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Dynamic MRI is restricted due to the time required to obtain
enough data to reconstruct the image sequence. Several un-
dersampled reconstruction techniques have been proposed to
reduce the acquisition time. In most of these techniques the
nonacquired data are recovered by modeling the temporal in-
formation as varying pixel intensities represented in time or in
temporal frequencies. Here we propose a new approach that
recovers the missing data through a motion estimation of the
object elements (“obels,” or pieces of tissue) of the image. This
method assumes that an obel displacement through the se-
quence has lower bandwidth than fluctuations in pixel intensi-
ties caused by the motion, and thus it can be modeled with
fewer parameters. Preliminary results show that this technique
can effectively reconstruct (with root mean square (RMS) errors
below 4%) cardiac images and joints with undersampling fac-
tors of 8 and 4, respectively. Moreover, in the reconstruction
process an approximation of the motion vectors is obtained for
each obel, which can be used to quantify dynamic information.
In this method the motion need not be confined to a part of the
field of view (FOV) or to a portion of the temporal frequency. It
is appropriate for dynamic studies in which the obels’ motion
model has fewer parameters than the number of acquired
samples. Magn Reson Med 57:939–949, 2007. © 2007 Wiley-
Liss, Inc.
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Dynamic MRI has become an important technique for
studying the time behavior of many dynamic processes.
Clinical applications include cardiac imaging (1), contrast-
enhanced imaging (2), kinematics of joints and organs
(3,4), functional MRI (fMRI) (5), and real-time interven-
tional imaging (6). The simultaneous spatial and temporal
resolution desired in these applications is limited due to
data-acquisition time constraints. An important line of
research in this area has been aimed at developing under-
sampling reconstruction techniques in k-space or in k-t
space (7) without significantly compromising image qual-
ity. These techniques improve the acquisition time by
reducing the number of acquired samples and estimating

the missing data by exploiting the high spatiotemporal
correlation of dynamic sequences or from prior informa-
tion.

Traditional approaches operate on a discrete k-t space
and either treat each frame separately or consider the
temporal information as time-varying pixel intensities rep-
resented in time or in temporal frequencies. Therefore,
each pixel is considered in a constant position over time.
These methods include keyhole (8,9), reduced encoding
MR imaging with generalized-series reconstruction (RIGR)
(10), reduced field of view (rFOV) (11), hybrid technique
for dynamic imaging (12), unaliasing by Fourier-encoding
the overlaps using the temporal dimension (UNFOLD)
(13), sensitivity encoding incorporating temporal filtering
(TSENSE) (14), k-t broad-use linear acquisition speed-up
technique (k-t BLAST) (15), and reconstruction employing
temporal registration (16). In contrast, in this work we are
concerned not with the image pixels, but with the contin-
uous position of the object elements (obels) through the
dynamic sequence (17,18).

We define an obel as a piece of tissue of the object of
interest whose intensity is constant over time. In this way,
its temporal information is contained in its displacement
or position through time. Obels can be arbitrarily defined,
but for simplicity we usually use one or more pixels of the
first frame of the sequence for each obel, and therefore they
do not necessarily coincide with biological structures. The
continuous position of all the obels that constitute an
image will correspond to a motion model of the sequence.

The proposed method takes advantage of recent insights
into non-rigid motion correction (19) and is based on two
assumptions: 1) there is a high information redundancy in
a fully sampled dynamic MR sequence, and 2) the dis-
placement function of an obel in a dynamic sequence has
a lower bandwidth than the fluctuations of intensity of
stationary pixels caused by the movement. The first as-
sumption suggests the existence of static or quasi-static
parts of the image where the motion model is extremely
simple, and that for those parts that do move more vigor-
ously, the correlation between frames is very high and the
motion model can be well approximated by a one-to-one
transformation. The second assumption implies that the
displacement of an obel can be described with fewer pa-
rameters than the number of time points in an equivalent
dynamic sequence. This implication can be used to obtain
a more accurate model of the motion or to increase the
undersampling factor and therefore the temporal resolu-
tion. Accordingly, we are able to formulate a nonlinear
system whose solution provides a static reference frame
and a continuous position estimator for each obel in future
frames.
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Theoretically, a complete reconstruction of the dynamic
sequence is possible if the degrees of freedom of the mo-
tion model are less than the number of acquired samples.
In practice, the required samples are dependent on the
efficacy and efficiency with which the associated nonlin-
ear system can be solved. Just like reconstruction employ-
ing temporal registration (16), our method also generates
an approximation of the motion vector field that can be
used to assess relevant dynamic information, such as
quantifying the movement of the myocardium.

