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RESUMEN 

La Planificación de la Expansión de la Transmisión (PET) es un problema complejo 

afecto a diversas incertidumbres, desde precios de combustibles hasta terremotos y 

oposición pública. A la fecha no se ha desarrollado ningún análisis sistemático de las 

diferentes incertidumbres presentes en la PET. Por otra parte, el debate sobre 

metodologías de planificación bajo incertidumbres de largo plazo, capturadas por 

escenarios estratégicos, carece de exhaustividad. En efecto, mientras que los defensores 

de la programación estocástica ignoran la indisponibilidad de probabilidades precisas en 

la práctica, los oponentes se basan en criterios alternativos como el minimax regret, sin 

verificar la eficiencia de la solución. 

En ese contexto, esta tesis intenta una contribución cuádruple a la literatura. Primero, 

desarrollar un marco conceptual para investigadores, políticos y profesionales, sobre las 

diversas incertidumbres y riesgos relevantes para PET. Segundo, cuantificar la 

importancia práctica y el impacto de la ambigüedad de las probabilidades de los 

escenarios en la PET estocástica. Tercero, presentar un nuevo criterio de decisión de 

robustez distribucional para PET bajo ambigüedad. Cuarto, comparar la solución óptima 

bajo criterios alternativos de decisión para PET como el costo esperado, el minimax regret 

y la robustez distribucional, tanto teóricamente como mediante simulación, utilizando el 

concepto de eficiencia de Pareto. 

Se aplica la metodología desarrollada al sistema IEEE RTS de 24-barras, bajo dos 

escenarios. En este caso, PET estocástica es relativamente insensible a las variaciones en 

las probabilidades de los escenarios. Sin embargo, también hace caso omiso de muchas 

soluciones eficientes en la parte cóncava de la frontera de Pareto. Aunque el minimax 

regret puede descubrir tales soluciones, se prueba que metodologías míopes de minimax 

regret (con respecto a la eficiencia Paretiana) tales como aquellas aplicadas en Reino 

Unido, PJM y Chile, pueden incurrir en pérdidas gratuitas de oportunidad de hasta el 4% 

de los costes totales. Se requiere el análisis de sistemas grandes y bajo más escenarios 

para proporcionar conclusiones sólidas que identifiquen fortalezas y debilidades de ambos 

métodos.  



 

xi  
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ABSTRACT 

Transmission Expansion Planning (TEP) is a complex problem faced with a myriad 

of uncertainties ranging from fuel prices to earthquakes and public opposition. To date, 

no systematic analysis has been developed for the different underlying uncertainties in 

TEP. Moreover, the debate on planning methodologies for coping with long term 

uncertainties captured by strategic scenarios lacks completeness. Indeed, whilst advocates 

of stochastic programming ignore the unavailability of precise probabilities in practice, 

opponents rely on alternative criterions such as minimax regret without verifying solution 

efficiency. 

Therefore, this thesis attempts a fourfold contribution to the literature. First, develop 

a conceptual framework for researchers, policy and practitioners to better understand and 

communicate the various uncertainties and risks relevant to TEP. Second, quantify the 

practical relevance and impact of ambiguous scenario probabilities in stochastic TEP. 

Third, present a novel distributional robust decision-making criterion for TEP under 

ambiguity. Fourth, compare the optimal solution under alternative TEP decision-making 

criterions such as expected cost, minimax regret and distributional robustness, by both 

theory and simulation based on the well-established concept of Pareto efficiency.  

The developed methodology is applied to the IEEE 24 bus RTS system under two 

scenarios. In this example, stochastic TEP is relatively insensitive to variations in scenario 

probabilities. However, it also ignores many efficient solutions in the concave Pareto 

frontier. Although minimax regret can discover such solutions, it is proved that myopic 

minimax regret methodologies (with respect to Pareto efficiency) such as those applied in 

UK, PJM and Chile can incur in gratuitous opportunity losses of as much as 4% of total 

system costs. Further analyses of large-scale systems under more scenarios are needed in 

order to provide robust insights to identify strengths and weaknesses of both methods. 

Keywords: Decision analysis, transmission planning, stochastic programming, 

uncertainty, multiobjective optimization
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1. INTRODUCTION 

The electric transmission system (or power grid) is the infrastructure which allows the 

transportation of large volumes of electricity from production centers (i.e. generators) to 

final consumers (e.g. large industrial customers, distribution companies which supplies 

households and others customers within their concession area).1 Adaptations to the 

transmission system are required to cope with changing conditions in the power system. 

Particularly new investments are required to deliver electricity in the face of growing 

demand, as well as investment and retirement of generators. Therefore, efficient expansion 

of the transmission system is, and will remain for the foreseeable future, vital for solving 

the energy trilemma of ensuring a reliable, sustainable and affordable supply (Newbery, 

2016; Rivier, Pérez-Arriaga, & Olmos, 2013).  

