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“Imagination is more important than 

knowledge. Knowledge is limited. 

Imagination encircles the world” 
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ABSTRACT 

 

Oenococcus oeni is one of the most important lactic acid bacteria that develops during 

winemaking. It is responsible of carrying out malolactic fermentation, which 

significantly affects the final quality of wine. However, the completion of this endeavor 

is erratic and, so far, no conclusive explanation has been given to explain this behavior.  

In this thesis, I constructed the first Genome-scale metabolic model (GEM) of O. oeni 

based on genome annotation, database information and primary literature. The model 

includes 914 reactions, 792 metabolites and 512 genes. An in silico minimal growth 

medium was determined and compared with experimental data. With a total of 44 

growth/non growth experiments, the model showed a prediction accuracy of 86%, with 

an F-score value of 0.23, indicating a high overall performance. Furthermore, MATLAB 

scripts developed during this work to facilitate refinement and analysis of the O. oeni 

GEM proved to be efficient, useful and user friendly. 

The model was employed to predict specific growth rates and consumption/production 

rates of glucose, fructose, citric acid, L-malic acid, L-lactic acid, D-lactic acid and 

acetate, under different medium conditions of pH and ethanol concentration. In the 

absence of ethanol, a mean difference of 38% was found between the experimental and 

predicted specific growth rates, while only a 0.1% mean difference was obtained for 

specific consumption/production rates. Unfortunately, less accurate predictions were 

achieved under ethanol growing conditions; the latter will be tackled in the future  by 

determining gene expression and biomass composition of O. oeni, growing under 

increasing ethanol concentrations.  

All in all, the construction and partial validation of this GEM of O. oeni represents a step 

forward in the comprehensive understanding, and the consequent control, of malolactic 

fermentation during winemaking. 

 

Keywords: O. oeni, GEM, minimal medium, consumption/production rate prediction, 

winemaking, refinement tools.  
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RESUMEN 

 

O. oeni es la bacteria láctica más importante en la vinificación dado que es responsable 

de llevar a cabo la fermentación maloláctica, proceso que afecta significativamente la 

calidad final del vino. El comportamiento de esta bacteria es, sin embargo, errático, y se 

desconocen las causas de dicho fenómeno .   

En este trabajo, se construyó el primer modelo metabólico a escala genómica (GEM) de 

O. oeni basado en su anotación genómica, múltiples bases de datos y literatura primaria. 

El modelo incluye 914 reacciones, 792 metabolitos y 512 genes. Un medio mínimo in 

silico fue determinado y comparado con datos experimentales. Con un total de 44 

experimentos de crecimiento/no crecimiento, el modelo muestra una exactitud de 86% 

en sus predicciones y un F-score de 0.82, sugiriendo su alto rendimiento. Por otro lado, 

los scripts desarrollados en MATLAB para facilitar el refinamiento y análisis del GEM 

de O. oeni  han demostrado ser eficientes, útiles y amigables con el usuario. 

El modelo fue empleado para predecir tasas de crecimiento específico y tasas de 

consumo/producción de glucosa, fructosa, ácido cítrico, ácido L-málico, ácido L-láctico, 

ácido D-láctico y acetato bajo diferentes condiciones de pH y toxicidad de etanol. En 

ausencia de etanol, se observó una diferencia porcentual promedio de 38% entre la tasa 

específica de crecimiento experimental y predicha; y una diferencia porcentual promedio 

de 0.1% para las tasas de consumo/producción. Desafortunadamente, las predicciones 

obtenidas para estas variables fueron menos precisas cuando O. oeni es crecido con 

etanol, lo cual podría mejorarse determinando expresión génica y composición de la 

biomasa de O. oeni crecida en presencia de etanol. La construcción y validación parcial 

de este GEM de O. oeni representa un paso importante para la mejor compresión y 

consecuente control de la fermentación maloláctica durante la vinificación 

 

Palabras Claves: O. oeni, modelo metabólico a escala genómica, medio mínimo, 

predicción de tasas de consumo/producción, vinificación, herramientas de curación.  
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1 INTRODUCTION 

1.1 Oenology-related lactic acid bacteria 

It is common to associate yeasts with winemaking. They are responsible for the main 

change in this process, i.e. the transformation of the sugars present in grape must into 

ethanol, better known as primary fermentation (Swiegers, Bartowsky, Henschke, & 

Pretorius, 2005). However, the microbiology of wine involves much more than just 

yeasts. Lactic Acid Bacteria (LAB) are also present in grapes and must. They metabolize 

numerous substrates, playing an important role in the final quality of wine (Ribéreau-

Gayon, Dubourdieu, Donèche, & Lonvaud, 1998).  

 

Five genera of LAB can be found in grape must: Lactobacillus, Pediococcus, 

Leuconostoc, Oenococcus and Weissella. While Pediococcus are homofermentative, 

Leuconostoc, Oenococcus and Weissella are obligate heterofermentative. Interestingly, 

Lactobacillus could be homofermentative (e.g. Lb. vini), facultative heterofermentative 

(e.g. Lb. plantarum) or obligate heterofermentative (e.g. Lb. brevis ) (König, Unden, & 

Jürgen, 2009; Lonvaud-Funel, 1999). Until 1995, Leuconostoc spp were classified as 

Leuconostoc mesenteroides and Leuconostoc oenos. In 1995, a study based on 16S r-

DNA and 23S r_DNA proposed the creation of a new species,  Oeonoccus  oeni. 

1.2 Impact of Oenococcus oeni on wine quality 

Oenococcus oeni is the predominant species at the end of primary fermentation and 

after. Its remarkable metabolism makes it resistant to high ethanol concentrations (15% 

v/v), low pH (as low as 2.9), limited nutrient availability  (Bartowsky, 2005) and high 

    concentrations (50 ppm) (Bauer & Dicks, 2004). These characteristics make O. oeni 

the main organism responsible of carrying out malolactic fermentation (MLF), although 

all wine-related LABs are capable of such. 
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The MLF (or secondary fermentation) is responsible for the decarboxylation of L-malic 

acid to L-lactic acid and carbon dioxide, which has three main consequences. Firstly, 

MLF results in the deacidification of wine, increasing pH in 0.1-0.2 units and decreasing 

titratable acidity. Secondly, MLF confers microbial stability to the wine through the 

removal of malic acid, which could act as a carbon source for other microorganisms. 

Finally, MLF impacts on sensory properties that could be perceived through aroma and 

palate (Bartowsky, 2005). MLF generally occurs once the primary fermentation has 

finished, but could also start earlier, or even several months after. The reasons for this 

not yet clear. 

 

Which of the three consequences of MLF is more important to wine quality depends on 

the climate. This is because L-malic acid concentrations vary with the climate of the 

region from where grapes are sourced. Thus, in cool regions, the concentration of L-

malic acid in the grape juice is between 2 and 5 g/L;  whereas in warm regions, the 

concentrations often do not exceed more than 2 g/L (Sponholz, 1989, Zoecklein et al 

1990). In cooler regions, the deacidification process is regarded as the most important 

modification associated with MLF, while in warmer regions, deacidification is not that 

important, and the changes in sensory profile become the most important feature (Lerm, 

Engelbrecht, & Toit, 2010). 

 

MLF contributes directly to sensory changes by replacing the strong green apple taste of 

malic acid by the less aggressive taste of lactic acid. However, more subtle changes also 

occur. The major change in aroma during MLF is related with diacetyl biosynthesis. 

This compound imparts a "buttery" aroma and flavor to wine, which can easily be 

perceived by sensory panelists. Other compounds that significantly affect wine taste are 

acetic acid and acetoin compounds, all of which are products of citrate degradation 

(Bartowsky & Henschke, 2004; Lonvaud-Funel, 1999). 
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1.3 O. oeni PSU-1 and its genome 

The O. oeni PSU-1 strain was isolated from Pennsylvania in 1972 and characterized for 

the first time in 1977. This strain was found to be quite similar in most biochemical 

characteristics to the previously characterized strain ML-34, a commonly studied strain 

isolated from California. The main advantage of PSU-1 over ML-34 strain is its capacity 

to induce malolactic fermentation more quickly in red wines (Beelman, III Gavin, & 

Keen, 1977). Since then, it has become a common strain to be as starter culture.   

 

The physical map of the strain PSU-1 was studied intensively at the end of the 1990s  

(Zé-Zé, Tenreiro, Brito, Santos, & Paveia, 1998; Zé-Zé, Tenreiro, & Paveia, 2000). In 

2005,  the genome sequence and annotation of this strain was determined  and released 

for public access (Mills, Rawsthorne, Parker, Tamir, & Makarova, 2005). Some general 

features of the genome of O. oeni PSU-1 are its single circular chromosome of 

1.780.517 nucleotides (nt), and a G + C content of 38%. The precise annotation of the O. 

oeni genome allowed for the study of the metabolic pathways of this organism. It is 

worth noting that the PSU-1 strain was the first strain to be sequenced   

 

More recently, Borneman et al. (2012) carried out a comparative analysis of the O. oeni 

pan genome, using the strain PSU-1 as a reference, reporting important differences 

between the strains. On average, each strain was predicted to contain 1800 ± 52 ORFs 

and 104 ± 25 potential pseudogenes. The O. oeni pan genome comprises 2846 ORFs, 

while the core genome contains 1165.  
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1.4 Genome-scale metabolic models as an opportunity for studying O. 

oeni metabolism 

 

Metabolism is essentially a large network of chemical conversions catalyzed mostly by 

enzymes. In this process, nutrients are converted into building blocks, such as fatty 

acids, nucleotides, and amino acids, for the synthesis of macromolecules, such as lipids, 

DNA and proteins. The latter are fundamental pieces for the maintenance of cellular 

integrity and formation of new cells. The reactions occurring in the cell essentially 

consist of the transformation of substrates into products, while mass and charge are 

balanced in each side of the equation (Maarleveld, Khandelwal, Olivier, Teusink, & 

Bruggeman, 2013).  

 

Metabolic networks at the genome scale (so called GENREs or genome-scale metabolic 

reconstructions) are built systematically using genome annotation, knowledge databases, 

"omics", and primary literature. Therefore, GENREs provide the best representation of 

the metabolic capabilities of the target organism at the time of reconstruction (Monk, 

Nogales, & Palsson, 2014). Integrating this information in a structured fashion has 

enabled its translation into computational models, called genome-scale metabolic 

models or GEMs, that can be used to calculate metabolic phenotypes (McCloskey, 

Palsson, & Feist, 2013). Thus, the release of the genome annotation of O. oeni PSU-1 

represents an opportunity to generate a high-quality GEM that allows for the calculation 

of possible phenotypic states in order to achieve a comprehensive understanding of its 

metabolism. 
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1.5 Hypothesis  

The development of a genome-scale metabolic model of Oenococcus oeni PSU-1 and its 

analysis through flux balance analysis will allow the identification and evaluation of 

nutritional requirements and specific metabolic rates of this bacterium 

 

1.6 Objectives 

 

Consistent with the proposed hypothesis, the overall objective of this thesis is to develop 

a genome-scale metabolic model of the malolactic bacterium Oenococcus oeni capable 

of properly identifying and evaluating the nutritional requirements and specific rates of 

this bacterium. The specific objectives, in agreement with the five stages of the Thiele 

and Palsson 's protocol for generating a high-quality genome-scale metabolic model,  are 

the following:  

 

1. Generation of an automatic draft reconstruction containing candidate metabolic 

reactions of Oenococcus oeni PSU-1. 

2. Refinement by correcting errors in Oenococcus oeni PSU-1 draft reconstruction 

generated in objective one. 

3. Conversion of refined reconstruction into a format suitable for modeling. 

4. Network evaluation of Oenococcus oeni PSU-1 genome-scale metabolic model 

through comparison with reported nutritional requirements, specific growth rates 

and specific consumption/production rates. 

5. Data assembly and dissemination of Oenococcus oeni PSU-1 genome-scale 

metabolic model. 

 

  



6 

  

2 MODELING AND SCOPE 

2.1 Flux Balance Analysis.  

Flux balance analysis (FBA) is a widely used mathematical modeling approach to 

quantitatively simulate microbial metabolism (Kauffman, Prakash, & Edwards, 2003). 

Since its validation as a predictive tool (Varma & Palsson, 1994), FBA has been used in 

a wide number of applications (Raman & Chandra, 2009), such as prediction of bacterial 

phenotype under different environmental conditions (Orth, Thiele, & Palsson, 2010) and 

industrial strain improvement by metabolic engineering (Koffas & Stephanopoulos, 

2005). The principles behind the FBA technique are explained below. 

2.1.1 Mathematical representation of metabolism 

Metabolic reactions can be represented by a stoichiometric matrix S, in which every row 

represents one unique metabolite; and every column represents one reaction (Figure 2-1) 

The entries in the column j are the stoichiometric coefficients of the metabolites 

participating in the reaction j with negative coefficients for every metabolite consumed, 

positive coefficients for every metabolite that is produced and coefficients equal to zero 

for every metabolite that does not participate in that reaction. For a biochemical network 

containing n reactions and involving m metabolites, the size of matrix S will be m x n 

(Equation 1) 

 

Equation 1. Stoichiometric matrix of a biochemical network involving n reactions and m metabolites. Each 
element Sij represent the stoichiometric coefficient of metabolite i participating in reaction j.  

  

 

 
 

           
     
           
     
            

 
 

   

 

 



7 

  

The metabolic flux through all the reactions in a network can be represented by a vector 

 , which has a length of n (Equation 2) the entry in the row j is the flux in 
    

      
 of the 

reaction j (Orth et al., 2010) 

 

Equation 2. Vector representing metabolic fluxes in a biochemical network of n reactions. The element Vj 

represent the flux through reaction j. 
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Figure 2-1. Example of mathematical representation of biochemical network. Here, the matrix represents the 
glycolysis pathway. Each reaction of the pathway (top) is represented in a determined column of the matrix 
(bottom). For example, the highlighted reaction glyceraldehyde 3-phosphate dehydrogenase (GAPD) is 
represented in column six. The reactants have a negative number in the matrix while products are positive. To the 
right, reactions of this pathway are showed as a graph where nodes represent metabolites and links represent 
reactions. Figure modified from Schellenberger et al (2011). 
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2.1.2 Steady state assumption 

Concentrations of all metabolites can be represented by a vector  , which has a length of 

m. Steady-state implies that variations of metabolites concentrations in time are equal to 

zero  
  

  
    , i.e. the sum of fluxes consuming a particular metabolite must be equal to 

the sum of fluxes producing that metabolite (Equation 3)  

 

Equation 3. Steady state equation 

    

 

 
 

           
     
           
     
            

 
 

   

  

 

 
 

  
 
  
 
   

 
 

 

   

 

Since the reactions of the biochemical network under study and their stoichiometric 

coefficients are known, matrix S can easily be constructed. Therefore, the only unknown 

variable in equation 3 is  . Any   that satisfies this equation is said to be in the null 

space of S. This set of equations is also known as mass balance constraints, which 

ensure that the total amount of any compound being produced must be equal to the total 

amount being consumed at steady state. 

In a GEM, there are usually more reactions than compounds (n > m) in the biochemical 

network, meaning that there are more unknown variables than equations. These systems 

are known as underdetermined, because there is no unique solution that satisfies these 

equations.  

2.1.3 Capacity constraints 

Besides the mass balance constraints given by equation 3, capacity constraints could be 

defined to further restrict the solution space and establish a context-specific condition. 

Capacity constraints are defined as the range of flux values that biochemical reactions 

can reach. There are two variables that determine capacity constraints: lower and upper 
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bounds. The entry in the row j of the lower bound vector represents the minimum flux 

value which can be reached by reaction j, while the entry in the row j of the upper bound 

vector represents its maximum value. For a biochemical network with n reactions, lower 

and upper bounds are vectors of size n, as shown by equation 4: 

Equation 4. Lower and upper bounds vectors.  

 

 
 

  
 
  
 
   

 
 

 

 

 

 
 

  
 
  
 
   

 
 

 

 

 

 
 

  
 
  
 
   

 
 

 

 

In cases of known experimental bounds for a particular reaction, setting lower and upper 

bounds for that reaction will restrict the solution space. Furthermore, if there is evidence 

that a reaction occurs from left to right, the lower bound must be set to zero and the 

upper bound must be set to infinity. In practice, an upper bound equal to 1000 is big 

enough to represent infinity. On the other hand, if there is evidence that a reaction occurs 

from right to left the lower bound must be set to negative infinity; and the upper bound 

to zero. In a similar way, a lower bound equal to – 1000 is enough to represent negative 

infinity. Additionally, in cases where the exact value of flux through the reaction j is 

known, the row j of both vectors must be set to that value (Orth et al., 2010). 

2.1.4 Definition and optimization of an objective function 

As the system of equations has infinite solutions, FBA seeks to optimize an objective 

function in order to obtain a unique solution. However, a unique solution cannot be 

guaranteed, as it is common for multiple solutions from the same value of the objective 

function, or even for no values to satisfy the balance or capacity constraints.  

 

The objective function can be defined as        , where c is a vector of weights 

indicating how much each reaction ( ) contributes to the objective function. When only 
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one reaction is desired for maximization, c is a vector of zeros with a one at the position 

of the reactions of interest. It is common to maximize the biomass reaction when 

simulating growth. In such a case, the vector c will have a one at the position of the 

biomass reaction (Orth et al., 2010). The different types of objective functions and the 

progress made in this topic has been reviewed by Feist & Palsson (2010) 

 

Then the FBA problem can be written as 

               

             

      

         

 

The succession of steps mentioned above seek to constrain the solution space in order to 

find a context-specific unique flux distribution (Figure 2-2). With no mass balance 

constraints, fluxes are able to reach any point in the solution space. This solution 

obviously lacks biological interpretation, because organism-specific reactions are not 

incorporated into the problem. The application of mass balance constraints, given by the 

equation      , restricts the solution space. Nevertheless, the use of mass balances is 

not enough to describe a context-specific experimental condition, because reaction 

fluxes are allowed to reach values that are not achieved under real experimental 

conditions. The application of capacity constraints given by lower and upper bounds, 

allows for a restricted solution space in which a solution with biological meaning is 

found. This space is known as allowable solution space. The optimization of an 

objective function, restricted by the allowable solution space, results in a single flux 

distribution which lies on the edge of the allowable solution space, whih can be 

interpreted with a biological perspective.  
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Figure 2-2. Conceptual basis of constraint-based modeling. With no constraints, the flux 
distribution of a biological network may lie at any point in a solution space. When mass 
balance constraints imposed by the stoichiometric matrix S and capacity constraints imposed 
by lower and upper bounds are applied to a network it defines an allowable solution space. 
The network may acquire any flux distribution within this space, but points outside this space 
are denied by the constraints. Through optimization of the objective function, FBA identifies a 
single optimal flux distribution that lies on the edge of the allowable solution space. Extracted 
from Orth et al. (2010) 

2.2 Genome-scale metabolic models.  

A genome-scale network reconstruction (GENRE) is an organism-specific collection of 

biochemical reactions and associated genes that describes its metabolism (Thiele & 

Palsson, 2010). Since the first GENRE, created in 1999 (Edwards & Palsson, 1999), 117 

GENREs have been published (Monk et al., 2014) for diverse organisms, including 

important cell factories such as Escherichia coli (Orth et al., 2011) and Saccharomyces 

cerevisiae (Heavner, Smallbone, Barker, Mendes, & Walker, 2012). These GENREs are 

constructed from genome annotation, databases and primary literature (Feist, Herrgård, 

Thiele, Reed, & Palsson, 2009). At present, a rigorous protocol of 96 steps has been set 

up to generate a high quality GENRE, capable of correctly predicting the metabolism of 

a particular microorganism (Thiele & Palsson, 2010). 

 

A genome-scale metabolic model (GEM) is a mathematical representation of GENREs 

that allows the phenotype of an organism to be studied in silico. In other words, GEMs 

are a structured format of different types of biological knowledge that can be used to 

perform computational and quantitative queries to answer questions about the 

capabilities of organisms and their likely phenotypic states. 
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2.2.1 Applications of genome-scale metabolic models 

GEMs have been used to answer different types of questions. Most fall into one of the 

six categories described below (McCloskey et al., 2013).  

