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ABSTRACT

Automatic classification methods applied to sky surveys have revolutionized the as-
tronomical target selection process. Most surveys generate a vast amount of time series, or
“lightcurves”, that represent the brightness variability of stellar objects in time. Unfortu-
nately, astronomical data take several years to be completed, producing partial time series
that generally remain without analysis until the observations are completed. This happens
because state of the art methods rely on a variety of statistical descriptors or features that
present an increasing degree of dispersion when the number of observations decreases,
which reduces their precision. In this paper we propose a novel method that increases
the performance of automatic classifiers of variable stars by incorporating the deviations
that scarcity of observations produces. Our method uses Gaussian Process Regression to
form a probabilistic model of the values observed for each lightcurve. Then, based on this
model, bootstrapped samples of the lightcurves’ features are obtained. Finally a bagging
approach is used, based on this samples, to improve the overall performance of the clas-
sification. The output of our model is a classification vector that associates a probability
of belonging to different variability classes. We realized tests on the MACHO and OGLE
catalogs; the results show that our method effectively improves the classification perfor-
mance of standard models. We believe this results prove that, when studying lightcurves,

it is important to consider the features’ error and how the measurement process impacts it.

Keywords: Astronomy, Variable Stars, Machine Learning, Data Mining
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RESUMEN

La aplicacion de métodos de clasificacion automadtica en catdlogos de observacion as-
tronémica ha revolucionado el proceso de identificacion de estrellas. Hoy en dia, muchos
estudios generan catdlogos conformados por un gran numero de series de mediciones, o
“curvas de luz”, que representan los cambios en el brillo de objetos estelares en el tiempo.
Desafortunadamente, las observaciones toman varios afios en completarse, lo que produce
series de tiempo parciales que normalmente no son analizadas hasta que todas las observa-
ciones son completadas. Esto sucede porque los métodos de clasificacion mds modernos
dependen de una variedad de descriptores estadisticos que presentan un grado creciente
de dispersion a medida que el numero de observaciones decrece, lo que disminuye su
precision. En este trabajo, proponemos método que mejora el rendimiento de los clasifi-
cadores automdticos de estrellas variables al incorporar las desviaciones producidas por
la escasez de observaciones. Nuestro algoritmo utiliza Procesos Gaussianos de regresion
para formar un modelo probabilistico de los valores observados para cada curva de luz.
Luego, basado en este modelo, se generan muestras aleatorias de los descriptores de las
curvas. Finalmente, a partir de estas muestras, se utiliza una técnica de bagging para in-
crementar la precision de la clasificacién. El resultado de este modelo, es un vector de
clasificacion que representa la probabilidad de pertenecer a cada una de las posibles clases
de estrellas variables. Realizamos pruebas en los catdlogos MACHO y OGLE; los resul-
tados muestran que nuestro método logra mejorar las predicciones de modelos clésicos.

Consideramos que estos resultados muestran la importancia de tomar en cuenta el error de

Xiil



los descriptores estimados, al clasificar curvas de luz, y como los procesos de observaciéon

los impactan.

Palabras Claves: Astronomia, Estrellas Variables, Aprendizaje de Mdquina, Mineria
de Datos
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1. INTRODUCTION

1.1. Machine Learning in Astronomy

We are currently living an age of technological revolution, the advances in different
areas of science are happening at a rate that has never been seen before. The case of in-
formation technologies is particularly surprising. The amount of data present in the world
is already so big, that it exceeds any chance of being analyzed with human supervision.
This creates the necessity for superior algorithms capable of making complex inferences
and human like analysis, with the speed of a computer. This is why the area of machine
learning appears, as an intent to close the gap between computer logic and human reason-
ing.

The area of astronomy is a clear example of this data deluge. Modern synoptic sky
surveys, are projects that observe giant portions of the sky for long periods of time (some
times over ten years), with no specific target in mind. This way they record information
of millions of objects at the same time (Alcock et al.,[2001; Aubourg et al., 1993} |Udalski
et al., 2008}; Drake et al., 2009), which result in very valuable information, but also in an
immense amount of data that is increasing exponentially. While some of the first synoptic
surveys like MACHO (Alcock et al., 2001)) recorded around 10 terabytes of data over
its life span, newest ones like the LSST (Matter, |2007) are expected to record over 100

Petabytes of data.



In order to analyze the data obtained from the surveys, extensive procedures must
be performed first. From this need, a particular field of astronomy has emerged, called
Time Domain Astronomy (TDA). TDA studies astronomical objects and phenomena that

change trough time (Huyjse et al., 2014).

Among the many tasks TDA works on, automatic classification of variable stars
through lightcurve analysis has been heavily studied (Debosscher et al., 2007; [Wachman
et al., 2009; |Kim et al., 2009; Wang et al.,[2010; Richards et al.,|2011; Bloom & Richards,
2011; Kim et al., 2011} Pichara et al., 2012 |Bloom et al., [2012; |Pichara & Protopapas,
2013; [Kim et al., 2014; Nun et al., 2014; Mackenzie et al., [2016; [Pichara et al., 2016).
This task aims to identify certain specific and valuable type of objects, within the hundred

of thousands a sky survey may contain, so later they can be analyzed with greater scrutiny.

In this line, supervised learning techniques have proved to be particularly effective,
due to their precision and speed (Debosscher et al., 2007). This kind of tools, train clas-
sification models over a group of labeled objects, for example, a significant group of stars
whose specific variability type has been determined trough spectroscopy. The training
process seeks to teach models to recognize underlying patterns that allow them to sep-
arate among a set of variability classes. These patterns can be very complex and high
dimensional relations. Fortunately, Machine learning approaches have shown capabilities
to discover very complex underlying patterns, that are imperceptible for human beings
(Jiawe1 & Kamber, [2001). The training phase can be very demanding in computational
time, but once the models are ready, the process of classifying a new instance is extremely

fast. And although this models have proved to be very effective, non of them is 100%

2



accurate, and thus the development of new algorithms and analysis techniques is still an

open problem

1.2. Contribution of this thesis

For the task of automatic classification, lightcurves are represented as a vector of
statistical features that describe different aspects of them, like brightness variability, color,
periodicity, and auto-correlation, among others(Richards et al., 2011} Pichara et al., 2012
Nun et al., 2015). However, the value of those features is highly dependent on the quality
of the measurements on which they are calculated (Kirk & Stumpf, [2009). Inherent errors
in the values of photometric time-series, as well as the amount of observations, may affect
the values of their descriptors. Therefore, the errors committed by classifiers in their
predictions can be attributed, at least in part, to the lack of precision of the features used
to represent them. For example, an insufficient amount of observations in lightcurves may
result in wrong estimation of periods, in spurious auto-correlations values, or in poorly

calculated variability patterns.

