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Abstract

The origin of the exchange bias phenomenon is investigated on the basis of a quantum mechanical model. In particular, the

mechanisms that determine the magnetic structure in the vicinity of an antiferromagnetic–ferromagnetic interface are reexamined. This

way we establish how the breaking of translational invariance modifies quantum spin fluctuations. It is found that non-uniform

fluctuations induce uncompensated spins in the antiferromagnet, which in turn give rise to a dipole field that couples to the magnetization

of the ferromagnet. This coupling yields an exchange bias field that is of the order of magnitude of the one observed experimentally. A

net surface magnetization should also be experimentally observable in a clean antiferromagnetic surface.

r 2007 Elsevier B.V. All rights reserved.

PACS: 75.70.i; 75.60.Ej; 75.70.Cn; 75.60.Ch; 75.30.Gw

Keywords: Exchange bias; Spin fluctuations
1. Introduction

The origin of the exchange anisotropy phenomenon is the
interaction of two differently ordered magnetic materials
which are in contact, usually one ferro- and the other
antiferromagnetic, which have been cooled below their
ordering temperatures TC and TN (Curie and Néel,
respectively) in an external magnetic field. It has been
observed in clusters or small particles, ferromagnetic (FM)
films deposited on single-crystal or polycrystalline antiferro-
magnetic (AF) substrates, FM/AF thin film bilayers, and
spin glasses. The most characteristic signature of exchange
bias (EB) is that the center of the hysteresis loop is shifted by
an amount called the EB field HEB, as illustrated in Fig. 1.
With the convention that the positive field direction is that
of the cooling field, HEB is usually negative.

Although exchange anisotropy has attracted the atten-
tion of physicists and material scientists for half a century
[1–4] and has resulted in extensive technological applica-
tions in the storage and sensor industries [5,6], a full
front matter r 2007 Elsevier B.V. All rights reserved.
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understanding of its physics has not yet been achieved.
Experimentally, it has been ascertained that EB is related
to the spin ordering on the AF side of the interface [7,8].
However, the nature of this arrangement, and the precise
microscopic mechanism that determines the magnitude of
the EB field, are still open questions. Several EB theories
have been advanced with varying degree of success [9–17].
Early models [11,12], which yield much too large values of
HEB, assume a domain wall (DW) in the antiferromagnet.
Koon [10] gave strong arguments in favor of the FM/AF
interface structure sketched in Fig. 2, with the FM bulk
magnetization orthogonal to the bulk AF easy axis. This
was confirmed theoretically [15–17] and experimentally [18]
for Fe=FeF2 and also for the Fe3O4=CoO systems [19].
Recent experimental neutron reflectometry [20] and rever-
sible anisotropic magnetoresistance [21] results confirmed
the presence of a DW in the FM slab. Another important
experimental information [21,22] is that HEB / t�1F . More-
over, quite a number of semi-classical models have been
put forward [4], an exception being the contribution of
Suhl and Schuller [23] who interpreted the exchange field as
a self-energy shift due to the emission and reabsorption of
AF spin waves.
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Fig. 2. (Color online) Cartoon of the magnetic configuration in the

vicinity of a FM/AF interface. Notice the canting of the spins in the AF

monolayer closest to the interface.

HEB

H

M

Fig. 1. (Color online) Idealized representation of a hysteresis loop EB

shifted by a field of magnitude HEB.
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In this paper, we will succinctly review semi-classical
approaches that have been put forward and present,
in detail, a theory based on the idea that quantum
fluctuations lead to a two-dimensional dipole moment
density in the AF. This, in turn, generates a dipolar field
which can account for the observed values of the EB
anisotropy.

Semi-classical EB theories basically rely on some sort of
rearrangement of the magnetic ordering in the vicinity of
the interface, either in the FM [10], in the AF [11,12,24] or
in both [4,15–17]. Essentially the interfacial magnetic
structure rearrangement gives rise to an exchange field
which couples the FM and the AF, generating a transition
from uniaxial to unidirectional anisotropy. The basic idea
behind this type of models is that as the sample is field
cooled, from a temperature TC4T4TN to temperatures
below TN, a spin glass structure develops in the immediate
vicinity of the interface. The stability of this magnetic spin
glass configuration is due to the FM/AF interface lattice
mismatch and the presence of defects in the interfacial
region. They, in turn give rise to a metastable magnetic
interface configuration and consequently to quite stable
pinning centers. This picture is consistent with the training
and thermal memory effects, and allows to understand
them.