This paper presents the proposed method and the re-
sults of its application to in vivo 2D images of the heart
and joints. We provide a description of the relevant theo-
retical aspects as well as an experimental justification of
our premises, a detailed description of the acquisition and
reconstruction schemes, and finally an analysis of the re-
sults, which validate the proposed approach.

THEORY

Under the assumption that the obels’ intensities do not
change over time, it is possible to reconstruct a dynamic
sequence of images given a reference frame of the sequence
and the displacement through time of each obel from this
reference frame. This statement also holds for under-
sampled dynamic images. In this case the solution of the
inverse problem yields a fully sampled reference frame
together with the associated motion model starting from
undersampled acquisitions of the k-t space, allowing us to
reconstruct a fully sampled dynamic sequence. The recon-
struction is only feasible if the number of acquired sam-
ples exceeds the degrees of freedom of the motion model.
To warrant a workable reconstruction and reach a high
undersampling factor, the proposed method is based on
two assumptions: 1) there is a high information redun-
dancy in a fully sampled dynamic MRI sequence, and 2)
the function of displacement of an obel in a dynamic
sequence has a lower bandwidth than the fluctuations of
pixel intensity caused by the movement. A brief rationale
for these assumptions and a detailed description of the
proposed reconstruction procedure are given below.

Justification of Assumptions

The high level of information redundancy between frames
in dynamic MRI is evident if we consider the high degree

of undersampling attained using techniques such as k-t
BLAST (15) and reconstruction employing temporal regis-
tration (16), among others. It is also noticeable from the
sparse representation of the dynamic images in different
domains, such as x-f space. It is difficult to assess the level
of redundancy in dynamic sequences. However, a proce-
dure described by Irrarazaval et al. (16) estimates a rough
lower bound for the redundancy factor, which can be used
to decide the maximum undersampling factor in a se-
quence, based on concepts of entropy and information
theory. This limit is much higher than the undersampling
factor we will use in this work.

The second assumption is easy to visualize if we con-
sider a pixel near the edge of a moving object: the pixel
will be inside of the object in some frames, and outside in
others. As a result, the intensity of this pixel can change
abruptly over time. On the other hand, an obel starting in
the same position follows the moving object, describing a
smooth continuous curve of displacement. It is reasonably
clear that such a curve has lower bandwidth than a func-
tion describing a pixel intensity fluctuation, and hence can
be formulated with fewer parameters. A graphical inter-
pretation of this idea is depicted in Fig. 1.

To verify this second assumption we compared the
displacement over time of a number of obels from 2D
cardiac sequences with the intensity fluctuation of the
pixels situated inside the obel in the reference frame.
Figure 2 shows this comparison for a particular obel
belonging to the left ventricular (LV) wall. The displace-
ment over time of the obel was tracked manually from a
fully sampled sequence, and estimated with our recon-
struction from the undersampled dynamic data using
B-splines with three control points. In order to demon-
strate the benefit of tracking motion rather than inten-
sity, pixel intensity fluctuation from fully sampled data
was fitted using B-splines with six control points. This
is compared with the fully sampled data and the result
from our reconstruction from undersampled data using
three control points for each displacement. Figure 2
shows that a better fit is obtained with displacements
than with intensities, implying that more than six pa-
rameters would be necessary for the latter case. It is also
clear from Fig. 2 that our reconstruction obtains a suit-
able approximation of the obels’ motion.

FIG. 1. Graphical comparison for the curves that
describe the intensity fluctuation for a pixel near
the edge of a moving object and the displacement
of an obel in the same starting position. a: Time
intensity fluctuation of the pixel. b: The obel’s dis-
placement through time.
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Reconstruction Procedure

Let mt be a discrete image of a dynamic sequence at time t.
Under the assumption that obels do not change their in-
tensity over time, if a reference frame m0 and the displace-
ment of each obel whose initial position is defined in this
frame are known, it is feasible to get any frame of the
sequence. This is accomplished through a matrix multipli-
cation in the image space using mt � Ptm0 (19), where Pt

is the image transformation matrix that describes the spa-
tial displacements over time for each obel initially defined
in m0. In other words, Pt relates each obel in m0 with its
new position in mt.

