answer [Pl consists of three mappings, illustrated in Table 7.1.

TABLE 7.1. Tabular representation of mappings in the answer to a graph pattern.

’n u ?e
uy | Denis | PUC Chile
Uy | Cristian | U Oxford | cris@puc.cl
s | Cristian | PUC Chile | cris@puc.cl

This example is a simple use case of SPARQL, but it correctly illustrates the two
problems mentioned above. We first explain why the set of mappings [P]l in the example
is not a concise representation of the obtained information. Consider for example the URI
cris@puc.cl. This URI is mentioned twice in a single column, yet both occurrences rep-
resent the same fact, namely that cris@puc.cl is the email of Cristian. Hence, mentioning
this URI twice does not provide more information than mentioning it once. Notice, more-
over, that all the information in [P]; can be obtained from the RDF graph in Figure 7.2.
Thus, if we were able to produce graphs as answers, in this case we would be able to

obtain all the information from [P]l; in a more concise representation.

Now we discuss the second problem, namely that no relation can be established be-

tween the resources in the answer to P over G by only looking at the set of mappings in

64

[Pllg. Suppose we have no information about G or P, and we are presented set of map-
pings [P]lc. What can we deduce? What is the relation between the URIs? Does Denis
work at PUC Chile? Does he have a friend working there? None of these questions can be
answered by only looking at [P]ls. Furthermore, it is clear that this cannot be solved by
modifying P, as the same questions about the URIs would remain unanswered. In order
to make sense of the mappings, it is necessary to look at the graph pattern and/or at the
original data. However, if we were able to output RDF graphs instead of mappings, by
only looking at the output we would be able to understand what is the relation between the

resources, as depicted in Figure 7.2.

There are also further practical consequences of producing mappings when querying
RDF graphs: while recursive queries have been part of SQL for more than twenty years,
we are still left without a comprehensive operator to define recursive queries in SPARQL.
The version 1.1 of SPARQL includes the property paths primitive (W3C SPARQL Work-
ing Group, 2013), but this additional feature is very restrictive in expressing recursive
queries (Libkin, Reutter, & Vrgoc, 2013). It is then important to define a query language
that outputs RDF graphs, so recursion can be applied over RDF graphs.

Being conscious of the issues presented above, in the next section we introduce the

fragment of SPARQL queries generating RDF graphs as output.

cris@puc.cl

U Oxford
PUC Chile

FIGURE 7.2. An RDF graph representing mappings from Table 7.1. This repre-
sentation is more concise, and the structure itself relates the mentioned resources.

eﬁfé\“

Cristian

works _at

65

7.2. Formalizing CONSTRUCT queries

CONSTRUCT queries in SPARQL shape the class of effective queries whose inputs
and answers are RDF graphs, so it is conceivable that these queries do not present the
problems mentioned in the previous section. As mentioned throughout this dissertation, a
good deal of research has been devoted to the study of SPARQL graph patterns. Surpris-
ingly, and despite being part of the official SPARQL standard, CONSTRUCT queries have
received very little attention from the theoretical community. They have been proposed
from a practical point of view as a language for further applications of SPARQL (Polleres,
Scharffe, & Schindlauer, 2007; Bry et al., 2010), but have not been studied as a primitive
in the core of SPARQL. This can be partially explained by the fact that, as some examples
might suggest, the difference between CONSTRUCT queries and graph patterns seems
negligible. However, as we show in the following sections, this resemblance is rather de-
ceptive, and in many cases these queries have different properties. For example, the output
of a CONSTRUCT query can mention IRIs that are not present in the queried graph, which
is not possible using graph patterns. We introduce the formal definition of CONSTRUCT

queries.

DEFINITION 7.2.1. Let P be a SPARQL graph pattern and let H be a finite set of triple
patterns. Then ¢ = CONSTRUCT H WHERE P is a CONSTRUCT query, or c-query for
short. P and H are called the graph pattern and the template of q, respectively. Moreover,

for ever RDF graph G the answer to q over G is defined by

ans(q,G) = {u(t) | u € [Plg, t € H, and var(t) C dom(u) t € H}.

Let G be the RDF graph presented in Figure 7.1. We illustrate the semantics of
CONSTRUCT by querying for the same information as in Example 5. We want to obtain,

from the graph in Figure 7.1, the names and establishments of the academic staff, and

66

TABLE 7.2. Answers to the graph pattern of a c-query. The variable ?p occurs in
all mappings but is never mentioned in the template.

P n u e
uy | prof_.02 | Denis | PUC Chile
o | prof_01 | Cristian | U Oxford | cris@puc.cl
w3 | prof_01 | Cristian | PUC Chile | cris@puc.cl

optionally append their emails. We achieve this with the following c-query:

g = CONSTRUCT {(?n,works_at, Tu), (In, email, 7e)} WHERE

(((?p,name, 7n) AND (?p, works_at, 7u)) OPT (?p, email, ?e))

The evaluation of the graph pattern of g over G is presented in Table 7.2. Notice that
the mappings are the same as in Table 7.1, but extended with a new variable ?p. Then,
to evaluate ¢ we need to match those mappings against the triple patterns in the template
of ¢, and produce the corresponding RDF triples. The resulting RDF graph is displayed
in Figure 7.2. Notice that the triple (Cristian, email, cris@ puc.cl) is generated by two
different mappings matching the same triple. However, it occurs as a single triple in the
output graph, which makes the answer more concise than the raw set of mappings. Notice
also that we can deduce how the resources are related to each other just by looking at the

output.

It is important to mention that in this dissertation we only study the fragment of c-
queries without blank nodes. As opposed to graph patterns, blank nodes in c-queries
produce an important difference in the semantics. Hence, the results presented here do not

extend to c-queries, particularly to those in which blank nodes occur in the template.

7.3. Monotonicity and the open-world assumption

In Chapter 3, we presented the importance of having open-world semantics in query

languages for the Semantic Web. We widely discussed that, when querying web data, it is

67

fundamental to make no assumption about unavailable data. As opposed to SQL and other
well-studied query languages, we concluded that monotonicity is not the correct notion
for capturing the set of patterns conforming to the open-world assumption. This occurs
because in the answer to a graph pattern, the atomic piece of information is an assignment,

yet the answer itself is not a set of assignments but a set of mappings.

That is not the case for c-queries. The answer to a c-query is an RDF graph, and
in an RDF graph the atomic piece of information is indeed an RDF triple. Hence, the
same argument that established weak-monotonicity in graph patterns, namely preserving
information under data extensions, now applies to monotonicity of c-queries: Assume that
q is a c-query and that G| and G, are two RDF graphs such that G; C G,. If ans(q, G)
contains a triple ¢ that is not in ans(q, G,), when evaluating g over G; we were assuming
that triples in G, \ G| were false, as if this was not the case then ¢ would not have been
in ans(gq, G). Thus, in c-queries we are interested in preserving triples, which is precisely

captured by monotonicity.

DEFINITION 7.3.1. A c-query q is monotone if for every two RDF graphs G| and G,

such that G| C G, it is the case that ans(q,G;) C ans(q, G,).

As in the case of weak-monotonicity for graph patterns, this definition provides no
insight about how to find a syntactic characterization of monotone c-queries. Moreover,
the problem of deciding whether a construct query ¢ is monotone is undecidable. However,
and as opposed to the case of weak-monotonicity, the problem of characterizing monotone
c-queries is actually solved by using the same interpolation techniques we used for weak-
monotonicity. This is mainly a consequence of the fact that to evaluate a c-query it is only
necessary to look at the maximal mappings in the evaluation of the corresponding graph

pattern.

LEMMA 9. Let g = CONSTRUCT H WHERE P be a c-query. Then, q is equivalent
to CONSTRUCT H WHERE NS(P).

68

PROOF. Let ¢ = CONSTRUCT H WHERE P be a c-query and let G be an RDF

graph. It is immediate to prove that
ans(CONSTRUCT H WHERE NS(P),G) C ans(q, G),

since we know that [NS(P)]lc € [Pls. For the other direction, let u(z) be a triple in
ans(q,G), where u € [P]g and t € H. Since u € [P]g, there must be a mapping y’ €
[NS(P)]lg such that u < ¢’. As u < p’ and var(f) € dom(u), we know that u(r) = u’(¢).
Therefore u(t) is in ans(CONSTRUCT H WHERE NS(P), G). O

Recall from Theorem 9 that given a SPARQL weakly-monotone graph pattern P,
there is a graph pattern Q € AUF”" that is equivalent to P in maximal answers. The pre-
vious lemma tells us that for c-queries it is sufficient to only preserve maximal answers.
However, to apply Theorem 9 we need a weakly-monotone graph pattern, and there are
c-queries that are monotone but their graph patterns are not weakly-monotone. The fol-

lowing lemma shows that this does not prevents us from our main goal.

