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ABSTRACT

We develop a novel method to compute first and second order statistical moments of

neutron flux inside a reactor by solving the multigroup diffusion equation. Randomness

comes from the lack of precise of knowledge of external sources as well as of cross-

section parameters. Thus, the flux is itself a random variable. As Monte-Carlo simu-

lations entail intense computational work, we are interested in deterministic approaches.

By assuming as given both the second moment of sources and probability distributions of

cross-section parameters, we present an efficient method based on a Sparse Tensor finite-

element method approximation as well as the use of Smolyak quadratures. Numerical

experiments are provided to validate our claims and further research lines drawn.

Keywords: Sparse Tensor Approximation, Multigroup Diffusion Equation, Uncertainty

Quantification, Smolyak Quadrature.
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RESUMEN

En esta tesis se desarrolla un método para calcular el primer y segundo momento del

flujo de neutrones dentro de un sistema nuclear resolviendo una ecuación de difusión

sin dependencia en el tiempo. La aleatoriedad proviene principalmente de la falta de

conocimiento acerca de la fuente externa y de los parámetros conocidos como secciones

transversales. Como el flujo depende de la fuente y los parámetros, es también una vari-

able aleatoria. Como las simulaciones de Monte-Carlo tienen un alto costo computacional,

se opta por enfoques determinı́sticos para resolver el problema. Asumiendo como dados

el primer y segundo momento de la fuente y la distribución de los parámetros, se presenta

un método eficiente basado en el método de elementos finitos con aproximaciones ralas

y en el uso de cuadraturas de Smolyak. Se presentan experimentos numéricos y futuros

temas a desarrollar.

Palabras Claves: Aproximaciones Tensoriales Ralas, Ecuación de Difusión con múltiples

grupos, Cuantificación de Incertidumbre, Cuadraturas de Smolyak.
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1. INTRODUCTION

The general problem of particle transport can be applied to a variety of situations from

rarefied gas dynamics for aircraft in the upper atmosphere, to charged particle transport

in space environments, as well as nuclear reactions in energy systems (McClarren, 2017)

and radiative transfer in the atmosphere (Myneni, Radiative, , & 1993, 1993). While there

are a number of developed techniques for solving these problems, the question of how

uncertainties in the simulation inputs affect the predictions remains a challenging task both

numerically and theoretically (McClarren, Ryu, & Drake, 2010; McClarren & Wohlbier,

2010; McClarren, Drake, Morel, & Holloway, 2010; Hauck & McClarren, 2013; Hanuš &

McClarren, 2016).

We aim to tackle high-dimensional uncertainties in particle transport problems by

considering steady-state multigroup diffusion equations. This model is widely used in

nuclear reactor theory for solving the phase-space distribution of neutrons in a system

where neutron-nucleus reactions occur, despite its limitations for specific physical situa-

tions (Saracco, Dulla, & Ravetto, 2012; Lamarsh, 2001). Of particular interest for nu-

clear engineers is the eigenvalue problem of computing the neutron fission chain reaction,

or so-called criticality parameters, for which first existence theorems were provided by

Habetler and Martino (Habetler & Martino, 1961), and numerous computational schemes

have been developed (Haidar, 1992; Sanchez & McCormick, 1982; Hosseini & Saadatian-

Derakhshandeh, 2015). Numerically, the criticality problem is an eigenvalue problem that

can be solved via the standard Finite Element Method (FEM) built over general triangu-

lar meshes (Hasan & Conn, 1987; Wang & Ragusa, 2009). Based on this computational

method, we will provide an efficient way to compute statistical moments for solutions sub-

ject to uncertainty in (i) sources and (ii) cross-section parameters. Nonetheless, we will

not address the associated eigenvalue problem. Rather we focus on the forward problem

where we solve for the distribution of neutrons given a source. Such problems are impor-

tant in radiation protection/shielding and nuclear hydrocarbon exploration/production.
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The standard method of choice for operator equations with uncertain input data sub-

ject to noisy observation data is the Monte Carlo (MC) algorithm and its variants: Markov

chain MC (MCMC); Ensemble Kalman Filter (EnKF), or Sequential MC (SMC), to name

by a few (cf. (Dashti & Stuart, 2016) and references therein). Typically, MC-based algo-

rithms converge slowly, as O(M−1/2), for estimates of distribution moments, subject to

M numerical solutions of the operator equation under consideration. Despite this slow

convergence, MC algorithms are free from the curse of dimensionality, i.e. the conver-

gence rate O(M−1/2) is ensured independently of the number of parameters in the model

describing the uncertainty. An alternative to Monte Carlo methods are deterministic ap-

proaches that directly compute properties of the statistical distribution. Nevertheless, when

the problem possesses distributed random input data, such as domain geometry, hetero-

geneous material properties, etc., these deterministic representations do suffer from the

curse of dimensionality and the amount of work required to compute the representation of

the solution increases exponentially in the number of dimensions. Example determinis-

tic techniques are Karhúnen-Loève, Fourier or wavelet expansions of shapes and material

properties. The deterministic representations lead to the mathematical problem of high-

dimensional interpolation and integration, accompanied by numerical techniques such

as polynomial chaos, Model Order Reduction (MOR) or the stochastic FEM (Beddek,

Le Menach, Clenet, & Moreau, 2011; Du, Luo, & Kong, 2008).

In the present work, we apply the ideas developed by Schwab et al. (von Petersdorff

& Schwab, 2006; Helmut Harbrecht & Schwab, 2008; Jerez-Hanckes & Schwab, 2017)

to efficiently approximate statistical moments of the radiative transport solutions due to

uncertainty in the sources. Broadly speaking, if the operators are deterministic, statistical

moments can be taken directly on the unknowns and sources, thereby turning the problem

into a tensorized deterministic one. The only requirement is knowledge of the sources’

statistical moments. Though the problem considered is of higher dimension, the associated

tensorized systems can be numerically solved without ever forming the tensor form matrix

resulting from standard FEM. Moreover, by sparsifying the tensor systems, computational

work and memory grows only poly-logarithmically in degrees of freedom. Application

2



of sparse tensor methods for transport equations without uncertainty was carried out by

Schwab and co-workers (Schwab, Süli, & Todor, 2008; Schwab & Todor, 2006) reducing

the number of degrees associated to angular and spatial directions. We will apply these

techniques to several problems of multigroup neutron diffusion with prescribed source

uncertainties. To reduce computational plexity, the combination technique developed by

Harbrecht et al. (Harbrecht, Peters, & Siebenmorgen, 2013) is employed.

The article is structured as follows. Section 2 introduces our model problem with

Sections 3 and 4 discussing variational formulations for the deterministic and stochas-

tic versions, respectively. Of particular interest is the well-posedness of the problem and

deterministic computation of statistical problems. Section 5 presents the numerical dis-

cretization scheme used along with convergence rates. As we will show both theoretically

and numerically, standard FEM implementations lead to an error build-up arising from for-

ward substitution for consecutive energy levels. As the number of energy groups grows,

convergence worsens. We do not solve this issue here and it will constitute future work.

Computational experiments are developed in Sections 6 and 7 for homogenous and non-

homogenous random sources, respectively, validating our theoretical claims. Finally, con-

clusions and future research lines are sketeched in Section 9, with an appendix provided

for completeness.
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2. PRELIMINARIES

2.1. Notation

Throughout, scalar quantities will be denoted by normal fonts while vector ones by

boldface. We write N for the set of natural numbers, N0 := N ∪ {0}, R the set of real

numbers with R+ := {x ∈ R : x > 0}.

LetO ⊂ Rd, d = 1, 2, be an open and Lipschitz domain. For k ∈ N0, Ck(O) represents

the space of k-times differentiable continuos functions. The class of p-integrable functions

over O is Lp(O) for p ≥ 1. We denote the standard Sobolev spaces (Steinbach, 2007) by

Hs(O) for s ∈ R, with H0(O) ≡ L2(O), dual H̃−s(O), and norms denoted by ‖·‖Hs(O).

Duality pairings are denoted by 〈·, ·〉 with subscripts indicating the domain of involved

functional spaces, if it is not clear from the context. Similarly, inner products are written

as (·, ·), only requiring integration domains as subscript.

2.2. Transport Equations and its parameters

The neutrons migration through a material medium can be modeled using the transport

equation (Koeze, 2012):

1

|v|
∂

∂t
u(x,θ, E, t) = −θ · ∇u(x,θ, E, t)− σt(x, E, t)u(x,θ, E, t)

+ Ss(x,θ, E, t) + Sf (x,θ, E, t) +Q(x,θ, E, t), (2.1)

wherein u(x, θ, E, t) is the neutron flux, the product of the phase space density of neutrons

and the neutron speed, at x ∈ D ⊂ R2, travelling in direction θ ∈ R2 at time t ∈ R and

with an energy E ∈ R+. D can be an open bounded Lipschitz domain.

Since neutrons are neutral particles, they travel in straight lines between collisions

with nuclei in the material medium. When this happens, the neutrons can be scattered in

4



another direction or absorbed. If it is absorbed in certain types of nuclei, nuclear fission

can occur.

In equation (2.1) the σ parameters are known as macroscopic cross sections and have

units of inverse length. The total cross section, σt, is the probability per unit distance

travelled that a neutron has a collision with a nucleus, and the fractions σs
σt

and σa
σt

repre-

sent probabilities of scattering and absorption occurring per collision. When an absorption

reaction occurs, the neutron can become a part of the nucleus or fission can occur: prob-

abilities for either are given by σγ
σa

and σf
σa

, respectively. When fission occurs, the energy

of released neutrons has a distribution χ(E). ν(x, E) is the average number of neutrons

created per fission in the position x and energy level E.

As a balance equation, each term in (2.1) represents the following:

• Neutron advection θ · ∇u(x,θ, E, t)

• Neutrons absorbed or scattered into another direction and energy level represent

a loss in the angular flux and can be quantified as σt(x, t, E)u(x,θ, E, t)

• Neutron gain corresponding to neutrons scattering from direction and energy

(θ̂, Ê) to (θ, E). This contribution, Ss(x,θ, E, t), is

Ss(x,θ, E, t) :=

∫
S

∫ ∞
0

σS(x, θ̂ → θ, Ê → E, t)u(x, θ̂, Ê, t)dÊdθ̂

• The production of neutrons from fission Sf (x,θ, E, t) with

Sf (x,θ, E, t) :=
χ(E)

4π

∫
S

∫ ∞
0

ν(x, E)σf (x, θ̂, Ê)u(x, θ̂, Ê, t)dÊdθ̂

• External sources that release neutrons, Q(x,θ, E, t).

5



2.3. Steady State and Multigroup Energy Approximation

Assuming steady state and time-independent parameters, (2.1) is simplified into

0 = −θ ·∇u(x,θ, E)−σt(x, E)u(x,θ, E) +Ss(x,θ, E) +Sf (x,θ, E) +Q(x,θ, E)

(2.2)

The multigroup energy approximation relies on discretizing E to build energy groups.

Each energy group includes all the neutrons with energy in a certain range. Let the energy

range [E0, ENE ] with ENE > E0 ≥ 0 be partitioned into NE non-overlapping intervals

[ENE−e, ENe−e+1]; the interval [ENE−e, ENE−e+1] is called energy group e = 1, . . . , NE .

u(e)(x, θ) =

Ee∫
Ee−1

u(x,θ, E)dE

Using this approximation with NE ∈ N energy groups, we can write equation (2.2) as

(Stacey, 2007),

0 = −θ · ∇u(e)(x,θ)− σ(e)
t (x)u(e)(x,θ)

+

NE∑
ê=1

∫
S
σ

(ê→e)
S (x, θ̂ → θ)u(ê)(x, θ̂))dθ̂

+

NE∑
ê=1

χ(e)

4π

∫
S
ν(e)(x)σf (x, θ̂)u(ê)(x, θ̂)dθ̂ +Q(e)(x,θ), (2.3)

where each parameter now depends on the energy group and are computed based on a

weighted average with an assumed energy profile.