In what follows we venture into the formulation of an
alternative model for EB, exclusively quantum mechanical
in origin.
2. Quantum theory

Here we put forward the idea that quantum fluctuations
lead to a two-dimensional dipole moment density in the
AF, which in turn generates a dipolar field that can
account for the EB anisotropy. The relevant order
parameter is the staggered magnetization

hM̂AFi ¼ gmB
X
a

Ŝa �
X
b

Ŝb

* +
, (1)

where Ŝa and Ŝb denote the spin operators at the spin-up

and spin-down sublattices. If we assume a Heisenberg

Hamiltonian H ¼
P

ijJijŜi � Ŝj , we can see that

½M̂AF;H�a0, in other words, that M̂AF is not constant in
time. Therefore its time-averaged value must be smaller
than its maximum value, even at T ¼ 0. (If N is the number

of spins and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðS þ 1Þ

p
is the spin magnitude, the

maximum value of jM̂
max

AF j ¼ NS.) In a translationally

invariant system the reduction of the magnetization is
equally shared by all spins. Moreover, since the spin up and

spin down sublattices are equivalent then
P

aŜa ¼ �
P

bŜb,

that is, the system magnetic moment is zero. But when
translational symmetry is broken by surfaces, interfaces, or
other defects, a net magnetic moment can appear because
of the decrease of the spin-up average need not equal the
corresponding spin-down reduction [25–27].
We will show how, for an ideal FM–AF interface, such a

net magnetic moment does appear. The resultant AF
magnetization is confined to the immediate vicinity of the
interface and may be regarded as a two-dimensional dipole
density. This dipole sheet produces a magnetic field which
interacts with the moments in the FM and contributes an
additional term to the magnetic energy. This additional
energy can explain EB. Numerical results indicate that the
magnitude of this magnetic moment is only a small fraction
of that of a single AF spin, which leads to a value of HEB

that is consistent with experimental results.

3. Ideal ferromagnetic–antiferromagnetic interface

We now describe our model system, in which atomic
spins of magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðS þ 1Þ

p
are located at BCC lattice

sites. Our system is divided in two halves by a (0 0 1)
interface. On one side of the interface nearest neighbor
spins are coupled ferromagnetically by the exchange
integral �JF. On the other side, nearest neighbor spins
are coupled antiferromagnetically by the exchange integral
JA. Across the interface, they are coupled by the exchange
integral �J0.
We decompose this BCC lattice into planes parallel to

the interface. On the AF side, each of these planes is
ferromagnetically ordered and its spin direction alternates
from one plane to the next; these planes are combined into
pairs and each pair is labelled with the index lX0, with
l ¼ 0 labelling the pair closest to the interface; within each
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pair we label the corresponding planes with the subscript a
for spins up, and b for spins down. In contrast, on the FM
side each index (lo0) denotes a single, spin up, layer. This
choice of notation reflects the doubling of the unit cell on
the AF side. The Hamiltonian of our system is written as

H ¼
Xþ1
l¼0

X
R;d

½Jl;lSaðl;RÞ � Sbðl;Rþ dÞ

þ Jl;lþ1Sbðl;Rþ dÞ � Saðl þ 1;RÞ�

þ
X�1

l¼�1

X
R;d

Jl;lþ1Saðl;Rþ dÞ � Saðl þ 1;RÞ, ð2Þ

where R ¼ aðn1x̂þ n2ŷÞ specifies a two-dimensional lattice
point, a is the lattice constant, n1 and n2 are integers,
d ¼ að�x̂þ�ŷÞ, and SAðl;RÞ [SBðl;RÞ] is a spin in the a (b)
plane of the lth pair (and at site R in that plane).

We use the Holstein–Primakoff transformation to re-
write the Hamiltonian in terms of a, ay, b and by boson
destruction and creation operators. Spin wave interactions
are neglected, thus discarding quartic and higher order
terms. To take advantage of the in-plane translational
symmetry we write the boson operators as functions of the
layer index l and the two-dimensional wave vector k. The
Hamiltonian then decouples into a set of independent semi-
infinite chains Hamiltonians, each one corresponding to a
specific wave vector k. These chains are conveniently
analyzed using Green functions, which we define as

Gaa
ll0 ðo;kÞ ¼ �

i

_

Z 1
�1

dt eiotyðtÞh½aðl;k; tÞ; ayðl0;k; 0Þ�i, (3)

where hAi denotes the thermal average of A and the
operators are in the Heisenberg picture. The functions Gbb

ll0 ,
Gab

ll0 , and Gba
ll0 are defined analogously. We use the transfer-

matrix method [28,29] to obtain analytic expressions for
these Greens functions. When the interface coupling is FM
we find the following expressions for the diagonal elements
of the Greens function

Gaa
ll ðz; kÞ ¼ GAFðz; kÞ½1� T2l

AFðz;kÞf Rðz; kÞ�; lX0, ð4Þ

Gbb
ll ðz; kÞ ¼ GAFðz; kÞ½1� T2lþ1

AF ðz;kÞf Rð�z;kÞ�; lX0, ð5Þ

Gaa
ll ðz; kÞ ¼ GFðz; kÞ½1� T

�2ðlþ1Þ
F ðz;kÞf Lðz;kÞ�; lp� 1.