LEMMA 10. For every monotone c-query q, there is a template H and a weakly-

monotone SPARQL graph pattern P such that
g = CONSTRUCT H WHERE P.

PROOF. Let ¢ = CONSTRUCT H WHERE P be a c-query. We can assume without
loss of generality that var(H) C var(P), as every triple in H mentioning a variable not
occuring in P can be safely removed. For every triple pattern t € H define a renaming

function o, : V — V in a way such that:

e For every t, s € H and every vy, v, € var(P), it is the case that o,(vy) # o5(v,).

e For every t € H and every v € var(P), o,(v) ¢ var(P).

For a mapping ¢ and a triple ¢ € H, define o-,[u] as the mapping that results from replacing

the domain of u by its image under o,. For every t € H let Adom(t) be the conjunction

69

(by means of AND) of Adom(?X) for each variable ?X in var(¢). If t has no variables then

Adom(t) is considered to be a tautology.

For every t € H define the pattern P’ as the result of replacing in P every occurrence
of a variable ?X by 0,(?X). For every two triples t = (¢,1,,t;) and s = (sy, 52, 53) in H
define R, ; as the filter condition (¢; = o5(s1) A t; = 04(s2) At3 = 05(s3)), assuming, for the
sake of simplicity, that o-g(a) = a for every a € I. Now we define the set of graph patterns

that will serve as a basis for our construction. For each tr € H, define P, as

SELECT var(f) WHERE

seH\{t}

([P UNION UNION [(P* AND Adom(t)) FILTER R,,]|FILTER (bound(var(t)))

We prove that the next three properties hold for every ¢ € H:

(1) For every graph G and every mapping u € [Plg, if u(t) € ans(q, G), then u(t) €
ans(CONSTRUCT ¢ WHERE P, G).
(2) For every graph G, ans(CONSTRUCT ¢ WHERE P,,G) C ans(g, G).

(3) P, is weakly-monotone.

The first property immediately follows from the fact that P is one of the disjuncts of

P,, as if u(t) € ans(q, G), then the variables in ¢ are bounded by p.

Now we proceed with (2). Let G be an RDF graph and let u be a mapping in [P,]
such that u(r) € ans(CONSTRUCT ¢ WHERE P,, G). Hence, u must come from one of
the disjuncts in P,. If that disjunct is P, then we have that u is the projection over var(¢)
of a mapping in [P]lg, and hence u(t) € ans(q,G). If not, then there is an s € H such
that y is subsumed by a mapping ¢’ € [P° AND Adom(t) FILTER R,]lg. Then u’ is the
join between two mappings. Let u; be the mapping in [P*]l; of such join. Since P* equals
P by a renaming of all variables, the mapping o '[u,] belongs to [P]lc. Moreover, by

the filter condition R, ;, we know that o' [u,] must bind all variables in var(s), and hence

70

o '[us)(s) € ans(g, G). But from the filter condition we know that o' [u,](s) equals u(?),

and hence p(f) belongs to ans(g, G), which was to be shown.

Finally we prove that P, is weakly monotone. Let G be an RDF graph and i € [P,]¢.
We know that dom(u) = var(z), and hence u(t) € ans(CONSTRUCT ¢+ WHERE P,, G).
By property 2 this implies that u(¢) € ans(g, G). Let G’ be an RDF graph such that G € G".
Since ¢ is monotone, there must be a triple s € H and a mapping u, € [P]s such that
Us(s) = u(t). Hence o i[u,] € [P’llg-- Moreover, since u,(s) = u(t), we have that o [u] >
p satisfy R, ;. Hence, 05[] > e belongs to [P* AND Adom(t) FILTER R,]l , and hence

i € [P]e . This actually tells us that P, is monotone, and therefore weakly-monotone.

Having defined the patterns P, and proved the three properties above, we proceed with
the main result. First, define for each t € H the c-query ¢, as CONSTRUCT ¢ WHERE P,
where ¢’ and P; are the result of renaming the variables in ¢ and P,, respectively, by a single
function. Without loss of generality we can assume that for ¢, s € H, the queries ¢, and g
have pairwise disjoint sets of variables. Notice, however, that for every ¢ € H the query
q: 1s equivalent to CONSTRUCT ¢ WHERE P,, and hence satisfies the three properties
mentioned above. Finally, define H" and P’ as:

H ={/|teH} P = UNION P,

teH

Let g = CONSTRUCT H’ WHERE P’. We prove that ¢ and ¢’ are equivalent. Let G be
an RDF graph.

= Letu € [Pllg and ¢ € H such that u() € ans(q, G). By the first property proved
above, we know that u() is in the answer to CONSTRUCT ¢ WHERE P, over
G, which implies that u(f) € ans(CONSTRUCT # WHERE P}, G). Since P; is
one of the disjuncts of P’ and ¢ € H’, we have that u(7) € ans(¢q’, G).

& Let u € [Pl and t € H’ such that u(t) € ans(q¢’,G). We know that u €
[Pl for some s € H'. If var(f) # 0 then such s’ must be ¢ as P; and P, do
not share variables. In this case, u(f) € ans(CONSTRUCT ¢ WHERE P;,G),

71

which implies that u(¢) € ans(CONSTRUCT ¢+ WHERE P,, G). By the second
property, this implies u(#) € ans(g, G). On the other hand, tf ¢ has no variables,
then we still know that u € [P;]l¢c for some s* € H’. This entails there is a
mapping in [P,]lc. Hence, there is either a mapping u’ in [P]l; or in [P"]s for
some h € H. Since P" is a renaming of P, in any case there must be a mapping
W' € [Pllg. Finally, as ¢ has no variables, ¢’ (t) = u(t) € [Pls.

We proved that g is equivalent to ¢ = CONSTRUCT H” WHERE P’. Since P’ is a

disjunction between weakly-monotone graph patterns, we know that P’ is also weakly

monotone, which concludes the proof. O

From the previous two lemmas we can finally obtain a syntactic characterization of

monotonicity.

THEOREM 11. The fragment of monotone c-queries is equivalent to the fragment of

OPT-free c-queries.

PROOF. Since OPT-free graph patterns are actually monotone, it immediately fol-
lows that OPT-free c-queries are monotone. We proceed with the other direction. Let ¢
be a monotone c-query. From Lemma 10, we can assume without loss of generality that
g = CONSTRUCT H WHERE P, with P being weakly-monotone. Therefore, from The-
orem 9, we know there is an OPT-free graph pattern Q that is equivalent to P in maximal

answers. This implies that NS(P) = NS(Q), and hence by applying Lemma 9 we obtain

CONSTRUCT H WHERE P = CONSTRUCT H WHERE NS(P)

= CONSTRUCT H WHERE NS(Q) = CONSTRUCT H WHERE Q
This concludes the proof as Q is OPT-free. O

This result shows a first characterization of monotonicity. However, we are able to
strengthen this result by proving that projection is actually not necessary. To this end, we

need to define the SELECT-free version of a graph pattern.

72

DEFINITION 7.3.2. Let P be a SPARQLyg graph pattern. The SELECT-free version
of P, denoted by P, is recursively defined as follows:

o [f P is a triple pattern, then Py = P.

o I[f P = SELECTV WHERE P, then Pg is the result of replacing in P} every
variable in var(P") \ V by a fresh variable. Notice that the SELECT is removed.

o [f Pis (Py*P,), where * is one of {AND,UNION, FILTER}, then Ps = (P)¢ % Pag),
assuming that the sets of variables var(P) \ var(P) and var(P,g) \ var(P) are
disjoint.

o I[f P = NS(P'), then Pt = NS (P)).

e I[f P = P'FILTER R, then P = P,FILTER R.

To show that under CONSTRUCT the operator SELECT is not necessary we prove

the following lemma.

LEMMA 11. Let P be a graph pattern. For every RDF graph G, a mapping u is
in [Pllg if and only if there is a mapping ' € [Pl such that u < y' and dom(u) =
dom(u") N var(P).