In Chile, the Electric Transmission Law enacted in 2016 allows the regulator to plan 

the expansion of the transmission system considering capacity slackness for long-term 

developments, and also to proactively develop generation hubs by means of transmission 

expansion.2 Furthermore, costs of new transmission projects will be completely allocated 

to demand by means of a postage stamp methodology (i.e. demand pays proportionally to 

its consumption), instead of the current locational cost allocation methodology which 

shares costs between generators and demand depending on their location within the power 

system.3 The transmission law was developed in a two-year timespan by the National 

Energy Commission (CNE) and the Pontifical Catholic University of Chile. The law was 

developed on the grounds of widespread public participation and building consensus 

among key stakeholders, whilst incorporating the lessons from past experiences with 

                                                 
1 The transmission system comprises overhead and underground transmission lines, power transformers, 

substations, circuit breakers, measurement and control equipment, among others. However, transformers 

and overhead transmission lines are the focus of this thesis and of most long-term transmission planning 

studies. 
2 Proactive transmission expansion attempts to guide the development of generation by means of 

transmission investments. In Chile, this proactive approach attempts to enable exploitation of remotely 

located renewable generation resources which may find it difficult or impossible to enter the market 

without coordinating transmission investments (Ferreira, Rudnick, & Barroso, 2016). 
3 Optimal transmission cost and benefit allocation is a complex and very important issue in power markets 

(Hogan, 2011; Strbac, Konstantinidis, Moreno, Konstantelos, & Papadaskalopoulos, 2015). The 

discussion on alternative methodologies for transmission cost allocation is out of the scope of this thesis. 
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transmission laws (most notably 2011’s CADE and the failed attempt to enact a law 

considering “Electric Highways”). 

The newly enacted law has raised concerns regarding the risks of overbuilding the 

transmission system on the grounds of capacity slackness and proactive generation hub 

developments. Moreover, less opposition to risky transmission expansion projects is 

expected since transmission costs are now fully allocated to demand, and demand is 

perceived to be less interested or able than generators to analyze expansion proposals and 

oppose to those proposals that affect them. Furthermore, the methodologies for 

transmission expansion under uncertainty used in Chile were heavily criticized during 

discussions of the project. 

Hence, analyzing transmission expansion planning under uncertainty is important for 

Chile today, since the planning process undertaken by the Ministry and the regulator can 

have huge impacts in future and current generations alike. The public and policy-makers 

alike seek increasing integration of renewable energy sources in the electricity sector, both 

in Chile and in the rest of the world. The 2016 Transmission Law attempts to develop a 

more sustainable and forward-looking electricity sector in Chile. However, overbuilding 

the transmission system increases electricity prices today, hoping that economic benefits 

and increased sustainability in the long-term (e.g. 20 years from now) offset today’s 

increases in prices due to overinvestment. The risks of over and underinvestment in the 

face of long-term uncertainty should therefore be analyzed from an engineering 

perspective in order to help the regulator in successfully implementing the transmission 

law. 

This thesis attempts to contribute to the discussion on transmission expansion 

planning under uncertainty. A variety of engineering studies were possible in order to 

analyze the 2016 Transmission Law and its practical implications. For example, 

alternative cost allocation methodologies and their relation to market efficiency and 

incentives; proactive transmission expansion models; or the design of expansion processes 

which attempt to solve or ameliorate public opposition to new transmission projects; are 

some of the research subjects that emerged from the discussion of the Transmission Law. 

We chose to study uncertainty since it is an overarching and fundamental issue in the 

transmission planning process in Chile and the rest of the world. 
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The rest of this thesis is structured as follows. First, this introduction proceeds by 

explaining the basics of transmission expansion planning (section 1.1), and then stating 

the hypothesis and objectives of this thesis (section 1.2). Section 2 lays out a conceptual 

framework for TEP under uncertainty. Section 3 presents a thorough and in-depth 

literature review on optimization models for TEP under uncertainty, and identifies gaps 

in the literature. Section 4 presents the engineering methodology devised to study TEP 

under scenario uncertainty. Section 5 presents results of the methodology as applied to 

two small-scale test cases, and discusses those results. Section 0 concludes this thesis. 

1.1. Basics of Transmission Expansion Planning 

The expansion of the transmission system has been and will remain a regulated activity 

driven primarily by central planning, since the transmission business is a natural 

monopoly (Newbery, 2000).4 Central transmission expansion planning is the process 

which determines the timing and basic properties of new investments in the transmission 

system, required to provide a reliable, sustainable and affordable electricity supply. 

Transmission expansion planning is (and must be) undertaken in every power system, 

whether extensive reforms to the Electricity Supply Industry (ESI) have taken place (e.g. 

England and Wales, Norway, California), intermediate reforms have emerged (e.g. Korea, 

Ukraine, Chile, South Africa) or the supply remains monopolized by a vertically 

integrated (state, public or privately owned) utility (e.g. Nigeria).5  

The need for central planning of the transmission system expansion is based on the 

technical and economic properties of the transmission business and system, most notably:6 

                                                 
4 The development of the transmission system by means of merchant transmission projects remains limited 

in practice (Joskow, 2005). 
5 Chile was the first country to reform its electricity supply industry. Today, the Chilean electricity market 

is based on centralized transmission expansion planning, and private, decentralized generation investment 

decisions. 
6 A thorough description of the technical and economic properties of the transmission system is out of the 

scope of this thesis. The reader is referred to excellent textbooks on transmission and electricity such as 

(Kirschen & Strbac, 2005; Pérez-Arriaga, 2013; Stoft, 2002), and (Baldick & Kahn, 1993; Hirst & Kirby, 

2001; Hogan, 1999) for a discussion of key properties of the transmission system directly related to its 

expansion. 
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 Complex physical interactions take place in the transmission system, ruled by 

Kirchoff’s and other laws. Important consequences of these interactions are 

the network externalities which preclude a simple definition of property rights 

for transmission lines, due to (Hogan, 1999): 

o the inability to trace the origin and destiny of power flows (e.g. to 

determine whether a given consumer is being supplied by a particular 

producer), and 

o the inability to accurately control and distribute power flow among 

alternative transmission paths. 7 This inability is commonly referred to 

as loop flows, which refers to the fact that power flows through every 

possible path between two given nodes. 