Figure @ shows the value of three different features, for two different lightcurves,
calculated at different moments of the observation process. The values of each individual
feature has been normalized and centered around zero, in order to make the variations
comparable. It is not surprising that the values change considerably as the number of
observations increases, but it is worth noting that stronger changes occur at the beginning,
when the number of observations is smaller. This holds for any statistical estimate. What
is particularly interesting is that this effect is not consistent for different features and for
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FIGURE 1.1. Normalized feature values over time. Features do not always tend to
a specific value (as shown by the mean) as the number of observations increases.
Also, not all features converge at the same time.

different lightcurves. In fact, it is easy to find cases where the same feature takes longer to

stabilize than others or even cases where features do not appear to converge at all.

The implications of this fact are evident. Photometric lightcurves are noisy, non ho-
mogeneously measured, with differences in the number of observations among them, and
with several observational gaps within them. If the value of the features used to describe
them are not robust and based on long periods of time, then they vary considerably as more
observations are added. This kind of features are not reliable to perform classification. In
the case of ongoing surveys, the problem is even bigger. The shorter the time series being
analyzed, the scarcer the information it contains, in fact, not even an expert astronomer can
correctly classify a lightcurve that consists of only a couple of measurements. This matter
is of utmost importance because photometric sky surveys normally take various years to
be completed. And, although in some cases, the data may not be sufficient to make good
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use of it, it would be very useful to have a model that is able to distinguish when there is

enough information to make reliable predictions and when not.

In order to tackle the problem of automatic classification with “incomplete” lightcurves
we work with two real sky surveys (MACHO and OGLE), where sets of approximately
five thousand labeled lightcurves of each catalog are used. Then, the curves are short-
ened into smaller versions of themselves by selecting only few observations. This way we

simulate the scenario of surveys that are barely beginning their measurement process.

Features that are calculated over some statistical sample are often assigned some mea-
sure of accuracy (Street et al., |1993; |[Efron & Tibshirani, |1994). For simple features like
the mean or the standard deviation, closed form equations exist for the associated error.
Unfortunately this is not the case for the majority of the time series features used for
classification. In the cases where closed form equations are not available, bootstrapping
techniques are an adequate alternative (Efron & Tibshirani, [1994). This techniques allow
to assign measures of accuracy to any statistical quantity by doing random subsampling of

the data where it is estimated.

In this investigation, a parametric time series bootstrapping technique is proposed in
order to generate many different lightcurve samples from the training set. Then, various
random training sets are built from this samples, where an automatic classifier is trained
on each of them. This approach allows to overcome the different biases each training
object may posses in its feature values, by averaging over the predictions among different

random models.



The objective of this work is to demonstrate the advantages of taking into account the
error present in the statistical features used for classification. And show how that error
relates to the quality of the time series used for classification. The framework presented
in this work proves that valuable predictions can be made with very poor time series con-

formed by few observations.

1.3. Overview of this thesis

The rest of this thesis is organized as follows: Chapter [2| explains the relevant back-
ground theory; Chapter [3| shows a small review of the work done in supervised classifi-
cation in astronomy and bootstrapping techniques for order dependent data and Chapter
H] gives a precise description of the method presented. Within Chapter [5] Section [5.1.1]
presents a real dataset used for a synthetic experiment, the lightcurves catalogs and the
training set used for the experiments. In Section ?? the results obtained are presented.

Finally, the conclusions of this work are presented in Chapter [6|



2. BACKGROUND THEORY

2.1. Astronomical Background

Sky surveys equip astronomers with massive amounts of information for them to an-
alyze and make discoveries, even for several years after this are completed. Part of this
information comes in the form of photometric catalogs. This are periodical measurements
of the brightness of several million of objects over the time the catalog was constructed.
One of the first and most important analysis that can be made is to classify this amaz-
ing number of objects into different type of variability classes. What follows is a brief

description of the most important objects that can be detected in sky surveys.

2.1.1. Variable Stars

Among the group of observable stars there is a group called “variable stars”, which
are of particular interest for astronomers. As described in [Huijse et al.| (2014)), these are
stars whose brightness fluctuates in time over a certain threshold, defined by the observing
instruments. Analysis of this type of stars is fundamental for the study of stellar structure

and properties, stellar evolution and the distribution and size of the Universe.

Variable stars can be divided in two main groups: intrinsic and extrinsic. On one
hand intrinsic variable stars get there luminosity variation from internal physical changes,
such as fluctuation in size or temperature. For example, Cepheids are radially pulsating
supergiant stars that expand and contract periodically. On the other hand, extrinsic variable
stars get their variation due to external physical influences, such as other moving objects
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around them. This is the case of eclipsing binaries stars, which are actually a system of

two stars rotating around each other, with their orbital plane aligned with the earth.

Pulsating | Cepheids, RR Lyrae,

________—  JMira
— ;
Eruptive Flare Star, Wolf-Rajet
. )Star
)

Cataclysmic | Novae, SuperNovae

—

Eclipsing Eclipsing Binary Star
)
 ———

Rotational Ellipsoidal Variable,
Stellar Spots

Intrinsic

Variability

FIGURE 2.1. Variable star topological classification as in|Huijse et al.| (2014). In-
trinsic variable stars get there luminosity variation from internal physical changes,
whereas extrinsic variable stars get their variation due to external physical influ-
ences.

Two particularly interesting intrinsic variable stars are RR Lyrae and Cepheids. This
stars can be used as distance markers in the universe, due to the relation between their

pulsation period and their absolute brightness (Percy, 2007)).