ð6Þ

In these GAFðz;kÞ is the diagonal (l ¼ l0) element of the
bulk Greens function for the AF and GFðz; kÞ the diagonal
element of the bulk FM Greens function. From these
diagonal elements and the transfer matrices TAFðz; kÞ and
TFðz;kÞ one readily obtains the full bulk Greens functions.
Physically the transfer matrices describe plane-wave
propagation in one-dimensional chains. Indeed, it is
possible to define a one-dimensional wave vector kz by
the relation T ¼ expðikzÞ. The interference effects at the
right and left sides of the interface are contained in the
functions f Rðz; kÞ and f Lðz;kÞ. More explicitly

GAFðz; kÞ ¼
zþ 2JA

QAðz;kÞ
, (7)
QAðz;kÞ ¼ ½ðz
2 � 4J2

AÞðz
2 � 4J2

A þ 4J2
Ajgkj

2Þ�1=2, (8)

TAFðz;kÞ ¼
1

2J2
Ajgkj

2
½4J2

A � z2 � 2J2
Ajgkj

2 þQAðz;kÞ�, (9)

GFðz;kÞ ¼
1

QFðz;kÞ
, (10)

QFðz;kÞ ¼ ½ðz� 2JF � 2JFjgkjÞðz� 2JF þ 2JFjgkjÞ�
1=2,

(11)

TFðz;kÞ ¼
1

2JF
jgkj

2½2JF � zþQFðz;kÞ�, (12)

f Rðz; kÞ ¼
ðz� 2J0 þQFÞ½ðzþ 2JAÞðz� 2J0Þ �QA� � 4J2

0jgkj
2ðzþ 2JAÞ

ðz� 2J0 þQFÞ½ðzþ 2JAÞðz� 2J0Þ þQA� � 4J2
0jgkj

2ðzþ 2JAÞ

(13)

and

f Lðz;kÞ ¼
ðz� 2J0 �QFÞ½ðzþ 2JAÞðz� 2J0Þ þQA� � 4J2

0jgkj
2ðzþ 2JAÞ

ðz� 2J0 þQFÞ½ðzþ 2JAÞðz� 2J0Þ þQA� � 4J2
0jgkj

2ðzþ 2JAÞ
.

(14)

When the interface coupling is AF we obtain very similar
expressions, the only difference being that the exponents of
TAF in Eq. (9), and TF in Eq. (12), are shifted by �1 and
þ1, respectively.
The average spin on the lth plane is finally given by

hSz
l;ai ¼ S þ

X
k

1

p
Im

Z 1
�1

do
Gaa

ll ðo; gkÞ
e_o=kBT � 1

, ð15Þ

hSz
l;bi ¼ � S �

X
k

1

p
Im

Z 1
�1

do
Gbb

ll ðo; gkÞ
e_o=kBT � 1

. ð16Þ

For our numerical calculations we choose units such that
JF þ JA ¼ 1. We use as our parameters J0 and
x � JF � JA. In Fig. 3 we show the net magnetization in
the AF side of the interface, as a function of x and J040.
In Fig. 4 we show the corresponding results for J0o0.
For this specific model, we observe that the net

magnetization per atom is of the order of a few percent.
Coincidentally, Bulut et al. [26] investigated the magnetiza-
tion around a vacancy in a 2D AF obtaining results
consistent with ours, but for a very different spin
arrangement. In addition, we notice that in these systems
the correlation length, away from the critical points, is of
the order of the interatomic distance. Therefore the results
for the idealized interface studied here should hold for non-
ideal interfaces as well.

3.1. Surface dipole density and exchange bias

The uncompensated AF spins give rise to a dipolar
magnetic field, BAF. This results in a Zeeman contribution
to the energy density inside the FM, given by �MF � BAF,
where MF is the FM magnetization. This allows us to
estimate the interface anisotropy energy per unit area, DE

[30,31]. To obtain this estimate we assume a circular AF



ARTICLE IN PRESS

0.024

0.026

0.028

0.030

-0.8
-0.4

0
 0.4

0.8
0.5

1.5

2.5

3.5

4.5

0.024

0.026

0.028

0.030

x

J
0

Fig. 3. (Color online) Net magnetization in the antiferromagnetic side of

the interface as a function of x ¼ ðJF � JAÞ=ðJF þ JAÞ and J0=ðJF þ JAÞ.

The units we choose correspond to JF þ JA ¼ 1. The coupling across the

interface is ferromagnetic.
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Fig. 4. (Color online) Net magnetization in the antiferromagnetic side of

the interface as a function of x ¼ ðJF � JAÞ=ðJF þ JAÞ and J0=ðJF þ JAÞ.