 Extensions to the transmission system are long-lived (between 10 and 40 

years), capital-intensive infrastructure investments, with long lead-times (from 

2 and up to 10 or 20 years, mostly due to public opposition and approval 

processes) and minimal operation and maintenance costs (i.e. transmission 

costs are largely sunk).  Furthermore, large economies of scale and the 

irreversible and lumpy nature of investments8 preclude a fully competitive 

solution to develop the transmission network. 

 Sunk costs in new transmission investments largely surpass short-run 

opportunity costs of transmission congestion (i.e. spot prices differentials in a 

given transmission line) (Perez-Arriaga, Rubio, Puerta, Arceluz, & Marin, 

1995). Moreover, relieving congestion benefits generators and consumers 

instead of transmission owners who invest in new transmission capacity. 

The aforementioned properties of the transmission business and system are key to 

understanding both the theoretical foundations of transmission planning, as well as real 

processes undertaken in the industry and the mathematical models which assess those 

                                                 
7 It is possible to control the flow of power through the grid to some extent, albeit not remotely to the same 

extent as the flow of water through a system of pipes and valves.  
8 Transmission investments are irreversible since there is no market or alternative use for decommissioned 

elements of the transmission system. On the other hand, investments are lumpy since it is not possible to 

add an arbitrary level of additional capacity to the system. Conductors, transformers and other network 

elements available in the market follow a discrete set of standardized voltages and ratings (e.g. 100 MW 

@ 138 kV, or 200 MW @ 230 kV, but not every possible combination thereof). 
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processes. To this end, it is also worth noting that electricity is a rather particular service 

since supply and demand in the system needs to be continuously and precisely kept in 

balance in real-time by some entity (the independent / transmission system operator, or 

the vertically integrated utility). Other properties of the electricity supply such as the low 

elasticity of demand are also important to understand power systems and, therefore, 

transmission expansion planning. These and other properties will be further explained 

later as needed.9 

Practical transmission expansion planning are complex and diverse processes, 

although everywhere transmission expansions are primarily driven by engineering 

analyses in order to ensure a reliable electricity service (Joskow, 2005). TEP processes 

entail stages of technical and economic analyses, regulatory review, and stakeholder or 

open consultations.  Most transmission investments are often justified on the grounds of 

preserving high levels of reliability of the electricity supply.  

However, TEP can (and often does) simultaneously pursue a variety of objectives 

other than preserving reliability, such as (ENTSO-E, 2015): 

 Minimizing total costs of electricity supply, considering transmission 

investment and operation costs of the generation fleet. Such Integrated 

Resource Planning process is classic in the vertically integrated utility, and 

also common in cost-based power pools such as Chile) (Stoll, 1989). 

 Maximizing socio-economic welfare (equivalent to minimizing total supply 

costs under perfect competition and perfectly inelastic demand). 

 Reducing congestions or even achieving gold-plating standards in order to 

increase the scope and liquidity of regional markets as well as ensuring the 

integration of variable renewable energy sources (an approach adopted in 

Alberta, for example, and also as part of the planning practices in Europe and 

particularly in Germany) (Stoft, 2006; Weber et al., 2013). 

 Increase the sustainability of the power system, reduce CO2 emissions, 

increase the integration of renewable energy sources (e.g. EU) and comply 

                                                 
9 A more in-depth introduction to power systems and markets can be found elsewhere in textbooks such as 

(Hogan, 1998; Hunt, 2002; Pérez-Arriaga, 2013; Stoft, 2002). 
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with regulatory requirements such as Renewable Portfolio Standards (e.g. 

USA). 

 Increate the security of supply and the resiliency of the system (i.e. ability of 

the system to withstand and / or recover from extreme conditions such as 

earthquakes). 

Furthermore, a wider variety of benefits should be consider in assessing transmission 

expansion projects, for example, relieving reliability-must-run constraints (Chang, 

Pfeifenberger, & Hagerty, 2013). 

A static version of transmission expansion planning is often used for long-term 

studies. The static TEP determines which transmission investments to commit to today, in 

order to reduce operation costs in the future, hence solving the fundamental trade-off 

between present investments and future operation costs. However, from an economic 

perspective, transmission expansion is a dynamic problem since commitment to 

investments can be taken today or in the future and, moreover, these investments can be 

scheduled to begin operations in one of many future years. In the face of growing demand 

and due to lumpy investments, it may be better to build larger (and more expensive) lines 

today which can be further expanded in the future (for example, by allowing a second 

circuit to be added to the base transmission line), instead of building small lines which 

require more investments in the future. Moreover, in the face of uncertainty transmission 

projects acquire an option value since it may be worth to “wait-and-see” before 

committing “here-and-now” to a particular transmission expansion project (Baldick & 

Kahn, 1993; Stoft, 2006). Furthermore, flexible alternatives to transmission expansion 

such as demand response, energy efficiency, or even transmission elements with low 

investment costs and lead-times (e.g. phase-shifters) can and are being used (mostly in US 

and EU) to defer commitments to large transmission investment projects (Konstantelos & 

Strbac, 2015; Watts & Rudnick, 2014; Wilson & Biewald, 2013). Although very 

important, the dynamic nature of the transmission expansion planning problem will be 

ignored in this thesis, following the current state of the art. 