2.1.2. Variable Non-stellar Phenomena

Beside variable stars, there are other kind of phenomena that are perceived as lightcurves
with brightness fluctuation. These phenomenon are scarce, but are also very important to
identify. For example, a gravitational lensing effect is an increase of several order of mag-
nitude in the brightness of an object. This is produced by the presence of dark matter
between the earth and the object that emits the light. This big amount of matter acts as a
giant lens that distorts the light on its way to earth. When the amount of dark matter is

8



similar to that found in a planet, this are called microlensing events. Finding this kind of
objects is the main goal of some sky surveys (Aubourg et al., |1993]; Udalski et al., 2008;

Alcock et al., 2001]).

2.2. Machine Learning Background

Machine learning is an area of computer science that evolved from the broader topic
of artificial intelligence. Its goal is to allow computers to learn from experience, so that
they can later make decisions without being specifically programed for them. In order
to do this, a set of example inputs, from the phenomenon of interest, is required for the
algorithms to train on. Then the algorithm tunes some kind of model (a mathematical
function or data structure for example), over this so called training set. Machine learn-
ing algorithms can solve many different problems, some of the most important ones are:
classification, regression, outlier detection, clustering and extraction of association rules.
The work of this thesis falls under the category of automatic classification methods and,

as such, of supervised learning.

2.2.1. Supervised Learning

Supervised learning refers to all of machine learning algorithms where the model is
learned from data whose desired output is known. In other words, the data is conformed by
a group of instances X = {x, y}, where x is a vector of input variables and y is the variable
which we want to predict. The case where y is categorical is known as classification,
whereas the case where y is a continuos variable is referred as regression. One of the most

9



popular and simple classifiers is the decision tree (Breiman et al., |1984; J. R. Quinlan,
1986)). This classifiers aim to build a tree structure, where each internal node has a test
on a variable that determines which branch to descend to, and every leaf has an output
value. Then when an unknown objects wants to be classified, it is simply put through the

corresponding tests until a leaf node is reached, and its output with it. Figure 2.2 shows a

sunny overcast rain

simple decision Tree classifier.

humidity P
high normal true false

V2 NN

FIGURE 2.2. Decision Tree classifier. This models makes a series of test over the
input variables, until finally an output value is reached. Figure taken from |J. R.
Quinlan| (1986)).

2.2.2. Model Selection

One of the most important phases of the classification process is the model selection.
There are many theoretical foundations that support different classifiers in different sce-
narios, but in practice one must always evaluate the options before deciding. In order to
test the different models, a group of instances whose classes are already known beforehand
is needed. This is called a training set”. Then the models are trained on a subset of this
group, also called “training split”, and used to classify the remaining instances. Because

10



the real class of the remaining “test split” is already known, the precision of the different

classifiers can be precisely evaluated.

There are many strategies to divide the training set into train and test splits. One of the
most used is the K-Fold cross validation (Kohavi et al., [1995). This consists in dividing
the training set into k& groups. The model is then trained with £ — 1 of those groups and
tested on the remaining one, in a round robin fashion. This way all the training instances
are used as a test variable at least once. Finally the model which proves to be the most

precise is chosen.

2.3. Theoretical Foundations for our Method

As shown in[I.1] the value of time series features used for classification fluctuates im-
portantly when the number of observations is small. And, normally, it tends to converge
into more stable values as the lightcurves grow in length. This stabilization process varies
for each object and for each of its features. If the value of a feature is not consistent, or
varies greatly do to little observational differences, like the moment measurements began
(in the case of stellar photometry), the exact moment the observations where realized, or
small deviations on their values, then it is harder for a classifier to make accurate predic-
tions. Therefore it is important to find a method able to assign measures of confidence to

the estimated descriptors, and a way for classifiers to adjust their predictions accordingly.

For some simple statistical estimates (like the sample mean for example), closed form
equations for the error of the estimate are available. This is not the case for the vast
majority of features used in time series classification. The descriptors used in this context,

11



are normally very complex and exact theoretical values can not be obtained. To solve this

type of cases, is that bootstrapping methods exist.

In the case of lightcurves, further complications arise. Normal bootstrapping ap-
proaches assume that realizations of the random variable are independent of each other,
which is not the case of time series data. Lightcurves are measurements of the intensity
with which an object shines at subsequent times. Therefor each point is clearly related to
the ones that are close to it. In fact, the closer they are the more information they give from
each other. It is because of this that only special time series bootstrap methods, are suit-
able for this task. Also, the fact that lightcurves are non uniformly sampled, not aligned,
have uneven lengths and noisy observations puts even more restrictions to the techniques

that might be used.

It is for these reasons that Gaussian Process Regression seems as the most reasonable
approach. Gaussian Process is a very strong and flexible non parametric model that can be
used for regression analysis. Because it is non parametric, it works based on a kernel func-
tion that defines the correlation between any two given observations. This kernel function
can be chosen in many different ways in order to adjust to the particular characteristics

where it wants to be applied.

The rest of the section shows a more detailed explanation of the topics previously
mentioned. In particular Gaussian Process Regression, its application to time series boot-

strapping and a simple explanation of the concept of bagging in machine learning.
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2.3.1. Gaussian Process Regression

The regression problem corresponds to finding a function f(x) that describes the re-
lation between a vector of input variables x and a target variable y. In practice, however,
the process by which data is obtained introduces noise to the values of y. In the following

review a zero mean gaussian noise on y will be assumed. Therefor:

y=f(x)+e, e~ N(0,07)

It is important to mention that modern astronomical instruments are normally able to
estimate the measurement error € associated to each observation. Although this is rarely

the case in real applications, it does not affect the concepts presented.

One manner to try and solve the regression problem, and probably the most common
one, is to restrict the class of functions for f(x). Then the parameters that govern the
model are optimized, so that it fits the observed data as best as possible. This is what it
is called a parametric approach and, although they are usually easy to interpret, they lack

expressive power in more complex scenarios.