The image transformation matrices Pt are permutation
matrices that operate over a vectorized version of the ref-
erence frame. Their entries take values between zero and
one to include the required permutation and interpolation
processes. Interpolation is necessary to assign the contin-
uous displacements of the obels to the discrete pixel po-
sitions and to ensure that there are no voids in image
space. These matrices are large, sparse, and seldom invert-
ible, even if the transformations are one to one between
frames.

Although our method is based on the above image trans-
formation, to improve efficiency it is written in the form of
a spatial transformation as:

Ft�x� � x � ut�x� [1]

where x is the position vector in the reference frame, and
ut is the vector representing the obels’ displacement over
all the spatial dimensions. Ft

�1 does not necessarily exist,
but is much easier to compute or approximate. The linear-
ity of the image space ensures that any spatial transforma-
tions Ft lead to linear image transformations Pt, such that
for an image m0 the transformed image satisfies:

mt�y� � Ptm0�x� � m0�Ft
�1�y�� [2]

where y represents the vector position in any frame of the
sequence mt in contrast to x, which is defined in m0. For
each obel the spatial transformation Ft(x) can be parame-
terized and written as F(e), where e is a matrix that defines
the motion of all the obels. Each row of this matrix corre-
sponds to a vector of parameters that describes the dis-
placement of one particular obel initially defined in m0.
One vector is needed per obel to ensure an accurate de-
scription of any object and motion. We write mt�m0,e� to
state that it is possible to reconstruct mt from a known
reference frame m0 and a set of parameters e.

We now describe how to apply this representation to
undersampled images. Let Bt�k� represent the k-t space
samples acquired using an undersampling pattern defined
in matrix St�k�, where an entry of one means to sample in
that position, and an entry of zero means not to sample in
that position. Let bt�y� be the inverse Fourier transform of
Bt�k�, which corresponds to the aliased image, W be the
Fourier transform matrix, and WH be its conjugate trans-
pose. Then the equations equivalent to Eq. [2] in the k-t
space domain for the undersampled case can be written as:

Bt�k� � St�k�Wmt�m0�x�,e� [3]

To improve solution stability the reconstruction is car-
ried out in the image domain:

bt�y� � WHSt�k�Wmt�m0�x�,e� [4]

The reconstruction equation expressed in Eq. [4] corre-
sponds to a nonlinear system in which bt�y), St�k�, and W
are known. The problem is to find the set of parameters e
and the reference frame m0 to satisfy this system of equa-
tions.

If the model has fewer degrees of freedom than the total
number of acquired samples, the formulation allows a
complete reconstruction of the image sequence. Letting Q
be the undersampling factor, Ne the size of the matrix e,

FIG. 2. Real data comparison (2D dynamic
sequence) for the displacement curves of a
particular obel of the ventricular wall and the
intensity fluctuation for the pixel in the same
starting position. a: Obel on the ventricular
wall. b: Time intensity fluctuation of the
pixel. The B-spline used to fit the data has
six parameters. c: Obel’s displacement in
the x and y directions through time. Each
B-spline uses three parameters.

Undersampled Dynamic Data Reconstruction 941
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and �Nd,Nt� the image dimensions, where Nd is the total
number of voxels and Nt is the number of frames, the
system in Eq. [4] has NdNt/Q equations and Nd � Ne

unknowns. The equations correspond to the acquired sam-
ples, and the unknowns correspond to the number of pix-
els in the reference frame plus the number of parameters
required to model the obels’ motion over all the image
dimensions. Consequently, in principle the system be-
comes fully determined if the following relation holds:

Nt

Q
� 1 �

Ne

Nd
[5]

This equation is used to compute the maximum allowed
undersampling factor Q, given the image size, the number
of frames, and the model employed to estimate the obels’
motion. For example, with Nt � 50, Nd � 256 � 256 and
Ne � 128 � 128 (one model every 4 pixels) � 4 (control
points per dimension) � 2 (dimensions), the undersam-
pling factor must be less than 16.6. If we consider as many
obels as pixels in the reference frame, we need Ne/Nd

parameters per obel to describe its motion.
Further accuracy can be achieved by employing more

than one reference frame. This arrangement is convenient
for 2D sequences in which some obels exit the slice. For
instance, consider two reference frames (one at the begin-
ning m0 and one in the middle of the sequence mc), then
Eq. [4] becomes:

bt�y� � WHSt�k�Wmt�m0�x�,mc�x�,e� [6]

which has to satisfy the relationship given by Nt/Q � 2
� Ne/Nd.