Optimization and simulation models to assist transmission expansion planning do not 

currently fulfill the needs of real planning processes. Only since the early 2000, the growth 

in computation capacity and improvements in solution methodologies have allowed the 
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solution of middle and large-scale transmission expansion planning problems, albeit with 

rather restrictive assumptions (most notably linearized power flow equations) (Bixby, 

2015). Despite the development of a huge amount of high-quality papers, optimization 

and simulation tools for assisting decision-makers in transmission expansion planning, 

these tools do not yet fulfill the needs of planners. Instead, a reduced set of alternative 

expansion plans is assessed and constructed iteratively by the planner by repeatedly 

running electrical simulation software (e.g. DigSilent, Neplan) and production-cost 

simulations (e.g. Plexos, OSE2000). Therefore, there is still much work to do in order to 

develop workable and useful mathematical tools to support transmission expansion 

planning (Lumbreras & Ramos, 2016; Velasquez, Watts, Rudnick, & Bustos, 2016). 

Despite the complexity of the transmission expansion planning problem and the many 

challenges faced by planners today (e.g. public opposition to new infrastructure), planning 

must be undertaken under significant uncertainties regarding future conditions of the 

power system and market. Decisions must be made without knowing the conditions under 

which these decisions will perform. Moreover, alternative assessment methodologies have 

been developed and applied to real TEP processes in order to assist this complex decision-

making process. These alternative methodologies, the rationale for this thesis and its 

hypothesis and objectives are briefly stated next. 

1.2. Hypothesis and Objectives 

Scenario planning is one of the most widespread techniques to deal simultaneously 

with various uncertainties in transmission expansion planning, both in real processes and 

scientific papers (Lumbreras & Ramos, 2016; Watts & Rudnick, 2014). Stochastic 

programming and robust approaches such as minimax regret are alternative and 

fundamentally distinct methodologies to assess decision-making under scenarios. 

Stochastic programming is based on the well-founded expected utility theory (Savage, 

1954; von Neumann & Morgenstern, 1944),10 but it requires probability distributions 

                                                 
10 Expected-utility theory is a foundational theory on rational decision-making. It is well known that 

common people does not make decisions guided by the expected-utility theory (Tversky & Kahneman, 

1974). However, this thesis and most (if not all) transmission expansion planning studies focus on a 

normative  
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which are hard to precisely determine in practice (Miranda & Proenca, 1998a). On the 

other hand, approaches such as minimax regret do not require probabilities to be assigned 

to each scenario, but several issues do affect minimax regret (Bunn, 1984) (also see 

appendix B). 

A comprehensive literature review (detailed in the section 3) reveals that, to this date, 

no practical nor scientific study on transmission expansion planning has simultaneously 

addressed the advantages, disadvantages and relationships among stochastic programing 

and minimax regret (Buygi et al, 2003; Latorre et al, 2003; Lee et al, 2006; Lumbreras & 

Ramos, 2016). Particularly, critiques to one or the other approach have not addressed the 

relevance nor the impact of scenario probabilities in stochastic transmission expansion 

planning. This thesis attempts to fill this gap in the literature, as stated in the following 

hypothesis and objectives. 

The hypothesis of this thesis is that probabilities assigned to scenarios are relevant in 

stochastic TEP models, since variations in the probabilities are not negligible. Instead 

these variations can and do significantly impact the structure of the optimal expansion 

plan. 

According to the proposed hypothesis, the general objective of this thesis is to study 

the optimal transmission expansion planning under scenario uncertainty, when scenario 

probabilities are hard to determine precisely (i.e. under ambiguity). The specific 

objectives are the following: 

1) To propose a new decision criterion under uncertainty, accounting for the 

lack of precise scenario probabilities in long-term TEP studies. 

2) To develop a computationally efficient and tractable methodology for TEP 

under scenario uncertainty by using the newly proposed decision criterion. 

3) To analyze the relevance and the impact of scenario probabilities in TEP 

by studying test cases commonly used in the literature. 

4) To analyze the new decision criterion and its relation to other criterions 

established in the literature. 
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2. CONCEPTUAL FRAMEWORK FOR TRANSMISSION EXPANSION 

PLANNING UNDER UNCERTAINTY11 

TEP research and real processes for modern electricity markets are overwhelmed by a 

myriad of different uncertainties, thus arguing in favor of a conceptual framework 

designed specifically for TEP (Figure 2-1). Relevant uncertainties in TEP range from 

hourly wind speed to socioenvironmental aspects – for example, public opposition - 

comprising uncertainties as varied as demand growth, weather phenomenon like El Niño 

(which affects hydrology and thus water inflows to reservoirs), fuel prices, terrorism and 

the so-called Black Swans which refer to surprising, unforeseen events, such as the 

financial crisis of 2008. In the face of a wide variety of uncertainties in TEP, different 

management strategies and modeling techniques are available. Also, various properties 

may be identified.  