Another approach, and the method we use in this work, is to define a probabilistic
model on the functions f that might fit the data, and perform inference directly in the space
of functions. This kind of techniques are known as “non parametric Bayesian models”
because they establish a prior that reflects the type of functions we expect to see (periodic
or soft curves for example), and then make bayesian inference by combining the data that

we posses with the prior. This strategy is more flexible because it does not impose any
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particular type of shape to the curves that might fit the data. Unfortunately, a function, may
be evaluated in any number of locations, therefore it is unfeasible to track a probability
distribution which describes its values, over a possibly infinitely large input vector x. But,
when realizing regression, knowledge over the complete domain of x is unnecessary. In
practice one is only interested in making predictions on a vector x* of limited size. This

fact make Gaussian Processes able to solve the problem.

Whereas a probability distribution describes the possible outcomes of a random vari-
able (discrete or continuous), a stochastic process governs the properties of functions. A
Gaussian process, in particular, is a collection of random variables, any finite number
of which have a joint Gaussian distribution (Rasmussen & Williams, 2005). This means
gaussian processes satisfy what is called a marginalization property, which states that if the
gaussian process specifies (y1, y2) ~ N (i, X), then it must also specify y; ~ N (p1, 311)-
In other words, if it implies a distribution over a (possibly infinite) set of variables, then
that same distribution applies for a smaller set of those variables. Therefore this property
allows to make the same inference as if one was dealing with the infinite set of variables,

when only working with the ones that are of interest.

A gaussian process is completely defined by its mean and covariance functions m ()
and k(x,z’). On one hand, the mean function specifies the general tendency of the func-
tions that will arise. To make an example, in many real applications the mean function is
simply defined as m(z) = 0. Which means the average value of the functions perceived,
at any given point x, is 0. On the other hand, the covariance function k(x, ') defines the
shape of the curves that appear, by determining the covariance between any two points.
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More formally, the mean and covariance functions that govern a real process f(x) are:

and the Gaussian process
X~ gP(m(X)7 k’(X, X/))

Then in order to sample functions from a gaussian process prior, one must simply
build a multinomial gaussian distribution, by replacing the z, where one wants to sample
in the mean function, and covariance function of choice, and with that build the corre-
sponding x(z,), and X(z,). Assuming m(z) = 0, and a number of input points X, then

the function evaluated at those points f, satisfies:

f. ~ N(0, K(X,, X.)).

To further increase the understanding, lets assume a Gaussian process prior with a

mean function y(z) = 0 and the following kernel function:

o 0% (5)) = K, Xg) = exp(—5 1%, — %, ).
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This function is called squared exponential and is one of the most common kernel

functions. Figure [2.3]shows three samples taken at random from this prior.

Samples drawn from GP prior

-3

FIGURE 2.3. GP samples from a Squared Exponential prior. The squared expo-
nential prior produces functions with a smooth behaviour.

Finally, having assumed a given GP prior one must be able to incorporate the informa-
tion the training data provides from the phenomenon. In bayesian terms this corresponds
to combine the likelihood of the functions, given the observed points, with the prior that
has been chosen, in order to get the posterior distribution. The joint distribution of the
training outputs f and the test outputs f, according to the prior is

f K(X,X) K(X, X,
v lo | FORX) ECx

f, K(X,,X) K(X.,X.)
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To get the posterior distribution, the joint distribution must be conditioned to pro-
duce only those functions that are consistent with the observed data points. This becomes

simply

£.|X., X,f~N(K(X,, X)K(X,X)f,

K(X.,X,) - K(X., X)K(X,X)'K(X, X.)).

Now, in real cases where observations are noisy, this equations can very easily be
updated to incorporate this deviations. The covariance function, regardless of the one that

is being used must be updated to

cov(Yp, Yq) = k(Xp,X,) + Uiépq
or

cov(y) = K(X,X) + 021

where 9, is the kronecker delta. Then the joint distribution becomes:

y K(X,X)+ o2l K(X, X,)
~N |0,

f, K(X,,X) K(X.,X)
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and one can finally arrive to the key predictive equations for Gaussian process regres-

sion.

£/ Xy, X, ~ N (f*,cov(f*)) ,
where
f. 2E[f,|X,y, X.] = K(X,, X)[K(X,X) + 1]y,

cov(f,) = K(X,, X,) — K(X,, X)[K(X,X)+ 21| ' K(X, X,).

For the complete derivation of this equations please refer to Rasmussen & Williams

(2005)).

In the case of regression problems the mean of the distribution formed by the posterior
is taken as the function that best represents the relation between the input and the objective
variable. One of the main advantages of this regression model, other than its flexibility,
is that it does not only gives the values of the function evaluated on some locations X,
but also, because it is probabilistic, the prediction has a deviation assigned to it. As figure
[2.4] shows, this deviation reflects very accurately the knowledge data provides. As it tends
to be smaller near the data points, and grows in the intervals where there are not any

observations.
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Samples drawn from the GP posterior

FIGURE 2.4. Gaussian Process posterior distribution. Three sampled functions
from the GP posterior conditioned on five observations. The standard deviation is
smaller close to the observations and gets bigger as one moves away.

2.3.2. Gaussian Process Bootstrap

Because the Gaussian process is a probabilistic model, it can be used in other ways
rather than just a simple regressor. Kirk & Stumpf| (2009), shows an example of how one
can apply gaussian process regression to form a parametric time series bootstrap. The
technique is pretty straight forward. A GP is adjusted over the time series of interest and
the posterior distribution that best explains the behavior of the data is obtained. Finally
several other possible time series can be sampled from the distribution, until a sample set
of the desired size is formed.
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This has many advantages over more traditional bootstrap approaches. First, it takes
into account the relation different observations have on each other, and their relative po-
sition in the curve. In other words, if an observation is being sampled from an isolated
fragment of a series, the value will vary considerably across different samples. While
samples that have actual observations near them, will have similar values to the points
around them. Second, the way observations influence each other can be controlled de-
pending on the kernel function that is chosen. If periodic relations are expected or seen in
the data, a periodic term can be added to the kernel for example. Third, depending on the
kernel that is being used it allows to take into consideration the error in the values of the
data that one posses. Fortunately, in the case of photometric lightcurves, catalogs posses
the measurement error for every observation. Therefore this information can be added to
the model in order to increase its accuracy, because the model knows beforehand which
data points are more reliable than the rest. Finally, it uses all the observations available to
create the sampled curves, whereas other bootstrap techniques work by dividing the data

into subsets where valuable information may be lost.