2.2.1.1 Metabolic engineering  

Metabolic engineering is the rational design to convert cell factories into highly 

efficient, focused machines capable of generating significant quantities of a molecule of 

interest (Lee et al., 2012). This is achieved by altering metabolic fluxes to increase the 

concentrations, yields and productivities of innate and non-innate bio-products (Na, 

Kim, & Lee, 2010). In this application, GEMs can be used to identify metabolic targets 

to optimize the cell factory, which can then be implemented in vivo. These strategies 

include gene deletions, gene over- and under-expression, mapping high throughput data 

onto network reconstruction to identify bottlenecks or competing pathways and 

integration of non-native pathways into standard microbial production hosts for 

production of compounds that are either natively found in, or only synthesized, in 

minute concentrations by the host (McCloskey et al., 2013). 

 

For example, Sohn et al (2010) built a GEM for Pichia pastoris, a methylotrophic yeast 

that has gained much attention during the last decade as a platform for producing 

heterologous recombinant proteins of pharmaceutical importance (Caspeta & Nielsen, 

2013; Caspeta, Shoaie, Agren, Nookaew, & Nielsen, 2012). They incorporated equations 

describing the production of two heterologous proteins, human serum albumin and 

human superoxide dismutase and investigated how the oxygen supply affected 

capabilities in producing these two proteins. As a result, they found that under oxygen 

limiting conditions the rate of protein production is maximized, without decreasing 

growth rate; therefore, fermentation strategies could be designed to optimize protein 

production and growth rate by limiting the oxygen supply.  
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2.2.1.2 Biological discovery 

 

Several features of bacterial functions still remain uncharacterized. For example, even in 

E. coli, the most studied and well known bacterium, 34% of the genes have an unknown 

function (Orth et al., 2011). The function of uncharacterized open reading frames 

(ORFs) can be elucidated using GEMs by comparing growth phenotypes from in silico 

predictions to in vivo experimental data. Discrepancies between GEM prediction and 

experimental results can point to where current knowledge is missing or where there are 

discrepancies. Thus, GEMs allow one to systematically formulate testable hypotheses 

(McCloskey et al., 2013). 

 

As an example of biological discovery, Kim et al (2011) reconstructed a GEM of Vibrio 

vulnificus, an opportunistic pathogen that causes primary septicemia, necrotized wound 

infections and gastroenteritis in humans. This pathogen is considered the major 

causative agent of death from ingestion of raw or undercooked seafood. The model 

developed was employed to predict essential metabolites and genes interacting with 

these metabolites. Based on these results, an antibiotic was developed by finding 

compounds with similar structure to the essential metabolites. Thus, this study showed a 

strategy for discovering novel antibiotics and drugs based on systems-level analysis of 

metabolic networks.  

2.2.1.3 Phenotypic functions 

 

Understanding and predicting the phenotypic potential of microorganisms is another 

GEM application (Hyduke, Lewis, & Palsson, 2013). Constraint-based modeling with 

GEMs has allowed to rapidly predict growth in various conditions, explore different 

objectives of microbial metabolism to examine the driving force behind cellular 

function, and understand the suboptimal behavior of cells following perturbation and 

latent pathway activation (McCloskey et al., 2013). O’Brien, Lerman, Chang, Hyduke, 

& Palsson (2013) released a new version of an Escherichia coli model, integrating 
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metabolic and gene product expression pathways. The model  is able to accurately 

predict multi-scale phenotypes, ranging from coarse-grained (growth rate, nutrient 

uptake, by-product secretion) to fine-grained (metabolic fluxes, gene expression levels) 

phenotypes.  

2.2.1.4 Biological network analysis 

 

The metabolic reaction network is a highly complex, interwoven system that responds to 

environmental and genetic perturbations. In order to elucidate and understand the 

relationship between the network structure and function, researchers have turned to 

network analysis. This exercise is mathematical in nature. In network analysis, 

biochemical reactions are transformed into a graph, where the nodes and links take the 

form of metabolites and enzymatic reactions. Once formulated as a graph, the network 

can be sampled and explored to arrive at biologically insightful conclusions (McCloskey 

et al., 2013). Kun et al (2008) searched for autocatalytic components (compounds which 

are needed to its own synthesis) in the metabolic network of 10 organisms. They found 

that all metabolic networks have at least one universal autocatalytic molecule, ATP, 

supporting the view that a small, but important part of inheritance is provided by the set 

of autocatalytic compounds of intermediary metabolism.  

2.2.1.5 Bacterial evolution 

 

Bacterial species are constantly adapting to meet the demands of the imposed 

environmental conditions. Nevertheless, due to time limitations, the study of 

evolutionary processes, through computational frameworks, is perhaps the easiest way to 

elucidate principles governing evolution. GEM of E. coli was used to study the 

contribution of different genetic mechanisms to network growth and the selective forces 

driving network evolution (Pál, Papp, & Lercher, 2005). Results suggested that most 

changes to the E. coli metabolic network during the past 100 million years are due to 

horizontal gene transfer, with little contribution from gene duplicates. Additionally, 
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network growth resulted by acquiring genes involved in the transport and catalysis of 

external nutrients, driven by adaptations to changing environments.  

2.2.1.6 Cell interactions 

 

Few cells grow in pure cultures in nature. Therefore, the study of interspecies 

interactions allows for a better description of cells growing in their natural state. 

Furthermore, in many cases, the most interesting phenotypes emerge when particular 

species interact. GEMs are being applied to evaluate these multi-cell interaction 

challenges. Thus, a model of the syntrophic bacteria Desulfovibrio vulgaris and 

Methanococcys maripaludis has been developed for studying the mutualistic microbial 

community composed by these two species (Stolyar et al., 2007). This model includes 

the central metabolism of both bacteria and allows to accurately predict several 

ecologically relevant characteristics, including the ratio of D. vulgaris and M. 

maripaludis cells during co-culture (Oberhardt, Palsson, & Papin, 2009).  

 

Another example in this field is the study of interactions between different types of 

human cells. Lewis et al. (2010) examined the interactions between astrocytes and 

cholinergic neurons in brain tissue to gain insights into Alzheimer's disease. They used 

three different models derived from RECON1, a human GENRE, to represent three 

different cell types and included exchange reactions between different cell types to 

simulate the interactions that these cells have within the brain tissue. Thus, new insights 

into the mechanisms of disease and strategies for treating the disease were formulated 

(T. Y. Kim, Sohn, Kim, Kim, & Lee, 2012).  

2.2.2 Limitations of genome-scale metabolic models 

GEMs also have limitations. For example, due to inherent mathematical representation 

of FBA, GEMs lack a representation for metabolite concentrations. This is a big issue as, 

in many cases, metabolite concentration is an important parameter for process 

optimization. For example, when optimizing a culture medium, it is of paramount 



17 

  

importance to find the exact concentration of nutrients that would lead to optimal 

growth. Too low a nutrient concentration could hamper  growth; while too much could 

cause growth inhibition.  

 

Another limitation is that GEMs cannot predict the expression of genes. Therefore, 

expensive and time-consuming high throughput data must be incorporated into the 

model to account for this type of information. Moreover, GEMs cannot predict the 

functional state of proteins (posttranscriptional modifications), another big issue 

because, in many cases, the production of recombinant proteins is dependent  on  

posttranscriptional modifications.  
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3 MATERIALS AND METHODS 

3.1 Procedure 

The GEM of Oenococcus oeni was constructed following the protocol for generating a 

high quality genome-scale metabolic reconstructions proposed by Thiele & Palsson 

(2010). This protocol comprises 5 stages (Figure 3-1).  

 

Figure 3-1. Overview of the procedure to iteratively reconstruct a high-quality metabolic network. The protocol 
comprises 5 stages involving a total of 96 steps. In the first stage a draft reconstruction is built. This draft 
reconstruction is often generated automatically therefore could contain incorrect information. In the second stage 
each reaction in this draft reconstruction is revised manually to repair possible autogenerated errors. Additionally 
missing reactions, not included initially in the draft reconstruction, are added from literature and databases. In 
the third stage, the reconstruction is converted into a computable format in order to be evaluated in the fourth 
stage. In the fourth stage, in silico simulations of phenotypes are tested. If there are inconsistencies between in 
silico results and literature, stage 2 must be carried out again in order to further refine the network. This iterative 
process ends when in silico results are considered to agree with experimental data. Figure modified from Thiele & 
Palsson (2010). 

 

 

The first stage consists of generating a draft reconstruction, based on the genome 

annotation of the target organism and biochemical databases. This draft reconstruction is 
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an automatically created collection of genome-encoded metabolic functions and some of 

these may be falsely included, while others may be missing.  

 

In the second stage, the entire draft reconstruction is re-evaluated and refined. The 

metabolic functions and reactions collected in the draft reconstruction are individually 

evaluated against organism-specific literature and expert opinion. Information about 

biomass composition, maintenance parameters and growth conditions are collected at 

this stage, providing a basis for simulation. 

 

In the third stage, the reconstruction is converted into a mathematical format and 

condition-specific models are defined. This stage can mostly be automated. Moreover, 

systems boundaries are defined, converting the general reconstruction into a condition-

specific model.  

 

The fourth stage in the reconstruction process consists of network verification, 

evaluation and validation. The metabolic model created in the third stage is tested, 

among others things, for its ability to synthesize biomass precursors such as amino acids 

and lipids. This evaluation generally leads to the identification of missing metabolic 

functions in the reconstruction (the so-called network gaps) and the consequent 

reparation of these gaps.  

 

In the fifth stage, the final reconstruction is made available to the research community in 

two formats: as a spreadsheet containing all information collected during the 

reconstruction process; and as a SBML file, a transportable format of the models which 

can be used with other modeling tools.  
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3.2 Sensitivity Analysis 

3.2.1 By varying all coefficients at the same time 

First, a sensitivity analysis was performed respecting that the sum of biomass component 

masses, expressed as weight/weight, results 100%. To do this, we calculated - using 

supplemental files from Oliveira, Nielsen, & Förster, (2005) - the mass of each 

component per 100 grams of biomass (hereafter called mass fraction). In this first 

analysis, the mass fraction of a particular biomass component was increased by a fixed 

percentage (1%, 10% and 50%) and mass fraction of other components was reduced, 

thus respecting sum of mass fractions gives 1. In our case, biomass is conformed for 40 

components. By increasing the mass fraction of any component, call it A component, the 

other 39 components decreased their mass fraction in a thirty ninth of the mass 

increased, thereby maintaining constant total biomass. Then, we calculated each of the 

stoichiometric coefficients from the modified mass fractions, being incorporated into the 

model to replace the original coefficients. In each case, a model optimization was 

performed. 

3.2.2 By varying one coefficient at time 

Second, individual variations in the stoichiometric coefficients were analyzed. To this 

end, each of the coefficient was increased in fixed percentage units (1%, 10% and 50%). 

In each case, a model optimization was performed  obtaining a specific growth rate that 

was compared with the one obtained using the model without changing the 

stoichiometric coefficient. 

3.3 Softwares and Databases 

3.3.1 The Pathway Tools software 

Pathway Tools v. 16.5  (Karp et al., 2010; Karp, Paley, & Romero, 2002) was employed 

to create a draft reconstruction of the O. oeni PSU-1 strain, as well  as a platform to 



21 

  

refine this first reconstruction. One of the most important components of Pathway Tools 

is the PathoLogic program. This program creates a new Pathway Genome Database 

(PGDB) from an input file that describes the annotated genome of an organism. This 

input file is usually in GenBank format and can be easily downloaded from the National 

Center for Biotechnology Information. PathoLogic performs both, a conversion and an 

inference process. The conversion process transforms flat file descriptions of genes and 

gene products into a PGDB representation of that information. The PathoLogic inference 

process predicts the metabolic pathway complement of the organism from its genome by 

comparison to the MetaCyc pathway DB. The resulting reconstruction of O. oeni was 

exported to an SBML file that serves as input to the COBRA Toolbox. 

3.3.2 COBRA Toolbox 

The Cobra Toolbox (Becker et al., 2007; Schellenberger et al., 2011)  was used to 

simulate, analyze and predict metabolic phenotypes using the genome-scale model of O. 

oeni. Specifically, we carried out Flux Balance Analysis (FBA) based on linear 

optimization of  the biomass formation under different sets of  constraints. 

3.3.3 Marvin Suite 

An academic license was requested in the web site of ChemAxom in order to use Marvin 

Suite. We employed Marvin Sketch, an application contained in Marvin Suite, to predict 

the pKa of those metabolites for which chemical formula is established.  

3.3.4 Scripts for refinement and analysis 

We developed several scripts in MATLAB to refine and analyze the GEM of O. oeni, 

which are described in the chapter of results.  
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3.3.5 TransportDB 

TransportDB (Ren, Chen, & Paulsen, 2007) is a comprehensive database resource of 

information on cytoplasmic membrane transporters and outer membrane channels in 

organisms whose complete genome sequence is available. Several types of transporters, 

including ATP-dependent transporters, ion channels, phosphotransferase systems and 

secondary transporters were exported from transportDB into the metabolic model of O. 

oeni. 

3.3.6 The MetaCyc Database 

The MetaCyc Database was employed towards the use of Pathway Tools. The former is 

a database containing metabolic data (pathways, enzymes, reactions and substrate 

compounds) for many different organisms (Karp, Riley, Paley, & Pellegrini-Toole, 

2002). MetaCyc is a review-level database in which a given entry often integrates 

information from multiple sources. The reactions included in MetaCyc were determined 

experimentally and are labeled with the species in which they were known to occur, 

based on literature references.  
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4 RESULTS AND DISCUSSION 

4.1 Generation of draft reconstruction 

The generation of a draft reconstruction corresponds to stage number in the Thiele & 

Palsson's protocol (2010). In this stage an initial automatic genome reconstruction is 

obtained. The main steps of this stage are the following: 

 

4.1.1 Obtaining the genome sequence and annotation of O. oeni 

Files containing genome sequence and genome annotation of O. oeni PSU-1 were 

downloaded from the National Center for Biotechnology Information
1
 (NCBI) website 

in gene bank (.gbk) and fasta (.fna) formats, respectively. The genome annotation was 

uploaded to NCBI by Mills et al. (2005) and contains the following information for each 

gene (Figure 4-1): 

 

1. Genome position 

2. Coding region 

3. Strand 

4. Locus name 

5. Gene function  

6. Protein classification  

                                                 
1
 U.S. government-funded national resource for molecular biology information. Web site: 

http://www.ncbi.nlm.nih.gov/ 
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Figure 4-1. Example of information contained in genome annotation. The gene OEOE_0304 is located between the 
pair bases 292.470 and 293.648 in the complementary strand and encodes for a galactokinase which catalyzes the 
formation of alpha-D-galactose 1-phosphate from D-galactose (Enzyme Commission number 2.7.1.6)  

4.1.2 Identifying candidate metabolic functions and obtaining of 

candidate metabolic reactions  

 

Identification of metabolic functions refers to finding functions for each gene product; 

meanwhile, obtaining candidate metabolic reactions refers to finding the reactions 

catalyzed by each gene product. It is worth to noting that identifying gene functions for 

each gene product is a straightforward step since these functions are explicitly 

mentioned in genome annotation. These two steps were carried out with Pathway Tools 

software. The total candidate metabolic reactions shape the draft reconstruction of O. 

oeni.  

 

Pathway Tools allows one to explore draft reconstruction, enabling the proper 

visualization of each candidate metabolic function and each candidate metabolic 

reaction.  Different types of information can be found for each reaction: compounds 

participating in the reaction, E.C. number, gene-reaction scheme and the pathways it 

belongs to (Figure 4-2).  
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Figure 4-2. Overview of information visualized with Pathway Tools for gene OEOE_0304 of Oenococcus oeni PSU-1. 
Gene OEOE_0304 encodes for a galactokinase (candidate metabolic function), which transforms α-D-galactose to 
α-D-galactose 1-phosphate (candidate metabolic reaction). Additionally, this figure shows the gene-reaction 
scheme representing the relationship between gene OEOE_0304, the gene product and the reaction catalyzed. 
Moreover the E.C number of the reaction is specified as well as the pathway it belongs to. Finally gene context is 
also showed. This figure was extracted from the Pathway Tools platform.  

4.1.3 Assembly of draft reconstruction and collection of 

experimental data 

 

We employed Pathway Tools as a platform for assembling the draft reconstruction. In 

this platform, we saved all the changes made to the draft reconstruction. The collection 

of experimental data from literature was carried out during the entire reconstruction 

process. We mainly focused on collecting experimental data about nutritional 

requirements, specific growth rates and specific consumption/production rates, gene 

functions and known O. oeni capabilities. The features of this draft reconstruction are 

shown in (Table 4-1). 
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4.1.4 General analysis of draft reconstruction 

 

The initial draft reconstruction lacked important exchange reactions supplying nutrients 

and exporting end products. Furthermore, it lacked a reaction that produced biomass, 

therefore, it was not functional, i.e. no description or prediction of metabolism could be 

obtained. Moreover, it contained more metabolites than reactions (Table 4-1), meaning 

that the model was overdetermined. A refined model is supposed to have a higher 

number of reactions than metabolites (Orth et al., 2010), because no solutions can be 

found in an overdetermined system. This issue resulted from the fact that the draft 

reconstruction contained 202 reactions that comprised 417 dead-ends, in total. The 

presence of these reactions in the model adds more equations than variables to the 

system, converting it to an overdetermined system. 

 

Therefore, refining the draft model was imperative to achieve a representative model of 

the O. oeni metabolism. 
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Table 4-1.  General features of the draft reconstruction of Oenococcus oeni. The draft reconstruction contains 
1040 reactions and 1219 metabolites resulting in an overdetermined system with no solution.  This results from 
the presence of 202 internal reactions that contain more than one dead-end, causing an important increase in the 
number of metabolites. Many of these reactions describe metabolic processes that are not of interest, or contain 
unspecific metabolites. Despite that 84 exchange reactions were included in this reconstruction, several others 
exchange reactions were missing for important nutrients such L-malate. 

Genes 
 

531 

Pathways 168 

Total reactions 1040 

Internal reactions 956 

External reactions 84 

Exchange reactions 0 

Total metabolites  1219 

Internal metabolites 1152 

External metabolites 67 

Reactions  

Internal reactions associated to genes 56% 

Reactions with one dead-end 214 

Reactions with at least two dead-ends 202 

Proteins  

Transporters 84 

Protein complexes 151 

Metabolites  

Dead-Ends 631 

Metabolites missing chemical formula 481 
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4.2 Refinement of O. oeni GEM 

In this stage, all reactions and metabolites that made up the draft reconstruction were 

evaluated by searching information supporting their existence. This stage comprised the 

following steps, which are explained in detail below.   

4.2.1 Determination and verification of substrate and cofactor usage 

 

We found that many reactions contained different names for the same metabolite due to 

different classification levels of metabolites. To repair this, a unique metabolite name 

was given for all of the reactions in which the metabolite was believed to participate. For 

example, O. oeni draft reconstruction contains the reaction represented by equation 5, 

which is the first step of the heterolactic fermentation. Nevertheless, the metabolite 

                    2 was found to participate only in that reaction. While no supply 

of                      was provided to the model, it was impossible to have a flux 

downstream of heterolactic fermentation reactions.   

 

Equation 5. Reaction catalyzed by fructokinase. 

                                                                

                   

Equation 6. Exchange reaction for sugar 

                                                             

Equation 7. Hydrolysis of sucrose 

                                                             

 

 

                                                 
2
  The letter between brackets refers to the compartment in which the metabolites is located. [c] refers 

to the cytoplasm while [e] refers to extracellular space 
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Equation 8. Hydrolysis of sucrose 

                                

                                          

 

Furhermore, the draft reconstruction contained reactions given by equations 6, 7 and 8 

which have the potential of producing                     , since 

                     is the major natural isomer of              ; and in turn, 

               is a type of          .  However, the way these reactions were written did 

not allow the model to produce                        but "            and 

               ,  metabolites that strictly do not participate in the heterolactic 

fermentation. Therefore, it was necessary to create instances of these reactions by 

replacing              and                 with                        (Equations 9, 

10 and 11). 