The units we choose correspond to JF þ JA ¼ 1. The coupling across the

interface is antiferromagnetic.
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domain of radius R. On this domain there is a uniform
dipole distribution s�4gmBdS=a2, due to the uncompen-
sated fluctuations (here g is the gyromagnetic ratio, mB is
the Bohr magneton, and a is the distance between
neighboring spins). Adjacent to this domain there is a
semi-infinite cylindrical ferromagnet, also of radius R. This
FM is assumed to be in a single domain state, of
magnetization MF parallel to the interface and at an angle
f with respect to the AF positive axis. Integration of the
Zeeman energy density over the cylinder yields

DE ¼ aðMFm0gmBdS=a2Þ cos f. (17)

The constant a is the adimensional integral that results
from scaling distances by R and angles are by 2p.
Numerical computation yields a ¼ 0:47 [32].

With dS�10�2, a�0:1 nm, and MF equal to the
saturation magnetization of Co, we find that
DE�0:08 ergs=cm2. This falls within the range of experi-
mentally observed [30,33] interface energies.

The AF free surface is a special case which corresponds
to the J0 ¼ 0 limit of the model presented here. As can be
seen in Figs. 3 and 4, this free surface also develops a net
magnetization. Takano et al. [34] have observed a
thermoremanent magnetization at the free surface of
CoO films that have been field cooled through the Néel
temperature. They also studied bilayers of Ni81Fe19=CoO
and found that the EB field, after field cooling, has the
same temperature dependence as the free film thermo-
remanent magnetization. This suggests that uni-directional
anisotropy arises, in the context of our model, due to the
coupling between the FM and the AF net adjacent surface
magnetizations.
In nanoparticles, in which the surface to bulk ratio is

significant, a surface magnetization can be observed. A net
magnetization has indeed been reported in AF ferritin [35]
and ferrihydrite [36] nanoparticles. With S ¼ 5

2
and dS ¼

0:03 we estimate magnetizations per particle of 258mB for
ferrihydrite and 368mB for ferritin. These are consistent
with the experimental values of 250mB [36] for ferrihydrite
and 345mB [35] for ferritin.

4. Summary and conclusion

In summary, after a brief review of experimental results
and theoretical models of exchange bias, we have put
forward an alternative mechanism to generate exchange
anisotropy in a system where an antiferromagnet (AF) is in
contact with a metallic ferromagnet (FM). It is based on
the fact that ground-state fluctuations reduce the zero-
temperature magnetic moments of the spins in a quantum
AF, giving rise to an exchange field, an alternative that to
the best of our knowledge had not been explored before.
The model put forward here differs from the available
literature in that it does not depend on interface lattice
mismatch nor defects in the vicinity of the interface, but
only on the presence of the latter. In fact, in the vicinity of
interfaces, and other defects which break translational
symmetry, the above quantum fluctuations are not uni-
form. Consequently, the magnetic moments of oppositely
oriented spins do not compensate exactly, as they do in a
bulk AF. Thus, close to a surface or interface, a relatively
small magnetic dipole density is generated.
We have shown that this dipole field yields an interface

energy which is of the same order of magnitude as the one
obtained in experimental measurements, which suggests
that a better understanding of exchange bias, and the
underlying physical phenomena, could be achieved by
means of magnetization measurements, Brillouin light-
scattering, and spin polarized electron energy loss spectro-
scopy of clean AF surfaces.
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[22] J. Mejı́a-López, et al., J. Magn. Magn. Mater. 416 (2002) 364.

[23] H. Suhl, I.K. Schuller, Phys. Rev. B 58 (1998) 258.

[24] B. Beckmann, et al., Phys. Rev. Lett. 91 (2003) 187201.

[25] G.J. Mata, E. Pestana, Phys. Rev. B 31 (1985) 7285.

[26] N. Bulut, et al., Phys. Rev. Lett. 62 (1989) 2192.

[27] G.J. Mata, E. Pestana, Phys. Rev. B 42 (1990) 885.

[28] F. Yndurain, et al., Solid State Comm. 15 (1974) 617.

[29] L.M. Falicov, F. Yndurain, J. Phys. C 8 (1975) 147.

[30] A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200 (1999) 552

and references therein.

[31] J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203.

[32] G.J. Mata, et al., Phys. Rev. B 74 (2006) 144407.

[33] J. Nogués, et al., Phys. Rev. B 59 (1999) 6984.

[34] K. Takano, et al., Phys. Rev. Lett. 79 (1997) 1130.

[35] S.A. Makhlouf, et al., Phys. Rev. B 55 (1997) R14717.

[36] M.S. Seehra, et al., Phys. Rev. B 61 (2000) 3513.


	A quantum exchange bias model
	Introduction
	Quantum theory
	Ideal ferromagnetic-antiferromagnetic interface
	Surface dipole density and exchange bias

	Summary and conclusion
	Acknowledgments
	References