2.3.3. Bagging

Bagging stands for bootstrap aggregating and is a machine learning ensemble strategy
first introduced by Breiman| (1996)). It allows to combine the strength of multiple models
in order to increase the overall predicting accuracy. The idea behind bagging is to generate
many versions of the same predictor, where each version is trained on a different bootstrap
sample of the original training set. Then, in the case of objects classification, a plurality
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vote is performed by the group of models and the most voted class is regarded as the final
output. Bagging not only improves the predictive power of the models, but also, by taking

the voting distribution, it gives a a confidence measure of the prediction it makes.

Bagging is specially effective when the predictive method presents a high instability.
Buichlmann & Yu (2002) formalize the notion of instability and shows how this technique
helps to overcomes the effects it has in classification performance. The formal mathemat-
ical definition escapes the scope of this thesis, but the general idea is that instability is
bigger when the model being adjusted does not converge to a definite value after a certain
amount of data. In other words, if small changes in the data considered to train, or new
observations of the same, produce differences in the final model. This is precisely the case
shown in Figure[I.1] If the value of the features is highly unstable due to the small amount
of observations, then the learned model will suffer the same problem, and the predictions

it realizes will not be reliable.
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3. RELATED WORK

3.1. Supervised Classification in Astronomy

Automatic classification of lightcurves success depends on two important and sepa-
rated aspects of the process. First is the type of classifier being used. There are many
different supervised classification algorithms in machine learning theory, each with its
own advantages and limitations (Breiman, [2001}; Cortes & Vapnikl, [1995;|Cox, [1958;J. R.
Quinlan, [1986). But no matter which classifier is used, none of them will be successful
if the features used for representation are not informative enough and therefore able to
distinguish different kind of objects. This is one of the reasons why a lot of the research,
regarding automatic classification of variable stars, has focused on the way lightcurves are

represented rather than the classifiers they are fed to.

The second aspect is precisely that, how the objects are represented. Lightcurves, be-
ing composed of several hundreds of observations, which are hardly ever the same size,
unevenly sampled and at different times, are not suited to be introduced to a classifier
as input. To address this inconvenient, lightcurves are converted to vectors of numerical
values. Great investigations efforts have been made to address this topic, |[Richards et al.
(2011)) introduced features that measure different statistical characteristics of time series
like: standard deviation, skewness, kurtosis, slopes, and period. Kim et al.| (2011) used
features that capture the period, color, amplitude and the autocorrelation value of light
curves in order to accurately identify quasars from the MACHO Large Magellanic Cloud

database. Also, Pichara et al.| (2012) proposed new features based on the parameters of
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an adjusted continuous autoregressive model of the lightcurves, which generated an im-
provement in the accuracy of quasar detection methods. Nun et al.| (2015) developed a
software library which aims to facilitate the feature extraction process. The library in-
cludes a very complete compendium of the most important features in recent literature.
And because it is open sourced is possible for the whole academic community to ensure
that their implementation is correct and to contribute if new descriptors are designed in
the future. |Mackenzie et al.| (2016) took a step in a different direction and proposed an
unsupervised feature learning algorithm for variable stars classification. In other words, it
devised an algorithm that automatically learns how to represent features without the help

of any expert, or using any feature previously designed.

3.2. Bootstrapping

Bootstrap methods are a family of techniques in statistics, that rely on sampling with
replacement in order to do inference (Efron & Tibshirani, [1994). They were first intro-
duced by Efron (Efron, 1979), and have become increasingly popular since, because they
allow to obtain measures of accuracy (such as the standard error) of a sampling statistic for
small samples of data. Their only limitation is that they are computer intensive, because
they require to repeat the calculation of the statistics of interest over many bootstrap sam-
ples, but the advance that computer power has shown recently makes this easy to overcome

and implement.

Because of the previous reasons, and the fact that they can assign deviations measures
to almost any statistics, they are perfectly suitable to obtain confidence intervals for the
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values of complex astronomical features. Nevertheless, the case of lightcurve features is
more complicated than usual. Because this descriptors work on time series, which are

order dependent data, the manner in which to resample the data is not evident.

Bootstrapping time series, or order dependent data, is not an obvious task, and many
different approaches have been proposed along the years. Special considerations must be
made, because the data cannot necessarily be changed of order without changing the values
of the estimators one wants to calculate. The Block Bootstrap (Kunsch, [1989), attempts
to solve this issue by dividing the time series observation in adjacent blocks of length
£. Then the resampling is made by drawing this blocks uniformly, thus preserving the
original time series structure within each block. Although the choice of ¢ is not obvious,
Block Bootstrap has been shown to work for general stationary data generating processes
(BiihImann, 2002). Kreiss & Franke|(1992) introduces a different kind of approach based
on autoregressive models and sieve approximation (Grenander, 1981). Finally, Kreiss et
al.| (1998) proposes the so called local bootstrap, which aims to model the dependency
that each of observation has on the previous ones. This models proves to be effective only
when the observations are generated by a short-range dependent process (Paparoditis &

Politis, 2000).

Although all of these methods prove to be effective in specific cases, they all make
different assumptions over the time series where they are going to be applied, in order
to deliver good results (Biihlmann, 2002). This, together with the fact that photometric
lightcurves do not obey many consistency requirements, make necessary to look for more

flexible ways of obtaining bootstrap samples.
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4. METHODOLOGY

As demonstrated before in Chapter [T when lightcurves are composed of only a few
points the value of the features that describes them becomes disperse. This because, as
there are little observations the values of each one becomes more important, and tiny
variations on their values, or the presence of new ones, affects the estimation considerably.
This deteriorates the effectiveness of classifiers as features are not longer able to describe
different objects consistently. To overcome this problem we draw from what is proposed
in Kirk & Stumpf (2009), to create bootstrapped samples of any feature, together with a
bagging approach to combine the different outcomes each set of samples produces. By

doing this we diminish the effects feature variance has on classification performance.