Equation 9. Reaction catalyzed by fructokinase 

                                                                 

                

Equation 10. Hydrolysis of sucrose 

                                                     

Equation 11. Hydrolysis of sucrose 

                                

                                                

As a result, the model now contains three reactions that produce                  , a 

substrate for heterolactic fermentation, and allows reaction fluxes in this pathway.  
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4.2.2 Obtaining charged formula for each metabolite 

Metabolites were automatically protonated to a reference pH value of 7.3 by Pathway 

Tools. Since internal pH of O. oeni is 5.8 at external pH between 3.0 and 4.0 (pH of 

wine) (Ramos et al., 1995; Salema, Lolkema, Romão, & Dias, 1996), we used Marvin 

Sketch for predicting pKa values for every metabolite having a defined chemical formula 

(Supplementary spreadsheet 1). In total, we compiled pKa for 676 metabolites and found 

that only 14% of metabolites had a pKa between 5.8 and 7.3. Since such a small fraction 

of metabolites would change its chemical formula by accepting protons, we considered 

that original formula of metabolites at pH 7.3 was sufficiently accurate for performing 

flux balance analysis.  

4.2.3 Determination of reaction stoichiometry and directionality  

All reactions were reviewed manually to balance equations. A total of 27 chemical 

equations were found to be unbalanced and were consequently repaired. Additionally, all 

new added chemical equations were carefully balanced. 

The directionality of reactions found in the O. oeni draft reconstruction was assigned by 

Pathway Tools based on MetaCyc database. They were not modified, unless 

experimental evidence or expert opinion supported the modifications.  As indicated by 

Thiele & Palsson (2010), reactions involving transfer of phosphate from ATP to an 

acceptor molecule were generally considered to be irreversible, except if those reactions 

are known to be reversible.    

4.2.4 Reconciliation of draft reconstruction with the KEGG database 

The KEGG database (Ogata, Goto, Sato, Fujibuchi, & Bono, 1999) contains 71 pathway 

maps for O. oeni metabolism. These maps were manually reviewed and each of the 

reactions was compared with those of the O. oeni draft reconstruction.  
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94 reactions were found to be present in the KEGG database but not in the O. oeni draft 

reconstruction. The reactions that improved network connectivity upon addition were 

incorporated into the model. On the contrary, the reactions whose addition worsened the 

network connectivity, i.e. those that created more than two new dead-end metabolites, 

were not added (Table A-1). 

4.2.5 Adding information for gene and reaction localization 

O. oeni is a Gram positive bacterium (Bartowsky, 2005) and therefore lacks periplasmic 

space. This implies that the reconstruction only contained two compartments: cytosol 

and extracellular space. All the genes and reactions were located in the cytosol, except 

for the intramembrane and exchange reactions.   
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4.2.6 Drawing of the metabolic map 

The resulting reconstruction is shown below as a metabolic map.  

 
Figure 4-3. Overview of genome-scale metabolic reconstruction of Oenococcus oeni PSU-1. Each color represents a 
specific metabolic pathway. Reactions to the right are reactions that do not belong to any metabolic pathway. 
Nevertheless, these reactions are not necessarily disconnected from the network.   

4.2.7 Determination of biomass composition 

 

Since O. oeni biomass composition has not been determined yet, the biomass formation 

formula was incorporated from the GEM of Lactococcus lactis, due to its phylogenetic 

closeness. Despite O. oeni being phylogenetically close to Lactobacillus plantarum, the 

equation of L. lactis's equation was preferred because of its simplicity. The formula 

consists of the sum of moles of the macromolecules that shape biomass: proteins, 

deoxyribonucleic acids, ribonucleic acids, lipoteichoic acids, lipids, peptidoglycan and 

polysaccharides (Equation 12). 
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Equation 12. Biomass production formula 

                                                    
                                                            
                 
 

The equations related to macromolecular assembly from the corresponding building 

blocks were also incorporated. Thus, proteins (Equation 13) are constituted by the amino 

acids that contribute to its mass;  DNA (Equation 14) is represented by the sum of 

deoxyadenosine-triphosphate, deoxycitidine-triphosphate, deoxyguanosine-triphosphate 

and thymidine triphosphate. The same logic is applied to RNA (Equation 15), 

lipoteichoic acids (Equation 16), lipids (Equation 17), peptidoglycan (Equation 18) and 

polysaccharides (Equation 19).  

 

Equation 13. Protein Biosynthesis 

                                                                
                                                           
                                                            
                                                                
                                                             
                                              
 
Equation 14. DNA Biosynthesis 

                                                            
                                                 
 
Equation 15. RNA Biosynthesis 

                                                          
                               
 
Equation 16. Lipoteichoic acid Biosynthesis  
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Equation 17. Lipids Biosynthesis 

                                                
                                                            
                                         
 
Equation 18. Peptidoglycan Biosynthesis 

                                                                                      
                                 
                                                                      

 
Equation 19. Polysaccharides Biosynthesis 

                                                               
                        

 

4.2.8 Adding of ATP-maintenance  

The reaction given by equation 20 was added to represent non-growth associated 

maintenance (NGAM) requirements. Zhang & Lovitt (2006) determined that NGAM 

was    
        

     
for strain O. oeni 11648 growing in a continuous culture at pH 4.5 with 

glucose and fructose. On the other hand, Salou, Loubiere, & Pareilleux (1994) 

performed a batch culture at pH 5.0 using a strain isolated from a Burgundy red wine 

(France), and found that NGAM was                
        

     
 when O. oeni was fed 

with glucose, fructose, and fructose + glucose, respectively. We used the value 

determined by Zhang & Lovitt (2006) because FBA assumes a steady state which is 

accomplish in a continuous culture.  Finally, it is worth mentioning that neither of these 

studies used a medium containing ethanol. Nevertheless NGAM is expected to increase 

in this condition since ethanol is highly toxic for bacteria. 

 

 As a reference point, Escherichia coli posses a NGAM of 8.36 
        

     
 in optimal 

growth conditions. As 8.36 is more than ten times the value determined by Zhang & 
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Lovitt (2006), we set NGAM to 0.6 
        

     
 in simulations without ethanol and up to 

8.36 
        

     
 in simulation with ethanol. 

 
Equation 20. Non-growth associated maintenance 

                  
 

 

4.2.9 Membrane transporters 

There are four main types of transporters in O. oeni: ATP-dependent transporters, 

secondary transporters, phosphotransferase systems and ion channels. ATP-dependent 

transporters, also known as primary transport systems, use the free energy that is 

released upon the hydrolysis of ATP. Secondary (active) transporters require the free 

energy that is stored in the electrochemical gradients of protons, sodium ions or other 

solutes across the membrane. Phosphotransferase system is a form of transport in which 

the substance transported is chemically modified during its uptake across the membrane. 

Energy for the phosphotransferase system comes from the energy-rich compound 

phosphoenolpyruvate, which is dephosphorylated into pyruvate for phosphorylating the 

incoming substrate. Finally, ions channels are membrane proteins that allow particular 

ions to pass through them from one side of the membrane to the other (Broome-Smith et 

all, 1999, Brock, Ion channels). 

 

Some transporters were predicted by Pathway Tools, while others were added from 

TransportDB and literature (Table 4-2). The most relevant transporters incorporated to 

the model from literature were the transporters related to malolactic reaction and 

heterolactic fermentation. Transporters for L-lactate, D-lactate, diacetyl, 2,3 butanediol 

and acetate (Figure 4-4) were incorporated to the model from literature, since none were 

included by Pathway Tools or identified by TransportDB.  
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L-lactate is the product of the malolactic reaction and its transport through the cell 

membrane involves the excretion of one proton (Bartowsky, 2005; Loubiere, Salou, 

Leroy, Lindley, & Pareilleux, 1992). This system represents an evolutionary advantage 

because, thanks to this mechanism, O. oeni is able to generate the proton motive force 

necessary to produce ATP. Also, a D-lactate transporter was incorporated taking into 

account the same principle. It is worthy to mention that D-lactate can only be produced 

from pyruvate in O. oeni, while L-lactate can only be produced by malolactic reaction. 

Therefore, it is easy to track down the process involved in the bacterial metabolism, by 

performing a flux balance analysis and studying the production rates of L-lactate and D-

lactate. Finally, transporters that allow facilitated diffusion were also incorporated for 

acetate, diacetyl and 2,3 butanediol, the main end products of the heterolactic 

fermentation.  
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Figure 4-4. Representation of transporters incorporated into Oenococcus oeni reconstruction for acetate (A), (S)-
lactate (B), ethanol (C), (R)-lactate (D), 2,3-butanediol (E) and diacetyl (F). Created with Pathways Tools. 
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Table 4-2. Exchange metabolites between cytoplasm and extracellular space in O. oeni reconstruction after 
manual refinement. The mechanism of transport is described in the second column for each metabolite 
transported. In case of multiple mechanisms of transport, all transporters are mentioned with the corresponding 
reference in the last column. Also, the direction of transport is described in the third column 

Metabolite  Mechanism Direction Reference 

Carbon sources    

Citrate Secondary transporter Consumed MetaCyc 

S-malate Secondary transporter Consumed TransportDB 

α-D-galactose Na+/lactose/H+ symporter, 
ATP-dependent 

Consumed Blast L. 
plantarum, 
MetaCyc 
 

Β-D-galactose Na+/lactose/H+ symporter, 
ATP-dependent 

Consumed Blast L. 
plantarum,  
MetaCyc 
 

raffinose Na+/lactose/H+ symporter Consumed Blast L. plantarum 
 

cellobiose Facilitated diffusion, PTS Consumed TransportDB, 
MetaCyc 
 

D-gluconate H+ symporter Consumed Metacyc 

lactose H+/Na+/raffinose/melibiose/ 

α-D-galactose/ Β-D-
galactose symporter 
 

Consumed Blast L. plantarum 

Β -glucoside PTS Consumed TransportDB 

α -D-xylopyranose ATP-dependent, 
H+symporter 
 

Consumed Metacyc 

α -L-
arabinopyranose 

ATP-dependent, 
H+symporter 
 

Consumed Metacyc 

Β -D-
fructofuranose 

ATP-dependent, PTS Consumed TransportDB 
 
 

Β -D-glucose ATP-dependent, H+ 
symporter, PTS 

Consumed Metacyc 
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arabinose ATP-dependent, 
H+symporter 

Consumed MetaCyc 

α -D-glucose ATP-dependent, H+ 
symporter, PTS 
 

Consumed TransportDB 

Β -D-ribofuranose ATP-dependent Consumed Metacyc 
 
 

Β -D-
ribopyranose 

ATP-dependent Consumed Metacyc 
 
 

D-xylose ATP-dependent, 
H+symporter 

Consumed Metacyc 
 
 

Melibiose Na+/lactose/H+ symporter Consumed Blast L. plantarum 
 

D-galactitol ATP-dependent, PTS Consumed TransportDB 

D-mannose ATP-dependent, PTS Consumed TransportDB, 
MetaCyc 
 

Salicin PTS Consumed MetaCyc 

Trehalose PTS Consumed MetaCyc 

hydroquinone-O-

D-
glucopyranoside 
 

PTS Consumed MetaCyc 

Nitrogen sources   
 

 

L-glutamate ATP-dependent, facilitated 
diffusion and 4-
aminobutanoate antiporter 
 

Consumed TransportDB 

L-isoleucine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-cysteine ATP-dependent, facilitated 
diffusion 

Consumed TransportDB 

L-phenylalanine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 
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L-asparagine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-proline ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-glutamine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-methionine ATP-dependent, facilitated 
diffusion 

Consumed TransportDB 

L-aspartate ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-lysine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-histidine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-tyrosine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

glycine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-arginine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-leucine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-alanine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-valine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-tryptophan ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

L-threonine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 



41 

  

L-serine ATP-dependent, facilitated 
diffusion 
 

Consumed TransportDB 

Ammonia 
 

H+ symporter Consumed MetaCyc 

4-
aminobutanoate 

H+ symporter and L-
glutamate antiporter 
 

Consumed/Produced MetaCyc 

Vitamins    

R-pantothenate H+ symporter Consumed (Richter, Vlad, & 
Unden, 2001) 

riboflavin H+ symporter Consumed  

L-ascorbate H+ symporter Consumed Inferred 
conputationally 

thiamin ATP-dependent Consumed  

Secretion 
products 

   

R-lactate H+ symporter Produced (Olguín et al., 
2009) 

S-lactate H+ symporter Produced (Olguín et al., 
2009) 

acetate Facilitated diffusion Produced (Olguín et al., 
2009) 

Ethanol Facilitated diffusion Produced (Ramos & Santos, 
1996) 

Diacetyl Facilitated diffusion Produced (Ramos & Santos, 
1996) 

(R,R)-2,3-
butanediol 

Facilitated diffusion Produced (Ramos & Santos, 
1996) 

D-mannitol PTS Produced Metacyc 

Ions    

Cd2+ Co/Zn/Cd efflux system Produced MetaCyc 

K+ 
 

Ion channel, ATP-dependent 
 

Consumed Metacyc, 
TransportDB 

Mg+2 Ion channel Consumed TransportDB 
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Fe+2 H+ symporter Consumed MetaCyc 

Na+ H+/xyloside/raffinose/ 
melibiose/ α-D-galactose/ Β-
D-galactose/lactose 
symporter, ATP-dependent 
 

Consumed Transport DB, 
Metacyc 

Ni2+ 
 

ATP-dependent Consumed Metacyc 

Co2+ Co/Zn/Cd efflux system, 
ATP-dependent, Ion channel 
 

Both TransportDB 

Mn2+ ATP-dependent, Facilitated 
diffusion, H+ symporter 
 

Consumed TransportDB, 
Metacyc 

Zn2+ ATP-depedent and Co/Zn/Cd 
efflux system 
 

Both TransportDB 

Cu2+ ATP-dependent Consumed TransportDB 

H+ ? Consumed For modeling 
purposes 

phosphate ATP-dependent Consumed TransportDB 

Nitrate ATP-dependent Consumed MetaCyc 

Bicarbonate ATP-dependent Consumed MetaCyc 

Bases    

xanthine Uracil/H+ symporter Consumed Inferred 
computatitoally 

uracil xanthine Consumed Inferred 
computationally 

Cytosine Facilitated diffusion Consumed  

adenine Facilitated diffusion Consumed For modeling 
purposes 

Others    

glycerol ATP-dependent, 
H+symporter 

Consumed Inferred 
computactionally 

3,5-
dimethoxytoluene 

 Consumed MetaCyc 
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Cyanate H+/symporter Consumed MetaCyc 

Carbon monoxide 
 

Facilitated diffusion Consumed MetaCyc 

H20   For modeling 
purposes 

Spermidine 
 

ATP-dependent Consumed TransportDB, 
Metacyc 

Putrescine ATP-dependent Consumed TransportDB, 
Metacyc 

Gases  Consumed  

Carbon dioxide 
(CO2) 
 

Facilitated diffusion Produced For modeling 
purposes 

Oxygen (O2) Facilitated diffusion Consumed For modeling 
purposes 

Cofactors    

[FeS] iron-sulfur 
cluster 

ATP-dependent Consumed TransportDB 
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4.2.10 Malolactic fermentation  

 

Surprisingly, Oenococcus oeni annotation does not contain a gene associated to the 

malolactic reaction. The gene OEOE_1563 encodes a malate permease, while the gene 

OEOE_1565 encodes a malolactic transcription activator for the fermentarion system. 

As the malolactic enzyme, the malate permease and the regulatory protein are in the 

same operon (Bartowsky, 2005), the malolactic enzyme was considered to be encoded 

by the gene OEOE_1564.  

 

The malolactic reaction is represented by the equation                    

            in the model, (Figure 4-5). Even though this reaction needs      and 

    , these cofactors are not consumed and, therefore, were not included in the 

equation (Naouri, Chagnaud, Arnaud, & Galzy, 1990). The proton on the left side of the 

equation was added to balance the mass 

 

Figure 4-5.  Malolactic stoichiometric equation included in the genome-scale metabolic model of Oenococcus oeni. 
(S)-malate (or L-malate) is converted to (S)-lactate (or L-lactate) and CO2. Made with Pathways Tools 

 

4.2.11 TCA cycle 

All the reactions related to the TCA cycle were included in the model by Pathway Tools, 

even though the genes for most reactions were not present in the genome annotation 

(Figure 4-6). O. oeni lacks a functional TCA cycle (Garcia, Blancato, Repizo, Magni, & 

López, 2008), therefore, the only enzymes that were conserved in the model were those 

that have existing bioinformatic evidence. Malate oxidoreductase (E.C. 4.2.1.2) is 
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predicted to be associated to four independent genes: OEOE_0418, OEOE_0553, 

OEOE_1325 and OEOE_1552; while fumarase (E.C. 1.1.1.37) is associated to 

OEOE_0029. Hence, these reactions were conserved in the model and all the other TCA 

reactions were removed, since neither bioinformatic nor experimental evidence has been 

provided to claim their presence. 

 

 

 
Figure 4-6.  Defective TCA cycle of Oenococcus oeni. Genes associated to  malate dehydrogenase (E.C. 1.1.1.37) 
and fumarase (E.C. 4.2.1.2) were the only ones found. All the other TCA reactions lack associations with genes.   
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4.2.12 Heterolactic fermentation  

 

O. oeni metabolizes glucose, fructose and citrate through heterolactic fermentation to 

form different end products, such as acetate, ethanol, diacetyl, 2,3 butanediol and D-

lactate (Lerm et al., 2010). Nevertheless, the heterolactic pathway was incomplete in the 

draft reconstruction because two reactions were missing. To complete this pathway, the 

transformation of diacetyl to acetoin (Figure 4-7 A) and the transformation of acetoin to 

2,3-butanediol (Figure 4-7 B) were included.  

 

Additionally, one falsely included reaction related to heterolactic fermentation was 

removed from the draft reconstruction. The reaction catalyzing the transformation of 

pyruvate to L-lactate was removed since O. oeni only produces D-lactate, and not L-

lactate, through heterolactic fermentation (Wagner et al., 2005); L-lactate is only 

produced from L-malic acid by the malolactic enzyme (Bartowsky, 2005).  

 

Finally, a map of this pathway was constructed in Pathway Tools to properly visualize 

all the reactions involved. Here, we include the uptake of glucose, fructose and citrate 

(Figure 4-8) and the consequent reactions needed to form acetate, ethanol, diacetyl, 2,3-

butanediol and D-lactate (Figure 4-9).  

 

It is worth mentioning that O. oeni is able to obtain energy from heterolactic 

fermentation. Acetate production through acetate kinase involves ATP generation. This 

does not occur with acetate production through citrate lyase. Ethanol, acetoin, 2,3 

butanediol and R-lactate production involves the regeneration of the redox cofactor 

NAD
+
; and diacetyl, (R)-acetoin and (S)-2-acetolactate production involves CO2 

generation. 
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Figure 4-7. Reactions added to the Oenococcus oeni reconstruction to complete the heterolactic fermentation 
pathway. The transformation of acetoin to 2-3 butanediol (A) and the transformation of diacetyl to acetoin (B) 
were added to the reconstruction to complete this pathway. Two isoenzymes are responsible of carrying out 
these reactions. Genes encoding these reactions were found in KEGG database. 
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Figure 4-8. First half of the heterolactic fermentation. Hexoses (β-D-fructofuranose and β-D-glucose) are converted 
to two compounds with 3 carbons: acetylphosphate and D-glyceraldehyde. Made with Pathways Tools. 
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Figure 4-9. Second half of the heterolactic fermentation. Citrate is converted to oxaloacetate through citrate lyase. 
The main end products of this pathway are generated from pyruvate: D-lactate, diacetyl and 2,3-butanodiol. 
Made with Pathways Tools. 



50 

  

4.2.13 General features of the GEM of O. oeni 

 

An improvement in connectivity was achieved after refinement. Connectivity refers to 

the number of reactions in which a given metabolite participates (Orth et al., 2010). It is 

expected that in a high quality GENRE, most metabolites only participate in a few 

reactions; and just a few metabolites participate in a large number of reactions. Many 

metabolites having a very low connectivity could be detrimental to the functionality of 

the model because, in such case, the model contains many gaps avoiding flux through 

reactions. This is the case of most draft reconstructions in which connectivity must be 

improved to achieve production of biomass. Even though having a high connectivity 

does not ensure a high quality GEM, it is a prerequisite; and the refinement process 

allows the network's connectivity to increase. 