MATERIALS AND METHODS

The reconstruction algorithm was divided into three stag-
es: 1) undersampling in k-t space, 2) modeling the obels’
displacement, and 3) reconstruction and data consistency.
This is shown schematically in Fig. 3.

According to the assumption that there exists enough
information redundancy in a fully sampled dynamic se-
quence, k-t space was undersampled in a regular, uniform
way, employing lattice sampling patterns like those used
in k-t BLAST (15). The next step was to estimate the
sequence reference frame and its corresponding motion
model by solving the system in Eq. [6].

Finally, the whole sequence was reconstructed via spa-
tial transformations, and the procedure for data consis-
tency described in Ref. 16 was applied to ensure that the
reconstruction results were consistent with the acquired
samples. This final step is irrelevant if the solution reaches
a global optimum.

Undersampling in k-t Space

If Mt�k� represents the fully sampled time frames in k-t
space, the undersampled acquisition Bt�k� is represented
as Bt�k� � St�k�Mt�k�, where St�k� is the undersampling
matrix. The undersampling patterns used in this work
acquire 1/Q of the samples in each frame, with all samples
collected every Q frames (similarly to k-t BLAST (15)).

Modeling the Displacement of Obels

From the undersampled data Bt�k� or their image domain
representation bt�y�, we first estimated two reference
frames of the sequence (m0 and mc) and the associated
motion model. This was accomplished by solving the non-
linear system in Eq. [6] employing two nested optimiza-
tion loops, as illustrated in Fig. 4. The inner loop esti-
mated the values of m̂0 and m̂c using the least-squares
method to solve the overdetermined equation system:

bt�y� � WHSt�k�Wmt�m0�x�,mc�x�,ê� [7]

where ê is known. The outer loop used m̂0 and m̂c to
estimate b̂t�y� and to find the value of e that minimized the
mean square error between the acquired and the estimated
sequence �b, i.e.:

FIG. 3. Graphical summary of the
proposed reconstruction algo-
rithm. The acquired under-
sampled data are the input to two
nested optimization loops, which
determine the model motion of
the obels, and can also be used to
obtain an initial estimate of the
parameters e and speed up the
optimization process. From the
optimization loops we obtain the
optimum values for m0, mc, and e,
and thus we can reconstruct the
whole image sequence. Finally, to
ensure consistency in the recon-
struction we use the estimated
data only in the nonsampled po-
sitions of the k-t space.

942 Prieto et al.
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Mine�b � �
t�1

Nt

�bt�y� � b̂t�y��2 � �
t�1

Nt

�bt�y�

� WHSt�k�Wmt�m̂0�x�,m̂c�x�,e��2 [8]

In other words, for the inner loop e is held constant and
�b is minimized as a function of m0 and mc, while for the
outer loop the inner estimation of the reference frames is
kept constant and the minimum of �b is found as a func-
tion of e.

Employing MATLAB (The MathWorks), the inner loop
was solved using Least Square QR factorization (LSQR),
which is a conjugate-gradient algorithm with good numer-
ical properties (20). The algorithm allows explicit matrix
multiplication to be replaced by a user-defined function,
which is useful in our case since we can then work directly
with mt�m0�x�,mc�x�,ê�. The transpose product required in
LSQR was approximated with the temporal average of bt,
which was transformed by using the inverse spatial trans-
formation as a function of e. This substitution is highly
efficient and allows a solution to Eq. [7] to be found almost
instantaneously. The outer loop was solved by employing
a trust-region method (the fminunc routine in MATLAB)
together with an approximation of the analytic gradient of
the objective function.