2.4. Diffusion Equation

If we further assume isotropic scattering and a bounded and piecewise continous source

(Larsen & Morel, 1989; Evans, 2015), the transport equation asymptotically limits to a dif-

fusion equation.

6



We will work in two-dimensional physical domain though the whole program can

directly be extended to 3D. Let D ⊂ R2 be an open bounded Lipschitz domain. The

migration of neutrons through a material medium can be modeled using the multigroup

neutron diffusion equation (Bell & Glasstone, 1970; Stacey, 2007):

−∇ ·D(e)(x)∇u(e)(x) + σ(e)
r (x)u(e)(x)

−
∑
ê 6=e

σ(ê→e)
s (x)u(ê)(x) = f (e)(x), ∀e = 1, . . . , NE, (2.4)

wherein u(e)(x) is the neutron flux integrated over an energy range [Ee−1, Ee], and is inter-

preted as the number density of neutrons at x multiplied by an average neutron speed. The

removal cross-section σ(e)
r for group e is given by

σ(e)
r = σ(e)

a +
∑
ê 6=e

σ(e→ê)
s ,

where σ(e)
a is the absorption cross-section for energy group e at the position x ∈ D with

units of inverse length, and σ(ê→e)
s , is the scattering cross-section from energy group ê to e

at position x ∈ D. D(e) is the piecewise-constant energy group diffusion coefficient with

units of length. Finally, f (e) is the prescribed source (in units of number density per unit

time) of neutrons into energy group e at position x.

ASSUMPTION 2.1. In the following, we will assume cross-sections σ(e)
a , σ(ê→e)

s and

diffusion coefficients to lie in L∞(D) and be non-negative measurable functions satisfying

the following subcriticality conditions (Bourhrara, 2006):

0 < σ0 ≤ σ(e)
r ≤ σ∞, (2.5)

σ(e)
a +

NE∑
e=1

σ(e→ê)
s −

NE∑
ê=1

σ(ê→e)
s ≥ α > 0, (2.6)

σ(e)
a ≥ α > 0, (2.7)

for ê, e = 1, . . . , NE . These conditions imply that physically there can be no neutron chain

reactions that do not end in finite time.
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2.5. Boundary and interface conditions

Let D ⊂ R2 be any open Lipschitz domain. We denote the standard Dirichlet and

Neumann traces by γD and γN , respectively, defined over functions f in C∞(D) as

(γDf)(x) := lim
x̃∈D→x∈∂D

f(x̃), (γNf)(x) := lim
x̃∈D→x∈∂D

n̂ · ∇f(x̃),

where n is the outward normal to the boundary ∂D and with known extensions (Steinbach,

2007) γD : H1(D)→ H
1
2 (∂D) and γN : H1(D)→ H−

1
2 (∂D).

On the boundary ∂D, we will employ the so-called Marshak boundary conditions,

which are mixed or Robin boundary conditions approximating no neutrons entering the

domain (Brunner, Mehlhorn, McClarren, & Kurecka, 2005), for each energy group e =

1, . . . , NE ,

γNu
(e)(x) +

1

2D(e)(x)
γDu

(e)(x) = 0, ∀ x ∈ ∂D. (2.8)

If D is made up of different disjoint Ndom ∈ N subdomains, e.g., D =
⋃Ndom
i=1 Di, with

Di ∩ Dj = ∅, for i 6= j, one may be required to state interface conditions. Without loss

of generality, let us assume that D is composed of two such disjoint subdomains such that

∂D1 ∩ ∂D2 6= ∅ and that u(e) is solution of (2.4). Then, for u(e)
i := u(e)|Di , i = 1, 2, being

restrictions of the neutron flux over each subdomain, transmission conditions are given by

(Duerigen, 2013):

γ1
Du

(e)
1 = γ2

Du
(e)
2 on ∂D1 ∩ ∂D2, (2.9a)

D
(e)
1 γ1

Nu
(e)
1 = D

(e)
2 γ2

Nu
(e)
2 on ∂D1 ∩ ∂D2, (2.9b)

where D(e)
i is the constant value of the diffusion coefficient D(e)(x) inside the subdomain

Di, i = 1, 2, respectively, and γiD, γiN , denote corresponding trace operators.
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3. CONTINUOUS DETERMINISTIC MODEL

In what follows, we formally state the deterministic model problem of steady state

neutron flux to be studied. Our setting will be that of H1-spaces as in (Bourhrara, 2006);

we also recall conditions for uniqueness and existence of solutions.

3.1. Deterministic Strong Formulation

For each energy group, let us define two operators:

A(e)u(e) :=
(
−∇ ·D(e)∇+ σ(e)

r

)
u(e), (3.1)

B(eê)u(ê) := −σ(ê→e)
s u(ê), (3.2)

with e = 1, . . . , NE . Though coefficients and cross-sections may vary inside D, our hy-

potheses allow us to conclude that both A(e) : H1(D) → H̃−1(D) and B(e) : H1(D) →

H1(D) are linear and continuous. Then, the strong formulation for the multigroup diffu-

sion equation problem reads

PROBLEM 3.1. For all e = 1, . . . , NE , let f (e) ∈ H̃−1(D). We seek u ∈ H1(D) such

that

A(e)u(e) −
∑
ê6=e

B(eê)u(ê) = f (e) in D, (3.3)

γNu
(e) +

1

2D(e)
γDu

(e) = 0, on ∂D. (3.4)

Furthermore, we can define operator matrices A : [H1(D)]NE → [H̃−1(D)]NE and

B : [H1(D)]NE → [H̃1(D)]NE , to contain the operators for all energy groups:

A := diag(A(1), . . . ,A(NE)), B :=


0 B(12) · · · B(1NE)

B(21) 0 · · · ...
...

... . . . ...

B(NE1) B(NE2) · · · 0

 . (3.5)
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Defining D := (A+B) and setting f = (f (1), . . . , f (NE)) in [H̃−1(D)]NE , (3.3) can be

equivalently written as,

D(x)u(x) = f(x), ∀ x ∈ D, (3.6)

where u = (u(1), . . . , u(NE)) in [H1(D)]NE .

3.2. Deterministic Variational Formulation

For e = 1, . . . , NE , the variational form of Problem 3.1 can be written as

a(e)(u(e), v)−
∑
ê 6=e

b(êe)(u(e), v) =
〈
f (e), v

〉
D ∀ v ∈ H1(D), (3.7)

wherein the bilinear forms a(e)(·, ·) and b(êe)(·, ·) are induced by the aforementioned oper-

ators as follows

a(e)(u(e), v) :=

∫
D

D(e)(x)∇u(e)(x) · ∇v(x)dx +
1

2

∫
∂D

γDu
(e)(x)γDv(x)dx

+

∫
D

σ(e)
r (x)u(x)v(x)dx,

b(êe)(u(e), v) := −
∫
D

σ(ê→e)
s (x)u(e)(x)v(x)dx,

by using integration-by-parts and the boundary condition (2.8). Clearly, both forms are

continuous and bounded. However, it is less obvious to see that problem (3.7) is well

posed.

Lemma 3.1 (Theorem 4 in (Bourhrara, 2006)). Assume that the u(ê) ∈ H1(D) are

given for ê 6= e. For f (e) ∈ L2(D) and under subcriticality conditions (2.5)–(2.7), problem

(3.7) has a unique solution u(e) ∈ H1(D), for each e = 1, . . . , NE .

The proof is based on the Fredholm alternative (Steinbach, 2007, Theorem 3.35) and

on the injectivity of the bilinear form for the case of subcritical conditions. In particular,
10



the coercivity estimates arise by shifting the compact pertubation provided by the substrac-

tion of mass terms multiplied by σ(e)
r and σ(ê→e)

s and the compact embedding H1 ↪→ L2

(cf. (Bourhrara, 2006; Hanuš, 2011) and (Steinbach, 2007)).

Similarly, we can state the variational formulation for the entire multigroup diffusion

system (3.6) with boundary conditions (3.4) by considering the bilinear form:

d(u,v) := 〈Du,v〉D =

NE∑
e=1

a(e)(u(e), v(e))−
NE∑
e=1

∑
ê6=e

b(êe)(u(e), v(e)). (3.8)

The above is derived by understanding the duality pairing over the Cartesian product space

[H1(D)]NE as the sum over all NE individual H1(D)-pairings and using integration-by-

parts formula.

PROBLEM 3.2. Let f ∈ [H̃−1(D)]NE . Find u ∈ [H1(D)]NE such that

d(u,v) = 〈f ,v〉D ∀ v ∈ [H1(D)]NE , (3.9)

where the source term is just the sum of individual dual products
〈
f (e), v

〉
D over e.

Corollary 3.1 (Theorem 7 in (Bourhrara, 2006)). Assume f ∈ [H̃−1(D)]NE . Then,

Problem 3.2 has a unique solution u ∈ [H1(D)]NE . Moreover, the operator D is bounded

and invertible .

ASSUMPTION 3.1. In order to obtain convergence estimates, we will later assume that

there exist bounded mappings D−1 from [H̃−1+s(D)]NE to [H1+s(D)]NE , for 0 ≤ s ≤ s0,

with s0 depending on the domain regularity and smoothness of parameters and sources.

We will not elaborate on this and point out the relevant work by Stewart (Stewart, 1974,

1976).
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4. CONTINUOUS STOCHASTIC MODEL

In equation (2.4), both source and parameters are deterministic. However, in reality,

sources are composed of materials that release neutrons, involving epistemic and aleatoric

uncertainties, as measurements are not accurate and neutrons behave differently each time

the experiment is made. Similarly, cross-sections’ uncertainties also suffer of such types

of randomness (Zwermann et al., 2014).

4.1. Abstract Theory

In order to quantify uncertainty effects, we introduce parts of the theory presented in

(von Petersdorff & Schwab, 2006; Jerez-Hanckes & Schwab, 2017). Let (Ω,F ,P) be

a probability space, where, as customary, Ω denotes the set of all elementary events, F

denotes the associated σ-algebra and P a probability measure. We define a random field g

with values in a separable Hilbert space X as a strongly measurable mapping g : Ω→ X

which maps events E ∈ F to Borel sets in X .This induces a measure P̃ on X .

For k ∈ N, the random variable g : Ω → X lies in the Bochner space Lk(Ω,P;X) if

ω 7→ ‖g(ω)‖kX is measurable and integrable, satisfying

‖g‖kLk(Ω,P;X) :=

∫
Ω

‖g(ω)‖kXdP(ω) <∞.

If g ∈ L1(Ω,P;X), the expectation

E[g] :=

∫
Ω

g(ω)dP(ω) ∈ X (4.1)

exists as a Bochner integral with

‖E[g]‖X ≤ ‖g‖L1(Ω,P;X) . (4.2)

Let B belong to L(X, Y ), the space of linear continuous mappings fromX to Y . For a ran-

dom variable g in Lk(Ω,P;X) one constructs another random variable h(ω) = Bg(ω) ∈

Lk(Ω,P;Y ) satisfying
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‖Bg‖Lk(Ω,P;Y ) ≤ ‖g‖Lk(Ω,P;X). (4.3)

Furthermore,

B

∫
Ω

g(ω)dP(ω) =

∫
Ω

Bg(ω)dP(ω) . (4.4)

For k ∈ N, the k-fold tensor product space is defined as

X(k) := X ⊗ · · · ⊗X︸ ︷︷ ︸
k-times

(4.5)

equipped with the natural norm ‖·‖X(k) , which is a cross-norm, i.e.