PROOF. We proceed by induction. Assume G is an RDF graph and let 4 be a mapping.

e If P is a triple pattern the result immediately follows.

o If Pis Py UNION P,, then u € [Pl if and only if u € [Pi]l¢ U [P.]lc- By
hypothesis, this occurs if and only if there is a mapping ¢’ € [Pigllc YU [Pastllc
such that u < . This concludes the proof as [Pigllc U [Pasillc = [PstllG-

e [et P = Py AND P,. If u € [P],then there are two mappings u; € [Pilg
and pu; € [P,]lg such that 4 = u; U u,. By hypothesis, this implies there are two
mappings u; € [Pigllg and p), € [Pagll such that u; <y} and p, < pj. We
know that y; and y, only mention variables in var(P), and are compatible. This

implies that p} and), are compatible, as they cannot have variables in common

73

that are not mentioned in var(P). Then, u; U u, € [Pstllg, which concludes this
direction as u < u; U u,. The opposite direction is proved by the same argument.
Let P = Py OPT P,. We know that u € [P]¢ if and only if u € [P, MINUS P;]¢
or u € [Py AND P;,]lgc. We prove that u € [P; MINUS P,]; if and only
if u € [Py MINUS Py4llg, and that u € [Py AND P,]; if and only if
u € [Py AND Pygllg. The latter case was already proved. By definition,
u € [P1 MINUS P,]; if and only if u € [P]lg and there is no u’ € [Pl
compatible with u. By hypothesis this occurs if and only if there is a mapping
U1 € [Pigillg such that u < u;, and there is no mapping u, € [Pasi]lc compatible
with u (as u, would be the extension of a mapping in [P,]l¢ compatible with
). But these conditions occur if and only if y; € [P MINUS Py lg. This
concludes the proof as u < ;.

Let P = P'FILTER R. Then u € [P]; if and only if u € [P']lc and u = R. By
hypothesis, we have that u € [P']l¢ if and only if there is a mapping " € [P llc
such that 4 < u’. Moreover, the variables in dom(u’) \ dom(u) are not mentioned
in var(P) and hence they are not mentioned in R. Hence u = R if and only if
M E R, concluding the proof.

If P = NS(P’), then u € [P]lg implies u is a maximal mapping in [P']lg. By
hypothesis, this implies there is a mapping in [P]lc subsuming u, and hence
there must be a mapping in [NS (P,)]l¢ subsuming u. For the opposite direction,
assume u'[NS(P)llg. Then, u’ is a maximal mapping in [P]lc. Therefore,
there must be a maximal mapping u € [P’']g such that u < /. It is easy to see
that if this was not the case then u” would not have been maximal.

Let P = SELECTV WHERE P’. Assume u € [P]lg. Then, there is a map-
ping u’ € [P']l¢ such that u < u’. As Pg results from renaming variables not
mentioned in dom(u) in P’, there must be a mapping ¢’ that is a renaming of '

subsuming u. The opposite direction readily follows from a similar argument.

74

Having this lemma, we can prove that SELECT does not provide more expressive

power under CONSTRUCT.

THEOREM 12. The fragment of AUF c-queries is equivalent in expressive power to

the fragment of AUF”" c-queries.

PROOF. We only need to prove that every AUF" c-query can be transformed into an
AUF c-query. Let ¢ = CONSTRUCT H WHERE P be an AUF”" c-query. We can assume
w.l.o.g that var(H) C var(P). We prove that g = CONSTRUCT H WHERE P. Let G be
an RDF graph.

o [=] Assume u(t) € ans(qg,G), where u € [P]lc and t € H. Then, there is a
mapping ¢’ in [Pg]lc such that g < p’. This implies that u’(¢) is a triple in
ans(CONSTRUCT H WHERE P, G). As u < u’, we obtain that p’(¢) = u(¢),
concluding this direction.

e [=] Assume u'(¢) € ans(CONSTRUCT H WHERE Pg, G), where u’ € [Psllg
and r € H. Then, there is a mapping u in [P]ls such that u < ¢’ and dom(u) =
dom(u’) N var(P). Since var(t) C var(P) and var(f) € dom(u’), we obtain that

var(t) € dom(u). We conclude that u(r) € ans(gq, G).

Finally, we deduce as a corollary what is probably the most important result of this

dissertation.

COROLLARY 6. The fragment of monotone c-queries is equivalent in expressive power

to the fragment of AUF c-queries.

This result is somewhat unexpected as it reduces the complete query language of

monotone c-queries to a simple fragment in which only basic operations are allowed.

We have presented the advantages of producing RDF graphs as output, and found

a clean and simple syntactic characterization of monotonicity under c-queries. Some

75

of these results and further novel properties of c-queries, like the relation between c-
queries with blank nodes in templates and data exchange settings, have been published
in (Kostylev, Reutter, & Ugarte, 2015). We think this is enough evidence to say that AUF
c-queries are a very practical fragment, and should be considered as an important language

for querying RDF.

7.4. Well-designed CONSTRUCT queries

In section 4.4 we explained why to apply interpolation it is necessary to allow for
infinite RDF graphs. The consequence of including infinite graphs is that the character-
izations found for SPARQL fragments, in particular the one for monotone c-queries, are
not necessarily complete for finite graphs. Indeed, it might be the case that a c-query ¢ is
monotone under finite graphs, but there is no c-query in AUF equivalent to g. Finding such
a query in practical applications is not expected (Ajtai & Gurevich, 1987). For example,
when proving that well-designed graph patterns are weakly-monotone, no assumption is
made about the cardinality of RDF graphs, and therefore it is not hard to see that every
well-designed graph pattern is weakly-monotone under arbitrary RDF graphs. From this
we can conclude that the characterization presented in Corollary 6 captures all c-queries
with well-designed graph patterns. Moreover, since AUF graph patterns are well-designed,
the set of AUF c-queries and c-queries with well-designed graph patterns are equivalent in

expressive power.

Given that well-designed graph patterns are a well-established and widely adopted
fragment of SPARQL, c-queries with well-designed graph patterns is a fragment that could
be easily adopted. Hence, a natural question to ask is whether we should include well-
designed OPT in our syntactic characterization. This simplifies the query-writing process,
but affects the query evaluation as now left outer-joins must be performed. To answer this
question, in this section we show that we can effectively transform c-queries with well-

designed graph patterns into AUF c-queries. With this transformation there is no need to

76

perform left outer-joins, as queries could be processed before evaluation to remove the

occurrences of OPT.

We say that a c-query ¢q is well-designed if the graph pattern of g is well-designed. In
order to perform the aforementioned transformation we need to recall some notions and
results from (Pérez et al., 2009). Given two SPARQL graph patterns P and P’, we say that
P’ is a direct reduction of P if P’ can be obtained from P by replacing a sub pattern of the
form (P; OPT P,) by P;. The reflexive and transitive closure of this relation is denoted
by <. For every pattern P, and(P) is the result of replacing in P every sub pattern of the
form (P, OPT P,) by (P; AND P,). Given a pattern P and an RDF graph G, a mapping
u is said to be a partial solution to P over G if there is a graph pattern P’ such that P’ < P
and u € [and(P’)]lc. Notice that the above definitions are general to all SPARQL graph

patterns, including projection.

In (Pérez et al., 2009) the authors proved that given a well-designed graph pattern P,
a mapping u is in [P]; if and only if u is a maximal partial solution to P over G. As we
know the only mappings of interest under c-queries are the maximal ones. Thus, we define
a transformation that given a well-designed graph pattern P, produces a graph pattern in
AUF that outputs all partial solutions to P. For every pattern P define Py as the result of
replacing in P every pattern of the form (P, OPT P,) by (P; UNION (P; AND P,)).

LEMMA 12. For every RDF graph G and SPARQL graph pattern P, it is the case that

[PosllG is the set of partial solutions to P over G.

PROOF. We start by showing that every partial solution to P over G is in [Pq]lg. Let

u be a partial solution to P over G. We proceed by induction over P.

o If P = P; UNION P,, then without loss of generality we can assume that u
is a partial solution to P; over G. Then u belongs to [Pic]lg, and hence to

[P1or UNION Pieillg = [PorllG-

77

o If P = Py AND P,, then there are two mappings y; and p,, with g = p; U pp,
which are partial solutions to Py and to P, over G, respectively. By hypothesis,
H1 € [Protllc and iy € [Paotllc- Hence, pt € [P1ot AND Paoillc = [Potllc-

e If P = P, FILTER R, then p is a partial solution to P, which satisfies R. Hence,
 belongs to [Piof FILTER R]lg = [Potlls-

o If P = SELECTV WHERE P’, then u = y, for some y" € [P’]lg. Therefore,
p"isin [P]lc and hence in [SELECT V. WHERE P]|, which is equivalent to
[PotllG-

o If P = P, OPT P, either u is a partial solution to P; over G or y is a partial solu-
tionto P; AND P, over G. Then, we know by hypothesis that u € [Pj]lg oru €
[Piot AND Pyillg. Ineither case we have u € [P UNION (Piof AND Poof)llG,
which is the definition of [Py]lg-

Next we prove that every mapping u € [Pl 1s a partial solution to P over G. Again,
we proceed by induction on P. If P is a triple, UNION -, AND -, SELECT-, or FILTER -
pattern, the result readily follows by the induction hypothesis as in the previous case. If
P = (P; OPT P,), then we know that Py = (Pjof UNION (P;of AND P,)). Therefore,
u may either be in [Pof]lg or in [(Piof AND Pyof)]lg. Then u is a partial result to Py over
G or to (P AND P,) over G. In both cases, u is a partial solution to (P; OPT P;) over
G. O

With this result we are ready to state the procedure that transform a well-designed

c-query into an AUF c-query.