Hence alternative groups or more general classifications of uncertainties are possible, 

and some have already been mentioned in TEP literature, with no further elaboration. 

However, the problem of dealing with uncertainty is not exclusive to power systems. Its 

modern history dates back at least to 1921's seminal economic work by Frank Knight. 

Over the course of the century, many new concepts and typologies have emerged to try to 

understand uncertainty and deal with its impacts, either providing a more general 

framework (Apostolakis, 1990; Keynes, 1952; Knight, 1921; Rowe, 1994; van Asselt & 

Rotmans, 2002; W.E. Walker et al., 2003; Warren E. Walker, Lempert, & Kwakkel, 2013) 

or addressing specific problems (Ascough, Maier, Ravalico, & Strudley, 2008; Beck, 

1987). Today, attempts to categorize and conceptualize uncertainty stem from a variety of 

disciplines comprising economy, finance, social sciences, sustainability, policy making 

and military planning. Different typologies have also been developed to better serve the 

objectives of particular TEP papers (Chamorro, Abadie, de Neufville, & Ilic, 2012; Mejia-

Giraldo & McCalley, 2014; van der Weijde & Hobbs, 2012). This sparsity argues in favor 

of developing a comprehensive conceptual framework for TEP under uncertainty. 

Moreover, as Walker et al puts it, “a better understanding of the different dimensions of 

                                                 
11 A similar version of this chapter has been published in the July 2016 IEEE Power and Energy Magazine 

issue (Velasquez et al., 2016). 
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uncertainty and their potential impact … would help in identifying and prioritizing 

effective and efficient research and development activities for decision support.” (2003). 

 

Figure 2-1 Wide variety of uncertainties in TEP suggests many different management strategies, modeling 

techniques, key properties and classifications. 

More precisely, a conceptual framework for planning under uncertainty is required for 

three reasons.  

 First, providing a common framework for effective dialogue is needed to 

improve communication between professionals of the electric industry and 

academy.  

 Second, focusing future research efforts could be aided by a deeper 

understanding of the varied nature of uncertainty, its key properties and 

impacts in TEP.  

 Third, an assessment of existing and future approaches to TEP under 

uncertainty requires further analysis of the properties of uncertainty, in order 

to identify dis/advantages and applicability of each approach.  

The conceptual framework needed to fulfill this threefold purpose should properly 

define the concepts of uncertainty and risk. It should also characterize and classify the 

myriad of uncertainties relevant to TEP in a typology simultaneously practical and based 

upon solid theoretical foundations. A framework to address previously discussed issues 
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and exploit opportunities offered by an in-depth analysis of uncertainties in TEP is 

presented. 

Clear, broad and practical definitions for the basic concepts of uncertainty and risk are 

the first and foremost component of the conceptual framework for TEP under uncertainty. 

Different definitions of uncertainty and risk are available on the literature (Nelson & 

Katzenstein, 2014). We adopt the definition that “Uncertainty is a state … where it is 

impossible to exactly describe existing state or future outcome”, (Hubbard, 2007), cited 

by (Gu & McCalley, 2010).12 Thus, the proposed definition is broad enough to capture the 

main impact of uncertainty in planning, namely the impossibility to accurately and 

precisely predict the future. Hereinafter we refer to any uncertain quantity or proposition 

as an uncertainty.  

Because of the impossibility to accurately and precisely predict the future, planning 

under uncertainty inevitably carries risk. Risk is defined as the impact of uncertainties 

in TEP, commonly deemed as a hazard. Simply put, uncertainty is the cause while risk is 

the consequence or impact on TEP (usually negative, see Figure 2-2), and we refer to any 

uncertain quantity or proposition as an uncertainty. For planning purposes, uncertain 

outcomes are to be modelled while risk is to be quantified and managed or hedged against. 

The quantification of risk relates to some measure of performance, most commonly costs 

and economic benefits, but also reliability, sustainability or other measures in a 

multicriteria framework, as discussed later (section 2.4). 

 

                                                 
12 Hubbard’s original definition of uncertainty was purposefully modified by removing the reference to 

“limited knowledge” since, as will be explained later, uncertainty does not necessarily stem from 

imperfect knowledge. 
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Figure 2-2 Definition of uncertainty as the cause and risk as the consequence. 

The typology of TEP uncertainties consists of one conceptual foundation and three 

practical dimensions (Figure 2-3). The conceptual foundation is the distinction between 

two extreme natures of uncertainty, inherent variability or aleatory on the one hand, and 

lack of knowledge or epistemic on the other. Each of the three practical dimensions relates 

to a key property of TEP uncertainties, and is useful in categorizing uncertainties but also 

in identifying similar practical considerations regarding modeling and planning processes. 

We discuss each of the four parts of the typology in subsequent sections, beginning by the 

conceptual core, followed by the structure, timescale and source of uncertainty, in order. 

The practical significance of each dimension is discussed under each section. Note that 

the present typology may not directly apply to power system problems other than 

expansion planning. For example, unit commitment may require a far more detailed 

typology focused on uncertainties which are important on operational timescale. 
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Figure 2-3 The proposed typology of TEP uncertainties consists of one conceptual foundation and three 

practical dimensions. 