Each obel’s displacement function was fitted using uni-
form quadratic B-splines for each spatial dimension. As a
result, the displacement curves ut�x� were parametrically
represented as u�e� by employing the sum of basis func-
tions, i.e.:

u�ei� � �
n�0

Ne/Nd�1

ei
nAn [9]

where u�ei� is the displacement of the obel i, ei
n is the

weight applied to the nth B-spline base An, and Ne/Nd is the
number of parameters needed considering one obel per
pixel. Each B-spline base is defined parametrically as
An�s� � A0�s � n�, a circularly translated copy of

A0�s� � �
s2/2 if 0�s�1
3/4�(s�3/2)2 if 1�s�2
(s�3)2/2 if 2�s�3
0 otherwise

[10]

As usual, the process terminates when changes are less
than a specified tolerance or a predefined iteration limit is
reached.

Reconstruction and Data Consistency

Once estimates of the optimum m*0, m*c, and e* are at-
tained, the whole dynamic sequence m̂t�y� is reconstructed
using

m̂t�y� � atm*0�Ft
�1�e*�� � �1 � at�m*c�Ft

�1�e*�� [11]

where at is a weighting function for each reference frame.
For the results presented in this paper, mc was selected to
be the central image of the sequence. We employed the
simple triangular weighting function at � 1 � ��2t/Nt�,
which is appropriate for cases with cyclic motion.

To ensure consistency, data from sampled locations in
k-t space are included instead of the estimated data, and
the rest are modified slightly in order to be consistent with
the sampled data (see Ref. 16 for details). This step is not
necessary if the optimization is good enough, because the
estimated and actually-sampled data values coincide.

Experiments

To test the proposed reconstruction algorithm, 2D dy-
namic sequences of the heart and a kinematic joint were
used. Fully sampled images were acquired from volun-
teers on a Philips Intera 1.5T (cardiac images) and a Phil-
ips Gyroscan NT Intera 0.5T (joint images). Undersam-
pling was simulated postacquisition by applying the de-
sired lattice pattern to the acquired data. The results of our
method were compared with the fully sampled images and
with sliding-window (SW) reconstruction (21). The root
mean square (RMS) error was used to quantitatively com-
pare both reconstructions.

Cardiac Imaging

The algorithm was applied to reconstruct steady-state free
precession (SSFP) dynamic (cine) sequences of two 2D sets of
cardiac images. The scanner parameters used to obtain the
fully sampled sequence for the first set of images (short axis)
were as follows: 2D balanced fast field echo (B-FFE) cardiac-
gated, TR/TE � 3 ms/1.46 ms, flip angle � 50°, FOV � 400 �
320 mm2, resolution � 1.56 � 2.08 mm2, slice thickness �
8 mm, acquisition matrix � 256 � 154, 50 frames, five-
channel cardiac coil, and breath-hold duration close to 25 s.
The parameters for the second set of images (long axis) were:
2D B-FFE cardiac-gated, TR/TE � 3.15 ms/1.57 ms, flip an-
gle � 60°, FOV � 340 � 340 mm2, resolution � 2.65 �
2.65 mm2, slice thickness � 8 mm, acquisition matrix �
128 � 128, 25 frames, surface coil, and breath-hold duration
close to 12 s. The complete acquired raw data sets were
undersampled by simulating a lattice pattern in the phase-

FIG. 4. Nested optimization loops. The inner loop finds the optimum
m0 and mc for a given parameter e. The outer loop finds the value of
e that minimizes the difference between the acquired data and the
estimation obtained from the inner loop.

Undersampled Dynamic Data Reconstruction 943
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encoding direction. Undersampling factors of 4 and 8 were
considered.

For both cases each pixel in the first reference frame was
an obel. Three parameters per obel were used to describe
their spatial displacements through the time sequence,
where the complete set constituted the motion model. The
model employed quadratic B-splines, and the beginning
and end of the cardiac cycle were treated as coincident. An
initial condition of e for the optimization process was
obtained from a crude nonrigid registration of two frames
from the sequence (i.e., the first and central frames) ob-
tained via linear interpolation through time. To reduce the
computational load, we concentrated the work in smaller
regions of interest (ROIs), typically containing 2800–4500
obels and therefore 21000–31000 unknown variables.

Joint Imaging

An FFE dynamic sequence of the movement of the elbow
was acquired with the following parameters: 2D FFE dy-

namic study, TR � 13.9 ms, TE � 8.54 ms, flip angle � 60°,
FOV � 348 � 348 mm2, resolution � 1.36 � 1.36 mm2,
slice thickness � 8 mm, acquisition matrix � 256 � 256,
24 frames, and a surface coil. The volunteer was asked to
rotate her elbow between 0° and 50° and then between 50°
and 0°, in a continuous and slow movement. Data were
subsequently undersampled by a factor of 4. To ensure that
the system of equations could be fully determined (Eq. [5]),
we did not consider higher undersampling factors.