THEOREM 13. There is an algorithm that, given a well-designed c-query q, generates
an AUF c-query ¢ that is equivalent to q. Moreover, this transformation takes at most

exponential time in the number of occurrences of the OPT operator in q.

PROOF. Let ¢ = CONSTRUCT H WHERE P be a well-designed c-query. Let g,
the OPT-free version of ¢, be defined as CONSTRUCT H WHERE P, . We show that

q = {ot-

78

e [=] Let G be an RDF graph and let u() be a triple in ans(g, G), where u € [Pl
and + € H. Since P is well-designed, we know that y is a maximal partial
solution to P over G. By Lemma 12, this entails that u € [Py]lc and therefore
u(t) € ans(qof, G).

e [<] Let G be an RDF graph and let u(z) be a triple in ans(qf, G), where u €
[Pollc and t € H. By Lemma 12, u is a partial solution to P over G. Then, there
is a mapping y’ that is a maximal partial solution to P over G extending p. This
implies that p'(f) € CONSTRUCT H WHERE NS (Py), as ' € [NS (Poi)lls-
From Lemma 9, we obtain u'(f) € CONSTRUCT H WHERE NS (P). This
concludes the proof as u’(t) = u(z).

Finally, it is easy to see that constructing the OPT-free version of a c-query can take
at most exponential time, as when removing one occurrence of OPT the remaining nested

occurrences can at most double. O

Contrary to the characterizations relying on interpolation, the previous theorem pro-
vides an effective construction of an equivalent c-query. It is important to mention that
although there is an exponential time upper bound, this transformation is suitable for prac-
tical applications as SPARQL queries generally contain a small number of OPT occur-

rences.

As already mentioned, the equivalence between well-designed c-queries and AUF c-
queries does not depend on a condition over arbitrary models (as weak-monotonicity in the
case of graph patterns). This has an interesting consequence. On one hand, we have that
AUF c-queries are equivalent to all queries that are monotone under arbitrary models. On
the other hand, we know that AUF c-queries are equivalent to all well-designed c-queries,
even under finite models. This means that well-designed c-queries are precisely equivalent

to the set of c-queries that are monotone under arbitrary models.

79

Recall that in Chapter 3, we exposed the graph pattern
P =(7X,a,b) OPT ((?X,c,?Y) UNION (?X,d, ?Z2))

as a weakly-monotone graph pattern that cannot be expressed as a well-designed graph
pattern. According to the previous result, a monotone c-query g cannot be expressed as
a well-designed c-query if and only if ¢ is monotone under finite models, but not under
arbitrary models. Therefore, the c-query ¢ = CONSTRUCT H WHERE P must be
equivalent to a well-designed c-query, and actually to an AUF c-query. It is not hard to

realize that

g = CONSTRUCT H WHERE [(?X,a,b) UNION

((?X,a,b) AND (?X,c,?Y)) UNION ((?X,a,b) AND (?X,d, ?Z))].

In order to construct a c-query that is monotone under finite graphs and is not equiv-
alent to any c-query in AUF, a much more complex construction is needed. For example,
we could create a c-query representing that the evaluated RDF graph corresponds to a
linear order without a last element. It is not the goal of this dissertation to show such
an example, but this illustrates that for practical applications, the set of AUF c-queries

characterizes monotonicity.

At this point of the dissertation we have introduced several characterizations of var-
ious fragments of SPARQL graph patterns and c-queries. Moreover, for the case of c-
queries we showed a simple algorithm that transforms any well-designed c-query into an
AUF c-query. In the next chapter, we address the performance problems of the Semantic
Web mentioned in the introduction. We study practicality of the found languages from the

point of view of the evaluation complexity.

80

8. COMPUTATIONAL COMPLEXITY

In the previous two chapters, we introduced a new operator and several syntactic
fragments for characterizing notions related to open-world semantics. It is natural to ask
whether these fragments are practical for real-world applications, in particular compared
to previously established fragments of SPARQL. To answer this question, we study the
combined computational complexity (Vardi, 1982) associated to the evaluation problem.
This problem consists on deciding, given an RDF graph G, a graph pattern P and a map-
ping u, whether u belongs to [P]ls.

Our complexity results are built upon several studies of the complexity of evaluating
SPARQL graph patterns (Pichler & Skritek, 2014; Pérez et al., 2009; Schmidt et al., 2010;
Arenas & Pérez, 2011; Letelier, Pérez, Pichler, & Skritek, 2012). The fundamental ideas
rely on the fact that the evaluation problem is NP-complete for OPT-free graph patterns in
SPARQL (Schmidt et al., 2010), and is CO-NP-complete for well-designed graph patterns
(Pérez et al., 2006a). Formally, the evaluation problem for a fragment ¥ is defined as the

following language

{(G, P,u) | G is an RDF graph, P is a graph pattern in F, and u € [P]g}.

8.1. Complexity Classes

We use complexity classes that might not be familiar to the reader, and hence we
briefly recall their definition. In particular, we present the Boolean Hierarchy and the

complexity class P[".

The Boolean Hierarchy is an infinite family of complexity classes based on boolean
combinations of languages in NP (Wechsung, 1985). The most famous class in this hi-
erarchy is DP, which consists of all languages that can be expressed as L; N L,, where
L, € NP and L, € cO-NP. The levels of the boolean hierarchy are denoted by {BH,};ay,

and are recursively defined as follows:

81

e BH, is the complexity class NP.

e BH,, consists of all languages that can be expressed as L; N L,, where L; €
BH,;_, and L, € CO-NP.

e BH,, consists of all languages that can be expressed as L; U L,, where L, €

BH,; and L, € NP.

The complexity class Plll\IP (Hemachandra, 1989) contains all problems that can be
solved in polynomial time by a Turing machine that can make a polynomial (in terms
of the input’s length) amount of queries, in parallel, to an NP oracle. The fact that the
access to the oracle is in parallel basically prevents the queries to depend on previous
oracle answers. The class Plll\]P was proved to be equal to AS[logn], the complexity class
of all problems that can be solved in polynomial time by a Turing machine that can make

O(log n) queries to an NP oracle, not necessarily in parallel (Buss & Hay, 1991).

8.2. Complexity of simple patterns

We start by studying the complexity of simple graph patterns, which will serve as
a yardstick for studying the complexity of the more general fragments. To establish
the complexity of simple graph patterns, we need to take a close look into the proof of

NP-completeness of evaluating AUF, originally presented in (Pérez et al., 2009).

LEMMA 13. [(Pérez et al., 2009), Theorem 3.2] There is a polynomial-time algorithm
that, given a propositional formula ¢, generates a mapping [, a graph pattern P, in AUF

and an RDF graph G, such that:

(1) dom(uy,) = var(P,) and I(P,) = I(G,).

(2) Every triple pattern in P, mentions variables and IRISs.
(3) If ¢ is satisfiable, then [Plg, = {1,}-

(4) If ¢ is unsatisfiable, then [P]g, = 0.

82

LEMMA 14. Let G, and G, be two RDF graphs such that 1(G,) N I(G,) = 0, and
let P be a graph pattern in SPARQLyg. If P is free from variable-only triple patterns and
I(P) € I(G)), then [Plg,uc, = [Plc,-

PROOF. Proceed by induction over the structure of P. If P is a triple pattern, then
it must mention some IRI in that is in I(G;) \ I(G,). Hence, P can only match triples in
G,. It follows that [Pllg,us, = [Pllg,- The remaining cases are proven directly from the

inductive definition of SPARQL.:

o If P = P; AND P,, we have [Pllg,uc, = [Pillg,uc, ™ [P2]lg,us,- By induction
hypothesis this is the same as [P1]g, ™ [P2lg, = [Ple,-

o If P = P, UNION P,, we have [Pllg,uc, = [Pilc,uc, Y [P216,us,- By hypoth-
esis this is the same as [P]lg, U [P2]lg, = [Plg,-

o If P = P, OPT P,, we have [Plg,uc, = [Pil6,uc, < [P2llG,uc,- From the
hypothesis this is the same as [P]lg, >< [P2l¢, = [Ple,-

e If P = P'FILTER R, we have [Pllg,uc, = {1 € [P'llg,us, | # E R}. By induction
hypothesis this is the same as {u € [P']lg, | # E R} = [Plg,-

o If P = NS(F'), the result immediately follows as [P],ue, = [P'1g,-

Now we are ready to state the complexity of simple graph patterns.