‖g1 ⊗ · · · ⊗ gk‖X(k) = ‖g1‖X · · · ‖gk‖X , (4.6)

for all g1, . . . , gk in X . Taking B ∈ L(X, Y ), there is a unique linear, continuous tensor

product operator:

B(k) := B⊗ · · · ⊗ B︸ ︷︷ ︸
k-times

∈ L(X(k), Y (k)) . (4.7)

For a random field u ∈ Lk(Ω,P;X), let the k-fold simple tensor product u(k)(ω) :=

u(ω)⊗ · · · ⊗ u(ω). Then, u(k) ∈ L1(Ω,P;X(k)). For u ∈ Lk(Ω,P;X) with finite k ∈ N,

the kth moment of u(ω) is defined by

Mku = E
[
u⊗ · · · ⊗ u︸ ︷︷ ︸

k-times

]
=

∫
ω∈Ω

u(ω)⊗ · · · ⊗ u(ω)︸ ︷︷ ︸
k-times

dP(ω) . (4.8)

Nonetheless, in the present work we will just focus on first and second order moments,

i.e. k = 1, 2. Observe that, for k ∈ N, we denote by Xk = X × ... × X the k-fold

Cartesian product of X , with graph norm given by the sum of k components. This is

different from the k-fold tensor product X(k) in (4.5).

The next result justifies deterministic computations of first and second order statistical

moments.

PROPOSITION 4.1 (Theorem 6.1 in (Jerez-Hanckes & Schwab, 2017)). Assume given

A ∈ L(X,Z), B ∈ L(Y, Z) for three Hilbert spaces X, Y, Z, with A boundedly invertible.
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Then, for f ∈ L2(Ω,P;Y ), the solution of the operator stochastic equation:

Au(ω) = Bf(ω) (4.9)

admits a unique solution u ∈ L2(Ω,P;X) whose first and second moments, E[u] ∈ X

and M2u := E[u ⊗ u] ∈ X(2), respectively, uniquely solve the associated deteministic

equations:

AE[u] = BE[f ] in Z , (4.10)

and

(A⊗ A)u(2) = (B⊗ B)M2f in Z(2) , (4.11)

whereM2f := E[f ⊗ f ] ∈ Y (2).

4.2. First statistical moment

We now consider stochastic sources f (e)(x, ω) with ω ∈ (Ω,F ,P). As in Section 3,

we state the strong and variational formulations for the first statistical moment problem.

As shorthand, we identify for brevity Xs ≡ [H1+s(D)]NE and Zs ≡ [H̃−1+s(D)]NE , with

X ≡ X0 and Z ≡ Z0 hereafter.

4.3. Strong Formulation

Assuming sources to be stochastic while keeping physical parameters deterministic,

we rewrite Problem 3.1 as follows. Let f (e) ∈ L1(Ω,P, H̃−1(D)) for e = 1, . . . , NE . For

each realization ω ∈ (Ω,F ,P), we seek u(e) ∈ L1(Ω,P, H1(D)) such that

A(e)u(e)(ω)−
∑
ê 6=e

B(eê)u(ê)(ω) = f (e)(ω) in D, (4.12)

γNu
(e)(ω) +

1

2D(e)
γDu

(e)(ω) = 0 on ∂D (4.13)

for e = 1, . . . , NE . Equivalently and as before, (4.12) can be summarized as

D(x)u(x, ω) = f(x, ω) ∀ x ∈ D, (4.14)
14



where u now lies in the Bochner space L1(Ω,P, X) and f in L1(Ω,P, Z) with D defined

in (3.5). As explained in Section 4.1, taking expectation on both sides of (4.14) yields

E[Du] = E[f ] in D. (4.15)

Similarly, for (4.13), it holds

E[γNu
(e)] +

1

2D(e)
E[γDu

(e)] = 0 on ∂D, ∀ e = 1, . . . , NE. (4.16)

As the spaces H1(D), Hr(∂D), for |r| ≤ 1
2
, are separable, and operators D, γN and γD

are linear and deterministic, property (4.4) holds. Consequently, the strong first moment

problem can be stated as

DE[u] = E[f ] in Z, (4.17)

γNE[u(e)] +
1

2D(e)
γDE[u(e)] = 0 on ∂D, ∀ e = 1, . . . , NE. (4.18)

For shorthand, let us define

ū(x) := E[u](x) and f̄(x) := E[f ](x).

Then, equation (4.17) turns into

D ū = f̄ in Z, (4.19)

which, along with boundary conditions (4.18) become the strong deterministic formulation

for the first moment problem.

4.4. Variational Formulation

By Corollary 3.1 and recalling the definition of the bilinear form d(·, ·) in (3.8), one

can quickly derive the next result:
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PROPOSITION 4.2. Let f ∈ L1(Ω,P, Z) with mean f̄ ∈ Z. Then, the first order

moment variational problem: seek ū ∈ X such that

d(ū,v) =

NE∑
e=1

〈
f̄ (e), v(e)

〉
D , (4.20)

for all v ∈ X , with v = (v(1), . . . , v(NE)), has a unique solution continuously dependent

on the data.

4.5. Second Statistical Moment Problem

We are interested on computing not only the first order but also the second order mo-

ment as well , so as to have more statistical information related to the neutron flux. Observe

that this implies knowledge of the source’s statistical second order moments M2f . The

following derivation is reminiscent to the one performed by Harbrecht (Harbrecht, 2014).

4.6. Strong Formulation

We assume that f ∈ L2(Ω,P, Z) and seek u ∈ L2(Ω,P, X). Taking second moments

of (4.14) yields

M2[Du] = M2f in Z(2) (4.21)

as D ∈ L(X,Z) and where Z(2) = Z ⊗ Z. When tensorizing, particular attention should

be given to the Cartesian product space structures embedded in the definitions of spaces

X,Z, i.e.

X(2) = X ⊗X = [H1(D)]NE ⊗ [H1(D)]NE = [H1(D)⊗H1(D)]NE×NE .

Let us define the bivariate spacesHr
mix(D×D) := Hr(D)⊗Hr(D) and similarly for dual

spaces. Then, we can identify

(Xs)(2) = [H1+s
mix(D ×D)]NE×NE and (Zs)(2) = [H̃−1+s

mix (D ×D)]NE×NE .
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Hence, we can use Proposition 4.1 to write

(D⊗D)M2u =M2f in Z(2). (4.22)

To further simplify notation, we define

U(x,y) := (M2u)(x,y) = E[u⊗ u](x,y) ∈ X(2) (4.23)

F (x,y) := (M2f)(x,y) = E[f ⊗ f ](x,y) ∈ Z(2). (4.24)

For each energy level e = 1, . . . , NE , we derive for the boundary conditions the following

tensor deterministic equation on ∂D × ∂D:

M2
(
γNu

(e)
)

= −M2

(
1

2D(e)
γDu

(e)

)
(4.25)

(γN ⊗ γN)M2u(e) =

(
1

2D(e)
γD ⊗

1

2D(e)
γD

)
M2u(e) (4.26)

This holds across energy groups e 6= ê. Moreover, these equations are meaningful at least

in H
− 1

2
mix(∂D × ∂D), and with more regularity as an equation in L2

mix(∂D × ∂D).

With the above derivations, we can state the strong form of the second moment prob-

lem:

PROBLEM 4.1. For F ∈ Z(2), seek U ∈ X(2) such that

(D⊗D)U = F in D ×D, (4.27)

(D⊗γD)U = 0 in D × ∂D, (4.28)

(γD ⊗ D)U = 0 in ∂D ×D, (4.29)

(γN ⊗ γN)U (eê) =

(
1

2D(e)
γD ⊗

1

2D(ê)
γD

)
U (eê) on ∂D × ∂D, (4.30)

for energy levels 1 ≤ e, ê ≤ NE .
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Observe that (4.28) and (4.29) complete the system. Finally, Dirichlet and Neumann

trace operators in Problem 4.1 should be interpreted as Cartesian arrays of trace operators

per energy group.

4.7. Variational Formulation

The variational formulation of Problem 4.1 is built by taking duality products of (4.27)

over X(2). In what follows, we precise the variable dependence and recall that X(2) =

[H1
mix(D × D)]NE×NE . By integration-by-parts and using equations (4.25), (4.28) and

(4.29), we arrive at the following problem

PROBLEM 4.2. Seek U ∈ X(2) such that, for any F ∈ Z(2), it holds

d2(U, V ) = 〈F, V 〉D , ∀ V ∈ X(2), (4.31)

wherein now there is a sum of NE×NE duality pairings in H1
mix(D×D) and the bilinear

form d2(·, ·) is defined as:

d2(U, V ) :=

NE∑
e1,e2=1

a
(e1e2)
2 (U (e1e2), V ) +

NE∑
e1,ê1,e2,ê2=1

b
(ê1ê2e1e2)
2 (U (ê1ê2), V )

+

NE∑
e1,e2,ê2=1

ab(e1ê2e2)(U (e1ê2), V ) +

NE∑
ê1,e1,e2=1

ba(e1ê1e2)(U (ê1e2), V )

(4.32)

for all V ∈ H1
mix(D ×D), with the following terms:

a
(e1e2)
2 (U (e1e2), V ) :=

∫
D×D

(D(e1)(x)∇x ⊗D(e2)(y)∇y)U (e1e2)(x,y)(∇x ⊗∇y)V (x,y)dxdy

+
1

2

∫
D×∂D

(D(e1)(x)∇x ⊗ γD)U (e1e2)(x,y)(∇x ⊗ γD)V (x,y)dxdsy

+
1

2

∫
∂D×D

(γD ⊗D(e2)(y)∇y)U (e1e2)(x,y)(γD ⊗∇y)V (x,y)dsxdy

+
1

4

∫
∂D×∂D

(γD ⊗ γD)U (e1e2)(x,y)(γD ⊗ γD)V (x,y)dsxdsy
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+

∫
D×D

(D(e1)(x)∇x ⊗ σ(e2)
r (y))U (e1e2)(x,y)(∇x ⊗ Iy)V (x,y)dxdy

+

∫
D×D

(σ(e1)
r (x)⊗D(e1)(y)∇y)U (e1e2)(x,y)(Ix⊗∇y)V (x,y)dxdy

+
1

2

∫
D×∂D

(σ(e1)
r (x)⊗ γD)U (e1e2)(x,y)(Ix⊗γD)V (x,y)dxdsy

+
1

2

∫
∂D×D

(γD ⊗ σ(e2)
r (y))U (e1e2)(x,y)(γD ⊗ Iy)V (x,y)dsxdy

+

∫
D×D

(σ(e1)
r (x)⊗ σ(e2)

r (y))U (e1e2)(x,y)V (x,y)dxdy,

b
(ê1ê2e1e2)
2 (U (ê1ê2), V ) := −

∫
D×D

(σ(ê1→e1)
s (x)⊗ σ(ê2→e2)

s (y))U (ê1ê2)(x,y)V (x,y)dxdy,

ab(e1ê2e2)(U (e1ê2), V ) :=

∫
D×D

(D(e1)(x)∇x ⊗ σ(ê2→e2)
s (y))U (e1ê2)(x,y)(∇x ⊗ Iy)V (x,y)dxdy

−1

2

∫
∂D×D

(γD ⊗ σ(ê2→e2)
s (y))U (e1ê2)(x,y)V (x,y)dxdy

−
∫
D×D

(σ(e1)
a (x)⊗ σ(ê2→e2)

s (y))U (e1ê2)(x,y)V (x,y)dxdy.

The bilinear form ba(·, ·) follows the same pattern as ab(·, ·) and we do not include it here

for the sake of brevity.

By Corollary 3.1, D is boundedly invertible and consequently direct use of Proposition

4.1 leads to the well-posedness of the tensor deterministic Problem 4.2 for the second order

moment.