 

The O. oeni draft reconstruction contained 631 metabolites participating in just one 

reaction (Figure 4-10 A). This large degree of disconnection was significantly reduced in 

our refined model, down to 224 metabolites participating in one reaction (Figure 4-10 

B).  However, comparing with the most recent reconstruction of Escherichia coli, in 

which only 87 metabolites participate in just one reaction (Orth et al., 2011) (Figure 4-

11), there is still a lot of room for improvement. 
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Figure 4-10. Comparison of metabolite connectivity of Oenococcus oeni draft reconstruction (A) and Oenococcus 
oeni reconstruction after manual refinement (B). The number of metabolites participating in just one reaction 
diminishes from 631 to 234 after manual refinement. This resulted from elimination of non specific and 
disconnected reactions that do not contribute to describe the Oenococcus oeni metabolism. 
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Figure 4-11. Metabolite connectivity in GEM of Escherichia coli. It can be appreciated that many metabolites 
participate in a small number of reactions while few metabolites participate in a large number of reactions which 
is the general behavior of high quality GEMs. There are 87 metabolites participating in just one reaction and 991 
metabolites participating in two reactions. The reason for the large number of metabolites participating in two 
reactions is because 480 metabolites are involved in exchange reactions, including transport between 
extracellular space, periplasm and cytoplasm. On the other hand, there are few metabolites participating in a 
large number of reactions such as the proton that participates in 1031 reactions.  

 

The resulting genome-scale metabolic model of O. oeni after refinement is a 

subdetermined model containing 914 reactions, 792 metabolites and 512 genes (Table 4-

3).  
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Table 4-3. Comparison between the initial draft reconstruction and the final reconstruction after manual 
refinement.  

 After automatic 
reconstruction 

After manual 
refinement 

Genes 531 512 

Pathways 168 171 

Total reactions 1040 914 

Internal reactions 956 690 

External reactions 84 134 

Exchange reactions 0 90 

Total metabolites  1219 792 

Internal metabolites 1152 702 

External metabolites 67 90 

Reactions   

Internal reactions associated to genes 56% 76% 

Number of reactions with one dead-end 214 191 

Number of reactions with at least two 
dead-ends 

202 21 

Proteins   

Transporters 84 134 

Protein complexes 151 236 

Metabolites   

Dead-Ends 631 234 

Metabolites missing chemical formula 481 227 
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4.3 Conversion of O. oeni GENRE to a computable format 

 

Conversion of O. oeni GENRE corresponds to stage three in the protocol of Thiele & 

Palsson (2010). In this stage, the constructed GENRE is converted into a mathematical 

format. Moreover, system boundaries are defined, converting the general reconstruction 

into a condition-specific model. 

4.3.1 Initialization of COBRA Toolbox.  

 

COBRA Toolbox was run in MATLAB 7.10.0 (R2010a) and initialized using glpk as LP 

solver.   

4.3.2 Loading of reconstruction into MATLB 

 

O. oeni GENRE was exported from Pathway Tools to a SBML
3
 format file. This was 

done automatically through Pathway Tools. Then, the SBML file was read with the 

COBRA script:  

 

model = ReadCbModel('modelName.xml'); 

 

This loaded the variable model which contains descriptive and numeric fields for 

reactions, metabolites and genes (Figure 4-12). Below, we give a brief description of the 

most relevant fields that can be found once the model is read with COBRA Toolbox:  

 

1) rxns: vector containing unique IDs for each of the reactions present in the model  

2) mets: vector containing unique IDs for each of the metabolites present in the model 

3) rxnNames: vector containing reaction names for each of the reactions present in the 

model. These match with the reaction IDs given by Pathway Tools  

                                                 
3
 Systems Biology Markup Language (SBML) a free and open interchange format for computer models of 

biological processes. SBML is useful  
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4) metNames: vector containing metabolite names for each of the metabolites present in the 

model  

5) S: stoichiometric matrix. Entries of each column are the stoichiometric coefficients of the 

metabolites participating in the corresponding reactions. 

6) lb: vector containing lower bounds for each of the reactions present in the model  

7) ub: vector containing upper bounds for each of the reactions present in the model  

8) c: vector containing weights for each reaction in the objective function.  

 

Figure 4-12. Fields contained in the Oenococcus oeni model once it is loaded using COBRA Toolbox. The model 
contains several fields describing reactions and metabolites present in the model but lacks important fields such 
as genes, rules, grRules and rxnGeneMat.  

 

Once constructed, we determined that the model lacked the field genes, rules, grRules 

and rxnGeneMat, which are key elements of any high quality GEM. Also, the model 

contained many repeated metabolite names, due to the lack of references to the 

compartments. Both issues were solved by developing new Matlab scripts, which are 

explained below.  
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4.3.2.1 Adding new fields. 

Pathway Tools can export GENREs to a SBML format, allowing easier access to several 

softwares, such as COBRA (Becker et al., 2007) or Omix (Droste, Nöh, & Wiechert, 

2013). However, the SBML file does not contain information about gene reactions 

associations. Therefore, the model loaded through COBRA Toolbox lacks important 

fields such as Genes, GrRules, Rules and RxnGeneMat
4
, all of which are necessary to 

run gene deletion analysis. We developed the scripts GenerateGeneFields.m, 

GenerateRulesFields.m and GenerateRxnGenMat.m to read the information contained in 

Pathway Tools and create the corresponding fields. After this, we were able to  run 

COBRA Toolbox for any gene deletion analysis.  

 

These scripts were of great help to execute the next steps of Thiele & Palsson´s protocol 

after “loading a GEM into MATLAB” (step 39). The resulting algorithm required 13 

seconds to create the fields Genes, GrRules, Rules and RxnGeneMat (Figure 4-13) in the 

O. oeni GEM, which contained 914 reactions and 512 genes.  

 

                                                 
4
 Gene field is a MATLAB array containing the names of all model genes. GrRules field is a MATLAB array 

containing the logic description (OR/AND) of what genes are associated to each reaction in the model. 
Rules field is a MATLAB array containing the logic description (|/&) of what genes are associated to each 
reaction in the model. RxnGeneMat is a binary matrix where the presence of the number one in the 
position i,j indicates gene j encodes a enzyme catalyzing reaction i 
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Figure 4-13.  Extract of rxnNames (left), grRules (center) and rules (right) MATLAB arrays corresponding to the 
fields of O. oeni GEM.  

 

4.3.2.2 Generation of meaningful names for metabolites.  

The compartments in which the metabolites could be found are a key aspect for the 

correct development of a model. In this regard, it is relevant that the names of the 

metabolites loaded with COBRA Toolbox contain information about the compartments. 

For example, if metabolite names contain information about compartments, the user will 

be able to differentiate between an extracellular glucose, glucose[e], and a cytoplasmic 

glucose, glucose[c]. Performing this step manually is tedious; therefore, an automated 

tool that could automate this task allows a reproducible and effective process. 

Incorporating this information into metabolite names permits one to easily visualize 

reaction localization. 

 

For this purpose, we developed the script compartimentalize.m that assigns at the end of 

the metabolite´s name a letter representing the compartment where the metabolite is 

located, saving the information in the COBRA model. The information needs to go 

through a “cleaning process” before being added to the model. This process consists of 

separating names from chemical formulae, since the information is contained in a single 

string (e.g. "Glucose: C6H12O6"). We developed a script to perform this task named 
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separateNamesAndFormulas.m, which is automatically called by compartimentalize.m, 

separating the name and chemical formula for each of the metabolites. It takes approx. 

0.3 seconds to run this script.  

 

The new fields added to the model (Figure 4-14) can be summarized as follows:  

 
1) metsFormulas: vector containing metabolite chemical formula for each of the metabolites 

present in the model  

2) genes: vector containing gene names for each of the genes present in the model.  

3) rules: vector containing the logic description (|/&) of which genes are associated to each 

reaction in the model 

4) grRules: vector containing the logic description (AND/OR) of which genes are associated to 

each reaction in the model 

5) rxnGeneMat: Binary matrix in which the presence of the number one in the position i,j 

indicates a gene j encodes an enzyme catalyzing reaction i 
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Figure 4-14. Comparison of fields contained in the Oenococcus oeni model before and after running the scripts to 
add the fields metFormulas, genes, rules, grRules and rxnGeneMat. The model loaded into Matlab without any 
later change lacked important fields such as metFormulas, genes, rules, grRules and rxnGeneMat (left). These 
fields were added to the model running the scripts GenerateGeneField.m, GenerateRulesFields.m and 
GenerateRxnGenMat.m and SeparateNamesAndFormulas.m (right). 

4.3.3 Setting of objective function and simulations constraints 

 

Once the model was loaded into a Matlab variable, a demand reaction was added for 

biomass. The c vector (see description above) was filled with zeros, except for the 

position of biomass demand reaction which was filled with a number one, indicating that 

biomass demand reaction is the objective function. On the other hand, simulations 

constraints were set according to in silico experiments performed. 
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4.4 Network Evaluation 

4.4.1 Troubleshooting of non-produced biomass precursors 

4.4.1.1 Detecting non-produced biomass precursors. 

A critical step in the achievement of a GEM is to make it functional, i.e. that the 

optimization of the flux balance analysis provides a positive (in the case of  maximizing 

the cost function) or negative (in the case of minimizing the cost function) solution. 

Since biomass synthesis is generally the objective function (Feist & Palsson, 2010), 

achieving a functional model is equivalent to ensuring that the flux through the biomass 

production equation is greater than zero. However, it often occurs that the constructed 

model is unable to produce biomass, once the biomass equation is introduced. Since 

databases that containing information about reactions, enzymes and genes are limited, as 

well as algorithms to annotate the genome, the GENREs created from this data generally 

contain gaps and orphan reactions.  

 

Gaps are a result of dead-end metabolites. These metabolites appear in the model as only 

being produced or consumed by reactions and, therefore, will never participate in a 

feasible solution. They will in turn block any reaction in which they are involved in. 

There are two classes of dead-end metabolites: i) Root-Non Produced metabolites (RNP) 

i.e. metabolites that are only consumed by the system's reactions and ii) Root-Non-

Consumed metabolites (RNC), which include those only produced by the network, but 

never consumed (Ponce-de-León, Montero, & Peretó, 2013; Satish Kumar, Dasika, & 

Maranas, 2007). 

 

Several methods to repair gaps and orphan reactions have been developed. A few, such 

as GapFind/GapFill (Satish Kumar et al., 2007), have become very successful, and have 

been incorporated in well-known platforms, like COBRA (Becker et al., 2007), 

Pathways Tools (Karp, Paley, et al., 2002), RAVEN (Agren et al., 2013) and Model 
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SEED (Henry et al., 2010). Bautista et al (2013) recently proposed a methodology that 

integrates a genetic algorithm and flux balance analysis to find problematic metabolites 

whose analysis can led to the addition of new functionalities. Even though these 

algorithms may be useful in adding new functionalities to the network, their inclusion 

does not ensure that the generated model will be functional.  

 

To solve this issue, Latendresse, Krummenacker, Trupp, & Karp, 2012 developed a 

method associated to Pathway Tools, called “multiple gap filling”, which suggests 

corrections to different model components (reactions, metabolites, nutrients or 

secretions) to allow the model to run. Nevertheless, this method requires that the user 

previously identify a set of fixed reactions forming a functional model, which does not 

make it user friendly. On the other hand, one of the limitations of this method is that the 

visualization of reactions may be confusing, due to the inherent operation of the 

“Cellular Overview” in Pathway Tools. With the same purpose, Brooks, Burns, Fong, 

Gowen, & Roberts, 2012 developed an algorithm called FBA-GAP that identifies gaps 

that avoid the flux through an objective function, suggesting changes to the network in 

order to obtain a functional model. However, its automatic nature leaves little space for 

integrating the user's expert knowledge. 

 

We developed a script called TestPrecursors.m that finds problematic model 

metabolites, guiding the user in an iterative process, allowing to decide which elements 

to repair, with the possibility to integrate their expert knowledge; and not in finding a set 

of reactions or metabolites that are added to fulfill a certain criterion (e.g. a set that 

minimizes the cost of adding elements to the model). Generally, to solve just one dead-

end biomass precursor, it is necessary to add more than one reaction. It is common that 

each time a reaction is added to the model, a new dead-end biomass precursor is 

generated and therefore, it is necessary to repair this new dead-end biomass precursor. 

To the best of our knowledge, there is currently no method that does this in an iterative 
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gap-filling process in order to solve, at each step, the new dead-end biomass precursors 

that are generated. 

 

In our method, the user must first identify the metabolite whose production he or she 

wants to maximize, generally the biomass. The first step that the algorithm performs is 

add a demand reaction for that metabolite. Next, the demand reaction is maximized. If 

there is a positive flux through that reaction, the algorithm finishes because the model is 

functional. Otherwise, each of the precursors of the metabolite is analyzed. For each 

precursor, one at a time, a demand reaction is added and then maximized. If the flux 

through that reaction is non-zero, that means that the precursor can be produced and is 

labeled as a produced essential metabolite (PEM). Then, the algorithm continues on to 

the next precursor; if the flux through this next reaction is zero, the algorithm analyzes if 

there is an existing reaction that could produce this precursor. If no reaction exists, that 

precursor is labeled as “root non-produced essential metabolite”. On the contrary, if the 

reaction exists, the precursor is labeled as “downstream non-produced essential 

metabolite” and the precursor of these precursors are then analyzed in an iterative 

process. The whole process ends either when all the RNPEM are found, or when the 

algorithm reaches the depth threshold entered by the user (Figure 4-15).  
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Figure 4-15.  Algorithm used for identifying non-produced metabolites in case of having a model with biomass 
equation but not functional. First a demand reaction is created for the metabolite of interest. Then, the flux for 
that reaction is maximized. If the flux for the demand reaction is zero, for each substrate in the equation 
producing the metabolite of interest, a demand reaction is added and maximized. If the flux for the later demand 
reaction is not zero for the substrate i, the substrate i is labeled as produced metabolite. Otherwise, the substrate 
i is labeled as non produced metabolite and is analyzed if there are reactions producing the substrate i. If there 
are not reactions producing the substrate i, the substrate is labeled as root non produced metabolite. Otherwise, 
it is analyzed if there is flux through any of the reactions producing the substrate i. If there is no reaction having 
flux, the algorithm analyzes the substrate i in a recursive way. The algorithm returns the produced metabolites, 
the non produced metabolites and the root non produced metabolites that must be reviewed in order to make 
the model functional.  

 

Our method is one of the few that focuses on achieving a model that could be functional 

(Brooks et al., 2012; Latendresse et al., 2012), evidencing just the problems that must be 

solved in the model to make it run. The main advantages of this method, over the 

methods currently available, are that it is implemented in a widely used platform, it is 

user friendly and it allows the detection of problems in an iterative manner. 

Additionally, this method does not require any previous process made by the user - 

which is the case of MetaFlux for example - making it comparatively even more user-

friendly. The execution time is around 150 seconds, faster than other algorithms. 
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However, once the result is obtained it requires more user intervention, because he/she 

must decide what action to take to solve the problem encountered in the model, which 

may slower the whole process. Another disadvantage is that it only allows the analysis 

of objective functions that produce only one metabolite. Finally, we found that in some 

cases, despite the existence of reactions producing and consuming a particular 

metabolite, the metabolite could not be produced because of the mass balancing 

requirements. For example, Figure 4-16 illustrates that metabolite D cannot be produced 

even when a feasible consuming reaction exists in the model, even though feasible 

reactions exists for D precursors. Here, the lack of a feasible reaction consuming C is 

avoiding flux through the reaction and hence the production of D. This is due to the 

steady state assumption stating that every produced metabolite must be consumed in the 

same quantity. In this case, only manual inspection could fix the production of the target 

metabolite.  

 

Figure 4-16. Example of an unfeasible metabolic network caused by the lack of a consuming reaction. In this 
example, the reaction labeled as Rxn consumes metabolites A and B and produces metabolites C and D. Despite 
the reactions supplying substrates A and B being present, if the production of D is maximized, there will be no flux 
through the reaction Rxn because there is no reaction that consumes C. In this case, the network is unfeasible and 
there will be no solution when FBA is applied because mass balances cannot be accomplished.  

 

The algorithm identified methionine, lysine, histidine, asparagine, phenylalanine, 

proline, threonine, tryptophan, tyrosine, arginine, leucine, isoleucine, cysteine, valine as 

non-produced metabolites. Transporters for these amino acids were also incorporated in 
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order to allow these compounds to be available for metabolism. Oxygen was also 

identified as a non-produced metabolite. Since O. oeni is a microaerophylic bacterium 

(Mills et al., 2005), a transporter for oxygen was also included for this element.  

4.4.1.2 Incorporating non-produced biomass precursors 

Once the biomass precursors unable to be synthesized by the metabolic network were 

identified, the next step is to ensure that these metabolites are actually produced. 

Consider the case of a reaction consuming metabolites A and B and producing C and D. 

To ensure that C is produced, it is necessary to fulfill two requirements. First, C and D 

precursors, namely A and B, must be produced. Second, C and D have to be consumed 

by the network. Otherwise, the steady state restriction stating that every metabolite 

produced must be consumed is not fulfilled. 

 

For those identified metabolites to be produced, reactions generating them are 

introduced. This step is tedious because inspecting the MetaCyc database – or others - 

for possible reactions generating the target metabolite could be slow. It is common to 

spend too much time on manual examination of the metabolic pathways producing the 

target compound. Therefore, faster inspection and identification of these reactions 

results in an obvious advantage.  

 

To this end, we developed the algorithm SearchMetaCycReactions.m that finds all the 

reaction sets producing the desired compound in the MetaCyc database, and illustrates 

them in a MATLAB nodes network (Figure 4-17). This illustration allows a rapid 

visualization of the different alternatives. Additionally, the graph highlights which 

compounds are in the model and which are not. Thus, the user is able to know what 

reactions are more suitable for the model’s functionality, thus facilitating search for 

reactions producing the target compound.  
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Figure 4-17. Reactions found in MetaCyc leading to the production of 2-succinylbenzoate. The algorithm 
SearchMetaCycReactions.m search in MetaCyc for reactions producing the metabolism of interest and then the 
results are showed with a node graph. Blue indicates the target metabolite, in this case 2-succinylbenzoate. Red 
indicates metabolites not present in the model (the names of these nodes correspond to the MetaCyc IDs). Purple 
indicates reactions utilizing metabolites not present in the model. Yellow indicates metabolites present in the 
model. Green indicates reactions utilizing metabolites present in the model.  
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4.4.2 Elimination of reactions for which no evidence exists 

 

During the draft reconstruction process, Pathway Tools automatically added many 

orphan reactions in order to complete pathways. This is based on the principle that if 

most reactions of a particular pathway are present in the reconstruction, it is likely that 

the rest of them should also be present. Nevertheless, there is no bioinformatic evidence 

supporting their existence. Therefore, all reactions not required for growth and for which 

neither bioinformatic nor experimental evidence exists to support their presence in the 

model, were removed.  

4.4.3 Genes, reactions and compound deletion analysis 

 

One of the most useful analyses of GEMs is the analysis of single gene deletion. This 

analysis is particularly interesting in the refining process of GEMs, since it allows the 

reconciliation of data obtained through simulations in silico and in vivo. Another useful 

analysis for model refinement is reaction deletion analysis, which identifies candidate 

reactions that might be producing false microbial capabilities. These two analyses 

correspond to steps 79 and 82 of Thiele and Palsson´s protocol.  

 

COBRA Toolbox has scripts for both gene deletion analysis and reaction deletion 

analysis (Becker et al., 2007; Schellenberger et al., 2011). However, information relating 

deleted items (genes or reactions) with metabolic pathways is not included in these 

analyses. Incorporating this information is quite useful as it allows the user to know 

which metabolic process corresponds to each deleted element (Chavali, Whittemore, 

Eddy, Williams, & Papin, 2008). For example, it identifies the metabolic pathways 

whose associated genes, when removed, do not allow growth of the microorganism 

(hereinafter called essential metabolic pathways). Furthermore, COBRA Toolbox’s tools 

classify results according to whether the microorganism is capable of growing or not, 

instead of classifying them according to the ratio between microorganism growth with 

and without the deletion. A classification based on the growth rate ratio has proved 
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beneficial in the analysis because, with this system, the user is able to disaggregate 

reactions according to their impact on growth; thus, the user can easily determine those 

reactions which hamper growth, those that have no effect on growth, as well as those 

that have a partial impact. 

 

We implemented three scripts in MATLAB, "GeneDeletionAnalysis" 

"ReactionDeletionAnalysis" and "CompoundDeletionAnalysis", which performed 

deletion analysis of genes, reactions and compounds, respectively. The main innovation 

regarding the analysis that can be performed in COBRA Toolbox is that these scripts 

incorporate information about the relationship between each of these elements and the 

metabolic pathways in which they participate, allowing a more complete analysis. 