THEOREM 14. The evaluation problem for simple graph patterns is DP-complete.

PROOF. According to the definition, the evaluation problem for simple graph patterns
corresponds to the language of all triples (G, P, i) such that u € [P]g, where P = NS(P’)

is a simple pattern. This language is in DP since it can be expressed as:

{(G,P,u) | P=NS(P)is asimple pattern and u € [P']lg} N

{(G,P,u) | P =NS(P’)is as.p. and there isno u’ € [P']lg s.t. u < u'}.

83

The first language is clearly in NP, as it is only necessary to solve the evaluation problem
for a pattern in AUF". The second language is in co-NP as its complement consists of the
triples (G, NS(P), u) where P = NS (P’) (which is polynomially verifiable) and there is a
mapping u’ € [P']lg such that u < y’. This is also in NP as ¢’ can be guessed and P’ is in
AUF”.

We show that the evaluation problem for simple patterns is DP-hard. We provide
a reduction from the well-known DP-complete problem SAT-UNSAT (Papadimitriou &
Yannakakis, 1982). This is the problem of deciding, given a pair of propositional formulas

(¢, ¥), whether ¢ is satisfiable and ¢ is unsatisfiable.

Let (¢,) be a pair of propositional formulas. Let u,, P,, G, and py, P,, G, be the
elements provided by Lemma 13 corresponding to ¢ and y, respectively. By renaming
variables and IRIs, we can assume w.l.0.g. that the IRIs and variables mentioned in y,,
P,, G, are disjoint from those mentioned in y,, Py, G,. Next we prove that y, belongs to
the answer to

P = NS(P, UNION (P, AND P,))
over the RDF graph G = G, U G, if and only if ¢ is satisfiable and ¢ is unsatisfiable.

Notice that by Lemma 14 we have that , € [P,]¢ if and only if u, € [P,]s,, and that
Hy € [Pyl if and only if u, € [Pylc,-

(=) Suppose, for the sake of contradiction, that
Hy € [NS(P, UNION (P, AND Py)lc,

and that ¢ is unsatisfiable or ¢ is satisfiable. We analyze these cases separately.

— If ¢ is not satisfiable, then we know by Lemma 13 that [P,]lc = 0, which
implies that [NS(P, UNION (P, AND P,))lc = 0.

— If is satisfiable, then we have by Lemma 13 that u, € [Pyllg. Since

var(P,) Nvar(P,) = 0 and [P,]l¢ # 0, every mapping in [P,]l; is subsumed

84

by some mapping in [P, AND P,]s. Hence, we obtain that
[NS(P, AND Py)ll¢c = [NS(P, UNION (P, AND P,))lc.

We know by Lemma 13 that the empty mapping does not belong to [Py ¢,
and therefore every mapping in [P, AND P,]l; mentions some variable in
var(Py). As var(u,) N var(Py) = 0, we conclude that y, ¢ [P, AND P,J¢.
Thus, y, is notin [NS(P, UNION (P, AND P,))ll¢, which contradicts our
initial assumption.

(<) Assume ¢ is satisfiable and ¢ is unsatisfiable. By Lemma 13, this implies that
[Pyllc = 0. Hence, in this case we have that [NS(P, UNION (P, AND Py))l
is the same as [NS(P,)]lc. From Lemma 13, we have that [P,llc = {u,} and,
therefore, u, € [NS(P,)]s, concluding the proof.

It is interesting to notice that the evaluation of simple patterns is already higher than
that of well-designed patterns (CO-NP-complete). Next we proceed to study the evaluation

complexity of ns-patterns.

8.3. Complexity of ns-patterns

We start by showing that if the amount of disjuncts is bounded by a fixed number &,
then the evaluation problem becomes complete for the class BH,,. We first need to prove

the following lemma.

LEMMA 15. Let n € N, and for everyi € {1,...,n} let u;, G; and P; be a mapping, an
RDF graph and a graph pattern, respectively. If the following conditions hold

e foreveryi,je{l,...,n}withi # j, the variables and iris mentioned in (u;, P;, G;)

are disjoint from the variables and iris mentioned in (u;, P, G;);

85

o for everyi € {1,...,n}, it is the case that P; is a simple pattern which does not

mention variable-only triple patterns,

then there is a mapping u, an ns-pattern P and an RDF graph G such that u € [Pl¢ if
and only if yu; € [Pillg, for some i € {1,...,n}. Moreover, u, P and G can be computed in

polynomial time.

PROOF. First, define the mapping p as pu; U pp U - - - U p,,. This mapping is correctly

defined since var(u;) N var(u;) = @ for every i, j € {1,...,n} with i # j.
Now define the graph G as

e

i€f{l,....,n}

Ul | wex),e* ™)

?Xedom(u)

where ¢’* and d"* are distinct fresh IRIs for every ?X € dom(u). Adding the new IRIs and
their corresponding triples allows us to trivially match the graph to include the assignment
?X — p(?X) in any mapping not mentioning ?X. Based on this intuition we proceed to cre-
ate the ns-pattern P. Leti € {1,...,n} and assume that dom(u) \ dom(w;) = {?X3,..., 7X/}.
Assuming that P; = NS (Q;), define the pattern P; as

P, =NS(Q: AND (2X,,¢™,d™") AND -+ AND (2X, ¢ d™)).

Finally, define the graph pattern P by
P = P} UNION P, UNION --- UNION P,

It is clear that the above elements u, P and G can be computed in polynomial time. Notice
that if u; € [P;], then y; will appear in the answer to Q; over G, as G; € G and Q; is
monotone. Moreover, for every ?2X € dom(u) \ dom(y;) the triple pattern (?X, c™*, d*%) will

trivially match the RDF triple (u(?X), ™, d™).

Now that we have defined i, P and G, we formally prove that y is in [P]l¢ if and only
if y; € [Pillg, for some i € {1,...,n}. Since P = P{ UNION P} UNION --- UNION P;,

86

we know that u € [P]lg if and only if u € [P/]lc for some i € {1,...,n}. Thus, it is

sufficient to show that for each i € {1,...,n} it is the case that
w;i € [Pilg, if and only if u € [Pl (8.1)

Leti € {1,...,n}. Define the mapping u_; as u restricted to dom(u) \ dom(y;). Assume
dom(u_;) = {?Xy,...,?X,}. We have

P, = NS(Q,- AND (2X;,¢™,d™) AND --- AND (?X,, c?X‘,d?X")).

Since G contains every triple of the form (u(?X), ™, d’¥), and the IRIs ¢’¥ and d*X are not

mentioned anywhere else in G, we know that
[(?X1,c™,d™) AND --- AND (?X;, ¢™, d"™)]g = {u_i}. (3.2)

We make use of this fact to prove both directions of (8.1).

=) Assume y; € [Pi]lg,. By semantics of NS, it is the case that y; € [Q;]lg,. Since
Q; is monotone and G; C G, we have y; € [Q:]lc. As y; and u_; are compatible,

by equation (8.2) we obtain that
Wi Up_; € [Q; AND (2X;, ™!, d") AND --- AND (2X,, ¢'*¢, d"*)]¢.

Finally, as y; U u_; = p and dom(u) = var(P?), we have u € [P/]¢.

&) Assume p € [P/]lg. By the semantics of the NS operator, we know that u €
[Q; AND (?X;,c™1,d**'y AND --- AND (2X,,c™,d"*)];. Provided that
[(2Xy, c™1,d™) AND --- AND (?X;, c™¢, d**))]¢ = {u_;}, we have that [Q;]s
must contain a mapping subsuming y;. This mapping must be exactly y;, as
dom(y;) = var(Q;). We conclude that i; € [NS(Q))llg = [P:lg. From Lemma 14
we know that [P;]l¢c = [P;]ls,, concluding the proof.

87

Now are ready to state the evaluation complexity of ns-patterns with a bounded amount

of disjuncts.

THEOREM 15. Let k > 0 be a fixed number. The evaluation problem for ns-patterns

with at most k disjuncts is BH,.-complete.

PROOF. To prove containment we proceed by induction. For k = 1, we have the
evaluation problem for simple patterns, which is complete for DP = BH,. For every k > 1

let EVAL; be the language defined as

EVAL; = {(4, P; UNION --- UNION P,,G) | j <k,
P; is a simple pattern, and u € [Pllg}.