Our algorithm consists of four major steps. In the first stage, we adjust a gaussian
process regression model to each lightcurve, and sample n time series from the posterior
distribution obtained. In the second stage we take a different sample from each of the
original objects to form n different sets. Then we calculate a set of descriptors for each of
the samples in this so called “sample sets”. The third stage consists of training a classifier
on each of this sets, thus obtaining n different models. The fourth and final step is to
classify the unknown lightcurves. For this we use the same idea, n samples are taken from
the adjusted GP on the lightcurve. Finally each of this samples is classified by one of the
models, thus obtaining a voting distribution on the object’s class. Figures to show

the different stages of the process.
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4.1. Time series bootstrapping

The first step of the process is to take every lightcurve in the training set, and take
bootstrapped samples from each of them. The idea is that each of this lightcurve presents
different behaviors in the sections where the sampling is poor, in other words where not
many measurements where made. On the contrary if the lightcurve presents a very good

sampling we expect the bootstrapped samples to be very similar.

To obtain bootstrap samples of the lightcurves in the training set we adjust a gaussian
process regression model on each of them, and take n samples from the obtained posterior
distribution. As described in Section[2.3.1] what defines the shape of a Gaussian Process is
the kernel function. In the case of photometric lightcurves, we take from the work done by
Faraway et al. (2014), and use a similar gaussian process prior to the one they proposed.
Because variable stars do not normally show a noticeable variation on the overall amount
of flux, we choose to use a constant mean function equal to the mean value of their signal.

Then the prior we use is:
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1.- Time series Bootstrap

FIGURE 4.1. Illustration of the first stage of the algorithm, the Time series Boot-
strapping.

In the equations above, 1(x) is the mean of the signal, JJ% is the signal variance, [ is
the length scale, d,, is the kronecker delta and o2 is the noise variance. The last term is
particularly interesting because for astronomical data, unlike the majority of cases, ran-

dom error can be measured for each observation.
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Figure 4.2] shows the adjusted gaussian process model over a lightcurve from the

MACHO catalog.
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FIGURE 4.2. MACHO lightcurve Gaussian Process fit. The model captures the
general form of the time series, and adjusts the deviation according to the obser-
vations possessed. The model is less influenced by measurements with greater
measurement error.

The number of samples to take is not obvious at first hand and, because it may change
in different scenarios, it must be found empirically. There is a trade-off between the accu-
rate representation of the curves distribution and the computational time the method takes.
In our experiments we found that 100 samples gave optimal results while still being com-
putationally feasible. Figure [4.3|shows the original light curve on top and two random
samples taken from it.
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FIGURE 4.3. GP random samples. The GP is adjusted over a lightcurve and two
random samples. The samples are taken at uniform times over the span of the
measurements. Sampled observations near the original ones have very similar
values, while samples taken from empty spaces are more disperse.

4.2. Sample sets

After taking the bootstrap samples, we form n different training sets. Where each
set contains a single and different sample for each of the original labeled lightcurves. We

refer to these sets as the sampled sets. An illustration of this stage is shown in4.4]

Then a group of time series features is calculated for each curve of the sampled sets.
For this task we use FATS Nun et al.| (2015)). This open sourced python library allows
easy and efficient calculation of the most used lightcurve features existent in literature.
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2.- Sample sets

FIGURE 4.4. Illustration of the second stage of the algorithm. The different sam-
ples of each lightcurve are separated into different “sample sets”. Each of this sets
represents a different random scenario of the observed lightcurves.

Although this tool allows to calculate more than 50 different time series features, we re-
stricted our work to a subset of only twenty three features that prove to be effective for
classification. We decided to discard all features that need different bands to be calculated,
because this adds further complexity to the problem, and including them goes beyond the

scope of this investigation.

At this stage, because the features have been calculated for n bootstrapped samples of
each lightcurve, we now posses an estimation of the distribution of their values for each
object. According to this distributions, features that present a high variability in their val-
ues will be less influential on the classification, whereas features that are more consistent
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will be taken more into account by the model. Analysis on the features distribution is

shown in[3.2.3]

4.3. Training

After we calculate the features for each of the samples sets, we adjust a decision tree
classifier (Breiman et al., [1984; J. R. Quinlan, [1986) on each of them. We decided to
use decision trees as the classifiers to combine, because this way our model resembles
the Random Forest Classifier (Breiman, 2001), which has proven to be one of the most
effective classifiers for variable star classification (Carliles et al., [2010; [Richards et al.,
2011} Pichara et al., 2012} Pichara & Protopapas, 2013)). Although instead of combining
trees, trained with different subsets of features, we combine trees trained on different
random scenarios, where each scenario is a possible uncertain outcome of the values of

the original training set. An illustration of this stage is shown in

4.4. Classification

The final stage is to predict the class of a new unlabeled object. For this the same
logic presented before is used. Because the values of a new lightcurve may be corrupted,
the prediction yielded by the classifiers have a greater chance of being incorrect. Therefor,
again, n different samples are obtained and their features calculated. Then each of this
samples is given to a different trained model for it to cast its vote. Finally the vote of all
models is combined and the most popular class is regarded as the final predicted class. An
illustration of this stage is shown in {.6|
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3.- Training
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FIGURE 4.5. Illustration of the third stage of the algorithm. Each sampled set of
lightcurves, and the subsequent features, es used to train a different decision tree.
This way each decision tree will present a different structure depending on the
particular set of samples which it was trained with.

It is important to note that because a voting is taken place, the actual prediction of
this framework gives a belief of belonging to each of the possible classes. One can take
advantage of this quality to discard, or further analyze confusing results, in the case, for
example, that many models give different predictions. If a lightcurve presents very little,
noisy, or unevenly distributed measurements, the value of its features will change greatly
among different samples. Therefor it is likely for different classifiers to be confused and
cast contradicting votes. On the contrary, if a lightcurve is well sampled, and therefor very

well described, the voting of the different classifiers is likely to be more consistent.
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4.- Classification
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FIGURE 4.6. Illustration of the final stage of the algorithm. When an unknown
lightcurve needs to be classified, the same process is realized. Various samples are
taken from it, their features calculated, and then given to a different classifier from
the ones trained on the previous step.
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S. EXPERIMENTAL RESULTS

In this section the experimental results are presented. First, we detail a synthetic ex-
periment based on the Robot navigation dataset. The goal of this example is to show
how classification results are affected when the value of the variables are affected by ran-
domness. And then, how this problem can be reduced by using a bagging technique like
the one proposed. Then we present the classification results obtained by working with
photometric data. In this case we take complete photometric catalogs and, by reducing
the number of observations by hand, we simulate the scenario where these surveys were

beginning their observation process.