Incorporating this information is useful as it allows the user to know which metabolic 

processes are affected by the deletion of elements that are contained in the GEM. 

Moreover, to the best of our knowledge, software that could provide support for 

compound deletion analysis has not been developed yet. The analysis provided by this 

script will be very useful for applications such as drug discovery and targeting. 

 

The script “geneDeletionAnalysis” deletes each gene present in the GEM, analyzing 

what happens to the growth of the microorganism in each case. Unlike the deletion 

analysis of genes running in COBRA, our script classifies the results in four categories 

rather than two, allowing more detailed analysis. The classification is based on the 

resulting ratio between specific growth rate with the deleted gene over specific growth 

rate without deletion. The resulting value indicates the category that the deleted gene 

belongs to: 

 

 Essential:     
  

  
      

 Reduces growth:      
  

  
      

 Slightly reduces growth:      
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 No effect:   
  

  
   

 

Once the genes are sorted in these categories, the associated reactions in each of the 

categories are found. Thus, for example, reactions associated to essential genes can be 

found and then the algorithm quantifies how many reactions are involved in each of the 

metabolic pathways, resulting in a distributionthat can be graphed as a pie chart. 

 

The script CompoundDeletionAnalysis performs the same procedure as above, but 

compounds are deleted instead of genes. In the script ReaccionDeletionAnalysis once 

reactions are classified in the four categories, the algorithm proceeds directly to quantify 

how many reactions are involved in each of the metabolic pathways. Then, it generates a 

pie chart with the distribution. 

 

Applying the script GeneDeletionAnalysis to the GEM of O. oeni PSU-1 revealed that 

single deletion of most of the genes has no effect on growth (Figure 4-20), which is 

consistent with other results obtained for other microorganisms. It is worth noting that a 

higher proportion of genes was found in the category in which genes slightly reduce 

growth       
  

  
     than in the category of growth reduction       

  

  
      , although 

the second category covers a broader spectrum nine-fold. This was an unexpected, non 

trivial result, which confirmed the benefit of including four categories instead of two.  

 

Once the reactions associated to essential genes are found, the algorithm counts the 

reactions involved in each pathway. This distribution shows that the majority of essential 

genes fall into three metabolic processes: lipid, peptidoglycan and nucleic acids 

metabolism, highlighting how critical these processes are to the overall function of the 

microorganism. 

 

Reaction deletion analysis (Figure 4-18) showed that the removal of most reactions 

(81%) in the model had no effect on growth. A similar result was found for gene 
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deletion analysis (Figure 4-20), which showed that the removal of most genes (96%) 

does not affect growth. Both results are consistent with the general concept of metabolic 

network robustness, stating that in most cases the biochemical network present in an 

organism would be robust enough to maintain cell growth even if a particular reaction or 

gene is removed.  

On the other hand, 15% of model reactions were considered to be essential. 38% of the 

essential reactions are related to fatty acid biosynthesis: 20% are related to palmitate, 7% 

to palmitoleate, 6% to cis-dodecenyl, 5% to cis-vaccenate and 4% to stereate 

biosynthesis. Other essential reactions are related to peptidoglycan biosynthesis (15%), 

purine (5%) and pyrimidine (5%) biosynthesis (Figure 4-19). The algorithm groups all 

of the metabolic processes that represent less than a 3% in the group “other metabolic 

processes” in order to visualize which processes are more sensitive to the reaction 

deletion analysis. The same principle is applied to the gene deletion analysis. The 

reactions that fall into the category of “other metabolic processes” are related to the 

biomass production equations. It is expected that if one of the biomass related reactions 

is removed, the model lacks its functionality.  

 

A similar situation occurs with the gene deletion analysis (Figure 4-21) 34% of reactions 

associated to essential genes are related to fatty acid biosynthesis: 21% are related to 

palmitate, 6% to palmitoleate, 4% to stearate and 3% to cis-dodecenoyl biosynthesis. 

12% of reactions are related to peptidoglycan biosynthesis. Surprisingly, here in the 

gene deletion analysis, heterolactic fermentation emerges as a sensitive metabolic 

process susceptible to be disrupted by deletion of genes.  

 

There are 3% of the reactions that reduce growth. The most affecting reactions are 

related to CO2 which reduce growth down to 45% of the original value. This could be 

explained by the fact that O. oeni is a heterofermentative bacterium, mechanism 

whereby the organism is able to obtain energy and regenerate redox cofactors. If 

reactions associated to CO2 are removed, some important reactions of the heterolactic 
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fermentation will not be active, therefore it is expected that the cell will not be able to 

generate the same energy levels. 

 

For O. oeni model, the reaction deletion analysis required 86 seconds to run, the deletion 

gene analysis 110 seconds, and the compound deletion analysis 74 seconds. Each 

algorithm creates an excel spreadsheet containing, in separate sheets, the elements 

(genes, reactions and compounds, respectively) that are essential; elements that reduce 

growth; elements that slightly reduce, and  have no effect on growth;  and, eventually, 

the elements that promote growth when removed.  

 

Figure 4-18. Reaction deletion analysis for genome-scale metabolic model of Oenococcus oeni. Most reactions 
(81%) have no effect on growth as was expected based on the fact that metabolic network of microorganisms are 
robust enough to maintain growth even when a particular metabolic function is deleted. On the other hand, 15% 
of the reactions are considered to be essential as their individual deletion causes no growth. In the middle, only 
3% of reactions slightly decrease growth (90-100%) and 1% of reactions strongly decrease growth (0-90%). These 
two last groups of reactions are interesting as it could provide insight in order adjust predicted growth rate.  
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Figure 4-19. Essential reactions organized according to metabolic processes. The most fragile metabolic processes 
susceptible to disruption by removal of a particular reaction are those related to fatty acid biosynthesis 
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Figure 4-20. Gene deletion analysis for genome-scale metabolic model of Oenococcus oeni. Most genes (96%) have 
no effect on growth as was expected based on the fact that the metabolic network of microorganisms is robust 
enough to maintain growth even when a particular metabolic function is deleted. On the other hand, 3% of the 
genes are considered to be essential as their individual deletion causes no growth. In the middle, only 1% of genes 
slightly decrease growth (90-100%) and less than 1% of genes strongly decrease growth (0-90%). These two last 
groups of reactions are interesting as they could provide insights on adjusting predicted growth rate.  

. 
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Figure 4-21. Essential reactions organized according to metabolic processes. The most fragile metabolic processes 
susceptible to be disrupted through removal of a particular reaction are those related to fatty acid biosynthesis. 
Heterolactic fermentation appears as a sensitive metabolic process that could be affected by the deletion of 
genes.  
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Figure 4-22. Compound deletion analysis for genome-scale metabolic model of Oenococcus oeni. Most compounds 
(72%) have no effect on growth as was expected based on the fact that metabolic networks of microorganisms are 
robust enough to maintain growth even when a particular component is deleted. In this case the percentage of 
essential compounds is smaller than the percentage of essential reactions or genes because in most causes a 
particular compound is involved in more than one reaction and its deletion causes the elimination of all the 
reactions that participate. On the other hand 24% of the compounds are considered essential as their individual 
deletion causes no growth. In the middle, only 3% of compounds slightly decrease growth (90-100%) and 1% of 
compounds strongly decrease growth (0-90%). These two last groups of reactions are interesting as they could 
provide insight adjusting predicted growth rate.  
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4.4.4 Analysis of minimal requirements 

A minimal medium is a medium which the removal of any of the medium components 

abolishes the growth of the microorganism completely (Wegkamp, Teusink, de Vos, & 

Smid, 2010). Determining a minimal medium is useful to achieve a comprehensive 

understanding of the nutritional requirements of a microorganism, which is scientifically 

interesting per se but would also lead to the optimization of the culture medium 

conditions (Fan et al., 2014). If the minimal medium is known, only the necessary 

nutrients could be used to generate a culture medium, instead of using the large list of 

nutrients found in typical culture mediums. This saves laboratory supplies and culture 

medium preparation time. 

 

If the in vivo minimal medium is not known, the in silico determination of a minimal 

medium using a GEM is of paramount importance because it would lead to the driven 

generation of hypotheses to design a minimal medium which could be tested 

experimentally. On the other hand, if the in vivo minimal medium is known and is 

consistent with the in silico minimal medium, this is a clear signal that a comprehensive 

understanding of nutritional requirements has been achieved (Becker & Palsson, 2005; 

Fan et al., 2014; Schilling et al., 2002; Wegkamp et al., 2010). It is because of this 

reason that the determination of in silico minimal requirements could be used to validate 

the quality of a constructed GEM. (Teusink et al., 2005). 

 

Additionally, analyzing the minimal medium components is particularly useful during 

the refinement stage (step 37 in Palsson & Thiele´s protocol), because it allows for the 

comparison of the minimal nutrients required to sustain growth in vivo versus those that 

sustain growth in silico. Inconsistencies between in vivo and in silico results must be 

fixed during the refinement process. For example, if a certain metabolite is essential for 

growth in vivo, and the minimal medium determined in silico does not include it, it is 

necessary to fix the metabolic network so that the model would correctly describe the 

experimental behavior.  
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On the other hand, for poorly studied organisms - or those for which it is difficult to 

obtain a significant biomass in the laboratory -, determining an in silico minimal 

medium can provide insights on the nutritional requirements of the organism in vivo. 

The latter will be very valuable to optimize the culture medium in order to maximize 

biomass production or a product of interest.  

 

The essential nutritional requirements in different strains of O. oeni have been studied 

for at least four decades (Fourcassie, Belarbi, & Maujean, 1992; Garvie, 1967; Remize 

et al., 2006; Terrade & Mira de Orduña, 2009). Therefore this data will be used to 

validate the developed GEM of O. oeni. Since no study determining nutritional 

requirements has been performed systematically in PSU-1, we considered that a nutrient 

is essential if it is essential for most strains of O. oeni. Under this criterion, 10 amino 

acids resulted to be essential: arginine, cysteine, glutamic acid, histidine, isoleucine, 

methionine, phenylanaline, tryptophan, tyrosine and valine (Table 4-4).  

 

On the other hand, others types of nutrients such as carbon sources, vitamins, 

nucleotides and minerals have also been studied for different strains of O oeni (Garvie, 

1967; Terrade & Mira de Orduña, 2009). Acordance between the two studies. 

Nevertheless some differences have been noted for folic acid and riboflavin. In these 

cases the results of Terrade & Mira de Orduña were considered to be more reliable 

because of the careful methodology used. Specifically, that sudy used a chemical 

medium providing significant growth (Terrade, Noël, Couillaud, & de Orduña, 2009) 

thus allowing for large dose responses upon omission of medium consituents. 

Aditionally, that work implemented three washing steps between all transfers as well as 

small inoculation sizes (initial OD 0.03-0.05 equivalent to 5-8 x 10
4
 CFU ml

-1
) avoiding 

the risk of carrying over of medium constituents into deficient media which could lead 

to false negative classification of nutrients as non-essential. Under this criterion, D-
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ribose, nicotinic acid, pantothenate, manganse sulfate and phosphate are considered to 

be essential for O. oeni (Table 4-5). 

 

Table 4-4. In vivo amino acid requirements for different strains of Oenococcus oeni and comparison with in silico 
nutritional requirements. Columns two to five show the number of strains that require a particular amino acid for 
each of the four studies analyzed. The sixth column shows the total number of strains that require a particular 
amino acid. If more than half of the strains require a particular amino acid, that amino acid is considered to be 
essential in the seventh column. Last column shows in silico nutritional requirements for each amino acid.  

Amino acid (Garvie, 
1967) 

(Fourcassie 
et al, 1992) 

(Remize 
et al, 
2006) 

(Terrade 
et al, 
2009) 

Total Essential 
in vivo 
 

Essential 
in silico 

Alanine 0/9 0/6 0/5 0/2 0/22 No Yes 

Arginine 9/9 6/6 3/5 2/2 20/22 Yes Yes 

Asparagine - - - 1/2 1/2 ? Yes 

Aspartic acid 0/9 0/6 1/5 0/2 1/22 No No 

Cysteine 9/9 3/6 1/5 2/2 15/22 Yes Yes 

Glutamic acid 9/9 6/6 5/5 1/2 21/22 Yes Yes 

Glutamine - - - 0/2 0/2 No No 

Glycine 2/9 0/6 0/5 2/2 4/22 No No 

Histidine 6/9 1/6 3/5 2/2 12/22 Yes Yes 

Isoleucine 9/9 6/6 3/5 2/2 20/22 Yes Yes 

Leucine 1/9 3/6 4/5 2/2 10/22 No Yes 

Lysine 0/9 1/6 1/5 0/2 2/22 No Yes 

Methionine 4/9 5/6 5/5 2/2 16/22 Yes Yes 

Phenylalanine 7/9 1/6 5/5 2/2 15/22 Yes Yes 

Proline 0/9 0/6 0/5 2/2 2/22 No No 

Serine 2/9 0/6 5/5 1/2 8/22 No No 
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Threonine 1/9 0/6 1/5 2/2 3/22 No Yes 

Tryptophan 7/9 6/6 4/5 2/2 19/22 Yes Yes 

Tyrosine 9/9 1/6 5/5 2/2 17/22 Yes Yes 

Valine 9/9 1/6 4/5 2/2 16/22 Yes Yes 

 

Table 4-5. In vivo nutritional requirements for different strains of Oenococcus oeni and comparison with in silico 
nutritional requirements. Columns two to four show the number of strains that require a particular nutrient for 
each of the 2 studies analyzed. If discrepancies exists between the two studies, results from Terrade et al., 2009. 
Last column shows in silico nutritional requirements for each amino acid.  

Nutrient (Terrade et al, 
2009) 

(Garvie, 
1967) 

Essential 
In vivo 

Essential 
 in silico 

Carbon sources 
 

    

D-ribose 
 

2/2 - Yes Yes 

Vitamins 
 

    

Aminobenzoic acid 0/2 0/5 No No 

Biotin 0/2 - No No 

Choline chloride 0/2 - No No 

Cobalamin 0/2 0/5 No No 

Folic acid 0/2 5/5 No No 

Nicotinic acid 2/2 - Yes No 

Pantothenate 2/2 - Yes Yes 

Pyridoxine 0/2 0/5 No No 

Riboflavin 0/2 5/5 No No 

Thiamine 0/2 - No No 

Nucleotides 
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Adenine 0/2 0/5 No No 

Guanine 0/2 0/5 No No 

Xanthine 0/2 0/5 No No 

Cytosine 0/2 - No No 

Thymine 0/2 - No No 

Uracil 0/2 1/5 No No 

Minerals     

Manganse sulfate 2/2 - Yes No 

Magnesium sulfate 0/2 - No No 

Potassium dihydrogenphosphate 2/2 - Yes Yes 

Calcium chloride 0/2 - No No 

Copper sulfate 0/2 - No No 

Ferrous sulfate 0/2 - No No 

Zinc sulfate 0/2 - No No 

Others     

Guanine + adenine +  
Xanthine + uracil 

- 5/5 Yes Yes 

Guanine + adenine +  
Xanthine + uracil +  
Cytosine + thymine 

0/5 - No Yes 

Nicotinic acid + thiamine + 
Pantothenate + biotin 

- 5/5 Yes Yes 

 

 

To be able of compare in vivo and in silico nutritional requirements it is necessary to 

determine an in silico minimal medium. The first algorithm for such a purpose was 

developed by Schilling et al. (2002) to determine the minimum nutrients of Helicobacter 

pylori, a microaerophilic bacterium responsible for gastric ulcers. Beginning with all of 
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the extracellular metabolites available to the metabolic network, the algorithm 

individually removes each of the metabolites to determine which are required for 

producing biomass constituents. This determination is accomplished by constraining the 

exchange flux or uptake reaction for the metabolite to zero and optimizing for the 

biomass objective reaction. After thorough examination, a set of metabolites is defined 

for which their individual removal renders the network unable to produce the biomass 

demands. This set of metabolites constitutes a defined minimal medium required by the 

in silico model to support growth.  

 

Despite the usefulness of such an algorithm, it was not implemented in any platform; 

therefore, it cannot be easily employed by others. This is an important issue because the 

usability of an algorithm depends directly on its availability in a well known and user 

friendly platform. Another issue of this algorithm is that it does not detect groups of 

essential metabolites which is the case of nucleotides for O. oeni. Garvie (1967) 

determined that nucleotides are not essential for O. oeni when they are omitted 

separately. However, they cause no growth when they are omitted together.   

 

Another algorithm aiming to find in silico minimal medium was recently published by 

Eker et al (2013). The authors reported a complex algorithm able to find minimum 

nutritional nutrients that support growth of a microorganism, making assumptions that 

correctly simulate the consumption and production of metabolites. However, the 

complexity of the algorithm results in a very long execution time (3 days). When 

refining a GEM and reconciling the experimental data with the simulations, an algorithm 

that is able to deliver results in minutes is fundamental, because it is necessary to rapidly 

assess if modifications of the metabolic network results in better congruence between 

experimental and computational data. Furthermore, the algorithm was not implemented 

in any widely used platform;  therefore, its use is cumbersome. 
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We developed a script in MATLAB, "FindMinimalMedium" (Figure 4-23) to find the 

minimal medium supporting growth of a microorganism in silico. Our script finds the 

minimal components necessary for the organism to generate biomass by simulating 

successive transfers. First, the microorganism is grown in a culture medium with N 

defined nutrients. Then, the first nutrient is removed from the simulated medium. If the 

organism is still able to grow in this new environment, the nutrient removed is classified 

as non-essential and it is removed from the simulated medium for the following 

iterations. On the contrary, if the microorganism is unable to grow in the new medium, 

the nutrient removed is classified as essential and kept in the medium for the next 

iterations, becoming part of the minimal medium. This process continues until all the N 

nutrients are evaluated. Additionally, for each nutrient, alternative nutrients are 

determined (Figure 4-24), i.e. nutrients that when replacing the original one, it is still 

possible to obtain a minimal medium in which the microorganism is able to produce 

biomass. For example, if the organism is capable of growing on glucose, fructose or 

ribose independently, the alternative sources for glucose identified by the algorithm are 

fructose and ribose. The advantage of knowing what substrates can be replaced is that an 

alternative defined culture medium could be designed. 
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Figure 4-23. Algorithm implemented in MATLAB to determine minimal medium through the simulation of 
successive transfers. Before running the algorithm the model must be able to produce biomass in a chemically 
defined medium. The algorithm consists in removing each substrate one at a time and in turn. Once a particular 
substrate is removed the model is optimized and the growth is analyzed. If the model is able to produce biomass 
the substrate is considered to be a non-essential nutrient and the next substrate is removed. Otherwise, the 
substrate is considered to be an essential nutrient and the substrate is reincorporated into the medium before 
removing the next substrate. The algorithm finishes when all the substrates are analyzed and it returns the 
minimal medium for which the suppression of growth is achieved if one of the nutrients is removed    

 

Figure 4-24. Algorithm implemented in MATLAB to determine alternatives nutrients of minimal nutrient 
requirements. Because the in silico minimal medium determined with the script FindMinimalMedium depends on 
the order in which the nutrients are omitted, alternative nutrients are determined replacing each of the essential 
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substrates for each of the nutrients that were not considered to be essential. If the model is able to produce 
biomass replacing substrate i for substrate j, the substrate j is an alternative for substrate i. The algorithm finishes 
when all substrates are analyzed and it returns the alternatives for each nutrient present in the minimal medium. 

 

Unlike the algorithm of Schilling et al. (2002), our algorithm is implemented in Matlab, 

a well known platform. Additionally, it is able to identify essential groups of metabolites 

as well as interchangeable metabolites. Moreover, while our algorithm is much simpler 

than the one presented by Eker et al. (2013), primarily by assuming that the cells begin 

as empty bags of metabolites, it allows rapid (within minutes) estimates of the minimal 

medium, which is valuable in the refining process. 

 

The determined in silico minimal medium is composed of 21 nutrients: 17 amino acids, 

1 vitamin, 1 carbon source, 2 nucleotides and 1 mineral (Table 4-6). Only four of these 

nutrients could be replaced by others while maintaining the minimal medium (Table 4-

7). What remains to be experimentally probed is that this medium is in fact a minimal 

medium for O. oeni PSU-1.  