Considering each pixel in the reference frame as an obel,
the motion model was fitted using quadratic B-splines and
four parameters per obel in each spatial direction. To im-
prove the convergence of the optimization process, we ini-
tialized using e such that it described a motion with a trian-
gular function of time, with maximum displacements half
way through the time series. The magnitude of this displace-
ment was set at random independently for each obel. To
reduce the computational load, we worked on an ROI of the
image using about 2900 obels and 28000 variables.

FIG. 5. Reconstructed images from 2D short- and long-axis cardiac sequence with a postacquisition undersampling factor of 4. The best
(frame 1) and worst (frame 29) cases of a 50-frame sequence are shown for the short axis, and frame 5 of a 25-frame sequence is shown
for the long axis. a: Fully sampled short-axis image frame 1. b: Reconstructed short-axis image frame 1 for Q � 4. c: Windowed difference
between fully sampled and reconstructed images for short-axis image frame 1. d: Fully sampled short-axis image frame 29. e: Recon-
structed short-axis image frame 29 for Q � 4. f: Windowed difference between fully sampled and reconstructed images for image frame
29. g: Fully sampled long-axis image frame 5. h: Reconstructed long-axis image frame 5 for Q � 4. i: Windowed difference between fully
sampled and reconstructed images for image frame 5.
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RESULTS

Cardiac Imaging

The reconstruction results for a factor of 4 undersampling
of 2D cardiac images are shown in Fig. 5. Acquisitions of
the short- and long-axis LVs were considered. For each
case, selected fully sampled time frames are shown to-
gether with our reconstruction result and the windowed
difference between both the original and reconstructed
images, verifying the good agreement. Most of the aliasing
is removed, and only slight spatial blurring is introduced.
The difference images show that the main errors are due to
small displacement of the edges, which could be solved
with a better optimization of the motion’s parameters. A
comparison between the proposed technique and SW for
an undersampling factor of 4 is shown in Fig. 6. The
temporal evolution of the mean magnitude of differences
over the whole image and over a small ROI (6 � 6 pixels)
of the sequence is generally comparable to SW reconstruc-
tion, as shown in Fig. 7. Indeed, the difference images
obtained in both cases are also similar. For an undersam-
pling factor of 4, as illustrated, the proposed technique has
a similar RMS reconstruction error to SW (1.26% for the
proposed method and 1.10% for SW in the short-axis LV
sequence, and 1.96% for the proposed method and 1.97%
for SW in the large axis LV sequence, using normalized
images).

The results of the reconstruction for an undersampling
factor of 8 for our reconstruction and SW reconstruction
are shown in Fig. 8 for one selected time frame. We have
included in Fig. 8 the fully sampled data and the win-
dowed difference with our reconstruction to confirm that
they are in good agreement. These results also show
(mainly in the edge of the LV) that the proposed algorithm
improves the temporal resolution and reduces the aliasing
and blurring in comparison with SW. Our method does
introduce some temporal blurring because it imposes a
“smooth” displacement for each obel; however, the low-
pass filter effect of SW is stronger. This is illustrated in Fig.
9, which shows the plane y-t from a line passing through
the LV for the proposed method and for SW reconstruc-
tion.

For an undersampling factor of 8, our method has a
lower RMS error than SW reconstruction for the whole
sequence (1.78% for the proposed method and 2.67% for
SW using normalized images). This is because at high
undersampling factors the main errors of SW (temporal

blurring and residual aliasing) are stronger than the main
errors of our method (small displacement of the edges).
This can be seen in Fig. 8, where the difference images
with respect to fully sampled data for the proposed and
SW reconstructions are shown in the spatial domain. Fig-
ure 10 shows the temporal evolution of the mean magni-
tude of differences over the whole image and over a small
ROI (9 � 9 pixels). In this case the SW error is particularly
strong at the beginning of the cardiac cycle.