19



PROPOSITION 4.3. Let f ∈ L2(Ω,P, Z) with second order moment F ∈ Z(2). Then,

the second order moment variational Problem 4.2 has a unique solution U ∈ X(2) contin-

uously dependent on the data.
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5. NUMERICAL DISCRETIZATION

We now present the details of the FEM implementation for the multigroup diffusion

problem performed as well as associated convergence rates. As stated initially, the main

advantage of the deterministic approach for statistical moments relies on the availability

of a standard FEM code to solve the tensorized second order moment. As we will show,

this process never requires actual tensorization and can be efficiently computed with poly-

logarithmic effort in terms of degrees of freedom.

5.1. Discretization of the deterministic problem

We seek to approximate the variational formulation for the nuclear flux diffusion prob-

lem described in Problem 3.2. We consider a sequence of nested meshes {TNh}Nh∈N, each

one composed of triangular elements {τt}Nht=1, characterized by a meshwidth h > 0 and

such that

D = T Nh =

Nh⋃
t=1

τ t.

We will later on refer to mesh discretization levels l ∈ N0, for which the meshwidth h(l)

yields Nh(l) degrees of freedom and one may write Nl for brevity.

Discrete solutions uh(x) will belong to the finite element space [Vh]
NE , where Vh is

defined as

Vh := {vh ∈ H1(D) : vh|τi ∈ P1(τi) ∀ i = 1, . . . , Nh}. (5.1)

Let ϕhi (x) denote the basis functions of Vh, i.e. Vh = span{ϕh1 , ..., ϕhNh}. Then, the Carte-

sian product approximation space can be written as

[Vh]
NE = span{ϕh,ei }

Nh,NE
i,e=1

where ϕh,ei is defined as

ϕh,ei (x) := ϕhi (x)ĉe
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and ĉe ∈ RNE is the canonic vector non-zero at group e. Consequently, the unknown

uh(x) =

NE∑
e=1

Nh∑
i=1

u
(e)
i ϕ

h,e
i (x) (5.2)

where u
(e)
i ∈ R are unknown coefficients. Using equation (3.9) and test functions given

by the same basis functions ϕh,ei , we write down the Galerkin discrete problem:

PROBLEM 5.1. Let f ∈ Z. Find uh ∈ [Vh]
NE such that

d(uh,vh) = 〈f ,vh〉D ∀ vh ∈ [Vh]
NE , (5.3)

with d(·, ·) as defined in (3.8).

By conformity and denseness of the Vh in X and injectivity of D (cf. Corollary 3.1),

one can prove the following result:

Lemma 5.1 (Thm. 8.11 in (Steinbach, 2007)). There exists a refinement level h0 > 0

such that the following stability condition

cs‖wh‖X ≤ sup
06=vh∈[Vh]NE

d(wh,vh)

‖vh‖X
∀ wh ∈ X, (5.4)

holds for all 0 ≤ h < h0, with a bounded constant cs > 0.

Armed with the above stability condition, we derive the next proposition as in (Steinbach,

2007, Thm. 8.10).

PROPOSITION 5.1. Problem 5.1 has a unique solution uh ∈ [Vh]
NE . Moreover, the

best approximation error bound holds

‖u− uh‖X ≤
(
cD
cs

)
inf

vh∈Vh
‖u− vh‖X , (5.5)

where cD is the continuity constant of D.

22



5.1.1. Matrix formulation

By replacing the discrete solution in the energy group e

u
(e)
h (x) =

Nh∑
i=1

u
(e)
i ϕhi (x) (5.6)

in the definitions for a(e) and b(êe) in Section 3.2, we derive Galerkin matrices: A(e) :=(
a

(e)
ij

)Nh
i,j=1

, B(eê) :=
(
b

(eê)
ij

)Nh
i,j=1

and f (e) :=
(
f

(e)
i

)Nh
i=1

, with

a
(e)
ij := a(e)(ϕhj , ϕ

h
i ), b

(eê)
ij := b(eê)(ϕhj , ϕ

h
i ), f

(e)
i :=

〈
f (e), ϕhi

〉
D , (5.7)

for e = 1, . . . , NE . Thus, equation (5.3) can be equivalently written as a linear system as

follows, 
A(1) B(12) · · · B(1NE)

B(21) A(2) · · · B(2NE)

...
... . . . ...

B(NE1) B(NE2) · · · A(NE)




u(1)

u(2)

...

u(NE)

 =


f (1)

f (2)

...

f (NE)

 (5.8)

5.1.2. Convergence Error

We now provide theoretical convergence rates for Galerkin Problem 5.1 using piecewise-

linear approximation basis. For this, we recall the following standard result:

Lemma 5.2 (Thm. 9.10 in (Steinbach, 2007)). Let O be a bounded Lipschitz domain

and u ∈ Hs(O) with s ∈ [β, 2] and β = 0, 1. Then, there holds the approximation

property:

inf
vh∈Vh(O)

‖u− vh‖Hβ(O) ≤ chs−β|u|Hs(O), (5.9)

where | · |Hs(O) denotes the Hs(O)-semi-norm and Vh(O) the space of piecewise linear

functions over a mesh on O.
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We can derive a general error bound in the Cartesian product space framework by

assuming Assumption 3.1 and combining the above lemma with Proposition 5.1.

PROPOSITION 5.2. Let β = 0, 1 and u ∈ Xβ and uh ∈ Vh denote the continuous and

discrete solutions of Problem 3.2 and 5.1, respectively. Then, the following error bound

holds

‖u− uh‖Xβ ≤ chs−β
NE∑
e=1

∣∣u(e)
∣∣
Hs(D)

, (5.10)

for s ∈ [β, 2] and with a constant c > 0.

Alternatively, using Cea’s Lemma (Steinbach, 2007, Thm. 8.1) and Lemma 5.2 we can

derive the following error bound for the first energy group:

PROPOSITION 5.3. Assume there is only down-scattering and u(1) ∈ Hβ(D), with

β = 0, 1. Then, it holds

‖u(1) − u(1)
h ‖Hβ(D) ≤

cA
(1)

2

cA
(1)

1

inf
v
(1)
h ∈Vh

‖u(1) − v(1)
h ‖Hβ(D) ≤ Chs−β

∣∣u(1)
∣∣
Hs(D)

(5.11)

with s ∈ [β, 2] and C :=
cA

(1)

2

cA
(1)

1

c and constants cA
(1)

2 and cA
(1)

1 being continuity and coer-

civity constants of the operator A(1).

In general, the same inequality for all the energy groups does not hold due to the

lack of Galerkin orthogonality. Consequently, the interaction between the energy groups

generates a dependence between the errors of different groups. Theorem 5.1 states the

relation between every group with the first one in a down-scattering diffusion multigroup

equation.

Theorem 5.1. Let us consider the discrete solution given by solving the system (5.8),

when σ(e1e2)
s = 0 for all e1 > e2 (downscattering problem). The bound of the error of

the multigroup diffusion equation approximate solution for an specific energy group e is
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bounded by an expression that includes the term

e−1∏
e′=1

2

cA
(e′+1)

1

‖σ(e′→e′+1)
s ‖L∞‖u(1) − u(1)

h ‖L2 (5.12)

i.e.,

‖u(e) − u(e)
h ‖L2 ≤ C(e) +

e−1∏
e′=1

2

cA
(e′+1)

1

‖σ(e′→e′+1)
s ‖∞‖u(1) − u(1)

h ‖L2 (5.13)

PROOF. See Appedix A �

This implies that the error of the first level is propagated to all the other levels. The

same happens with each level lower than e. As we can see, the higher the σs values are

and the lower the ellipticity constant is, the worst the error bound obtained.

5.2. Approximations of first and second moments

For the first moment problem described in Section 4.4, we simply require solving

Problem 5.1 with a right-hand side equal to the expectation of the source f̄ using the

standard FEM. The Galerkin matrices obtained will be reused for the second moment

computation as follows.

For the second statistical moment (cf. Problem 4.2), we recall that each elementU (e1e2) ∈

H1
mix(D ×D), with e1, e2 ∈ {1, . . . , NE}, can be approximated as a tensor product

U (e1e2)(x,y) = u(e1)(x)u(e2)(y),

with u(e1) and u(e2) inH1(D). These in turn can be computed via u(e1)
h ∈ Vh and u(e2)

h̃
∈ Vh̃,

conforming finite element spaces inH1(D) as defined in (5.1) with h and h̃ not necessarily

equal, i.e. their corresponding number of degrees of freedom Nh and Nh̃ may differ. In

other words, we will seek

U
(e1e2)

h,h̃
∈ Vh,h̃ := Vh ⊗ Vh̃,

where Nh,h̃ := dim(Vh,h̃) = Nh ·Nh̃.
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We can now state the discrete version of Problem 4.2.

PROBLEM 5.2. Seek Uh ∈ [Vh,h̃]
NE×NE such that, for any F ∈ Z(2), it holds

d2(Uhh̃,Whh̃) = 〈F,Whh̃〉D , ∀Wh ∈ [Vh,h̃]
NE×NE , (5.14)

where the bilinear form d2(·, ·) is defined as in (4.32).

5.2.1. Matrix formulation

Again, let {ϕhi }
Nh
i=1 and {ϕh̃i }

Nh̃
i=1 denote basis functions for Vh and Vh̃, respectively.

Then, one can define Cartesian product spaces

[Vh]
NE = span{ϕh,ei }

Nh,NE
i,e=1 , [Vh̃]

NE = span{ϕh̃,ei }
Nh̃,NE
i,e=1 (5.15)

where ϕh,ei and ϕh̃,ei are defined as in Section 5.1. Then,

uh(x) =

NE∑
e1=1

Nh∑
i=1

d
(e1)
i ϕh,e1i (x) =

Nh∑
i=1

diϕ
h
i (x) (5.16)

uh̃(y) =

NE∑
e2=1

Nh̃∑
j=1

d̃
(e2)
j ϕh̃,e2j (y) =

Nh̃∑
j=1

d̃jϕ
h̃
j (y) (5.17)

With these, we can write

Uh,h̃(x,y) =

(
NE∑
e1=1

Nh∑
i=1

d
(e1)
i ϕh,e1i (x)

) NE∑
e2=1

Nh̃∑
j=1

d̃
(e2)
j ϕh̃,e2j (y)

T

=

Nh∑
i=1

Nh̃∑
j=1

did̃
T
j ϕ

h
i (x)ϕh̃j (y)

(5.18)

where di, d̃j ∈ RNE are the unknown coefficient vectors for i = 1, . . . , Nh and j =

1, . . . , Nh̃, respectively. Replacing (5.18) in (5.14) and using as test functions the tensor

basis {
ϕh,e1i (x)ϕh̃,e2j (y)T

}Nh,Nh̃,NE ,NE
i,j,e1,e2=1

,
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we obtain the following linear system:(
Nh∑
k=1

Aikdk

) Nh̃∑
l=1

Ãjld̃l

T

= Qij ∀ i = 1, . . . , Nh, ∀ j = 1, . . . , Nh̃, (5.19)

where matrices Aik ∈ RNE×NE , for all i, k = 1, . . . , Nh and Ãjl ∈ RNE×NE for all

j, l = 1, . . . , Nh̃, are defined as,

Aik :=


a

(1)
ik b

(12)
ik . . . b

(1NE)
ik

b
(21)
ik a

(2)
ik . . . b

(2NE)
ik

...
... . . . ...

b
(NE1)
ik b

(NE2)
ik · · · a

(NENE)
ik

 , Ãjl :=


ã

(1)
jl b̃

(12)
jl . . . b̃

(1NE)
jl

b̃
(21)
jl ã

(2)
jl . . . b̃

(2NE)
jl

...
... . . . ...

b̃
(NE1)
jl b̃

(NE2)
jl · · · ã

(NENE)
jl ,


where entries a(e1)

ik , b(e1ê1)
ik and are defined over Vh as in (5.7) for e1, ê1 = 1, . . . , NE .