By induction hypothesis assume EVAL; is in BH,,. Now, we want to show that the

problem

EVALi,; = {(u, P, UNION --- UNION P,,G)|j<k+1,

P is an ns-pattern, and u € [P}

is in BHy4.1). It is easy to see that EVAL,; can be divided into the next two languages
(each P; is a simple pattern).
Ly = {(u,P; UNION --- UNION P;G)|j<k+1,
and u € [P;]l for some i € [1..k]}
Ly ={(u, Py UNION .- UNION Py, G) | 4 € [Pr+1]lc}
We have EVAL;,; = L; U L,. Notice that since EVAL; is in BHy, it is trivial to prove that

L, € BH,;. Moreover, since EVAL; (evaluation of simple patterns) is in DP, it is trivial to

show that L, is also in DP. Hence, EVAL,,; is the union between a problem in BH,; and

88

a problem in DP. We know from (Wagner, 1987) that such a union belongs to BHy;»,

which concludes the containment proof.

Let k > 0. To prove that EVAL; is BH,-hard, we make a reduction from the problem
of knowing if a graph has chromatic number in the set M; = {6k+1,6k+3...,8k—1}. This
problem is known as EXACT-M;-COLORABILITY and is proved to be BH,-complete in
(Riege & Rothe, 2006).

We will create a function that takes a graph H as input and generates an RDF graph
G, a mapping u and a pattern P = P; UNION --- UNION P, such that the chromatic
number of G is in My if and only if u € [P]s. Let H be a graph. Denote by {m;, ..., m;} the
elements in M. As k > 0 we know that every element in M, is greater than 3. Hence, the
problem of knowing if a graph has chromatic number m is DP-complete for every m in M;
(Riege & Rothe, 2006). Since the evaluation problem for simple patterns is DP-complete,
for every i € {1,...,k} we can generate in polynomial time an RDF graph G;, a mapping
u; and a simple pattern P;, such that y; € [P;]lg, if and only if H has chromatic number
m;. Moreover, we assume w.l.o.g. that for i # j, the variables and IRIs mentioned in y;,
G; and P; are disjoint from those mentioned in y;, G; and P;. Hence, by lemma 15, we
can construct in polynomial time a mapping u, an ns-pattern P with k disjuncts, and an
RDF graph G such that u € [P]l; if and only if y; € [P;]lg, for some i € {1,...,k}. But as
mentioned before, this occurs if and only if H has chromatic number in M, and hence the

triple (i, P, G) 1s the output of our reduction, which concludes the proof. O

Now we proceed to study the complexity of evaluating the full fragment of ns-patterns.

THEOREM 16. EVAL is PIII\IP-complete for ns-patterns.

PROOF. We prove that the problem belongs to Plll\IP by providing a straightforward
polynomial-time algorithm that calls an NP oracle in parallel a linear number of times.
Let P = P; UNION P, UNION --- UNION P, be a graph pattern where every P;
(1 < i < n)is asimple pattern. Let G be an RDF graph and u be a mapping. Since

89

for every i the problem of deciding if u € [P;]¢ belongs to DP, it can be solved by two
parallel calls to an NP oracle. Thus, by making 2 calls in parallel to the NP oracle one
can decide whether u belongs to [P;]lc for some i € {1,...,n}, and hence decide whether

u belongs to [P]ls.

Now we prove the problem is Plll\”)-hard by providing a reduction from the prob-
lem MAX-ODD-SAT. This is the problem of deciding, given a propositional formula
¢, whether the truth-assignment that assigns true to the largest number of variables while
satisfying ¢, assigns true to an odd number of variables. This problem is shown to be

P"-complete in (Spakowski, 2005).

Let ¢ be a propositional formula with m variables. We can assume without loss of
generality that m is even (if not, consider the formula ¢ A —r for a fresh variable r). We
want to create an ns-pattern P, an RDF graph G, and a mapping u such that u belongs to
[Pl if and only if ¢ belongs to MAX-ODD-SAT. It is easy to see that given a number k
between 1 and m, the problem of deciding whether there is a truth assignment that satisfies
¢ and assigns true to at least k variables is in NP. Thus, by Cook’s theorem we can create a
propositional formula ¢, such that ¢ is satisfiable if and only if there is a truth assignment
that satisfies ¢ and assigns true to at least k variables. Hence, ¢ belongs to MAX-ODD-
SAT if and only if (¢, ¢i+1) belongs to SAT-UNSAT for some odd k between 1 and m—1.
By Theorem 14, for every such k we can create a simple pattern P;, a mapping u; and an
RDF graph Gy such that y4 belongs to [Pillg, if and only if (¢, ¢r+1) € SAT-UNSAT.
We can assume without loss of generality that for every j, k € {1,3,...,m — 1} with j # £,
it is the case that (dom(u;) U var(P;)) N (dom(uy) U var(Py)) = 0 and (range(u;) U I(P;) U
I(G))) N (range(uy) U I(P;) UL(Gy)) = 0. Moreover, from the construction on Theorem 14,
we know that every pattern P; (i € {1,3,...,m — 1}) begins with the NS operator. Hence,
by Lemma 15, we can construct in polynomial time a mapping u, an ns-pattern P, and an

RDF graph G such that i € [P] if and only if u; € [P;]lg, for some i € {1,3,...,m}.

90

Next we define a mapping u, an ns-pattern P and an RDF graph G such that i € [Pl
if and only if there is ani € {1,3,...,m— 1} for which y; € [P;]lg, (recall this occurs if and
only if ¢ belongs to MAX-ODD-SAT). Intuitively, we must simulate a disjoint union of
mappings, patterns and RDF graphs. The mapping u is defined as p; Uz U+ - - U, 1. This
mapping is correctly defined since var(u;) N var(u,) = O for every j k € {1,3,...,m -1}
with j # k. But as mentioned before, this occurs if and only if ¢ belongs to MAX-ODD-
SAT. m|

This concludes the complexity study over graph patterns defined with the NS operator.
It is interesting to mention that, although the evaluation problem for well-designed graph
patterns is CO-NP-complete, well-designed graph patterns do not allow for projection. If
projection is allowed only on top, the evaluation of well-designed graph patterns already
increases to X5-coomplete (Letelier et al., 2013). This complexity is higher than that of ns-
patterns, and then it would be interesting to compare the expressive power of this language
to that of ns-patterns. Notice also that ns-patterns do allow for projection, but the patterns
inside SELECT operator come from AUF. Therefore, with ns-patterns one cannot obtain
optional information and then project over some variables. It can be easily shown that
allowing projection on top of ns-patterns also produces a X} -coomplete language. This is

also an interesting language to study.

8.4. Complexity of c-queries

Finally, we state the evaluation complexity for the fragment of AUF c-queries. As
mentioned before, this is the most important fragment found in this dissertation, as it
correctly captures the set of c-queries that conform to the open-world assumption. Estab-
lishing the combined complexity of AUF c-queries is straightforward. We rely on the fact

that the evaluation problem for AUF graph patterns is NP-complete.

91

The evaluation problem for a class # of c-queries is defined as finding the computa-

tional complexity for the following language:
{(G,q,1) | G is an RDF graph, ¢ is a c-query in ¥, and ¢ € ans(q, G)}.

THEOREM 17. The evaluation problem for the AUF c-queries is NP-complete.

PROOF. We first show this problem is in NP. Assume G is an RDF graph, is a triple,
and ¢ = CONSTRUCT H WHERE P is an AUF c-query. To prove that ¢ is in ans(q, G)
is suffices to guess a triple s € H and a mapping u € [P]lg such that # = u(s). This can be
done in NP as P € AUF.

Now we prove that this problem is NP-hard. We reduce SAT to evaluation of AUF
c-queries. Let ¢ be a propositional formula. Let u,, P, and G, be the elements provided
by Lemma 13. Recall that if ¢ is satisfiable then [P,]lg, = u,, and otherwise [P,], = 0.
Let ?X be a variable in dom(u,). We prove that the triple t = (u(?X), u(?X), u(?X)) is in
the answer to

g = CONSTRUCT {(?X, ?X, ?X)} WHERE P,
over G, if and only if ¢ is satisfiable.

e [=] Assume 7 € ans(q, G,). Then, [P,]ic, is not empty, which occurs if and only
if ¢ is satisfiable.
e [<] Assume ¢ is satisfiable. Then u € [P,]l,, which immediately implies that

tis in ans(q, G,).

This result is interesting as it establishes that the language of AUF c-queries is not
only correct in terms of expressive power, but is also a language with low evaluation
complexity. In particular, this complexity is much lower than those for general of c-queries
and SPARQL graph patterns (PSPACE-complete), and, moreover, lower than that of well-

designed graph patterns with projection on top (X}-coomplete).

92

We proved in Section 7.4 that every well-designed c-query can be transformed into an
AUF c-query in polynomial time (actually in logarithmic space). We deduce the following

corollary.

COROLLARY 7. The evaluation problem for well-designed c-queries is NP-complete.