Joint Imaging

The results of the reconstruction for an undersampling
factor of 4 are shown in Fig. 11 for two selected time
frames. We have included in Fig. 11a, b, d, and e the fully
sampled data and our reconstruction to confirm that they
are in good agreement, although the error in this case is
stronger than that for the cardiac images. In this example
the RMS error for our method is 4.04%, compared to

FIG. 6. Reconstructed images using the proposed and SW techniques from a 2D short-axis cardiac data set with a postacquisition
undersampling factor of 4. The images show the time evolution of a line along the x-axis, indicated by the line in the fully sampled image.
a: Fully sampled image. b: Evolution over time for the fully sampled image, proposed reconstruction, and SW reconstruction.

FIG. 7. Absolute mean error in the ROI and the whole sequence for
the proposed and SW reconstructions as a function of time. The ROI
is indicated by the square in Fig. 6a. The solid line shows the
percent error for the proposed method, and the dashed line shows
the percent error for SW reconstruction.
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3.41% for SW reconstruction. As in the cardiac images,
our method improves the temporal resolution and reduces
the aliasing compared to SW, as shown in Figs. 11 and 12.
Figure 11c and f show SW reconstruction for the same two
selected time frames, while Fig. 12 shows the evolution
over time for a line along the x-axis for the fully sampled
data, our method, and SW reconstruction.

DISCUSSION

The results show that the proposed method is able to
reconstruct undersampled dynamic sequences by employ-
ing motion estimation of each obel in continuous time.
The motivation to use this strategy is that normally the
displacement of an obel is smoother than the fluctuations

FIG. 8. Reconstructed images from a 2D short-
axis cardiac sequence with a postacquisition un-
dersampling factor of 8. Frame 26 of a 50-frame
sequence is shown. a: Fully sampled image frame
26. b: Reconstructed image frame 26 for Q � 8
with our method. c: Windowed difference between
a fully sampled image and our reconstruction for
image frame 26. d: SW reconstruction image frame
26 for Q � 8. e: Windowed difference between a
fully sampled image and SW reconstruction for
image frame 26.

FIG. 9. Reconstructed images using the proposed and SW techniques from 2D short-axis cardiac data with a postacquisition undersam-
pling factor of 8. The images show the time evolution of a line along the x-axis, indicated by the line in the fully sampled image. a: Fully
sampled image. b: Evolution over time for the fully sampled image, proposed reconstruction, and SW reconstruction.
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of pixel intensity caused by the movement, as was shown
in Fig. 2.

The reconstructed sequences exhibit a good spatial and
temporal resolution, and are in good agreement with the
fully sampled acquisitions. In general, edges are preserved
and most of the aliasing is removed. Some spatial and
temporal blurring is introduced because spatial interpola-
tion and smooth continuous curves in time were consid-
ered. The interpolation is needed and incorporated in the
spatial transformation Ft in order to assign the continuous
displacements of the obels to the discrete pixel positions
of the x-t image space. The main source of error of our
method is the under- or overestimation of the displace-
ments of obels on the edges of the object; however, this
could be improved with a more accurate optimization.

The main advantage of the proposed method is that it
does not require the motion to be confined to a part of the
FOV or to a portion of the temporal frequency, and thus is
independent of the sparsity of the x-f space. This was the
case for the elbow reconstruction, in which most of the
image was highly dynamic and presented considerable
displacements. Other advantages of our method are that it
is applicable to any kind of motion, it can be adapted to
non-Cartesian trajectories and nonuniform undersampling
patterns, and an approximation of the motion vectors for
each obel in the image can be obtained as an additional
result of the reconstruction process. The approximation of
the motion can be used to quantify dynamic information,
such as motion of the myocardium.

The high computational load of the current implemen-
tation is a limitation. Each reconstructed image in this
paper took between 2 and 3 hr on a regular PC (Pentium IV,
1GB RAM). The processing time is strongly dependent on
the image size, the number of obels defined in the refer-
ence frame, and the number of spline control points em-
ployed to fit the motion of each obel. In order to reduce the
number of unknowns and thus the processing time, we can
add constraints on the model motion. These restrictions
could include 1) considering an obel to be formed of more
than one pixel in the reference frame, 2) defining obels that
coincide with biological structures and adding elastic re-
strictions of the tissue, 3) defining more obels in dynamic
portions of the image or employing higher orders to esti-
mate more dynamic obels, and 4) adding spatial continuity
constraints in the movement of the obels. Another alterna-
tive to speed up the algorithm and improve its conver-
gence is to use multiresolution optimization in the estima-
tion of the parameter e. We did not consider any of these
alternatives in this paper, although we are working on the
multi-resolution idea, which is promising for speeding up
the optimization.