Similarly for ã(e2)
jl and b̃(e2ê2)

jl over Vh̃. The source second moment terms Qij ∈ RNE×NE

are defined as,

Qij :=

∫
D×D

F (x,y)ϕhi (x)ϕh̃j (y)dxdy, (5.20)

for i = 1, . . . , Nh and j = 1, . . . , Nh̃. Equivalently, one can write (5.19) as

Nh∑
k=1

Nh̃∑
l=1

AikDklÃ
T
jl = Qij, (5.21)

where Dkl := dkd̃
T
l ∈ RNE×NE . This is the same as the following matrix system



A11


ÃT11 . . . ÃT1N

ĥ

...
. . .

...

ÃTN
ĥ
1 . . . ÃTN

ĥ
N

ĥ

 . . . A1Nh


ÃT11 . . . ÃT1N

ĥ

...
. . .

...

ÃTN
ĥ

. . . ÃTN
ĥ
N

ĥ


...

. . .

ANh1


ÃT11 . . . ÃT1N

ĥ

...
. . .

...

ÃTN
ĥ
1 . . . ÃTN

ĥ
N

ĥ

 . . . ATNhNh


ÃT11 . . . ÃT1N

ĥ

...
. . .

...

ÃTNh1 . . . ÃTN
ĥ
N

ĥ







D11

...

D1N
ĥ

...

DNh1

...

DNhNĥ



=



Q11

...

Q1N
ĥ

...

QNh1

...

QNhNĥ



(5.22)

Clearly, the above linear system has enormously increased the number of unknowns as

the curse of dimensionality would predict.
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PROPOSITION 5.4. Define

A :=


A11 . . . A1Nh

... . . . ...

ANh1 · · · ANhNh

 , Ã :=


Ã11 . . . Ã1Nĥ

... . . . ...

ÃNĥ1 · · · ÃNĥAĥ

 . (5.23)

Then, equation (5.22) can be equivalently written as

ADÃT = Q, (5.24)

where D := (Dij)
Nh,Nĥ
i,j=1 and Q := (Qij)

Nh,Nĥ
i,j=1 .

PROOF. Let us define Y := DÃT , then

Ykj =

Nĥ∑
l=1

Dkl

(
ÃT
)
lj

=

Nĥ∑
l=1

DklÃ
T
jl

On the other hand, Q = AY, and therefore

Qij =

Nh0∑
k=1

AikYkj =

Nh∑
k=1

Aik

Nĥ∑
l=1

DklÃ
T
jl =

Nh∑
k=1

Nĥ∑
l=1

AikDklÃ
T
jl

as stated. �

Proposition 5.4 is important because it avoids dealing with the huge matrix system

given by (5.22). Instead, we solve equation (5.24) in two steps,

AY = Q and ÃDT = YT (5.25)

One may wonder whether one could exploit for computational purposes choices h and ĥ.

Indeed, as we will see one can compute the second moment using ĥ = h and carry out a

full tensor discretization. However, an sparse approximation will be shown to exist with

considerable gains.
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5.2.2. Full Tensor Approximation

We now switch notation from h to l, to explicitly declare the dependence of solutions

on mesh refinement levels L ∈ N0 and associated spaces VL. Thus, we will seek solutions

UL(x,y) in the tensor space

V NE
L,L := [VL ⊗ VL]NE×NE ,

where we denote VL ≡ Vh(L). We can now state the following stability result:

Lemma 5.3. There exists L0 ∈ N and cS > 0 such that for all L ≥ L0,

inf
06=U∈V NEL,L

sup
06=W∈V NEL,L

d2(U,W )

‖U‖X(2)‖W‖X(2)

≥ 1

cS
> 0. (5.26)

PROOF. Follows directly from Lemma 5.1. �

With this tensor inf-sup condition, one can easily show that the full tensor product

approximation for Problem 5.2 is unique.

PROPOSITION 5.5. Problem 5.2 has a unique discrete solution UL,L ∈ V NE
L,L . More-

over, if U ∈ X(2) denotes the solution of the continuous Problem 4.2, then

‖U − UL,L‖X(2) ≤ c inf
WL,L∈V

NE
L,L

‖U −Wh‖X(2) , (5.27)

with c > 0 bounded.

In this case, the basis elements ϕhi and ϕh̃i will be equal and consequently also ma-

trices A and Ã. Consequently, we just need to solve (5.25) computing only one ma-

trix. However, the number of degrees of freedom using this full tensor technique is

NL,LN
2
E = (NL · NE)2. Unfortunately, if one seeks to compute the solution for high

discretization levels, the number of degrees of freedom will increase very fast and require

large computational efforts.
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5.2.3. Sparse Tensor Approximation

To tackle the curse of dimensionality, we introduce the sparse tensor approach fol-

lowing (von Petersdorff & Schwab, 2006) and later references (Harbrecht, Schneider, &

Schwab, 2008; Hiptmair, Jerez-Hanckes, & Schwab, 2013). In a nutshell, the idea is to

reduce the number of degrees of freedom by solving over a subspace of VL,L.

For a nested sequence of meshes and associated finite element spaces {Vl}Ll=0, one can

define detail spaces Wl as

Wl := (Pl − Pl−1)H1(D) ⊂ Vl, l ≥ 1,

where Pl is the projection into Vl space. Hence, one can write VL = WL ⊕ VL−1 and

deduce

VL =
L⊕
l=0

Wl,

where W0 := V0. The sparse tensor approximation consists of looking for the solution in

the tensor space

V̂L,L0 =
⊕

2L0≤i+j≤L+L0
L0≤i,j≤L

(Wi ⊗Wj) (5.28)

where L0 ≥ 0 shall be referred to as minimal resolution level. This value is related to the

threshold mesh required for asymptotic convergence and is characteristic of indefinite or

coercive problems (Hiptmair et al., 2013; Jerez-Hanckes & Schwab, 2017).

Similar to the full tensor case, let us define

V̂ NE
L,L0

:= [V̂L,L0 ]
NE×NE .

Then, we can state the next stability condition.
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Lemma 5.4 (Thm. 5.2 in (von Petersdorff & Schwab, 2006)). There exists L0 ∈ N

and ĉS > 0 such that for all L ≥ L0,

inf
0 6=Û∈V̂ NEL,L0

sup
06=Ŵ∈V̂ NEL,L0

d2(Û , Ŵ )

‖Û‖X(2)‖Ŵ‖X(2)

≥ 1

ĉS
> 0. (5.29)

Moreover, the discrete problem is well posed.

PROPOSITION 5.6. Let L0 ∈ N and U ∈ X(2) the solution of Problem 4.2. Then, for

any L ≥ L0 the sparse tensor version of Problem 5.1 has a unique solution ÛL,L0 ∈ V̂
NE
L,L0

.

Moreover, it holds

‖U − ÛL,L0‖X(2) ≤ c inf
ŴL,L0

∈V̂ NEL,L0

‖U − ŴL,L0‖X(2) , (5.30)

with c > 0 bounded.

5.2.4. Convergence Errors

Convergence rates for the full tensor approximation are obtained in a similar way to

those for the first moment problem and we recall Assumption 3.1.

Denote the continuous solution U (e1e2) ∈ H1
mix(D × D) and U (e1e2)

L,L ∈ VL,L its full

tensor Galerkin approximation. Then, by Proposition 5.5, it holds

‖U (e1e2) − U (e1e2)
L,L ‖L2(D×D) ≤ C inf

WL,L∈VL,L
‖U (e1e2) −WL,L‖L2(D×D). (5.31)

Then, by Lemma 5.2 with O = D ×D, we have the following result,

‖U (e1e2) − U (e1e2)
L,L ‖Hσ(D×D) ≤ Chs−σ

∣∣U (e1e2)
∣∣
Hs(D×D)

(5.32)

More generally, we can write
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PROPOSITION 5.7. Let β = 0, 1. Denote by U ∈ (Xβ)(2) and UL,L ∈ V NE
L,L the

solutions of Problems 4.2 and 5.2, respectively. Then, it holds

‖U − UL,L‖(Xβ)(2) ≤ chs−β
NE∑

e1,e2=1

∣∣U (e1e2)
∣∣
Hs(D×D)

(5.33)

for s ∈ [β, 2] and with a constant c > 0.

Observe that the convergence in terms of h is the same for full tensor and first mo-

ment. However, in terms of degrees of freedom it differs, because h ∼ O(N−2
L ) and

h ∼ O(N−4
L,L) for first moment and full tensor approximations, respectively.

To state the theoretical result for the sparse tensor approximation we use (von Peters-

dorff & Schwab, 2006, Thm 5.3)

Lemma 5.5. Assume f ∈ L2(Ω,P, Zs) with expectation f̄ , and the approximation

property given by (5.9). Moreover, let U ∈ X(2) and ÛL,L0 ∈ V
NE
L,L0

denote the solution for

the continuous and discrete second moment Problems 4.2 and 5.2, respectively, and where

s is the regularity of the continuous solution. Then, for 0 ≤ s ≤ min{s0, 1}, it holds

‖U − ÛL,L0‖X(2) ≤ CN
−s/2
L log(NL)1/2‖f̄‖Zs . (5.34)

5.3. Combination technique

When working with meshes in more than one dimension it is hard to find explicitly

basis functions for detail spaces Wl. Hence, we use the so-called combination technique

(Harbrecht et al., 2013) to express (5.28) as sums of spaces Vl1⊗Vl2 . Specifically, one can

write

V̂L,L0 =
L⊕

l1=L0

VL+L0−l1 ⊗ Vl1 	
L⊕

l2=L0

Vl2 ⊗ VL+L0−l2 (5.35)

Thus, when looking for the solution ÛL,L0 ∈ V̂
NE
L,L0

, one needs to solve different linear

systems over the tensor product spaces that are in equation (5.35). For sparse Tensor, the
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number of degrees of freedom is the sum over all the combination of the spaces (Vl1 ⊗

Vl2) such that (l1,l2). For full tensor approximations, the number of degrees of freedom

corresponds to the space (VL ⊗ VL) where L is the discretization level.
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6. NUMERICAL RESULTS AND DISCUSSION FOR AN HOMOGENEOUS DO-

MAIN
6.1. Domain and parameters of the problem

The domain D ∈ R2 chosen for this problem is defined as D := {(x, y) ∈ R2 :

0 ≤ x ≤ 12, 0 ≤ y ≤ 12}. This domain is made up of water, whose parameters for

removal cross section and diffusion coefficient are shown in Table C.1 (Appendix C) and

domain Db. The parameters for the scattering cross section are shown in Tables B.1 and

B.2 (Appendix B)

Meshes were constructed using the software GMSH 1, with refinement done by split-

ting. As a result of this procedure, we obtained 7 nested meshes defining 7 different

discretization levels (L), with subspaces denoted by VL, L = {1...7}. Again, we denote

by NL the number of degrees of freedom for each discretization level. To compute the

FEM matrices we used FEniCS in Python.

6.2. Analytic Solution

First, we built the problem for a known analytic solution using the method of manu-

factured solutions (Lingus, 1971; Knupp & Salari, 2002; McClarren & Lowrie, 2008), in

order to analyze the error between this and the discrete approximate solution.

We will use a solution with the general form given by equation (6.1)

u(e)(x) =
1

D(e)
(1 + α(e)x+ β(e)x2)(1 + α(e)y + β(e)y2) (6.1)

where α(e) and β(e) should be such that u(e) meets the boundary conditions given by equa-

tion (2.8). It holds that,

1Available in http://gmsh.info/
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α(e) =
1

2D(e)
β(e) = − (2 + 12α(e))

(48D(e) + 122)

6.3. First Moment Convergence

In Figure 7.3 we show the error between the discrete and analytic solution for the first

moment, at six different discretization levels. Each curve represents the error convergence

of an specific energy group.
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Figure 6.1. L2-relative error between the discrete solution ũ(e)
l (x) and the

analytic solution ũ(e)(x), for l = {1, 2, ..., 6}. h is the largest edge of the
mesh used to define each discrete function space. The convergence is
O(h(l)2), as we expect from Proposition 5.1 and Theorem Lemma 5.2.