 

Table 4-6. In silico minimal culture medium determined using the script FindMinimalMedium.m. The script 
FindMinimalMedium.m simulates an experiment of successive transfers, returning an in silico minimal medium, 
i.e. a medium for which if one of the nutrients is removed, Oenococcus oeni is not able to grow.  Different groups 
of nutrients can be found in this minimal medium such as vitamins, amino acids, carbon sources, nucleotides and 
minerals. 

Minimal nutrients Minimal transport reactions 

 
(R)-pantothenate 

Exchange_(R)-pantothenate 

 
L-alanine 

Exchange_L-alanine 

 
L-arginine 

Exchange_L-arginine 

 
L-asparagine 

Exchange_L-asparagine 

 
L-aspartate 

Exchange_L-aspartate 
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L-cysteine 

Exchange_L-cysteine 

 
L-glutamate 

Exchange_L-glutamate 

 
L-histidine 

Exchange_L-histidine 

 
L-isoleucine 

Exchange_L-isoleucine 

 
L-leucine 

Exchange_L-leucine 

 
L-lysine 

Exchange_L-lysine 

 
L-methionine 

Exchange_L-methionine 

 
L-phenylalanine 

Exchange_L-phenylalanine 

 
L-threonine 

Exchange_L-threonine 

 
L-tryptophan 

Exchange_L-tryptophan 

 
L-tyrosine Exchange_L-tyrosine 

 
L-valine 

Exchange_L-valine 

 
α -D-glucose 

Exchange_alpha-D-glucose 

 
Glycine 

Exchange_glycine 

 
Guanine 

Exchange_guanine 

 
Phosphate 

Exchange_phosphate 
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Table 4-7.  Alternatives for nutrients present in the in silico minimal medium. Only four nutrients present in the in 
silico minimal medium could be replaced by others in order to maintain a minimal medium. Other 9 carbon 
sources could replace α-D-glucose 

Nutrient Alternative nutrients 

L-aspartate 
 

L-serine 

Glycine L-serine 

Guanine Adenine 

α -D-glucose β-D-fructofuranose,  
β-D-galactose,  
β-D-glucose,  
β-D-ribofuranose,  
cellobiose,  
lactose,  
melibiose, 
 raffinose,  
trehalose.  

 

In order to compare the in silico nutritional requirements with experimental data, an in 

silico single omission experiment using the chemically defined medium determined by 

(Terrade et al., 2009) was performed. This experiment consisted in removing each 

nutrient from the medium separately and analyzing if the microorganism is able to grow 

after its removal. Nutrients that inhibit growth when removed are considered to be 

essential.  

 

Thus, the model predicts that arginine, cysteine, histidine, isoleucine, methionine, 

phenylalanine, tryptophan, tyrosine and valine are essential aminoacids (Table 4-8), 

which fully concurs with what has been shown experimentally in most strains of O. oeni 

(Fourcassie et al., 1992; Garvie, 1967; Remize et al., 2006; Terrade & Mira de Orduña, 

2009). Interestingly, the model predicts that glutamic acid is not essential in the medium 

used but becomes essential when glutamine is removed, which also can be observed in 

vivo. Fourcassie et al. (1992), Garvie (1967), Remize et al. (2006) showed that glutamic 
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acid was essential using a medium lacking glutamine and Terrade & Mira de Orduña 

(2009) found than when glutamine is present in the medium O. oeni is able to grow, 

suggesting that glutamic acid can be synthesized from glutamine in O. oeni. 

 

On the other hand, alanine, aspartic acid,  glutamine, glycine, leucine, lysine, proline, 

threonine and serine have been shown to be non-essential nutrients in vivo (Fourcassie et 

al., 1992; Garvie, 1967; Remize et al., 2006). Among these, aspartic acid, glutamine, 

glycine, proline, and serine were also non essential nutrients in silico while alanine, 

lysine, leucine and threonine were erroneously classified as essential nutrients. It is not 

clear if asparagine is an essential nutrient or not, although Mills et al. (2005) suggested 

that this amino acid is essential for growth, which would be consistent with the in silico 

analysis. 
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Table 4-8. In silico essential nutrients for Oenococcus oeni. A nutrient is essential if its omission from the 
chemically defined medium resulted in no growth of the microorganism 

Essential nutrients Essential transport reactions 

 
(R)-pantothenate Exchange_(R)-pantothenate 

 
L-alanine Exchange_L-alanine 

 
L-arginine Exchange_L-arginine 

 
L-asparagine Exchange_L-asparagine 

 
L-cysteine Exchange_L-cysteine 

 
L-glutamate* Exchange_L-glutamate 

 
L-histidine Exchange_L-histidine 

 
L-isoleucine Exchange_L-isoleucine 

 
L-leucine Exchange_L-leucine 

 
L-lysine Exchange_L-lysine 

 
L-methionine Exchange_L-methionine 

 
L-phenylalanine Exchange_L-phenylalanine 

 
L-threonine Exchange_L-threonine 

 
L-tryptophan Exchange_L-tryptophan 

 
L-tyrosine Exchange_L-tyrosine 

 
L-valine Exchange_L-valine 

 
phosphate Exchange_phosphate 

 
β-D-ribofuranose Exchange_beta-D-ribofuranose 

  

* L-glutamate was considered to be essential because it is required for growth in mediums lacking L-

glutamine, which are commonly used. Nevertheless, we must consider that glutamate is not an essential 
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nutrient for O. oeni since Terrade & Mira de Orduña (2009) have demonstrated that some strains of O. 

oeni are able to grow in a medium lacking glutamate yet containing glutamine. 

  

Alanine could not be synthesized by the model because the reaction that synthesizes it 

from L glutamate (E.C. 2.6.1.2) requires another reaction that consumes 2-oxoglurate in 

order to satisfy mass balances, and the model lacked this reaction. In fact, adding a 

demand reaction for 2-oxoglutarate allowed the model to synthesize L-alanine, making it 

a non-essential amino acid. 2-oxoglutarate is a compound that participates in the TCA 

cycle but, as O. oeni lacks a fully functional TCA cycle, it made sense to search for 

other mechanisms that consume it.  

 

Lysine could not be synthesized because of three reasons: 1) The reaction that 

synthesizes N-succinyl-2-amino-ketopimelate (E.C. 2.3.1.117), an indispensable 

metabolite for lysine biosynthesis, requires the production of succinyl-CoA in order to 

satisfy mass balances 2) The same reaction requires the consumption of coenzyme A in 

order to satisfy mass balances. 3)  The next step (E.C. 2.6.1.17) in the lysine 

biosynthesis pathway (Figure 4-25) also requires a reaction that consumes 2-

oxoglutarate. Once again, adding a demand reaction for 2-oxoglutarate and coenzyme A 

and a sink reaction for succinyl-CoA allows the model to synthesize lysine, transforming 

it in a non-essential amino acid. Nevertheless, the incorporation of the previously 

analyzed sink and demand reactions affected the accuracy of specific 

consumption/production rate predictions. Therefore, further refinement is necessary to 

find reactions whose incorporation makes L-alanine and lysine non essential metabolites 

while maintaining the same accuracy of specific consumption/production rate 

predictions. 
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Figure 4-25.  Partial lysine biosynthesis pathway. Here, the last five reactions of the lysine biosynthesis pathway 
are shown. None of these reactions are able to carry flux when the model is optimized because the model lacks 
feasible reactions producing succinyl-CoA and consuming conenzyme A and 2-oxoglutarate. Sink and demand 
reactions were tested for these metabolites showing that their incorporation allows the biosynthesis of L-lysine. 
Unfortunately their incorporation also diminishes the accuracy of specific consumption/production rates 
predictions so reactions whose incorporation makes L-lysine a non essential metabolites while maintaining the 
same accuracy of  specific consumption/production rate predictions remains a pending challenge. This figure was 
made using Pathway Tools. 

 

Most strains of O. oeni are able to synthesize L-leucine; however the strain PSU-1 

contains a pseudogene (OEOE_1724) for the 3-isopropylmalate dehydrogenase (E.C. 

1.1.1.85), an enzyme required for the biosynthesis of this amino acid; therefore, 

bioinformatic evidence suggests that this strain is not able to synthesize it. On the other 
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hand, there is only one strain that has been reported to be unable to synthesize threonine 

(Garvie, 1967). However, O. oeni PSU-1 strain contains a pseudogene for the 

homoserine kinase (E.C. 2.7.1.39), an enzyme required to synthesize threonine; 

therefore, this strain would not be able to synthesize this amino acid.  

 

Concerning vitamins, the in silico analysis of minimal requirements shows that 

pantothenate is essential for growth which is consistent with experimental data (Garvie, 

1967). Richter et al (2001) found that O. oeni requires pantothenic acid for growth 

because, under pantothenate limitation, phosphotransacetylase, and in particular 

acetaldehyde dehydrogenase activities, became limited due to low levels of the co-

substrates HS-CoA and acetyl-CoA. Garvie (1967) showed that other vitamins, such as 

riboflavin, folate, nicotinic acid, thiamine and biotin, were also essential for O. oeni 

growth, while a more recent study showed that, among these vitamins, only nicotinic 

acid was essential, and that riboflavin, folate, thiamine and biotin only decreased growth 

(Terrade & Mira de Orduña, 2009). Our in silico analysis of minimal requirements 

showed that nicotinic acid, riboflavin, folate, thiamine and biotin were not required for 

growth. Moreover, neither cobalamin, p-amino-benzoic acid nor pyridoxal were neither  

essential for O. oeni growth (Garvie, 1967; Terrade & Mira de Orduña, 2009),  which is 

coherent with the analysis of minimal requirements. 

 

Surprisingly, magnesium sulfate, copper sulfate, ferrous sulfate, zinc sulfate, calcium 

chloride and choline chloride are not required for growth in vivo (Terrade & Mira de 

Orduña, 2009). Because of the small quantities of metals generally required for growth 

of microorganisms, these results may be due to possible small contaminations from other 

medium compounds, as well as glassware, which would be enough to sustain growth 

even if individual metals were omitted. Nevertheless, the results of Terrade & Mira de 

Orduña coincide with model predictions. On the other hand, although manganese sulfate 

is required (Terrade & Mira de Orduña, 2009), it  was not detected by the in silico 

analysis. Manganese dependence has been studied before, showing that this metal has 
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great impact on growth (Theobald, Pfeiffer, & König, 2005). Probably, the most relevant 

role of this metal in O. oeni metabolism is the activation of the malolactic enzyme 

(Saadt, 1982; Spettoli, Nuti, & Zamorani, 1984), allowing the generation of a proton 

gradient which produces ATP and leads to growth stimulation (Cox & Henick-kling, 

1989). 

 

Garvie (1967) and Terrade & Mira de Orduña (2009) showed by single omission that 

none of the nucleotides were essential for O. oeni. Nevertheless, differences in the 

results between both studies were found when nucleotides were omitted simultaneously. 

Garvie (1967) detected no growth when nucleotides were omitted simultaneously, while 

Terrade & Mira de Orduña (2009) showed the opposite. The latter makes sense since 

LAB could use intracellular precursors for nucleotide biosynthesis such as demonstrated 

for arginine in diary LAB (Bringel & Hubert, 2003). The model predicts that O. oeni is 

able to grow even when nucleotides are omitted by single omission. However, when 

adenine and guanine are both omitted no growth could be achieved. Further 

investigation is needed in order to understand the nucleotide biosynthesis and its 

integration with the whole metabolic model. 

 

The in silico analysis of nutritional requirements suggested that at least one carbon 

source is required for growth (Table 4-7). Terrade & Mira de Orduña (2009) showed that 

O. oeni was unable to grow when the only carbon source present in the medium (D-

ribose) was removed. The model also predicted that phosphate is required for growth 

(Table 4-8). This is also consistent with the nutritional requirements determined by 

Terrade & Mira de Orduña (2009), who showed that potassium dihydrogenophosphate is 

essential (Table 4-5).  
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Table 4-9. Summary of classification results. True positives are essential metabolites which were classified as 
essential metabolites. True negatives are non essential metabolites which were classified as non essential 
metabolites. False positives are non-essential metabolites which were classified as essential metabolites. False 
negatives are essential metabolites which were classified as non essential metabolites. Most metabolites were 
classified correctly with the exception of alanine, lysine, leucine and threonine which were classified as essential 
metabolites but were not essential in vivo, and nicotinate and manganse sulfate, that were classified as not 
essential but were essential in vivo 

True positives True negatives False positives False negatives 

Arginine  Proline Alanine  Nicotinate 

Cysteine Aspartic acid Lysine Manganese sulfate 

Glutamic acid  Glutamine Leucine   

Isoleucine  Serine Threonine   

Tyrosine  Glycine   

Valine  Guanine   

Histidine  Adenine   

Phenylalanine  Uracil   

Tryptophan  Xanthine   

Methionine  Cytosine   

Asparagine Thymine   

Phosphate  Cobalamin   

D-ribose  p-aminobenzoic acid   

Pantothenate  Pyridoxal   

 Riboflavin   

 Folate   

 Thiamine   

 biotin   
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 Choline chloride   

 Magnesium sulfate   

 Copper sulfate   

 Ferrous sulfate   

 Zinc sulfate   

 Calcium chloride   

 

Table 4-10. Confusion matrix of minimal medium requirement predictions. 14 essential metabolites were 
predicted as such (true positives) while 24 non-essential metabolites were predicted as such (true negatives). On 
the other hand, four non-essential metabolites were predicted as essential (false positives) and two essential 
metabolites were predicted as non-essential (false negatives) 

  Essential  Non-essential 

Predicted as essential  14  4 

Predicted as non-essential  2  24 

 

Based on the confusion matrix (Table 4-10), we calculated statistical measurements of 

performance (Table 4-11). The model identifies 88% of the essential metabolites, as 

such (sensitivity); meanwhile, it identifies 86% of the non-essential metabolites as such 

(specificity). Moreover, 78% of the metabolites predicted as essential were actually 

essential (precision), while the accuracy of the model, i.e. the proportion of correct 

results to the entire of predictions, was 86%. F1 score, a measurement of the accuracy 

that can be interpreted as a weighted average of the sensitivity and the precision, reaches 

0.82, indicating that the model has a very good performance overall. 

 

Table 4-11. Statistical measures of performance. Sensitivity (proportion of essential metabolites predicted as 
such), specificity (proportion of non-essential metabolites predicted as such), precision (proportion of metabolites 
predicted as essential being essential in vivo) and accuracy (proportion of correct results) are indicated. The model 
F-1 score indicates a high overall performance 

Sensitivity Specificity Precision Accuracy F1 score 

0,88 0,86 0,78 0,86 0,82 
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4.4.5 Analysis of specific consumption/production rates 

 

4.4.5.1 Calculation of experimental specific rates 

 

The validation of in silico predictions required a comparison with experimental data. For 

this purpose, all papers performing batch and continuous cultures, which registered 

substrate uptake and product production as well as growth rates for O. oeni, were 

explored. Below, we give a brief review of the literature found.    

 

Only one continuous culture could be found for O. oeni (Zhang & Lovitt, 2006). In this 

study, the growth performance of the strain NCIMB 11648 was assessed at dilution rates 

between 0.007 and 0.052 
 

 
. The authors determined dry cell weight, substrate uptake 

(fructose and glucose) and product formation (lactate, acetate, mannitol and ethanol) 

rates, as well as yields (maximum growth rate, maximun cell productivity, biomass yield 

and maintenance coefficient). Nevertheless, this study was carried out in the absence of 

ethanol, malic acid and citric acid, which could have significantly affected the 

physiology of the microorganism. Additionally, considering the high genotypic and 

phenotypic variation between strains (Borneman et al., 2012), we preferred  to employ 

experimental data from the strain PSU-1 to refine our model and not use this data. 

 

Several batch cultures have been performed. Campos et al (2009) performed a batch 

culture to study the influence of phenolic acids on glucose and organic acid metabolism 

of O. oeni VF, a commercial starter culture strain. Every 25 hours the authors monitored 

the concentrations of citric acid, glucose, malic acid, lactic acid and acetic acid of O. 

oeni batch cultures growing in culture media supplemented with different phenolic acids 

(caffeic acid, ferulic acid, p-coumaric acid, gallic acid and protocatechuic acid).  
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We employed the data from Olguín et al., (2009) to calculate the specific 

consumption/production rates of L-malic acid, fructose, glucose, citric acid, L-lactic 

acid, D-lactic acid and acetic acid in the exponential phase of a batch culture of O. oeni 

PSU-1 (Olguín et al., 2009). Since no continuous culture has been carried out with the 

O. oeni PSU-1 strain yet, we used the data from the batch culture, assuming that mass 

balances were conserved during the exponential phase.  

 

Specific consumption and production rates were obtained by calculating the difference 

between final and initial concentrations among two experimental points of exponential 

phase, then dividing this difference by the corresponding fermentation time and the 

mean biomass concentration. Final concentrations correspond to one day after 

inoculation, while initial concentrations correspond to those found at the time of 

inoculation.  We decided to employ just two experimental points because citric and 

malic acids were completely consumed after one day of cultivation. 

 

For example, we calculated the consumption rate of L-malic by O. oeni growing in a 

medium of pH 4.0, without ethanol. The final concentration of L-malic acid under these 

conditions was    
    

 
 and the initial concentration,      

    

 
. The difference between 

these values is      
    

 
. Dividing by 24 hours, the fermentation time, and by the 

biomass generated during this period, X =      
 

  
 , we obtain rs =      

    

    
 , which 

represents the specific rate of consumption of L-malic acid (Table 4-12). 

 

The specific growth rate  was calculated using the slope of the graph of logarithm of 

biomass concentration (Table 4-13)  - in grams per liter - versus time,  in hours (Figure 

4-27). 
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Table 4-12. Specific consumption rates of L-malic acid, fructose, glucose, citric acid and specific production rates of 
L-lactate, D-lactate and acetate determined from a batch culture of O. oeni growing at different pH levels and 
ethanol concentrations. Initial and final concentrations of each compound were extracted from four batch 
cultures using different pH levels (3.5 and 4.0) and ethanol concentrations (0% and 10% v/v). The specific rate was 
determined dividing the difference between final and initial concentrations by the corresponding fermentation 
time (final concentration was measured 24 hrs after measurement of initial concentration) and the mean biomass 
concentration.   

pH Ethanol Initial 
Concentration  
[mmol/L] 

Final 
Concentration 
[mmol/L] 

Difference 
[mmol/L] 

Specific 
Rate  
[mmol/g hr] 

L-malic acid      

4  Absent 37.7 0 37.7 8.6 

3.5 Absent 40.9 0 40.9 13.3 

4 Present 44.7 6.4 38.3 63.8 

3.5  Present 33.9 7.4 26.5 50.1 

Fructose      

4 Absent 18.3 13.9 4.4 1,0 

3.5 Absent 22.4 21.2 1.2 0,4 

4 Present 20.8 22.3 1.6 2.6 

3.5 Present 17.4 18.9 1.6 3.0 

Glucose      

4 Absent 26.4 22.0 4.3  1.0  

3.5 Absent 32.3 32.1 0.2 0.6 

4 Present 29.9 29.5 0.4 0.6 

3.5 Present 27.2 27.7 0 0 

Citric acid      

4 Absent 0.8 0 0.8 0.2 

3.5 Absent 1.0 0 1.0 0.3 
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4 Present 1.4 0.8 0.6 1.0 

3.5 Present 1.4 0.8 0.6 1.1 

L-lactic acid      

4 Absent 15.5 38.1 6.0 5.1 

3.5 Absent 6.9 40.9 34.0 11.1 

4 Present 8.1 30.6 22.5 37.6 

3.5 Present 9.8 29.5 19.8 37.3 

D-lactic acid      

4 Absent 6.991 13.022 6.031 1.370 

3.5 Absent 5.139 10.167 5.028 1.640 

4 Present 6.706 7.412 0.706 1.176 

3.5 Present 6.471 6.706 0.235 0.444 

acetic acid      

4 Absent 5.3 12.6 7.3 1.7 

3.5 Absent 6.1 10.3 4.2 1.4 

4 Present 6.2 7.4 1.1 1.9 

3.5 Present 5.6 10.0 4.4 8.3 

 

 

 
  



99 

  

Table 4-13. Specific growth rates determined from a batch culture of O. oeni growing at different pH levels and 
ethanol concentrations. Initial and final biomass concentration was extracted from 4 batch cultures using different 
pH levels (3.5 and 4.0) and ethanol concentrations (0% and 10% v/v). Final concentration was measured 24 hrs 
after measurement of initial concentration. Growth rates were determined calculating the slope of the logarithm 
of biomass concentration versus culture time.   

pH  Ethanol Initial 
Concentration  
[g/L] 

Final 
Concentration  
[g/L] 

Difference 
[g/L] 

Specific 
growth rate 
[1/hr] 

biomass      

4 Absent 0.04 0.23 0.18 0.03 

3.5 Absent 0.08 0.21 0.13 0.02 

4 Present 0.05 0.08 0.03 0.007 

3.5 Present 0.07 0.09 0.02 0.005 

 

4.4.5.2 Determination of in silico specific rates 

 

Cross validation consisted in, having N+1 experimental rates, fix N rates in the GEM 

and predict the missing one. This experiment is useful in the refinement process, because 

if there is a significant error in the prediction of one rate, the user has a guide to identify 

where the error might be found in the metabolic model. Thus, once the probable error in 

the metabolic model is identified, the user can fix it and run the analysis again. Typical 

errors in the metabolic model are related to additional or missing reactions, directionality 

reaction mistakes, poor connectivity, etc. On the other hand, predictions consistentwith 

experimental data validate the model.  