2.1. Nature of uncertainty: aleatory or epistemic? 

The core of the proposed typology is the conceptual distinction between two extreme 

natures of uncertainty, aleatory or epistemic. Whereas aleatory uncertainty refers to a 

natural variability inherent to a particular process (e.g. hourly wind speed, human 

behavioral variability and earthquake incidents), which not always can be represented by 

a probability distribution; epistemic uncertainty is produced by imperfect knowledge (e.g. 

the model to describe competition in electricity markets, generation expansion and failure 

rates for new facilities) and, thus, could possibly be reduced by increased inquiry. The 

distinction between epistemic and aleatory nature has been regarded in sustainability 

literature as the more general and fundamental categorization of uncertainty. 

In order to assert the importance and extent of this distinction in TEP, consider 

generation expansion in a deregulated industry (Figure 2-4). On one extreme, TEP studies 

often assume that generation expansion is not described by probability distributions. 

Hence, generation expansion is modeled by means of alternative scenarios, using a classic 
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“what-if” analysis, minimax regret, among others. On the other extreme, proactive TEP 

models treat generation expansion by means of an equilibrium model between generation 

firms. Thus generation expansion is not uncertain due to lack of knowledge of the 

underlying investment process but rather due to operating conditions, which are in turn 

characterized by publicly known and agreed upon probabilities. Thus, proactive models 

remove epistemic uncertainties by directly modeling investment behaviour, while aleatory 

uncertainty regarding system operation is irreducible –but easily described by 

probabilities–, i.e. inherent. 

 

Figure 2-4 Fundamental nature of uncertainty ranges from aleatory to epistemic. Distinction becomes 

relevant only when innovative research enlightens understanding of some uncertainty. 

Although we stress the importance of distinguishing epistemic and aleatory 

uncertainties, we include this distinction in a higher level with respect to more practical 

dimensions because of its conceptual importance and its lack of practical relevance outside 

innovative research. While we do not attempt to argue in favor of scenarios or equilibrium 

models to represent generation expansion in TEP, it is clear that complex uncertainties 

such as generation expansion are simultaneously composed of imperfect knowledge (i.e. 

the economic equilibrium describing generation investment by competing firms) and 
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inherent variability (e.g. uncertainty in operating conditions and fuel prices, present even 

if the equilibrium model of investment is completely specified). However, this distinction 

is irrelevant from a practical perspective until innovative research enlightens our 

understanding of the underlying process that produces uncertainty. Nevertheless, 

increased research efforts may never be able to explain many important sources of 

uncertainty such as public policy or earthquakes. Thus, modeling uncertainties in practice 

has not and should not focus on the nature of uncertainty. 

2.2. Structure of uncertainty: Known, unknown and Unknowable 

The structure of uncertainty is a practical modeling distinction between Known, 

unknown, and Unknowable uncertainties (KuU, respectively, see Figure 2-5), a 

categorization of uncertainties proposed by Diebold, Doherty & Herring in 2010. Known 

uncertainties are those where a probabilistic representation is completely specified (e.g. 

hourly nodal load and yearly demand growth), and therefore structured mathematical tools 

such as stochastic programming are readily available. unknown uncertainties are those for 

which probabilities are hard or impossible to assign to some events (e.g. investment costs, 

delays in starting operation and new facilities' outage), and are often modeled by sets 

bounding outcome (e.g. intervals centered on a nominal forecast) or other less-structured 

representation (e.g. fuzzy sets). Unknowable uncertainties are situations where even the 

events cannot be clearly identified in advance (e.g. long term scenarios and earthquakes), 

thus presenting the lowest level of mathematical structure. For dealing with poorly 

structured U uncertainties, strategic scenarios depicting divergent futures or possible 

singular events are used. Given the lesser mathematical structure of scenarios, robust and 

flexible expansion plans are designed, as discussed in section "Optimization approaches 

to TEP under uncertainty". We abstract from the close relationship between the extremes 

of perfect and poor structure and the nature of uncertainty previously discussed, in order 

to serve practice rather than theory. 
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Figure 2-5 Structure of uncertainties, from known probabilistic or stochastic uncertainties to Unknowable 

or scenario uncertainty. 

KuU extends the classical division between random and non-random uncertainties 

found in TEP literature by providing a more practical and consistent framework for 

modeling. The classical division states that random uncertainties are observable events 

that repeat frequently, so statistics may be derived from historical data for random 

uncertainties (e.g. yearly demand growth). Any other uncertainty is non-random and, 

some assert, to be treated by scenarios (Majid Oloomi Buygi, Shanechi, Balzer, 

Shahidehpour, & Pariz, 2006; M O Buygi, Balzer, Shanechi, & Shahidehpour, 2004). 

Although such division successfully identifies random uncertainties that may be modeled 

by probability distributions or stochastic processes, it fails to identify robust and fuzzy 

approaches applied to TEP under uncertainty, and also fails to acknowledge subjective 

probabilities. Therefore, we further distinguish non-random uncertainties between u and 

U, given the different modeling approaches applied in TEP research for each class (e.g. 

robust / fuzzy for nodal load and scenarios for long term state of the market, respectively). 