The curves of the other energy groups have the same slope but are shifted
up as predicted by Theorem 5.1.
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As we can see in Figure 7.3, the error of each energy group is converging as we refine

the mesh. We can also see, that the error is lower for the first energy group and increases

with each subsequent group. This demonstrates the results in Section 5.1.2: the error

bound of the higher groups is a nondecreasing function of the error in the lower energy

groups when there is downscattering.

6.4. Second Moment Convergence
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Figure 6.2. H1 relative error between the discrete solution U (ee)
L,L0

(x,x)

and the analytic solution U (ee)(x,x) for e = {1, 2, 3, 4}, l = {1, 2, ..., 6}.
The discrete solution was obtained using Sparse Tensor and Full Tensor.

In the case of Full Tensor, the convergence is O(N
−1/4
L,L ) where

NL,L = N2
L is the total number of degrees of freedom. This convergence is
equivalent to O(h(L)) where h(L) is the mesh size.

For the second moment of the solution we compare the errors from the sparse and full

tensors methods in Figure 6.2. In this figure both the sparse and full tensor solutions are
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converging to the analytic solution. However, to achieve an specific error, the sparse tensor

requires fewer degrees of freedom.

This is the result we expected for the sparse tensor method. Choosing an specific subset

of the basis of the whole tensorized space, we can achieve similar errors using many fewer

degrees of freedom.

Furthermore, we can also see in Figure 6.2 that the rate of convergence of the Full Ten-

sor approximation is O(N
−1/4
L,L ), which is equivalent to O(N

−1/2
L ) and O(h). To demon-

strate the theoretical convergence rate predicted in Figure 5.5 we plot the error in the sparse

tensor results in terms of NL in Figure 6.3. This figure demonstrates that the sparse tensor

error agrees with the theoretical prediction for a second moment with regularity 1.
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Figure 6.3. H1 relative error between the discrete solution U (ee)
L,L0

(x,x),
and the analytic solution U (ee)(x,x) for L = {1, 2, ..., 6} and L0 = 1. The

convergence is O(
√

log(NL)N
−1/2
L ).
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7. NUMERICAL RESULTS AND DISCUSSION FOR A NON-HOMOGENEOUS

DOMAIN
We now turn to the more practically interesting non-homogeneous problems. In these

problems the material properties will be functions of space.

We consider a generic radiation shielding problem where a neutron source (a pluto-

nium spontaneous fission source) is immersed in water along with a heavy metal absorber

(lead). The problem layout is illustrated in Figure 7.1.

7.1. Domain and parameters of the problem

To describe the domain we are going to define three different regions or subdomains:

a bulk media (Db), a source region (Ds) and an absorption region (Da).

Ds = {(x, y) ∈ R2 : 2 ≤ x ≤ 4, 2 ≤ y ≤ 4}

Da = {(x, y) ∈ R2 : 0 ≤ x ≤ 12, 0 ≤ y ≤ 12}

Db = D − (Ds ∪ Da)

Figure 7.1. Layout of non-homogeneous problem containing a source,
absorber, and a water background media.
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In the case of a non-homogeneous domain, σ(e)
a (x), σ(e1→e2)

s (x), D(e)(x) are the ab-

sorption cross section, scatter cross section and difussion coefficient respectively, for en-

ergy group e at the position x. This coefficients are constant in each subdomain. The

absorption and diffusion parameters are shown in Table C.1.

7.2. Functions for the first and second moment of the source

The function chosen for the first moment of the source is

f (e)(x) =

 µ(e) if x ∈ Ds
0 otherwise

(7.1)

The values of µ are found in Table C.1.

The function chosen for the second moment of the source depends on the distance

between the two points and the two energy groups, it is given by

u(e1e2)(x, y) = C1µ
(e1)µ(e2) exp(−||x− y||2 − C2|ē1 − ē2|) + µ(e1)µ(e2) if x ∈ Ds

0 otherwise
(7.2)

where ē is the medium value of the energy level range of group e, C1 = 0.4 and C2 = 100.

7.3. First Moment Convergence

As we do not know the analytic solution, to compute the error we compare the discrete

solution of each discretization level with the higher one computed.

In this case, we compute discrete solutions for 7 different discretization levels. In

Figure 7.2, each curve represents the error convergence of each energy group.
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Figure 7.2. L2 relative error between the discrete solution ũ(e)
l (x) and a

fine-mesh solution: ũ(e)
7 (x). The convergence of the first energy groups is

O(h(l)2). The last one reaches this convergence order when the mesh is
fine enough.

We can see again that the error is converging for all energy groups and is highest for

the last one.

The computed solution is shown in Figure 7.4 where we plot the sum of groups 1-3

as the fast neutron flux, the sum of groups 4-18 as the epithermal flux, and the sum of

groups 19-20 as the thermal flux. This figure shows that the fast and epithermal fluxes are

concentrated near the source, whereas the thermal flux peaks in the region between the

lead and the source. The thermal flux in the source region is very small because the source

material, Pu-240, is a strong absorber of thermal neutrons.
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Figure 7.3. L2 relative error between the discrete solution ũ(e)
l (x) and

ũ
(e)
7 (x), for l = {1, 2, ..., 6}.

Figure 7.4. ũ7(x) discrete solution for fast solution (groups 1-3),
epithermal flux (4-18) and thermal flux(19-20). The plot uses a

logarithmic color scale.
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7.4. Second Moment Results and Convergence

We computed the solution of seven discretization levels for the sparse tensor and five

energy groups using full tensor; we compute the error between each level with the highest

one: sparse tensor level 7.

4 5 6 7 8 9
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(H
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iv

e
E

rr
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L,L )

L0 = L
L0 = 1
L0 = 2
e = 1
e = 7
e = 10
e = 19

Figure 7.5. Convergence of the error in the sparse and full tensor solution
for the second moment. We can see that the convergence of the first

energy group using the full tensor is similar to O(N
−1/4
L,L ), which is the

same as O(h(L)).

The error convergence is shown in Figure 7.5. In this plot, we can compare the error

between sparse tensor and full tensor for each energy group. These results indicate that

the sparse tensor method does require fewer degrees of freedom to reach the same error

level.

We also want to compare the errors of the sparse and full tensor with Monte Carlo. To

do this, we generate samples of the source with a multivariate normal with the mean of the
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Figure 7.6. H1 relative error between the discrete solution U (ee)
L,L0

(x,x)

and the analytic solution U (ee)(x,x) for e = {1, 2, 3, 4}, L = {1, 2, ..., 5}.
The discrete solution was obtained using Sparse Tensor with L0 = 1. The

convergence is like O(
√

log(NL)N
−1/2
L ).

source that we used for the first moment problem problem and the covariance that we used

to compute the second moment. The results from 4 different Monte Carlo simulations

are shown in Figure 7.7. In this figure the results of averaging the solution from different

samples of the source for four different sets of samples are compared with the sparse tensor

computation with 7 levels. These results indicate that the Monte Carlo computed second

moment is converging to the deterministic value at a rate of the number of samples raised

to the one-half power, as expected.

The computed solution of E[U7(x,x)(e1,e2)] using the sparse tensor approximations in

Figure 7.8 for three different energy groups. In this figure we see that the second-moment

is largest in the highest energy group inside the source region. Additionally, the second-

moment is large in the middle of the problem for the low energy groups (in this case group

19); this can be physically explained because this region is expected to have the most

downscattering to thermal energies.
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Figure 7.7. Comparison of error from a Monte Carlo simulation of the
source uncertainty: the colored lines represents different Monte Carlo

simulation. Each curve show the error between the average solution until
iteration M and the the discrete solution ÛL,L0(x,x) with L = 7 and
L0 = 2. The black curve shows the average of the error of all the

simulations. We can see that the average converges to the solution as
O(M−1/2).

Figure 7.8. U (e1e2)
L,L0

(x,x) obtained using the sparse tensor method with
L = 7 L0 = 2. Each plot represents the solution between two different

energy groups. The plot uses a logarithmic color scale.
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8. UNCERTAINTY IN THE σ PARAMETERS

In sections 3 to 7 we assumed the cross-sections, i.e., the σ’s, were deterministic pa-

rameters. However, the cross section parameters are actually only known up to a non-

negligible uncertainty. This uncertainty stems from the both the way measurements of the

cross-sections are made and the processing that leads to the group-averaged cross-sections

(Stacey, 2007; Zheng & McClarren, 2016, 2015). Indeed, what we have computed so

far as the first and second moment is a conditional expectation, i.e., we have computed

E[ũ(e1e2)(x,y)|θ] and E[U (e1e2)(x,y)|θ] where θ = {σe1→e2t , σea, σ
e
s}Nee,e1,e2=1. However,

we want to compute E[ũ(e1e2)(x,y)] and E[U (e1e2)(x,y)] To achieve this, we must inte-

grate over all the possible values of σ, without having to solve an arbitrary number of

multigroup diffusion problems.

To this end, we need to find an efficient way to estimate the value of

E[U (e1e2)(x,y)] =

∫
Ω

U (e1e2)(x,y)P(θ(ω))dω (8.1)

In this section we are going to use the homogeneous problem considering just four

energy groups and the parameters shown in Table C.1. We focus our attention on the

computing of equation (8.1) just for e1 = e2 = 0 and x = y, to do the analysis. The same

process could be done for all the energy groups.

Table 8.1. Removal cross section and diffusion coefficient for each energy
group for water.

Energy Group log10 σr log10D
(e)

1 -1.91582 0.60977
2 -1.33449 -0.21631
3 -1.29211 -0.24872
4 -2.26823 -0.44931
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Table 8.2. Table of σê→es for water. The rows are the initial energy group
and the columns are the final energy group. Notice there is upscattering

from group 4 to 3.


1.39× 10−1 1.73× 10−3 1.28× 10−5 8.08× 10−8

0 1.32 4.59× 10−2 3.46× 10−4

0 0 1.44 5.06× 10−2

0 0 5.35× 10−4 1.74



To describe the randomness of the parameters, we are going to use the values given by

Table 8.1 as mean values (θ̄i) and the distribution of the parameters is given by,

θi ∼ U(0.8θ̄i, 1.2θ̄i).

This is a wide uncertainty for the parameters chosen to be conservative.

8.1. Local Sensitivity Analysis

Firstly, we choose the parameters with higher sensitivity index for each energy group.

This index measures how a little change in the parameter affects the solution, and is given

by,

SIi = σi
∂Q

∂θi
, (8.2)

where σi is the standard deviation of the parameter i and Q is a quantity of interest, which

in this case is given by E[ũ(ee)(x,x)|θ]. We estimate the derivatives as

∂Q

∂θi

∣∣∣ =
Q(θ̄ + δiêi)−Q(θ̄)

δi
.

This formulation will require the solution of p+ 1 multigroup diffusion problems to com-

pute p sensitivities. For our 4 group problem there are p = 24 nonzero cross-sections.
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Figure 8.1. Local Sensitivity Indices of each parameter using as quantity
of interest the u(e)

6 (x, θ) for e = {1, 2, 3, 4}.

We can see in Figure 8.1 that for energy group 1, there are only two parameters affect-

ing the solution. This could be explained because there is no scattering into group one.

Thus, a change in the parameters of other groups doesn’t change the solution of this. On

the contrary, for energy group 4 all SI are different from 0, so a change in any parameter

affects the solution of group 4. We can also see that in general the magnitude of the SI

of groups 3 and 4 are higher the the SI of groups 1 and 2. Therefore we can say that the

solution in lower energy levels is more sensible to changes on the parameters.