At first this result might seem confusing, since evaluation of well-designed graph
patterns is CO-NP-complete. Moreover, this complexity increases to XJ-coomplete if pro-
jection is allowed at the top-most level. But, if instead of SELECT we allow for CON-
STRUCT in the top-most level, we obtain a language that is NP-complete. This occurs
because when projecting over a set of variables V by means of SELECT, two compatible
mappings binding different subsets of V produce two distinct answers. On the other hand,
when projecting to a triple pattern ¢+ with CONSTRUCT, a mapping that does not bind
var(¢) will not produce an answer, and two compatible mappings binding var(z) will only

pI'OdUCC one ansSwer.

This concludes our study of evaluation complexity for the found fragments. We re-
mark that the results further support that the fragment of AUF c-queries is an appropriate
language for querying RDF graphs as it precisely captures the desired semantic notion and

at the same time has a low evaluation complexity.

93

9. CONCLUSIONS AND FUTURE WORK

We presented a thorough study about what is a proper query language for the Seman-
tic Web, in particular considering the importance of querying for optional information. We
first showed that the most adopted previous approach (well-designed graph patterns) does
not have the desired expressive power. To present a new approach we started by studying
the techniques used in first-order logic to capture the semantic notions of monotonicity
and closeness under extensions. We then developed a framework for applying these tech-
niques for capturing weakly-monotone graph patterns in SPARQL. This application gave
rise to the operator NS, which proved to be a natural way for obtaining optional informa-
tion. Based on this operator we defined two SPARQL-based languages, which turned out
to be better (in terms of expressive power) than previous approaches for querying RDF
graphs, in particular better than unions of well-designed graph patterns. Then we focused
on the fragment of CONSTRUCT queries. We applied the same techniques from first-
order logic that were applied to graph patterns. This application gave us a simple form of
queries with the exact desired properties, in terms of both expressive power and compu-
tational complexity. The previous results are all relevant to applications and technologies

for information published as RDF.

The main conclusion of this work is that the fragment of AUF CONSTRUCT queries
is an appropriate query language for RDF. This language produces RDF graphs, a more
concise output that allows for relating entities in the answer. Moreover, it has lower eval-
uation complexity than previous approaches and captures the semantic notion of mono-
tonicity, which derives from the search of a query language that conforms to the open-

world-assumption.

Further contributions were shown throughout this dissertation. We presented a simple
connection between SPARQL and first-order logic, and a thorough review of the applica-

tion of Otto’s and Lyndon’s interpolation theorems to prove preservation theorems. We

94

formalized the fragment of CONSTRUCT queries and discussed the benefits of gener-
ating RDF graphs as output (instead of mappings). We proved that AUF CONSTRUCT
queries characterize the set of monotone CONSTRUCT queries, and provided an effective
algorithm that transforms well-designed CONSTRUCT queries into AUF CONSTRUCT
queries. Furthermore, we studied the expressive power and evaluation complexity of sev-

eral different fragments of SPARQL including the NS operator.

Our study of the presented languages opens new research possibilities, starting by the
search for extensions of the defined fragments. For example, allowing for projection on
top of simple and ns-patterns preserves weak-monotonicity while increasing the evalua-
tion complexity, which might hint higher expressive power. Also, the defined fragments
could be further studied in the context of finite RDF graphs, and lead to finally find a char-
acterization of weakly-monotone graph patterns and monotone CONSTRUCT queries that
holds under finite structures. Regarding this last question, it is also important to under-
stand the relation between characterizing monotone CONSTRUCT queries under finite

RDF graphs, and monotone first-order formulas under finite models.

Finally, the focus of this dissertation has been mostly theoretical. Therefore, a more
practical consideration of the obtained results could lead to a complete new work. For
example it is important to understand what are the practical consequences of removing
the OPT operator and including the NS operator, or whether the fragment of AUF CON-
STRUCT queries could cover the needs of real-world scenarios. Moreover, these new lines
of research are open to the development of implementations and optimizations, potentially

leading to real applications of the results presented in this work.

95

References

Abiteboul, S., & Duschka, O. M. (1998). Complexity of answering queries using ma-
terialized views. In Proceedings of the seventeenth acm sigact-sigmod-sigart sympo-
sium on principles of database systems (pp. 254-263).

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of databases (Vol. 8).
Addison-Wesley Reading.

Ajtai, M., & Gurevich, Y. (1987, October). Monotone versus positive. J. ACM, 34(4),
1004-1015.

Angles, R., & Gutierrez, C. (2008a). The expressive power of SPARQL. In Iswc
(p. 114-129).

Angles, R., & Gutierrez, C. (2008b). The expressive power of spargl. Springer.

Aranda, C. B., Hogan, A., Umbrich, J., & Vandenbussche, P. (2013). SPARQL web-
querying infrastructure: Ready for action? In The semantic web - ISWC 2013 - 12th
international semantic web conference, sydney, nsw, australia, october 21-25, 2013,
proceedings, part Il (pp. 277-293).

Arenas, M., Conca, S., & Pérez, J. (2012). Counting beyond a yottabyte, or how
SPARQL 1.1 property paths will prevent adoption of the standard. In Proceedings of
the 21st international conference on world wide web (pp. 629-638).

Arenas, M., & Pérez, J. (2011). Querying semantic web data with sparqgl. In Proceed-
ings of the thirtieth acm sigmod-sigact-sigart symposium on principles of database
systems (pp. 305-316).

Benedikt, M., ten Cate, B., & Tsamoura, E. (2014). Generating low-cost plans from
proofs. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on
principles of database systems, pods’14, snowbird, ut, usa, june 22-27, 2014 (pp.
200-211).

96

Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. Scientific
american, 284(5), 28-37.

Bertossi, L. (2006, June). Consistent query answering in databases. SIGMOD Rec.,
35(2), 68-76.

Bry, F.,, Furche, T., Marnette, B., Ley, C., Linse, B., & Poppe, O. (2010). Sparqglog:
Sparql with rules and quantification. In R. de Virgilio, F. Giunchiglia, & L. Tanca
(Eds.), Semantic web information management (p. 341-370). Springer Berlin Hei-
delberg.

Buil-Aranda, C., Arenas, M., & Corcho, O. (2011). Semantics and optimization of
the SPARQL 1.1 federation extension. In The semanic web: Research and applica-
tions (pp. 1-15). Springer.

Buss, S. R., & Hay, L. (1991). On truth-table reducibility to sat. Information and
Computation, 91(1), 86 - 102.

Chekol, M. W., Euzenat, J., Geneves, P., & Layaida, N. (2012a). SPARQL query
containment under SH I axioms. In Aaai.

Chekol, M. W., Euzenat, J., Geneves, P., & Layaida, N. (2012b). SPARQL query
containment under RDFS entailment regime. In Ijcar (p. 134-148).

Craig, W. (1957). Three uses of the herbrand-gentzen theorem in relating model
theory and proof theory. The Journal of Symbolic Logic, 22(3), pp. 269-285.

Durst, M., & Suignard, M. (2005). Rfc 3987, internationalized resource identifiers
(iris). http://www.ietf.org/rfc/rfc3987.txt.

Enderton, H., & Enderton, H. B. (2001). A mathematical introduction to logic. Aca-
demic press.

Erling, O., & Mikhailov, I. (2009). RDF support in the virtuoso DBMS. In Networked
knowledge-networked media (pp. 7-24). Springer.

97

Fagin, R. (1996). Combining fuzzy information from multiple systems (extended
abstract). In Proceedings of the fifteenth acm sigact-sigmod-sigart symposium on
principles of database systems (pp. 216-226).

Feferman, S. (2008). Harmonious logic: Craig’s interpolation theorem and its de-
scendants. Synthese, 164(3), 341-357.

Furche, T., Linse, B., Bry, F., Plexousakis, D., & Gottlob, G. (2006). Rdf querying:
Language constructs and evaluation methods compared. In Reasoning web (pp. 1-
52). Springer.

Galindo-Legaria, C. A. (1994, May). Outerjoins as disjunctions. SIGMOD Rec.,
23(2), 348-358.

Geerts, F., Karvounarakis, G., Christophides, V., & Fundulaki, I. (2013). Algebraic
structures for capturing the provenance of SPARQL queries. In Iedt (p. 153-164).

Gurevich, Y., & Shelah, S. (1986). Fixed-point extensions of first-order logic. Annals
of Pure and Applied Logic, 32, 265 - 280.

Halpin, H., & Cheney, J. (2014). Dynamic provenance for SPARQL updates. In
Iswe.

Harris, S., Lamb, N., & Shadbolt, N. (2009). 4store: The design and implementation
of a clustered rdf store. In 5th international workshop on scalable semantic web
knowledge base systems (ssws2009) (pp. 94—109).