The difference of the real case with the synthetic one (and one of the key contributions
of this investigation) is how the method proposed in Section is used to obtain the

bootstrapped samples of noisy lightcurve features.

In both the synthetic and real cases we compare how a bagging scheme classifier
improves the classification of standard models. Classifier performance is measured with
a 10-fold stratified cross-validation F-Score on each of the classes present in the training
sets. We choose the classic Decision Tree (Breiman et al., [1984; J. R. Quinlan, |1986;
R. Quinlan, [1993) and the Random Forest (Breiman, 2001) as the classifiers which to
compare our model with. We compare with the Decision Tree to validate that the bagging
realized in our method improves the results of this simple model. Second, we compare
with the Random Forest because this is the classifier of choice in many recent literature

(Nun et al.l 2014; Kim et al., 2011}; |Pichara et al., 2012; Pichara & Protopapas, |2013;
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Richards et al., [2011) regarding automatic classification of variable stars, and is also the
most precise according to our tests. All three models work with the exact same set of

features.

5.1. Robot Experiment

5.1.1. Data

The dataset used for this experiment is taken from the UCI machine learning repos-
itory(Lichman, 2013). It is called ”wall following robot” dataset (Freire et al., [2009) as
it was collected from a mobile robot which tries to navigate along the walls of a room
without colliding. The robot was equipped with a belt of 24 ultrasound sensors that mea-
sure the proximity of objects in a 360 degree radius at evenly timed steps. Then each
entry of the dataset contains the readings of the 24 sensors together with a class, which
corresponds to the specific movement the robot must make, from a group of four defined

possible movements.

5.1.2. Training Set Composition

The robot training set is composed of 5456 readings, and the class composition is
detailed in Table [5.I] We choose to work on this dataset, as a synthetic example, because
it does not have any missing values and it also has a similar number of attributes and
instances as the photometric datasets we work with.
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TABLE 5.1. Robot Training Set Composition

Class Number of Objects
1| Move-Forward 2205
2 | Sharp-Right-Turn 2097
3 | Slight-Right-Turn 826
4 | Slight-Left-Turn 328

5.1.3. Results

To evaluate the effects that feature noise has in classification results, the following
experiment is made. The robot dataset is taken, and for each feature the amplitude is
calculated. That is, the difference between the maximum and the minimum value it takes
on the dataset. Then to each feature, of each instance, a white noise kernel is added, with
standard deviation equal to a randomly chosen value between zero and a fixed percentage
of the amplitude. So, for example, to generate a dataset with a 5 percent of noise, we take
a sample from all of those kernels, using 5 percent of the corresponding feature amplitude

as the maximum possible standard deviation.

The advantage of doing this, is that it allows us to generate any number of randomly
sampled sets, from the same feature distribution. In this way, we can compare, how a
classifier that works on a single observed dataset, works against an ensemble of classifiers,

each trained on a different random dataset.

We did this test, for various levels of added noise, ranging from 5 to 20 percent. The
results obtained are shown in Figure[5.1] It is evident that for all of the classes, the voting
scheme classifier gives better results than both, the Decision Tree and the Random Forest,
trained over a single observed random set.
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FIGURE 5.1. Classification F-Score for the Robot training set. The results ob-
tained by bagging the predictions of many different classifiers are less affected by
noise than both the Decision Tree and the Random Forest.

5.2. Lightcurve Classification

In this section the results obtained working with data obtained from two different as-
tronomical surveys (MACHO and OGLE) are described. First, a brief depiction of the cat-
alogs used in this section is shown, followed by a description of the training sets which we
worked with. Then, the results corresponding to the first stage of the classification frame-

work, the time series bootstrapping, are shown. After that, we comment on the values
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obtained for the empirical distribution of the time series features. Finally the classification

results obtained by working with the proposed framework are shown.

5.2.1. MACHO

The MACHO catalog is the result of a project that aimed to find dark matter in the
form of massive compact halo objects (MACHOs). The project made photometric ob-

servations of tens of millions of stars, for almost 6 years, in the Large Magellanic Cloud

(LMC), Small Magellanic Cloud (SMC) and Galactic bulge (Alcock et al.,[2001).

5.2.2. OGLE-III

The OGLE-III catalog of variable stars (Udalski et al., 2008) contains photometric
data obtained during the third phase of The Optical Gravitational Lensing Experiment.
This wide-field sky survey was designed with the objective of finding dark matter through
the microlensing technique. It contains regular measurements of the brightness of more
than 200 million objects, from the large and small Magellanic Clouds, the Galactic bulge

and the Galactic Disk, taken since 2001.

5.2.3. Training sets

The photometric training sets are labeled subsets of the actual surveys. The MACHO
training set is composed of 6627 curves (Kim et al., 2011). The OGLE training set is
composed of 4733 labeled curves. Their class composition is detailed in tables [5.2] and
[5.3] The OGLE training set is chosen as a subset of the most represented variable star
classes in the catalog, and of comparable size to the MACHO dataset. Also, in order
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to make the classification more difficult, we choose objects from the Large Magellanic

Cloud, Small Magellanic Cloud, and the Galactic Disk.

TABLE 5.2. MACHO Training Set Composition

Class Number of Objects

1 Non Variable 4768
2 Quasar 34

3 Be Star 112
4 Cepheid 101
5 RR Lyrae 606
6 | Eclipsing Binary 255
7 MicroLensing 393
8 | Long Period Variable 358

TABLE 5.3. OGLE-III Training Set Composition.