For the first energy group, we will integrate over the more significant parameters ac-

cording to the SI shown in Figure 8.1(a).
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8.2. Smolyak Quadratures

If we want to use a conventional quadrature rule to integrate a d-dimensional function,

we need to compute∫
f(x1, x2, . . . , xd)dx ≈ Q

(d)
l (f)

=

nl∑
i1=1

nl∑
i2=1

. . .

nl∑
in=1

ωli1ωli2 . . . ωlidf(xli1 , . . . , xlid ) (8.3)

which means that we need to evaluate the function in (nl)
d points. In our case, each value

of the function is hard compute, so we use sparse grids to have a good approximation of

the integral using less values of the function.

Given a level l̃ ∈ N and a d-dimentional function f , the Smolyak construction is given

by

Sdl (f) =
∑

l≤|k|1≤l+d−1

(−1)l+d−|k|1−1

(
d− 1

|k|1 − l

)
(Q1

k1
⊗Q1

k2
⊗ . . .⊗Q1

kd
)f (8.4)

(Gerstner & Griebel, 1998). When d = 2, the points of the sparse grid are shown in Figure

8.2 (Ayres & Eaton, 2015).

Figure 8.2. Sparse grid for d = 2 and l = 3
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We used Gauss-Patterson quadrature rule to choose the points xi and the weights ωi

(Burden & Faires, 2010).

8.3. Results and Convergence

We used discretization level 6 to do the integration. So, for each energy group, we are

going to estimate, ∫
Ω̂e

E[ũ
(e)
6 (x)|θ̂e]dPθ̂e (8.5)

and ∫
Ω̂e

E[U
(ee)
6 (x,x)|θ̂e]dPθ̂e (8.6)

We are going to use sparse and full grids for different values of l̃ and compare the results

with the one obtained using full grid with l̃ = 4.

8.4. Results for the first energy group

For the first energy group, there are only two parameters with a sensitivity index dif-

ferent from 0. Thus, θ̂0 = (σ
(0)
T , σ

(0)
A ) and we integrate over this two parameters. In Figure

8.1 we can see the L2 error between each level l̃ and the higher computed (l̃ = 4) using

Smolyak Quadratures and Full Quadratures.

As we can see in fig:smolyak, using sparse grids we can have low errors between each

quadrature degree l̃ and the higher one, computing much less values of ũ6(x) than using

full grids. The same happens when computing the integral of the second moment for the

discrete sparse and full tensor solution. For the other energy groups we might expect

similar results.
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Figure 8.4. L2 error between the integral estimation Ql̃(U
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each quadrature degree l̃ and the higher one computed (l̃ = 4). We have
two plots, because the one of the right shows the convergence for the

sparse tensor discrete solution, and the one of the left shows the
convergence for the full tensor discrete solution.
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9. CONCLUSIONS

In this work we presented an efficient method to quantify the uncertainty in the neutron

flux due to the uncertainty in the parameters and in the source.

To do this, we first assumed the parameters as deterministic and compute an approx-

imate discrete solution using FEM. We did this for both, the first and second moment.

However, as the parameters are stochastic, we used full and sparse grids to estimate the

value of the expectancy in the parameters.

In other words, what we wanted to estimate was E(ũ(e)(x, θ)) and E(U (e)(x,x, θ)).

This was done computingQl̃(ũ
(e)
l (x, θ)) andQl̃(U

(e)
l (x,x, θ)), where l is the discretization

level and l̃ is the quadrature degree. We want to ensure low errors for the first and second

moment given by,

ErrorFM := ||E(ũ(e)(x, θ))−Ql̂(ũ
(e)
l (x, θ))||L2 (9.1)

ErrorSM := ||E(U (ee)(x, θ))−Ql(U
(ee)
l (x,x, θ))||L2 (9.2)

Using the triangular inequality we can bound the error as follows,

||E(ũ(e)(x, θ))−Ql̂(ũ
(e)
l (x, θ))||L2 ≤ ||E[ũ(e)(x, θ))− u(e)

l (x, θ)]||L2+

||E(u
(e)
l (x, θ))−Ql̂(ũ

(e)
l (x, θ))||L2 (9.3)

||E(U (e)(x,x, θ))−Ql̂(U
(e)
l (x,x, θ))||L2 ≤ ||E[U (e)(x,x, θ))− U (e)

l (x,x, θ)]||L2+

||E[U
(e)
l (x,x, θ)]−Ql̂[U

(e)
l [x,x, θ]||L2 (9.4)
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We can see that the error depends on two approximations: first the discrete approxima-

tion of the function using FEM, and second, the integral approximation using quadratures.

The first term of the bound was studied on Section 6 and Section 7 and the second

on Section 8. We focused our attention not just on achieving a low error, but also on

computing a problem with less degrees of freedom.

For the second moment, the use of sparse tensor allows us to have low errors between

the continious ans discrete solution (||U (e)(x,x, θ) − U
(e)
l (x,x, θ)||L2) without dealing

with the curse of dimensionality. On the other hand, for the first and second moment,

using quadrature with sparse grids allows us to have low errors between the integral and

the quadrature approximation (||E[u
(e)
l (x, θ)]−Ql̂(ũ

(e)
l (x, θ))||L2 and ||E[U

(e)
l (x,x, θ)]−

Ql̂(U
(e)
l (x,x, θ))||L2), evaluating the function in less points than full grids.

Only if we are able to achieve low errors in the two approximation process we will have

a good estimation of the quantity of interest we are interested in. The high dimensionality

of this problem encouraged us to use efficient methods as Sparse Tensor and Smolyak

Quadratures, and they showed a good performance in this field.
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APPENDIX A. PROOF THEOREM 5.1

PROOF. Assuming down-scattering, i.e. B(eê) ≡ 0 for ê ≥ e. For any v
(e)
h ∈ Vh,

Galerkin orthogonality between (3.7) and its discrete counterpart yields

a(e)
(
u(e) − u(e)

h , v
(e)
h

)
=

e−1∑
ê=1

b(eê)
(
u(ê) − u(ê)

h , v
(e)
h

)
. (A.1)

By continuity and ellipticity of A(e), we derive

cA
(e)

1 ‖u(e) − u(e)
h ‖

2
H1 ≤ a(e)

(
u(e) − u(e)

h , u(e) − u(e)
h

)
≤ cA

(e)

2 ‖u(e) − u(e)
h ‖H1‖u(e) − v(e)

h ‖H1

+
e−1∑
ê=1

‖σ(ê→e)
s ‖L∞‖u(ê) − u(ê)

h ‖L2 ‖v(e)
h − u

(e)
h ‖L2

After rearranging terms, one can obtain

‖u(e′) − u(e′)
h ‖H1 ≤ cA

(e)

2

cA
(e)

1

inf
v
(e)
h ∈Vh

‖u(e) − v(e)
h ‖H1 +

2

cA
(e)

1

e−1∑
ê=1

‖σ(ê→e)
s ‖L∞ ‖u(ê) − u(ê)

h ‖L2

(A.2)

Equation (A.2) holds for every e ≥ 2. We will use this inequality to prove the theorem

by induction. For e = 2 we have,

‖u(2) − u(2)
h ‖L2 ≤ ‖u(2) − u(2)

h ‖H1 ≤ cA
(2)

2

cA
(1)

1

inf
v
(2)
h ∈Vh

‖u(2) − v(2)
h ‖H1 (A.3)

+
2

cA
(2)

1

‖σ(1→2)
s ‖∞ ‖u(1) − u(1)

h ‖L2 (A.4)

≤ C(2) +
2

cA
(2)

1

‖σ(1→2)
s ‖∞ ‖u(1) − u(1)

h ‖L2(A.5)
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We assumed (5.13) holds for e = e0 and now we need to prove that the statement holds

for e = e0 + 1,

‖u(e0+1) − u(e0+1)
h ‖H1

≤ cA
(e0+1)

2

cA
(e0+1)

1

inf
v
(e0+1)
h ∈Vh

‖u(e0+1) − v(e0+1)
h ‖H1

+
2

cA
(e0+1)

1

e0∑
e′=1

‖σ(e′→e0+1)
s ‖∞ ‖u(e′) − u(e′)

h ‖L2

≤ cA
(e0+1)

2

cA
(e0+1)

1

inf
v
(e0+1)
h ∈Vh

‖u(e0+1) − v(e0+1)
h ‖H1

+
2

cA
(e0+1)

1

e0−1∑
e′=1

‖σ(e′→e0+1)
s ‖∞ ‖u(e′) − u(e′)

h ‖L2

+
2

cA
(e0+1)

1

‖σ(e0→e0+1)
s ‖∞ ‖u(e0) − u(e0)

h ‖L2

≤ cA
(e0+1)

2

cA
(e0+1)

1

inf
v
(e0+1)
h ∈Vh

‖u(e0+1) − v(e0+1)
h ‖H1 +

2

cA
(e0+1)

1

e0−1∑
e′=1

‖σ(e′→e0+1)
s ‖∞ ‖u(e′) − u(e′)

h ‖L2

+
2‖σ(e0→e0+1)

s ‖∞
cA

(e0+1)

1

(
C(e0) +

e0−1∏
e=1

2

cA
(e+1)

1

‖σ(e→e+1)
s ‖∞‖u(1) − u(1)

h ‖L2

)
≤ C(e0+1) +

2‖σ(e0→e0+1)
s ‖∞
cA

(e0+1)

1

e0−1∏
e=1

2

cA
(e+1)

1

‖σ(e→e+1)
s ‖∞‖u(1) − u(1)

h ‖L2

≤ C(e0+1) +

e0∏
e=1

2

cA
(e+1)

1

‖σ(e→e+1)
s ‖∞‖u(1) − u(1)

h ‖L2

As L2-norm is less or equal to H1-norm,

‖u(e0+1) − u(e0+1)
h ‖L2 ≤ C(e0+1) +

e0∏
e=1

2

cA
(e+1)

1

‖σ(e→e+1)
s ‖∞‖u(1) − u(1)

h ‖L2

By induction, equation (5.13) is true for any N ∈ {1, ..., NE} �
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APPENDIX B. SCATTERING CROSS SECTION