Also, K extends the group of random uncertainties by considering all those described by 

probabilities, whether these are derived from historical data, a stochastic process, or 

subjective beliefs. Although subjective probabilities are not commonly used in TEP, their 

existence must be acknowledged for completeness since they are rigorous mathematical 
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objects required for rational decision making under Bayesian statistical theory. Examples 

of subjective probabilities are those assigned to future scenarios by expert elicitation. 

Some uncertainties may be categorized differently or move between categories 

depending on data availability, modeling decisions or knowledge, as we explain next with 

four examples. First, note that transmission facilities’ failure because of weather 

conditions may be regarded as u and modeled by fuzzy techniques because accurate 

historical data is missing, even though repeatability may justify the application of 

probabilistic techniques if such data were available (i.e. a K uncertainty). Second, even 

though demand growth and nodal load is often labeled as random and treated by 

probabilistic and mathematical forecasting methods, other approaches such as fuzzy and 

robust programming have been applied for reasons such as tractability issues of stochastic 

optimization. Therefore, load growth may be either K or u depending on modeling 

choices. Third, although generation expansion is often modeled by scenarios, research on 

proactive models moves generation expansion from U or u to K, as discussed in the 

previous section. Fourth, increased understanding of regulatory uncertainties such as RPS 

targets will probably never be enough to move such uncertainty from U or u to K. 

Although KuU is connected to the nature of uncertainty, KuU is more practical and thus 

also related to practical considerations. 

Unknowable uncertainties such as long term state, earthquakes and medium term 

Black Swans are highly unpredictable. Unfortunately, these uncertainties are also 

accompanied by huge risks from which hedging is difficult or even impossible, as 

discussed next for each example. 

 First, the traditional approach for dealing with long term uncertainties is based 

on a reduced number of strategic scenarios with inherently high risks. 

However, these scenarios do not describe every important future. The purposes 

of strategic scenarios are to bound uncertainty and understand its impact rather 

than precisely forecasting future outcome, since accurate prediction is an 

impossible task in the long term. Because scenarios are only assumed to 

describe the future, it is not rare to miss important future scenarios not 

perceived plausible at the time the scenarios are constructed. Moreover, the 

future actually realized may well be a combination of constructed scenarios 
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with other unforeseen events and processes. Thus, the fact is that plausible 

futures are not identifiable. Furthermore, huge risks stem from the high degree 

of uncertainty in the long term, even when only considering the set of 

constructed scenarios. 

 Second, predicting the timing and location of earthquakes and hurricanes is 

impossible, and their occurrence has enormous impacts on electricity systems. 

Thus, scenarios seem to be the appropriate modeling tool both because of 

unpredictability and the need to hedge against massive risks. 

 Third, it is impossible to hedge against risks produced by completely 

unforeseeable Black Swans such as terrorist attacks, the financial crisis of 2008 

or the Chilean crisis of 2004 produced by the breach of gas supply contracts 

by Argentina. 

Although conceptual distinctions and practical considerations are involved in 

definitions of KuU, categories do not appropriately match modeling approaches when 

plausible alternative cases completely describe future outcomes. An unknown uncertainty 

by definition comprises situations when outcome can be completely bounded to multiple 

plausible cases, without probabilities for each case. Under such extensive alternative 

cases, either robust programming or scenarios together with robustness and flexibility 

analysis may be used, even though the uncertainty is not Unknowable. However, the 

proposed definitions capture the conceptual distinction among different mathematical 

structures. Also, more often than not, scenarios are used in TEP to model Unknowable 

uncertainties. Nevertheless, the fact remains that care must be taken to apply KuU to 

alternative cases that extensively describe future outcomes. 

2.3. Timescale of uncertainty: short, medium and long term 

Uncertainty may be revealed in different timescales, ranging from hours to decades 

(Figure 2-6). We distinguish between short, medium and long term uncertainties mainly 

because decisions have different scopes in each timescale. In the short term (from hours 

to months), uncertainties such as hourly demand, equipment availability, wind/solar 

production, and spot fuel prices are revealed. Thus, operation decisions related to market 

clearing, economic dispatch and unit-commitment are taken on a given system and market. 
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In the medium term (from months to years) relevant uncertainties are demand growth, 

generation and demand expansion or closure (including generation siting), supply 

contracts and evolution of existing technologies (e.g. increase of photovoltaic plants' 

efficiency). A recent and relevant uncertainty has been delays in the commercial operation 

date of the “planned” assets themselves, including transmission facilities, resulting from 

the complex social-environmental challenges to obtain the needed permits to allow the 

project implementation. Planning decisions in medium term involve primarily expansion 

of transmission systems, changing the systems composition and topology but not its 

structure. In some markets such as the Brazilian, generation expansion is also partially 

guided by central planning decisions. The long term spans decades in the future and so 

new disrupting technologies (e.g. new storage and PV technology) and smart grids (e.g. 

vehicles to grid, large scale residential distributed generation and demand response), 

among others, become significant uncertainties.  

In the highly uncertain long term environment, strategic decisions with less detail but 

dramatically more impact may be taken, for example, large transmission corridors, 

regional interconnections, market structure and policy making in general. The scope of 

strategic decisions in the long term is such that future scenarios may be partly normative 

in order to guide the evolution of the electric system and market towards desired goals. 