Class Number of Objects
1 Cepheid 724
2 Type 2 Cepheid 275
3 RR Lyrae 998
4 | Eclipsing Binary 794
5 Delta Scuti 656
6 | Long Period Variable 986

5.2.4. Bootstrapping results

Figure [5.2] shows a Gaussian process model adjusted over a lightcurve from the MA-
CHO catalog. It is important to notice that the model assigns greater uncertainty to regions
where no observations are recorded, while regions with better measurements are regarded
as more accurate. This is very important, because lightcurves with greater gaps in their
measurements will produce bootstrapped samples with greater differences in their values,
while better sampled curves will result in more consistent ones.
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Figure [5.3| shows the same lightcurve fit and three samples taken randomly from the
model. It is evident that all the samples present very similar values on regions with higher
density of observations. On the other hand, regions where the original time series has less
information, are very different among the samples. This is the behavior expected for this

stage of the process.
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FIGURE 5.2. Gaussian Process regressor adjusted over a lightcurve from the MA-
CHO catalog. The model gives greater uncertainty to regions where no observa-
tions are recorded.

5.2.5. Feature distribution

Every statistical estimate has an inevitable degree of error in its estimation. There-
fore finding methods to assign measures of accuracy in their values is crucial. Variables
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FIGURE 5.3. Gaussian process adjusted over a light curve and three random sam-
ples taken from it. Samples taken from empty spaces are more disperse. Therefore
lightcurve with poorer sampling, both in total number and uniformity of observa-
tions, will present a greater dispersion in the value of their calculated features.

which values present high degrees of error (just as some photometrical measurements) are
normally dismissed versus more precise ones when using them for analyses. The boot-
strapping technique used in this investigation allows for the same logic to be applied to
the time series features used for classification. Figure [5.4] shows a graphical comparison
of the distribution of the same feature for two different curves from the OGLE catalog. It
is evident that one curve presents much more error in the estimation of the eta variability
feature.
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The curve that presents more consistency in its values, will be more influential in the
classification process than the other one. Because as the values will be given to differ-
ent classifiers, inconsistent behaviors are dismissed by the voting of the majority, while

consistent ones are reinforced.

Eta_e distribution for OGLE curves LMC-ECL-01307 and LMC-LPV-01528
@3 LMC-ECL-01307

10

@ LMC-LPV-01528

Frequency

5 10 15 20
Feature Value

FIGURE 5.4. Distribution for the values of the eta variability measure for two
lightcurves from the OGLE catalog. It is evident that the the blue values are much
more concentrated and thus present lower variability. On the other hand the green

values show many escaped higher values.

5.2.6. Classification Results

Tables [5.4] and [5.5] show the classification results, for each catalog, obtained by the
model proposed in this paper, a Random Forest and a Decision Tree. Compared with the
Decision Tree, the UF shows better results for all of the classes on the MACHO training

set, except for the Cepheids. On the OGLE training set the results are almost the same.
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Class Random Forest | Our Method | Decision Tree
1 Be Star 0.570 0.546 0.461
2 Cepheid 0.931 0.790 0.870
3 Eclipsing Binary 0.474 0.465 0.392
4 | Long Period Variable 0.877 0.856 0.850
5 RR lyrae 0.737 0.762 0.671
6 Microlensing 0.823 0.775 0.690
6 Non Variable 0.930 0.936 0.910
6 Quasar 0.041 0.247 0.130
TABLE 5.4. Classification F-Score on the MACHO training set
Class Random Forest | Our Method | Decision Tree
1 Cepheid 0.804 0.833 0.757
2 Delta scuti 0.824 0.825 0.807
3| Eclipsing Binary 0.872 0.728 0.845
4 | Long Period Variable 0.974 0.963 0.954
5 RR lyrae 0.832 0.891 0.704
6 Type II Ceph 0.775 0.785 0.694

TABLE 5.5. Classification F-Score on the OGLE training set

Except for the Eclipsing Binaries, all classes see their F-Score improved by our model.
These results show that combining the votes of many decision trees, over different samples

of the same objects, effectively improves the classification performance.

Compared with the Random Forest, although there are specific differences on the per
class performance, both models have similar results on the MACHO training set. The
UF gets better results for RR Lyrae and Quasars, while the RF does better at identifying
Cepheids and Microlensings. On the OGLE training set, the results are similar, with the
difference that the UF gives better results for Cepheids and RRLyrae, which are extremely

valuable to find, compared with the rest of the classes.

Although the proposed model does not outperforms the random forest classifier is
important to notice the high precision the model presents for some important variability
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classes. For example, RR Lyrae stars have an 0.89 f-score which is impressive, because
the model is only working with five percent of the available observations. Long period
variables are even more impressive with a 0.97 f-score. This results show that astronomers

may not need to wait long periods of time to identify this type of objects reliably.

44



6. CONCLUSIONS

In this work, we present a new way of bootstrapping features for lightcurve classifica-
tion where, instead of making subsamples of the instances of the training set, we sample

the original time series used to estimate them.

A Gaussian Process Regression is used to form a probabilistic model of the values
observed for each lightcurve. In bayesian terms, this is called a posterior distribution,
because it combines the evidence the data gives, with a prior that reflects the beliefs we
have on the behavior of stellar variability. The prior also considers the measurement error

each observation presents and adjusts the model accordingly.

Our results show that the regression model correctly describes the behavior of the
lightcurves. Because the Gaussian Process is a generative model, it uses all of the ob-
servations to form new samples, instead of only considering the information of preceding
points. This preserves the long term patterns underlying in the data. The model also as-
signs greater deviation to the regions where no observations are recorded. Therefor sam-
ples taken from empty spaces are more disperse than the ones taken near other observed

points.

We have also shown how to obtain an empirical distribution of the value of any feature.
Lightcurves with poorer sampling, both in total number or uniformity of observations,
present a greater dispersion in the value of their calculated features. This allow for a
model to discard the instances which values have higher variability for others with more

consistency in their values.
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Finally, by comparing our results to the ones of a single decision tree, we show that
combining the votes of many different classifiers, over different samples of the same ob-
jects, increases the overall classification accuracy. Although it does not outperforms the
random forest classifier, both models show that they are are able to recognize some classes
with surprising precision, in spite of working with only a fraction of the available infor-

mation.

We believe this framework constitutes the first attempt to include the error of time
series features into the automatic classification process. In this sense, it proves that better
results can be obtained by using simple models, like the decision tree, when this issue
is taken into account. We hope that this investigation encourages the research commu-
nity to take more into consideration the error associated with feature calculation, how the

measurement process impacts it, and to develop more ways to overcome it.
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