 

We developed a MATLAB script that carries out this experiment. Additionally, the 

script calculates the percentage differences between the experimental rates and the 

predicted ones and it writes these differences into an excel spreadsheet (Figure 4-26)  It 

took 122 seconds to carry out these in silico predictions for the O. oeni model.  
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Figure 4-26. Excel spreadsheet showing real and predicted consumption/production rates of different metabolites 
and real and predicted specific growth rates. Percentage differences are also presented in order to visualize 
errors. 

 

Fructose and glucose consumption rates were dependent on CO2 production under all 

conditions, i.e. while more CO2 was produced, more fructose and glucose were 

consumed. To set a value of CO2 production that  accurately simulates sugar 

consumption, we constrained all the rates and determined the CO2 production rate. Then, 

we used this value as given information for each condition (Table 4-14).  

Table 4-14. In silico CO2 specific production rates used to adjust fructose and glucose consumption. These rates 
were determined by optimizing the genome-scale metabolic model of O. oeni constrained with four sets of 
restrictions corresponding to the four batch culture conditions (two different pH leves: 3.5 and 4.0 and two 
different ethanol concentration: 0% and 10% v/v).  

Specific Rate at pH 4 
without ethanol 
[mmol/g hr] 

Specific Rate at pH 3.5 
without ethanol 
[mmol/g hr]  

 Specific Rate at pH 4 
with ethanol 
[mmol/g hr] 

Specific Rate at pH 
3.5 with ethanol 
[mmol/g hr] 

    

18,69 18,40 103,91 79,86 

 

Most of the CO2 produced in the model arises from the transformations of 6-phospho D-

gluconate to D-ribulose 5 phosphate (pentose phosphate pathway), (S)-malate to 

pyruvate (malic enzyme), (S)-malate to (S)-lactate (malolactic enzyme), coenzyme A to 

acetyl-CoA and several reactions associated to fatty acid biosynthesis.  
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It is worth noting that the increase of CO2 production under ethanol growing conditions 

is due to the increase in the flux value of some specific reactions. To exemplify this, we 

analyzed the malolactic reaction, the main source of CO2 in the simulations (28% and 

36% at pH 4.0 in the absence and presence of ethanol, respectively), to predict the 

biomass function. The flux through the malolactic reaction increases from     
    

    
 to 

     
    

    
 at pH 4.0 in the absence and presence of ethanol, respectively (Table 4-15) 

This could be explained by the fact that, under stress conditions, O. oeni triggers several 

anti-stress mechanisms (Bourdineaud, Nehmé, Tesse, & Lonvaud-Funel, 2004; Maitre et 

al., 2014; Mateo, Medina, Mateo, & Jiménez, 2010) that require additional ATP. 

Carrying out the malolactic reaction allows the bacterial cell to export lactate and 

protons, ensuring that the proton motive force provides the extra ATP required. A 

similar situation occurs at pH 3.5 (data not shown). 

Table 4-15. Main in silico CO2 sources at pH 4.0, in absence (0%) and presence (10% v/v) of ethanol. In parenthesis 
the percentages of these contributions to total CO2 are shown. At pH 4.0, the model predicts that the main CO2 

source is malolactic reaction (28% and 36% of the total CO2, without and with ethanol respectively). Interestingly 
the reaction producing diacetyl is activated only when ethanol is present in the medium. 

Reaction Flux through 
reaction [mmol/g hr] 
at pH  4 without 
ethanol 

Flux through 
reaction [mmol/g hr] 
at pH 4 with ethanol 

   
6-phosphogluconate dehydrogenase  3,1 (16,6%) 9,0 (8,6%) 

Malic enzyme 3,7 (19,5%) 27,2 (26,2%) 

Pyruvate dehydrogenase  4,2 (22,5%) 10,9 (10,5%) 

Malolactic enzyme 5,1 (27,5%) 37,6 (36,2%) 

Phosphopantothenoylcysteine decarboxlylase 0,5 (2,6%) 1,2 (1,1%) 

Diacetyl  producing reaction 0     (0,0%) 9,0 (8,7%) 

Total 13,5 (72,2%) 94,9 (91,3%) 

Values in parenthesis are the percentage of the contribution corresponding to the CO2 produced by the 

specific reaction over the total amount of CO2 produced.  
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4.4.5.3 Comparison of in vivo and in silico specific rates 

 

Accordance between experimental and predicted data was found when O. oeni was 

grown in the absence of ethanol at both pH 4.0 and 3.5.  A percentage difference of 35% 

(Table 4-16) and 40% (Table 4-17) was obtained between the real biomass produced and 

the in silico produced biomass, respectively. This difference most likely results from the 

utilization of the biomass equation of Lactococcus lactis. Thus, determining the 

macromolecular content of O. oeni PSU-1 cells should improve this prediction.  

 

Additionally, a remarkable adjustment between the real specific consumption/production 

rates and the predicted ones was found when O. oeni is grown in the absence of ethanol 

in both pH 4.0 and 3.5. At pH 4.0, the highest difference was 4.5% for the consumption 

of citrate,  while the mean of the percentage difference was 1.3% for all metabolites. 

Even better is the case at pH 3.5, where the maximum difference was 1.45% for fructose 

consumption, while the mean was 0.59% difference for all metabolites. 

Table 4-16. Specific rates predicted by the Oenococcus oeni genome-scale metabolic model using constraints 
corresponding to a medium at pH 4.0 without ethanol.  

Metabolite Experimental rate Predicted Difference (%) 

Biomass 0,0303 0,0409 35,0% 

Citrate -0,2285 -0,2388 4,5% 

Acetate 1,6586 1,6330 1,5% 

(R)-lactate 1,3700 1,3609 0,7% 

Beta-D-fructofuranose -1,0003 -1,0110 1,1% 

Alpha-D-glucose -0,9856 -0,9962 1,1% 

(S)-lactate 5,1454 5,1283 0,3% 

(S)-malate -8,5714 -8,5873 0,2% 
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Table 4-17.  Specific rates predicted by Oenococcus oeni genome-scale metabolic model using constraints 
corresponding to a medium at pH 3.5 without ethanol.  

 

 

Unfortunately, for O. oeni grown in a medium containing ethanol, biomass predictions 

were not accurate. The percentage difference between the real biomass production value 

and the predicted one is 1370 % and 1680% at pH 4.0 and 3.5, respectively. This poorly 

accurate prediction was probably due to errors in the model. The most likely cause is 

that model cannot correctly simulate the changes that occur in the metabolism of 

Oenoccocus oeni under stress conditions caused by ethanol. Ethanol produces significant 

changes in the lipid composition of the cell membrane (Grandvalet et al., 2008; Silveira 

et al., 2003), as well as other macromolecular assembly proportions.  Therefore, it is 

expected that, while stoichiometric coefficients related to fatty acids synthesis and other 

macromolecules remained constant under in silico growth in the ethanol-containing 

medium, good biomass predictions would not be achieved.  

 

Metabolite Experimental rate Predicted Difference (%) 

    
Biomass 0,017 0,010 39,8% 

Citrate -0,3282 -0,3284 0,1% 

Acetate 1,3697 1,3559 1,0% 

(R)-lactate 1,6404 1,6307 0,6% 

Beta-D-fructofuranose -0,3863 -0,3919 1,5% 

Alpha-D-glucose -0,6263 -0,6319 1,9% 

(S)-lactate 11,0974 11,0876 0,1% 

(S)-malate -13,3357 -13,3360 0,003% 
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Additionally, the specific consumption/production rates under ethanol growing 

conditions are less accurate than in the medium without ethanol. At pH 4.0, the mean 

difference is 11%, with the maximum difference found for the acetate production rate 

with a value of 46% (Table 4-18). At pH 3.5, the percentage difference is 72%, with the 

maximum difference for citrate uptake, with a value of 155% (Table 4-19). 

 

To solve the inaccurate biomass prediction and the imprecise prediction of 

consumption/production rates of O. oeni growing under stress conditions, the 

determination of the biomass composition and the incorporation of high throughput data 

to the model, both obtained under stress conditions caused by ethanol, are proposed. 

Biomass composition determined under ethanol-growing conditions ensures that correct 

stoichiometric coefficients are used for biomass production, while integrating 

transcriptomic data will lead to better predictions of the specific consumption/production 

rates, because the genes that are expressed under these harsh conditions will be 

quantified and, consequently so will the reactions that are carried out under stress 

conditions.   

Table 4-18.  Specific rates predicted by the Oenococcus oeni genome-scale metabolic model using constraints 
corresponding to a medium at pH 4.0 with ethanol.  

Metabolite Experimental rate Predicted Difference (%) 

Biomass 0,0068 0,1 1370% 

Citrate -1,0105 -0,7081 30% 

Acetate 1,8667 1,0173 45 % 

(R)-lactate 1,1764 1,1798 0,3% 

Beta-D-fructofuranose -2,6113 -2,6114 4,6 e-11% 

Alpha-D-glucose -0,6391 -0,6391 1,8 e-10% 

(S)-lactate 37,5610 37,5610 9,3 e-12% 
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Table 4-19. Specific rates predicted by Oenococcus oeni genome-scale metabolic model 

using constraints corresponding to a medium at pH 4.0 with ethanol.  

 

 

 

  

(S)-malate -63,7981 -63,7979 0,0002% 

Metabolite Experimental rate Predicted Difference (%) 

Biomass 0,005 0,0890 1680,0% 

Citrate -1,0966 -2,7918 154,6% 

Acetate 8,3111 16,9607 104,1% 

(R)-lactate 0,4444 0 100% 

Beta-D-fructofuranose -2,9595 3,8074 28,7% 

Alpha-D-glucose 0 -0,8484 - 

(S)-lactate 37,3074 22,1141 40,7% 

(S)-malate -50,0737 -51,7696 3,4% 
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4.4.6 Sensitivity analysis 

During model refinement, it is often necessary to incorporate reactions from other 

completed GEMs to the developing GEM. However, the stoichiometric coefficients of 

some reactions are organism-specific, which is the case of all of the reactions related to 

biomass composition. If these kinds of reactions are incorporated to the developing 

GEM from other completed GEMs, care must be taken to analyze the sensitivity of the 

objective function to changes in the values of the stoichiometric coefficients.  

 

Following the methodology 1 explained in materials and methods, the model was 

optimized to yield surprisingly specific growth rates equal to zero in each of the 40 cases 

analyzed. This is probably because the stoichiometric coefficients resulted in ratios of 

biomass components that the metabolic network could not accomplish. Given this issue, 

methodology 2 was followed. Thus, it was determined that the specific growth rate is 

more sensitive to changes in coefficients related to lipids and maintenance associated to 

the assembly of proteins (Table 4-20) In particular, we observed that the specific growth 

rate was strongly decreased when the stoichiometric coefficient of cardiolipin increased 

(decreasing 0.4% in specific growth rate when increasing the stoichiometric coefficient  

by 1%).  

 

On the other hand, the specific growth rate was also reduced mostly by increasing the 

ATP needed to assemble proteins (0.3%). This could partly explain the over-estimation 

of the specific growth rate in ethanol growing conditions since the ATP needed to 

generate biomass was maintained constant in all in silico experimental conditions. When 

the culture medium contains ethanol, O. oeni is growing under critical stress conditions, 

therefore it is reasonable to think that the ATP required to generate biomass is increased 

in this situation. Even so, the over-estimation of the growth rate is much greater than the 

compensation by an increase in the growth associated maintenance. It is possible that the 
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model is capable of generating ATP in ways that do not occur naturally in the 

metabolism of O. oeni. 
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Table 4-20. Sensitivity analysis of the biomass formation equation imported from the Lactococcus lactis genome-
scale metabolic model. 

Metabolite µ Variation (%)  
(1%) 

µ Variation (%)  
(10%) 

µ Variation (%)  
(50%) 

Protein    

L-histidine -0,0003 -0,04 -1,2 

L-lysine -0,0003 -0,04 -1,2 

L-phenylalanine -0,0003 -0,04 -1,2 

L-arginine -0,0003 -0,04 -1,2 

L-leucine -0,0003 -0,04 -1,2 

L-valine -0,0003 -0,04 -1,2 

L-threonine -0,0003 -0,04 -1,2 

Glycine 0,0005 -0,04 -1,1 

L-alanine -0,0004 -0,03 -1,2 

L-serine -0,0004 -0,04 -1,2 

L-cysteine -0,0004 -0,04 -1,2 

L-glutamine 0,0007 -0,03 -1,4 

L-tryptophan -0,0004 -0,04 -1,3 

L-asparagine -0,0004 -0,04 -1,3 

L-aspartate -0,0004 -0,04 -1,3 

L-tyrosine -0,0004 -0,04 -1,3 

L-isoleucine -0,0004 -0,04 -1,3 

L-glutamate -0,0004 -0,04 -1,3 

L-proline -0,0004 -0,04 -1,3 

L-methionine -0,0004 -0,04 -1,3 
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ATP -0,3 -3,3 -19,3 

DNA    

dATP -0,0004 -0,06 -0,07 

dCTP -0,0002 -0,003 -0,04 

dGTP -0,0003 -0,03 -0,04 

dTTP -0,0006 -0,006 -0,05 

ATP -0,001 -0,02 -0,1 

H2O 0,0002 0,002 0,02 

RNA    

CMP -0,0006 -0,01 -0,2 

GMP -0,001 -0,02 -0,3 

Uridine-5'-phosphate -0,0009 -0,01 -0,2 

AMP -0,001 -0,01 -0,2 

ATP -0,01 -0,1 -0,9 

Lipids    

Lysophosphatidyl-glycerol -0,01 -0,1 -0,5 

Cardiolipin -0,4 -4,6 -33,1 

L-1-phosphatidyl-glycerol -0,09 -1,2 -12,5 

3-D-glucosyl-1,2-diacylglycerol -0,006 -0,2 -5,1 

Diglucosyl diacylglycerol -0,14 -1,6 -12,8 

Peptidoglycan    

D-aspartate -0,00005 -0,007 -0,2 

Lipid IIa -0,03 -0,35 -2,5 
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Lipoteichoic acid    

Diglucosyl diacylglycerol -0,23 -2,5 -18,6 

D-alanyl-D-galactosyl- 
poly(glycerol phosphate) 

-0,004 -0,05 -0,4 

Polysaccharides    

dTDP-6-deoxy-beta-L-mannose -0,01 -0,2 -1,2 

UDP-D-glucose -0,01 -0,1 -0,9 

UDP-alpha-D-galactose -0,002 -0,01 0,02 

 

 

  



111 

  

4.5 Data assembly and dissemination  

GENREs builders usually require printing the model information in an Excel sheet, so it 

can be easily inspected by any person, including those who are not experts in the field. 

In fact, to manually order the data in an Excel sheet is a significantly time-consuming 

task, so automatizing this step is essential. We developed a set of scripts in MATLAB 

that reads the information contained in a GENRE developed in Pathway Tools, pre-

process and print it automatically into an Excel file.  

 

The scripts extractReactionsInfo.m, extractMetabolitesInfo.m, extractGenesInfo.m, 

extractProteinsInfo.m, extractRNAsInfo.m, extractPathwaysInfo.m extract information 

of different elements of the GENRE from Pathway Tools. This information can be used 

by other scripts, such as printMetabolites.m and printReactions.m, to print the 

information relative to metabolites or reactions, respectively, in an Excel sheet. 

  

Printing the GENRE reactions and sorting them by metabolic pathways in an Excel sheet 

is of particular interest. The script printReactions.m, allow the user to inspect in a simple 

manner the features associated with each one of the reactions, such as the stoichiometric 

equation, EC number, or associated enzyme names. Furthermore, the script 

findGeneReactionsAssociations.m allows the user to visualize the association gene-

protein-reaction in the form of gene-rules and print them.  

 

GENRE information contained in Pathway Tools must be first exported to a plaintext, 

then it must be opened in an Excel sheet and, finally, it must be saved having removed 

all of the explanation text in order to allow MATLAB to read it. The algorithm runtime 

is 0.3 seconds 

 

The script printReactions.m was used to export the model reactions into a spreadsheet 

(Suppementary Spreadsheet 2).  
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5 GENERAL CONCLUSION AND PERPECTIVES 

 

 

In this thesis, we constructed a GEM of the wine malolactic bacterium O. oeni 

containing 914 reactions, 792 metabolites and 512 genes. This model was used to predict 

a minimal growth medium, which was compared with literature. With a total of 44 

growth/non growth experiments, the model showed an accuracy of 86% in its 

predictions and a F-score value of 0.82, suggesting a high overall performance.  

 

Additionally, the model was employed to predict specific growth rates and 

consumption/production rates of substrates and products under different medium 

conditions of pH and ethanol toxicity. In absence of ethanol, a mean percentage 

difference of 38% was observed between the experimental and predicted specific growth 

rates, while a mean percentage difference of 0.1% was found for the 

consumption/production rates. Less accurate predictions were achieved under ethanol 

growing conditions, probably due to the limited information concerning 

activation/deactivation of genes/reactions of O. oeni growing in a medium containing 

ethanol. Further model refinement will require determining biomass composition and 

whole gene expression of O. oeni under ethanol growing conditions. 

 

In addition, reaction and gene deletion analyses showed that most fragile metabolic 

processes are those related to fatty acid, peptidoglycan, purine and pyrimidine 

biosyntheses and heterolactic fermentation. Removal of some of the reactions related to 

CO2 production caused the most significant reduction of growth, probably by their 

implication in the heterolactic fermentation.  Compound deletion analysis showed that 

removal of most compounds do not affect growth, with only 26% of the metabolites 

being essential for growth. 
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We developed a set of tools implemented in MATLAB that facilitate refinement and 

analysis of GEMs. Some of these tools are associated to Pathways tools, therefore it 

requires the development of the GEM through this platform. These tools were used to 

support the construction and posterior analysis of the genome-scale metabolic model of 

O. oeni.   

 

The scripts developed to support refinement are useful for facilitating metabolite reading 

in the MATLAB GEM, printing and reading information contained in the GEM, creation 

of fields necessary to run gene deletion analysis and to make the model functional. All 

these scripts represent support for the protocol developed by Thiele and Palsson in order 

to generate high quality GEMs. Additionally, these scripts were very efficient, showing 

runtimes of 0.3, 0.3, 13 and 143 seconds respectively, when they were used in the O. 

oeni model.  

 

On the other hand, the scripts developed to support analysis were used for determining 

minimum medium requirements; performing the cross validation experiment; carrying 

out reaction, compound and gene deletion analysis; and performing sensitivity analysis. 

These scripts represent new tools that were previously unavailable. Reaction, compound 

and gene deletion analysis are unique because they incorporate information about 

pathways in which reactions are present having the user being able to analyze which 

metabolic processes tend to be affected by the removal of a particular reaction/gene. The 

scripts were efficient, showing runtimes of 69, 86, 74,110 seconds, respectively, when 

used for analysis of the O. oeni GEM. 