Hemachandra, L. A. (1989). The strong exponential hierarchy collapses. Journal of
Computer and System Sciences, 39(3), 299 - 322.

Hernich, A., Libkin, L., & Schweikardt, N. (2011, June). Closed world data ex-
change. ACM Trans. Database Syst., 36(2), 14:1-14:40.

Hodges, W. (1997). A shorter model theory. New York, NY, USA: Cambridge Uni-
versity Press.

98

Hogan, A., & Gutierrez, C. (2014). Paths towards the sustainable consumption of
semantic data on the web. In Proceedings of the 8th alberto mendelzon workshop on
foundations of data management, cartagena de indias, colombia, june 4-6, 2014.

Immerman, N. (1982). Relational queries computable in polynomial time. In Pro-

ceedings of the fourteenth annual acm symposium on theory of computing (pp. 147—
152).

Kostylev, E. V., Reutter, J. L., & Ugarte, M. (2015). CONSTRUCT queries in
SPARQL. In /8th international conference on database theory, ICDT 2015, march
23-27, 2015, brussels, belgium (pp. 212-229).

Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proceedings
of the twenty-first acm sigmod-sigact-sigart symposium on principles of database
systems (pp. 233-246).

Letelier, A., Pérez, J., Pichler, R., & Skritek, S. (2012). Static analysis and optimiza-
tion of semantic web queries. In Proceedings of the 3 1st symposium on principles of
database systems (pp. 89—100). New York, NY, USA: ACM.

Letelier, A., Pérez, J., Pichler, R., & Skritek, S. (2013). Static analysis and optimiza-
tion of semantic web queries. ACM Trans. Database Syst., 38(4), 25.

Libkin, L. (2006). Data exchange and incomplete information. In Proceedings of the

twenty-fifth acm sigmod-sigact-sigart symposium on principles of database systems
(pp. 60-69). New York, NY, USA: ACM.

Libkin, L. (2013). Elements of finite model theory. Springer Science & Business
Media.

Libkin, L., Reutter, J., & Vrgoc¢, D. (2013). TriAL for RDF: adapting graph query
languages for RDF data. In Proceedings of the 32nd symposium on principles of
database systems (pp. 201-212).

99

Libkin, L., & Sirangelo, C. (2011). Data exchange and schema mappings in open
and closed worlds. Journal of Computer and System Sciences, 77(3), 542 - 571.
(Database Theory)

Losemann, K., & Martens, W. (2012). The complexity of evaluating path expressions
in SPARQL. In Proceedings of the 31st symposium on principles of database systems
(pp. 101-112).

Lyndon, R. C. (1959). An interpolation theorem in the predicate calculus. Pacific
Journal of Mathematics, 9(1), 129-142.

Mallea, A., Arenas, M., Hogan, A., & Polleres, A. (2011). On blank nodes. In Inter-

national semantic web conference (p. 421-437).

Manola, F., & Miller, E. (2004, 10 February). RDF Primer. W3C Recommen-
dation. (Available at http://www.w3.0rg/TR/2004/REC-rdf-primer
-20040210/)

Nash, A., Segoufin, L., & Vianu, V. (2010, July). Views and queries: Determinacy
and rewriting. ACM Trans. Database Syst., 35(3), 21:1-21:41.

Oberschelp, A. (1968, 06). On the craig-lyndon interpolation theorem. J. Symbolic
Logic, 33(2), 271-274.

Otto, M. (2000). An interpolation theorem. Bulletin of Symbolic Logic, 6(4), 447—
462.

Papadimitriou, C. H., & Yannakakis, M. (1982). The complexity of facets (and some

facets of complexity). In Proceedings of the fourteenth annual acm symposium on
theory of computing (pp. 255-260). New York, NY, USA: ACM.

Pérez, J., Arenas, M., & Gutierrez, C. (2006a). Semantics and complexity of sparqgl.
In Iswc (p. 30-43).

100

Pérez, J., Arenas, M., & Gutierrez, C. (2006b). Semantics and complexity of sparql.
CoRR, abs/cs/0605124.

Pérez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and complexity of
SPARQL. ACM Trans. Database Syst., 34(3).

Picalausa, F., & Vansummeren, S. (2011). What are real SPARQL queries like? In
Swim.

Pichler, R., & Skritek, S. (2014). Containment and equivalence of well-designed
SPARQL. In Proceedings of the 33rd acm sigmod-sigact-sigart symposium on prin-
ciples of database systems (pp. 39-50).

Polleres, A., Scharffe, F., & Schindlauer, R. (2007). SPARQL++ for mapping be-
tween RDF vocabularies. In On the move to meaningful internet systems 2007: Vil-
amoura, portugal, november 25-30, 2007, proceedings, part I (pp. 878-896).

Polleres, A., & Wallner, J. P. (2013). On the relation between SPARQL1.1 and an-
swer set programming. Journal of Applied Non-Classical Logics, 23(1-2), 159-212.

Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF,
W3C recommendation. http://www.w3.org/tr/rdf-sparql-query.

Prud’hommeaux, E., Seaborne, A., et al. (2006). SPARQL query language for RDF.
Ramanathan, V. G. (2013). Light at the end of the tunnel.

Riege, T., & Rothe, J. (2006, may). Completeness in the boolean hierarchy: Exact-
four-colorability, minimal graph uncolorability, and exact domatic number problems

- asurvey., 12(5), 551-578.

Rossman, B. (2008, August). Homomorphism preservation theorems. J. ACM, 55(3),
15:1-15:53.

101

Schmidt, M., Meier, M., & Lausen, G. (2010). Foundations of sparql query opti-

mization. In Proceedings of the 13th international conference on database theory
(pp- 4-33). New York, NY, USA: ACM.

Seaborne, A. (2010). ARQ-A SPARQL processor for Jena. Obtained through the
Internet: http://jena. sourceforge. net/ARQ/ .

Spakowski, H. (2005). Completeness for parallel access to np and counting class
separations (Unpublished doctoral dissertation).

Tait, W. W. (1959, 3). A counterexample to a conjecture of scott and suppes. Journal
of Symbolic Logic, 24, 15-16.

Vardi, M. Y. (1982). The complexity of relational query languages. In Proceedings
of the fourteenth annual acm symposium on theory of computing (pp. 137-146).

W3C SPARQL Working Group. (2013, 21 March). SPARQL 1.1 Query language.
W3C Recommendation. (Available at http://www.w3.0rg/TR/sparglll
-query/)

Wagner, K. W. (1987, March). More complicated questions about maxima and min-
ima, and some closures of np. Theor. Comput. Sci., 51(1-2), 53-80.

Wechsung, G. (1985). On the boolean closure of NP. In Fundamentals of computa-
tion theory (pp. 485-493).

	Acknowledgements
	LIST OF TABLES
	LIST OF FIGURES
	Resumen
	Abstract
	1. Introduction
	1.1. The Semantic Web
	1.2. Accessibility and performance
	1.3. Incomplete information
	1.4. Learning from relational databases
	1.5. Hypothesis and goals
	1.6. Summary of contributions
	1.6.1. Well-designed graph patterns
	1.6.2. A framework for the study of weak-monotonicity
	1.6.3. Maximal answers in SPARQL
	1.6.4. Monotonicity and CONSTRUCT queries
	1.6.5. Computational complexity

	2. Preliminaries
	2.1. RDF
	2.2. SPARQL syntax
	2.3. Semantics of SPARQL

	3. Incomplete information in the semantic web
	3.1. The Open-World Assumption in SPARQL
	3.2. SPARQL and incomplete information
	3.3. Well-designed graph patterns and weak-monotonicity

	4. Syntax versus semantics in first-order logic
	4.1. Interpolation and preservation theorems
	4.2. Lyndon's interpolation and positive formulas
	4.3. Otto's interpolation and the Łos-Tarski preservation theorem
	4.4. Preservation theorems and finite models

	5. Interpolation applied to weak-monotonicity
	5.1. From SPARQL to First-Order Logic
	5.2. From existential positive FO to SPARQL

	6. Syntactic characterizations in SPARQL
	6.1. Removing subsumption: the NS operator
	6.2. Simple patterns and subsumption-free patterns
	6.3. Weak-monotonicity and ns-patterns

	7. A language producing RDF graphs
	7.1. RDF graphs as input, mappings as output
	7.2. Formalizing CONSTRUCT queries
	7.3. Monotonicity and the open-world assumption
	7.4. Well-designed CONSTRUCT queries

	8. Computational complexity
	8.1. Complexity Classes
	8.2. Complexity of simple patterns
	8.3. Complexity of ns-patterns
	8.4. Complexity of c-queries

	9. Conclusions and future work
	References