Table B.1. σs values

(e, ê) Ds Da Db
(0,0) 0.134 0.159 0.0396
(0,1) 0.011 0.022 0.026
(0,2) 0.0081 0.052 0.0152
(0,3) 0.0127 0.066 0.0093
(0,4) 0.0148 0.0425 0.0044
(0,5) 0.0107 0.0235 0.0021
(0,6) 0.0054 0.0099 0.00106
(0,7) 0.0022 0.00396 0.00055
(0,8) 0.00076 0.00158 0.000292
(0,9) 0.00026 0.00063 0.000156
(0,10) 0.000144 0.000354 0.00013
(0,11) 2.29e-05 5.7e-05 3.82e-05
(0,12) 3.68e-06 9e-06 1.12e-05
(0,13) 6.1e-07 1.45e-06 3.3e-06
(0,14) 1e-07 2.32e-07 9.7e-07
(0,15) 1.58e-08 3.7e-08 2.85e-07
(0,16) 1.95e-09 4.77e-09 8.4e-08
(0,17) 1.7e-10 4.48e-10 2.39e-08
(0,18) 0.0 0.0 3.05e-10
(0,19) 0.0 0.0 0.0
(1,1) 0.185 0.243 0.057
(1,2) 0.0115 0.0278 0.0374
(1,3) 0.0174 0.0499 0.0177
(1,4) 0.0187 0.0319 0.0105
(1,5) 0.0125 0.0156 0.0057
(1,6) 0.0061 0.0065 0.00302
(1,7) 0.00239 0.00219 0.00162
(1,8) 0.00084 0.00074 0.00086
(1,9) 0.000298 0.000266 0.000465
(1,10) 0.000165 0.000136 0.000387
(1,11) 2.64e-05 1.94e-05 0.000113
(1,12) 4.23e-06 2.88e-06 3.31e-05
(1,13) 7.1e-07 4.42e-07 9.7e-06
(1,14) 1.15e-07 6.9e-08 2.86e-06
(1,15) 1.83e-08 1.06e-08 8.4e-07
(1,16) 2.33e-09 1.67e-09 2.48e-07
(1,17) 2.33e-10 2.06e-10 7.3e-08
(1,18) 0.0 0.0 1.36e-08
(1,19) 0.0 0.0 0.0
(2,2) 0.211 0.397 0.091
(2,3) 0.0171 0.0099 0.053
(2,4) 0.0241 0.0148 0.0266
(2,5) 0.0191 0.0096 0.0145
(2,6) 0.0102 0.0041 0.0079
(2,7) 0.00419 0.00191 0.00427
(2,8) 0.00149 0.00081 0.00232
(2,9) 0.00053 0.000311 0.00126
(2,10) 0.000295 0.000142 0.00106
(2,11) 4.69e-05 1.4e-05 0.000311
(2,12) 7.5e-06 1.24e-06 9.1e-05
(2,13) 1.26e-06 1.11e-07 2.69e-05
(2,14) 2.02e-07 1.04e-08 7.9e-06
(2,15) 3.34e-08 8.9e-10 2.33e-06
(2,16) 4.75e-09 0.0 6.9e-07
(2,17) 4.64e-10 0.0 2.02e-07

(e, ê) Ds Da Db
(6,6) 0.434 0.442 0.249
(6,7) 0.0185 0.00488 0.205
(6,8) 0.000158 0.0 0.1
(6,9) 4.38e-06 0.0 0.054
(6,10) 5.7e-08 0.0 0.0457
(6,11) 4.98e-09 0.0 0.0134
(6,12) 4.32e-10 0.0 0.00396
(6,13) 0.0 0.0 0.00116
(6,14) 0.0 0.0 0.000342
(6,15) 0.0 0.0 0.000101
(6,16) 0.0 0.0 2.97e-05
(6,17) 0.0 0.0 8.7e-06
(6,18) 0.0 0.0 3.54e-06
(6,19) 0.0 0.0 0.0
(7,7) 0.487 0.517 0.298
(7,8) 0.023 0.0059 0.262
(7,9) 2.57e-05 0.0 0.132
(7,10) 4.86e-06 0.0 0.11
(7,11) 2.14e-07 0.0 0.0325
(7,12) 1.51e-08 0.0 0.0096
(7,13) 1.31e-09 0.0 0.00282
(7,14) 1.14e-10 0.0 0.00083
(7,15) 0.0 0.0 0.000244
(7,16) 0.0 0.0 7.2e-05
(7,17) 0.0 0.0 2.11e-05
(7,18) 0.0 0.0 8.7e-06
(7,19) 0.0 0.0 0.0
(8,8) 0.53 0.618 0.352
(8,9) 0.0193 0.0071 0.322
(8,10) 0.0054 0.0 0.253
(8,11) 0.0 0.0 0.074
(8,12) 0.0 0.0 0.0219
(8,13) 0.0 0.0 0.0065
(8,14) 0.0 0.0 0.0019
(8,15) 0.0 0.0 0.00056
(8,16) 0.0 0.0 0.000164
(8,17) 0.0 0.0 4.84e-05
(8,18) 0.0 0.0 2e-05
(8,19) 0.0 0.0 0.0
(9,9) 0.559 0.6 0.398
(9,10) 0.0074 0.007 0.566
(9,11) 0.00116 0.0 0.161
(9,12) 0.000103 0.0 0.0473
(9,13) 9.1e-06 0.0 0.0139
(9,14) 7.9e-07 0.0 0.0041
(9,15) 6.8e-08 0.0 0.00121
(9,16) 6e-09 0.0 0.000355
(9,17) 5.3e-10 0.0 0.000104
(9,18) 5.8e-11 0.0 4.34e-05
(9,19) 0.0 0.0 0.0
(10,10) 0.541 0.628 0.712
(10,11) 0.00187 0.00256 0.443
(10,12) 0.0 0.0 0.128
(10,13) 0.0 0.0 0.0377
(10,14) 0.0 0.0 0.0111
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Table B.2. σs values

(e, ê) Ds Da Db
(2,18) 0.0 0.0 5.9e-08
(2,19) 0.0 0.0 0.0
(3,3) 0.191 0.312 0.114
(3,4) 0.0229 0.00287 0.081
(3,5) 0.0214 0.0 0.0381
(3,6) 0.0118 0.0 0.0207
(3,7) 0.00436 0.0 0.0112
(3,8) 0.00153 0.0 0.0061
(3,9) 0.00055 0.0 0.00332
(3,10) 0.000301 0.0 0.00278
(3,11) 4.76e-05 0.0 0.00082
(3,12) 7.6e-06 0.0 0.000241
(3,13) 1.28e-06 0.0 7.1e-05
(3,14) 2.03e-07 0.0 2.09e-05
(3,15) 3.38e-08 0.0 6.1e-06
(3,16) 5.4e-09 0.0 1.81e-06
(3,17) 7.3e-10 0.0 5.3e-07
(3,18) 8.4e-11 0.0 1.85e-07
(3,19) 0.0 0.0 0.0
(4,4) 0.232 0.277 0.187
(4,5) 0.0149 0.00258 0.112
(4,6) 0.0097 0.0 0.053
(4,7) 0.0066 0.0 0.0289
(4,8) 0.00261 0.0 0.0157
(4,9) 0.00072 0.0 0.0085
(4,10) 0.000285 0.0 0.0071
(4,11) 2.37e-05 0.0 0.0021
(4,12) 2.16e-06 0.0 0.00062
(4,13) 2.05e-07 0.0 0.000182
(4,14) 2.06e-08 0.0 5.4e-05
(4,15) 2.25e-09 0.0 1.58e-05
(4,16) 1.64e-10 0.0 4.64e-06
(4,17) 0.0 0.0 1.36e-06
(4,18) 0.0 0.0 5.2e-07
(4,19) 0.0 0.0 0.0
(5,5) 0.351 0.257 0.246
(5,6) 0.0138 0.00284 0.168
(5,7) 2.78e-06 0.0 0.073
(5,8) 0.000262 0.0 0.0399
(5,9) 0.000453 0.0 0.0217
(5,10) 0.000197 0.0 0.0182
(5,11) 2.31e-05 0.0 0.0053
(5,12) 2.55e-06 0.0 0.00157
(5,13) 3.8e-07 0.0 0.000463
(5,14) 6.3e-08 0.0 0.000136
(5,15) 6.2e-09 0.0 4.01e-05
(5,16) 5.7e-10 0.0 1.18e-05
(5,17) 7.1e-11 0.0 3.47e-06
(5,18) 0.0 0.0 1.38e-06

(e, ê) Ds Da Db
(10,15) 0.0 0.0 0.00327
(10,16) 0.0 0.0 0.00096
(10,17) 0.0 0.0 0.000283
(10,18) 0.0 0.0 0.000118
(10,19) 0.0 0.0 7.6e-08
(11,11) 0.527 0.643 0.765
(11,12) 0.00191 0.00262 0.481
(11,13) 0.0 0.0 0.139
(11,14) 0.0 0.0 0.041
(11,15) 0.0 0.0 0.0121
(11,16) 0.0 0.0 0.00355
(11,17) 0.0 0.0 0.00104
(11,18) 0.0 0.0 0.000435
(11,19) 0.0 0.0 8e-07
(12,12) 0.459 0.647 0.783
(12,13) 0.0012 0.00264 0.493
(12,14) 0.0 0.0 0.143
(12,15) 0.0 0.0 0.0421
(12,16) 0.0 0.0 0.0124
(12,17) 0.0 0.0 0.00365
(12,18) 0.0 0.0 0.00152
(12,19) 0.0 0.0 3.37e-06
(13,13) 0.394 0.649 0.789
(13,14) 0.00105 0.00264 0.497
(13,15) 0.0 0.0 0.144
(13,16) 0.0 0.0 0.0425
(13,17) 0.0 0.0 0.0125
(13,18) 0.0 0.0 0.0052
(13,19) 0.0 0.0 1.21e-05
(14,14) 0.44 0.649 0.791
(14,15) 0.00153 0.00264 0.499
(14,16) 0.0 0.0 0.145
(14,17) 0.0 0.0 0.0426
(14,18) 0.0 0.0 0.0177
(14,19) 0.0 0.0 4.18e-05
(15,15) 0.277 0.649 0.791
(15,16) 0.000274 0.00265 0.499
(15,17) 0.0 0.0 0.145
(15,18) 0.0 0.0 0.06
(15,19) 0.0 0.0 0.000143
(16,16) 0.343 0.649 0.792
(16,17) 0.00128 0.00265 0.499
(16,18) 0.0 0.0 0.205
(16,19) 0.0 0.0 0.000487
(17,17) 0.56 0.649 0.794
(17,18) 0.00088 0.00265 0.705
(17,19) 0.0 0.0 0.00166
(18,18) 1.102 0.652 1.717
(18,19) 4.09e-07 1.51e-05 0.00405
(19,19) 0.05 0.693 4.362
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APPENDIX C. REMOVAL CROSS SECTION AND DIFFUSION COEFFI-

CIENTS

Table C.1. log10 values of removal cross section (σr), diffusion coefficient
(D) and source value (µ) for each energy group and each subdomain. The
numbers in parenthesis are the logarithm of the midpoint energy of each

group in MeV.

σ
(e)
r D(e)

e Db Da Ds Db Da Ds µ
1 (1.04) -1.104 -0.435 -0.641 0.294 0.621 0.266 1.04
2 (0.774) -1.087 -0.566 -0.621 0.253 0.506 0.23 0.774
3 (0.509) -0.952 -1.1 -0.595 0.199 0.338 0.241 0.509
4 (0.244) -0.784 -2.537 -0.63 0.163 0.196 0.172 0.244
5 (-0.021) -0.642 -2.582 -0.749 0.148 0.005 0.178 -0.021
6 (-0.287) -0.484 -2.539 -0.953 0.075 -0.102 0.173 -0.287
7 (-0.552) -0.372 -2.31 -1.031 -0.038 -0.208 -0.084 -0.552
8 (-0.817) -0.259 -2.226 -1.074 -0.127 -0.296 -0.173 -0.817
9 (-1.082) -0.167 -2.147 -1.145 -0.195 -0.376 -0.261 -1.082
10 (-1.347) -0.1 -2.156 -1.356 -0.23 -0.437 -0.253 -1.347
11 (-1.689) -0.204 -2.592 -1.387 -0.231 -0.395 -0.273 -1.689
12 (-2.22) -0.169 -2.582 -1.472 -0.222 -0.428 -0.285 -2.22
13 (-2.752) -0.157 -2.579 -1.525 -0.164 -0.438 -0.288 -2.752
14 (-3.283) -0.154 -2.578 -1.429 -0.111 -0.442 -0.289 -3.283
15 (-3.814) -0.153 -2.578 -1.248 -0.171 -0.443 -0.289 -3.814
16 (-4.345) -0.152 -2.578 -1.103 -0.028 -0.443 -0.289 -4.345
17 (-4.877) -0.151 -2.577 -1.324 -0.067 -0.444 -0.289 -4.877
18 (-5.408) -0.15 -2.577 -0.665 -0.367 -0.445 -0.289 -5.408
19 (-6.05) -2.027 -4.746 1.086 -1.6 -0.442 -0.29 -6.05
20 (-8.676) 0.541 -4.242 1.677 -2.154 -1.344 -0.316 -8.676
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