The proposed method has less RMS error compared to
SW for an undersampling factor of 8 (1.78% for the pro-
posed method and 2.67% for SW). This is not the case for
an undersampled factor of 4 (1.26% for the proposed
method and 1.10% for SW in short-axis acquisition, 1.96%
for the proposed method and 1.97% for SW in long-axis
acquisition, and 4.04% for the proposed method and

FIG. 11. Reconstructed images
using the proposed and SW tech-
niques from an elbow kinematic
data set with a postacquisition
undersampling factor of 4.
Frames 3 and 14 of a 24-frame
sequence are shown. a: Fully
sampled image frame 3. b: Re-
constructed image frame 3 for Q
� 4. c: SW reconstruction for im-
age frame 3 for Q � 4. d: Fully
sampled image frame 14. e: Re-
constructed image frame 14 for Q
� 4. f: SW reconstruction for im-
age frame 14 for Q � 4.

FIG. 10. Absolute mean error in the ROI and the whole sequence for
the proposed and SW reconstructions as a function of time. The ROI
is indicated by the square in Fig. 9a. The solid line shows the
percent error for the proposed method, and the dashed line shows
the percent error for SW reconstruction.

Undersampled Dynamic Data Reconstruction 947
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3.41% for SW in kinematic elbow acquisition); however,
RMS error penalizes particularly strongly the displace-
ment type of error produced by our method. Our method
removes most of the aliasing and introduces less temporal
blurring than SW, while retaining edges and a good signal-
to-noise ratio (SNR).

The assumption that an obel does not change its inten-
sity over time is strong and could be invalid in some
situations, such as in 2D sequences where the movement is
through the slice, in very noisy images, or when motion
occurs within a nonuniform coil sensitivity field. Other
situations where this assumption is not valid are dynamic
contrast-enhanced studies and fMRI. The first problem can
be overcome by employing more than one reference in
order to consider strong temporal changes of intensity, and
this problem should not be important in 3D images. To
relax this assumption, which is necessary to identify each
obel in the different frames, we could consider that the
texture of an obel (which would require the obels to be
formed by more than one pixel) and not its intensity is
constant over time and use another measure of agreement
(instead of the sum of the squared differences), such as the
correlation coefficient.

For our method, the maximum undersampling factor
depends on the image size and the model used to describe
the motion of the obels. For the examples presented in this
paper we used an undersampling factor of 4 for data sets
with 25 or 50 time frames, and an undersampling factor of
8 with 50 time frames, with three or four parameters to
describe the displacement of an obel in each spatial direc-
tion. There are situations in which the motion will be more
complicated and would therefore require more parame-
ters, restricting the feasible maximum undersampling fac-
tor. However, this was not the case in most of the appli-
cations we explored.

CONCLUSIONS

A method to reconstruct in vivo dynamic MRI sequences
from undersampled data has been proposed. In contrast to
the common approach in which temporal information cor-
responds to pixel intensity fluctuations, the proposed pro-
cedure recovers the missing data by motion estimation of
obels. The supporting premise is that the obels’ displace-
ments have lower bandwidth than the fluctuations of pixel
intensity caused by motion; therefore, their motion can be
modeled with fewer parameters.

The performance of the method was tested using 2D car-
diac sequences and sequences from a kinematic study of an
elbow. Undersampling factors of 4 and 8 were investigated
for the cardiac sequences, and a factor of 4 was investigated
for the elbow. In all of the tests the method achieved good
results and substantially eliminated the aliasing intrinsic to
the undersampling while it minimized temporal blurring.

The method requires enough sampled data to faithfully
describe the displacement of obels. Therefore, there is a
trade-off between the maximum undersampling factor and
the accuracy of the motion model. The high computational
load of the current implementation is a limitation that will
need to be improved for real applications of the algorithm.

The advantages of this method are that 1) it does not
require the motion to be confined to a part of the FOV or to
a portion of the temporal frequency, and 2) it can be
adapted to non-Cartesian trajectories and nonuniform un-
dersampling patterns. Furthermore, it obtains the vector
field of motion, which can be used to quantify relevant
dynamic information.
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