 

Finally, this model is the first step towards the generation of a comprehensive 

understanding of O. oeni metabolism and the consequent control of malolactic 

fermentation during winemaking. This model could be useful to predict the rate at which 

malolactic fermentation occurs in wineries, helping winemakers to predict the putative 
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duration of this process. Challenges remain in improving consumption/production 

predictions of O. oeni under ethanol growing conditions and in incorporating high 

throughput data and regulatory mechanisms.  
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ABBREVIATIONS  

ATP  Adenosine triphosphate 

COBRA Constraint-based reconstruction and analysis 

EC  Enzyme Commision 

FBA             Flux Balance Analysis 

GENRE   Genome-Scale Network Reconstruction 

GEM              Genome-Scale Model 

NGAM Non Growth Associated Maintenance 

ORF  Open Reading Frame 

KEGG  Encyclopedia of Genes and Genomes 

LAB  Lactic Acid Bacteria 

SBML             Systems Biology Markup Language  
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APPENDIXA: SUPPLEMENTARY TABLES   

Table A-1. Reactions found in O. oeni KEGG metabolic maps but not in the O. oeni draft reconstruction. Reactions 
that were added to the model were classified as accepted reactions while reactions that were not were classified 
as rejected reactions.   

Reaction KEGG ID Pathway Tools ID 

Accepted reactions   

1 2-dehydro-3-deoxy-D-gluconate    +   1 NAD+    <->   1 3-
deoxy-D-glycero-2,5-hexodiulosonate    +   1 NADH    +   1 H+   

R01542 1.1.1.127-RXN 

1 L-alanyl-tRNAala    +   1 UDP-N-acetylmuramoyl-L-alanyl-
gamma-D-glutamyl-L-lysyl-D-alanyl-D-alanine    <->   1 UDP-
N-acetylmuramoyl-L-alanyl-D-glutamyl-N6-(L-alanyl)-L-lysyl-
D-alanyl-D-alanine    +   1 tRNAala   

ooe00550

  

2.3.2.10-RXN 

2 all-trans-geranyl-geranyl diphosphate    <->   1 
prephytoene diphosphate    +   1 diphosphate   

R02065  2.5.1.32-RXN 

1 a protein-Npi-phospho-L-histidine    ->   1 a sugar 
phosphate    +   1 a [protein]-L-histidine   

R03076 2.7.1.69-RXN 

1 beta-nicotinamide D-ribonucleotide    +   1 ATP    +   1 H+    
->   1 diphosphate    +   1 NAD+ 

R00137 2.7.7.1-RXN 

1 isomaltose    +   1 H2O    <->   1 alpha-D-glucose   R01718   3.2.1.10-RXN 

1 a L-prolyl peptide    +   1 H2O    ->   1 a peptide    +   1 L-
proline   

R00135 3.4.11.5-RXN 

1 a holo-[acp]    +   1 acetyl-CoA    ->   1 an acetyl-[acp]    +   1 
coenzyme A   

R01624 ACP-S-

ACETYLTRANSFER

-RXN 

1 (R)-amygdalin    +   1 H2O    <->   1 (R)-Prunasin    +   1 beta-
D-glucose   

R02985 AMYGDALIN-

BETA-

GLUCOSIDASE-

RXN 

1 taurochenodeoxycholate    +   1 H2O    <->   1 taurine    +   
1 chenodeoxycholate   

R03977 CHENODEOXYCH

OLOYLTAURINE-

HYDROLASE-RXN 
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1 glycocholate    +   1 H2O    <->   1 cholate    +   1 glycine   R05835 CHOLOYLGLYCINE

-HYDROLASE-RXN 

1 hydroxypyruvate    +   1 NADH    +   1 H+    ->   1 D-glycerate    
+   1 NAD+   

R01388 GLYCERATE-

DEHYDROGENASE

-RXN 

1 glycolaldehyde    +   1 NAD+    +   1 H2O    <->   1 glycolate    
+   1 NADH    +   2 H+ 

R01333 GLYCOLALD-

DEHYDROG-RXN 

1 glycolate    +   1 NAD+    <->   1 glyoxylate    +   1 NADH    +   
1 H+   

R00717 GLYCOLATE-

REDUCTASE-RXN 

1 methylglyoxal    +   1 NAD+    +   1 H2O    ->   1 NADH    +   1 
pyruvate    +   2 H+ 

R00203 METHYL-

GLYOXAL-

DEHYDROG-RXN 

1 2-succinylbenzoate    +   1 coenzyme A    +   1 ATP    ->   1 2-
succinylbenzoyl-CoA    +   1 diphosphate    +   1 AMP   

R04030 O-

SUCCINYLBENZOA

TE-COA-LIG-RXN 

1 hydroxymethylpyrimidine    +   1 ATP    ->   1 4-amino-2-
methyl-5-phosphomethylpyrimidine    +   1 ADP    +   1 H+   

R03471 OHMETPYRKIN-

RXN 

1 pantetheine    +   1 ATP    ->   1 4'-phosphopantetheine    +   
1 ADP    +   1 H+   

R02971 PANTETHEINE-

KINASE-RXN 

1 (R)-Prunasin    +   1 H2O    <->   1 mandelonitrile    +   1 
beta-D-glucose   

R02558 PRUNASIN-BETA-

GLUCOSIDASE-

RXN 

1 propanoyl-CoA    +   1 phosphate    <->   1 propanoyl 
phosphate    +   1 coenzyme A   

R00921 PTAALT-RXN 

1 4-amino-2-methyl-5-phosphomethylpyrimidine    +   1 ATP    
->   1 4-amino-2-methyl-5-diphosphomethylpyrimidine    +   
1 ADP 

R04509 PYRIMSYN3-RXN 

1 (R)-citramalate    <->   1 citraconate    +   1 H2O   R03896 R-2-
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METHYLMALATE-

DEHYDRATASE-

RXN 

1 (R)-acetoin    +   1 NADH    +   1 H+    ->   1 (R,R)-2,3-
butanediol    +   1 NAD+   

R03707 RR-BUTANEDIOL-

DEHYDROGENASE

-RXN 

1 putrescine    +   1 acetyl-CoA    <->   1 N-acetylputrescine    
+   1 coenzyme A    +   1 H+ 

R01154 RXN-0 

1 cellobiose    +   1 H2O    <->   2 beta-D-glucose   R00026 RXN-10773 

1 diacetyl    +   1 NADH    +   1 H+    ->   1 (R)-acetoin    +   1 

NAD+   

R09078 RXN-11036 

3-oxo-glutaryl1 malonyl-CoA methyl ester    +   1 a malonyl-

[acp]    <->   1 a -[acp] methyl ester    +   1 CO2    +   1 

coenzyme A 

R10115 RXN-11474 

1 2-phenylacetamide    +   1 H2O    <->   1 phenylacetate    +   

1 ammonia    +   1 H+   

R02540 RXN-12492 

1 butanoyl-CoA    +   1 acetyl-CoA    <->   1 3-oxohexanoyl-

CoA    +   1 coenzyme A   

R01177 RXN-12565 

1 cysteinylglycine    +   1 H2O    ->   1 glycine    +   1 L-cysteine   R00899 RXN-6622 

1 citraconate    +   1 H2O    <->   1 beta-methyl-D-malate   R03898 RXN-7744 

1 an L-1-phosphatidyl-glycerol    +   1 a CDP-diacylglycerol    
<->   1 a cardiolipin    +   1 CMP    +   1 H+   

ooe00564 RXN-8141 

1 1-(beta-D ribofuranosyl)nicotinamide    +   1 H2O    <->   1 
beta-D-ribofuranose    +   1 nicotinamide    +   1 H+   

R01273 RXN-8441 

1 prephytoene diphosphate    <->   1 15-cis-phytoene    +   1 
diphosphate   

R04218 RXNARA-8002 
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1 2-deoxy-D-ribose-5-phosphate    +   1 ADP    +   1 H+    <->   
1 deoxyribose    +   1 ATP 

R02750 RXNK9E-143 

1 beta-D-fructofuranose    +   1 a protein-Npi-phospho-L-
histidine    ->   1 fructose-1-phosphate    +   1 a [protein]-L-
histidine   

R03232 RXNK9E-144 

1 D-mannose    +   1 a protein-Npi-phospho-L-histidine    ->   
1 D-mannose 6-phosphate    +   1 a [protein]-L-histidine   

ooe00051 RXNK9E-145 

1 sucrose    +   1 H2O    <->   1 beta-D-fructofuranose    +   1 
alpha-D-glucose 

R00801 RXNK9E-146 

1 D-galactitol    +   1 a protein-Npi-phospho-L-histidine    ->   
1 galactitol-1-phosphate    +   1 a [protein]-L-histidine   

R05570 RXNK9E-147 

1 epimelibiose    +   1 H2O    <->   1 D-mannose    +   1 D-
galactose   

R01329 RXNK9E-151 

1 L-ascorbate    +   1 a protein-Npi-phospho-L-histidine    ->   
1 L-ascorbate-6-phosphate    +   1 a [protein]-L-histidine 

R07671 RXNK9E-152 

1 alpha-maltose    +   1 a protein-Npi-phospho-L-histidine    -
>   1 maltose 6-phosphate    +   1 a [protein]-L-histidine 

R04111 RXNK9E-154 

1 a beta-D glucoside    +   1 H2O    <->   1 an alcohol    +   1 
alpha-D-glucose   

R03527 RXNK9E-156 

1 cellulose + 1 H2O    <->   1 cellulose    +   1 beta-D-glucose   R02887 RXNK9E-157 

1 a dextrin + 1 H2O    <->   1 a dextrin    +   1 alpha-D-glucose   R01791 RXNK9E-158 

1 N-acetylmuramate    +   1 a protein-Npi-phospho-L-
histidine    +   2 H+    ->   1 N-Acetylmuramic acid 6-
phosphate    +   1 a [protein]-L-histidine   

R08559 RXNK9E-159 

1 thiamin diphosphate    +   1 (S)-2-acetolactate    <->   1 2-
(alpha-hydroxyethyl)thiamine diphosphate    +   1 pyruvate   

R03050 RXNK9E-160 

1 thiosulfate    +   1 a reduced thioredoxin    +   1 O-acetyl-L-
serine    <->   1 an oxidized thioredoxin    +   1 sulfite    +   1 
acetate    +   1 L-cysteine    +   2 H+   

R04859 RXNK9E-161 

1 methylselenic acid    +   2 NADPH    +   2 H+    <->   1 R09372 RXNK9E-165 
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methaneselenol    +   2 NADP+    +   2 H2O   

1 D-4'-phosphopantothenate    +   1 L-cysteine    +   1 ATP    -
>   1 R-4'-phosphopantothenoyl-L-cysteine    +   1 
diphosphate    +   1 AMP    +   1 H+   

R04230 RXNK9E-169 

1 N-((R)-Pantothenoyl)-L-cysteine    +   1 ATP    ->   1 R-4'-
phosphopantothenoyl-L-cysteine    +   1 ADP    +   1 H+   

R04391 RXNK9E-170 

1 tetrahydrofolate    +   1 NAD+    <->   1 7,8-dihydrofolate    
+   1 NADH    +   1 H+   

R00936 RXNK9E-171 

1 folate    +   2 NADH    +   2 H+    ->   1 tetrahydrofolate    +   
2 NAD+   

R00937 RXNK9E-172 

1 tetrahydrofolate    +   2 NADP+    <->   1 folate    +   2 
NADPH    +   2 H+   

R00940 RXNK9E-173 

1 7,8-dihydrofolate    +   1 NAD+    <->   1 folate    +   1 NADH    
+   1 H+ 

R02235 RXNK9E-174 

1 7,8-dihydrofolate    +   1 NADP+    <->   1 folate    +   1 
NADPH    +   1 H+   

R02236 RXNK9E-175 

1 taurocholate    +   1 H2O    <->   1 taurine    +   1 cholate   R02797 RXNK9E-178 

1 glycochenodeoxycholate    +   1 H2O    <->   1 
chenodeoxycholate    +   1 glycine   

R03975 RXNK9E-179 

1 thiamin diphosphate    +   1 ATP    ->   1 thiamin 
triphosphate    +   1 ADP   

R00616 THIAMIN-

DIPHOSPHATE-

KINASE-RXN 

4 isopentenyl diphosphate    +   1 (2E,6E)-farnesyl 
diphosphate    <->   1 all-trans-heptaprenyl diphosphate    +   
4 diphosphate   

R09247 TRANS-

HEXAPRENYLTRA

NSTRANSFERASE-

RXN 

Rejected reactions   

1 L-1-glycero-3-phosphocholine [c]   +   1 H2O [c]   <->   1 
choline [c]   +   1 sn-glycerol-3-phosphate [c]   +   1 H+ [c] 

R01030 3.1.4.2-RXN 
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1 L-cystine [c]   +   1 H2O [c]   <->   1 thiocysteine [c]   +   1 
ammonium [c]   +   1 pyruvate [c] 

R02408 CYSTHIOCYS-RXN 

1 L-2-acetamido-6-oxoheptanedioate [c]   +   1 L-glutamate 
[c]   <->   1 N-acetyl-L,L-2,6-diaminopimelate [c]   +   1 2-
oxoglutarate [c] 

ooe00300 RXN-4822 

1 linamarin [c]   +   1 H2O [c]   <->   1 acetone cyanohydrin 
[c]   +   1 beta-D-glucose [c] 

R10040 RXN-5341 

1 a [Cys-Gly]-S-conjugate [c]   +   1 H2O [c]   <->   1 an L-
cysteine-S-conjugate [c]   +   1 glycine [c] 

R04951 RXN-6642 

1 (2E,4Z)-2-hydroxymuconate [c]   <->   1 (3Z)-2-oxohex-3-
enedioate [c] 

R03966 RXN-8844 

1 (3R)-3-hydroxy-stearoyl-CoA [c]   +   1 NADP+ [c]   <->   1 3-
oxo-stearoyl-CoA [c]   +   1 NADPH [c]   +   1 H+ [c] 

R07763 RXN-9544 

1 dhurrin [c]   +   1 H2O [c]   <->   1 beta-D-glucose [c]   +   1 
(S)-4-hydroxymandelonitrile [c] 

R10035 RXN-9588 

1 lotaustralin [c]   +   1 H2O [c]   <->   1 (2R)-2-hydroxy-2-
methylbutanenitrile [c]   +   1 beta-D-glucose [c] 

R10039 RXN-9674 

1 alpha-D-glucose [c]   +   1 ATP [c]   ->   1 alpha-D-glucose 6-
phosphate [c]   +   1 ADP [c]   +   1 H+ [c] 

R01786 RXNK9E-141 

1 galactinol [c]   +   1 H2O [c]   <->   1 myo-inositol [c]   +   1 
alpha-D-galactose [c] 

R01194 RXNK9E-149 

1 melibiitol [c]   +   1 H2O [c]   <->   1 D-sorbitol [c]   +   1 D-
galactose [c] 

R02926 RXNK9E-150 

1 sucrose [c]   <->   1 a dextran [c]   +   1 D-fructose [c] R02120 RXNK9E-153 

1 sucrose [c]   +   1 phosphate [c]   <->   1 a D-glucose-1-
phosphate [c]   +   1 D-fructose [c] 

R00803 RXNK9E-155 

1 trans-4-hydroxy-L-proline [c]   +   1 NAD+ [c]   <->   1 
pyrroline-hydroxy-carboxylate [c]   +   1 NADH [c]   +   2 H+ 
[c] 

R03291 RXNK9E-162 

1 ATP [c]   +   1 selenomethionine [c]   +   1 tRNAmet [c]   <->   
1 AMP [c]   +   1 diphosphate [c]   +   1 selenomethionyl-

R04773 RXNK9E-164 
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tRNA(Met) [c] 

1 hydrogen selenide [c]   +   3 NADP+ [c]   +   3 H2O [c]   <->   
1 selenite [c]   +   3 NADPH [c]   +   5 H+ [c] 

R03596 RXNK9E-167 

1 4-phospho-hydroxy-L-threonine [c]   +   1 H2O [c]   <->   1 
4-hydroxy-L-threonine [c]   +   1 phosphate [c] 

R05086 RXNK9E-168 

1 NADH [c]   +   1 H+ [c]   +   1 a menaquinone [c]   <->   1 
NAD+ [c]   +   1 a menaquinol [c] 

R02964 RXNK9E-176 

1 phylloquinone [c]   +   1 NADH [c]   +   3 H+ [c]   <->   1 
phylloquinol [c]   +   1 NAD+ [c] 

R03816 RXNK9E-177 

1 an alpha,beta-digalactosyldiacylglycerol [c]   +   1 H2O [c]   
<->   1 a 1,2-diacyl-3-beta-D-galactosyl-sn-glycerol [c]   +   1 
D-galactose [c] 

R04470 RXNK9E-180 

1 L-1-glycerophosphorylethanolamine [c]   +   1 H2O [c]   <->   
1 sn-glycerol-3-phosphate [c]   +   1 ethanolamine [c]   +   1 
H+ [c] 

R01470 RXNK9E-181 

1 a beta-D-galactosyl-(1->4)-beta-D-glucosyl-(1<->1)-
ceramide [c]   +   1 H2O [c]   +   2 H+ [c]   <->   1 a D-glucosyl-
N-acylsphingosine [c]   +   1 D-galactose [c] 

R03355 RXNK9E-182 

1 digalactosylceramide [c]   +   1 H2O [c]   <->   1 a 
cerebroside [c]   +   1 D-galactose [c] 

R04019 RXNK9E-183 

1 5(S)-HPETE [c]   +   2 glutathione [c]   +   1 H+ [c]   <->   1 
5(S)-HETE [c]   +   1 glutathione disulfide [c]   +   1 H2O [c] 

R07034 RXNK9E-184 

1 15(S)-HPETE [c]   +   2 glutathione [c]   <->   1 15(S)-HETE 
[c]   +   1 glutathione disulfide [c]   +   1 H2O [c] 

R07035 RXNK9E-185 

1 3-ketopimeloyl-[acp] methyl ester [c]   +   1 NADPH [c]   +   
1 H+ [c]   <->   1 3-hydroxypimeloyl-[acp] methyl ester [c]   +   
1 NADP+ [c] 

R10120 RXNK9E-186 

1 (3R)-3-Hydroxybutanoyl-[acyl-carrier protein] [c]   +   1 
NADP+ [c]   <->   1 acetoacetyl-[acp] [c]   +   1 NADPH [c]   +   
1 H+ [c] 

R04333 RXNK9E-187 

1 trans-3-Chloro-2-propene-1-ol [c]   +   1 NAD+ [c]   <->   1 R05233 RXNK9E-188 
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trans-3-Chloroallyl aldehyde [c]   +   1 NADH [c]   +   1 H+ [c] 

1 cis-3-Chloro-2-propene-1-ol [c]   +   1 NAD+ [c]   <->   1 cis-
3-Chloroallyl aldehyde [c]   +   1 NADH [c]   +   1 H+ [c] 

R05234 RXNK9E-189 

1 2-hydroxy-5-methyl-cis,cis-muconate [c]   <->   1 2-oxo-5-
methyl-cis-muconate [c] 

R05389 RXNK9E-190 

1 1-hydroxymethylnaphthalene [c]   +   1 NAD+ [c]   <->   1 1-
naphthaldehyde [c]   +   1 NADH [c]   +   1 H+ [c] 

R06917 RXNK9E-191 

1 (2-naphthyl)methanol [c]   +   1 NAD+ [c]   <->   1 2-
naphthaldehyde [c]   +   1 NADH [c]   +   1 H+ [c] 

R06927 RXNK9E-192 

1 selenocysteine [c]   +   1 a reduced electron acceptor [c]   
<->   1 selenide [c]   +   1 an oxidized electron acceptor [c]   +   
1 L-alanine [c]   +   1 H+ [c] 

R03599 SELENOCYSTEINE-

LYASE-RXN 

1 5,10-methylene-tetrahydromethanopterin [c]   +   1 
glycine [c]   +   1 H2O [c]   <->   1 tetrahydromethanopterin 
[c]   +   1 L-serine [c] 

R09099 THMPT-SER-RXN 
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APPENDIX B: SUPPLEMENTARY FIGURES 

 
Figure B-13. Logarithm of biomass concentration versus culture time. Input data for this plot is found in Table 4-
14. The slope of each trendline represents the growth rate for each of the batch culture conditions recorded in 
Table 4-14. 
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Figure B-2. Growth and metabolic monitoring of O. oeni PSU-1 at pH 4.0 (squares) and pH 3.5 (circles), in the 
absence (solid lines and filled symbols) and presence of 10% ethanol (dashed lines and empty symbols). A: 
glucose, B: fructose, C: citrate, D: L-malic acid, E: acetic acid, F: L-lactic acid, G: D-lactic-acid, H: biomass, dry 
weight. Red points represent the data extracted with WebPloAnalyzer. Figure modified from Olguín et al, (2009) 