This guidance is particularly important where central planning by state agencies 

influences the development of generation systems by posing policy preferences in the 

energy auctions, as in the case of Brazil. Nevertheless, normative elements merely 

complement explorative scenarios of plausible futures, without replacing them. Although 

proactively constructing future by policy making and market structure are out of the scope 

of TEP, these actions are related in the long term, as discussed in the following section. 
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Figure 2-6 Timescale of uncertainties: short, medium and long term are related to operational, planning 

and strategic actions, respectively. While short term operation decisions require higher detail, strategic 

decisions in the long term are less detailed but have far greater scope and impact. 

2.4. Source of uncertainty: from wind speed to public opposition 

Uncertainties are produced by different processes and have different impacts on TEP. 

Similar sources of uncertainty are grouped based on impacts on TEP and to a lesser extent 

on process' similarities, thus emphasizing risks (consequences) rather than causes. Four 

primary sources of uncertainty and one aggregate category are defined next. 

Distinguishing between such sources has practical applications on identifying common 

models, relationships between different management strategies and assessment of 

expansion projects, as discussed subsequently after defining each source. 

The four primary sources of uncertainty in TEP are physical, economic, regulatory-

geopolitical and social-environmental. Physical uncertainties directly impact the physical 

infrastructure of a power system (i.e. transmission system or generation plants), cannot be 

controlled and occur or vary in small timescales ranging from seconds to a year. Examples 
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comprise outage of generation or transmission facilities, inelastic loads, wind speed, 

hydrology and natural disasters. Economic uncertainties are the result of some economic 

process such as market clearing or macroeconomic equilibrium, for example, fuel prices, 

investment costs and economic growth. Regulatory-geopolitical and social-environmental 

uncertainties result from complex political or social processes for which no quantitative 

model is available, such as public opposition to transmission projects or terrorism. Note 

that weather is not a primary source since the practical focus should be on risks and not 

causes. More precisely, different risks result whether uncertainty produces outage of 

facilities or public opposition to new transmission lines. Risks due to facilities outage are 

somewhat similar to those produced by natural disasters. Hence, weather related risks are 

grouped under physical or social-environmental sources. 

Uncertainties from the four primary sources can be modeled and then fed into some 

power system and market model (Figure 2-7). Although modeling varies for each 

uncertainty within the same source, some common modeling approaches can be identified. 

For example, physical uncertainties such as wind speed, hydrology and hourly residential 

load are often modeled by probability distributions. Instead, many economic uncertainties 

are assumed to follow some stochastic process such as Geometric Brownian Motion or 

discrete Markov chains. Finally, strategic scenarios and alternative cases are used to model 

social-environmental and regulatory-geopolitical uncertainties. 

Aggregate uncertainties in TEP are products of the interaction between different 

uncertainties. Such interactions are captured by a set of power system and market models. 

Electricity prices, power flows, reliability standards and total system costs in a regulated 

industry are clear examples of aggregate uncertainties. Complex uncertainties produced 

by electricity markets are harder to classify because of the lack of common information 

and models in a restructured environment. For example, bidding strategies, forward 

contracting and generation expansion could in principle be determined by directly 

modeling the equilibrium among profit-maximizing firms. However, generation 

expansion and bidding strategies are often modeled in TEP as exogenous economic 

uncertainties, in part because each participant of the market has different expectations and 

models. 
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Figure 2-7 Sources of uncertainty in TEP related by power system and market models. Some common models for each source of uncertainty can be 

identified. 
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Transmission expansion is directly related to management strategies focused on 

hedging against one or more sources of uncertainty, sometimes in a bidirectional fashion. 

For example, TEP is a complement or constituent part of markets integration and 

resiliency, while energy efficiency and demand response are, to some extent, supplements 

to transmission investment. Also, feedback loops exist between policies guiding TEP and 

TEP findings that advice policy-making. For example, regulatory measures aimed at 

ensuring cost recovery may be triggered by significant transmission investments needed 

to comply with public policy objectives. The close relationship among strategies suggests 

that TEP is part of a broader guidance process for the sustainable and efficient 

development of electricity markets. 

The assessment of strategies is inherently multicriteria since each strategy is affected 

by risks produced by multiple sources of uncertainty. For example, integration of regional 

markets can increase liquidity, competition, reliability and resiliency, thus addressing 

economic, physical and aggregate risks (e.g. complementary energy resource utilization, 

higher adequacy and more competitive electricity prices, respectively). Therefore, 

assessment of expansion projects and other actions must consider various performance 

metrics in a multicriteria decision framework. For example, Expected Energy Not 

Supplied and CO2 emissions should not be completely monetized and added to economic 

measures of costs and benefits, since security of service and emissions reductions are 

objectives on their own. Other public policy objectives also need to be assessed 

independently, for example increased integration of renewable energy sources. Thus, 

compromise plans instead of optimal ones are to be constructed in the face of multiple, 

potentially conflicting objectives. Since the performance of a plan varies across scenarios, 

different risk measures must be considered for each different objective and its associated 

performance metric. 

Holistic assessments of expansion projects are needed, considering relevant 

interactions to other complementary or supplementary strategies, and including different 

costs and benefits associated to different risks. A few management strategies and risk or 

performance metrics are depicted in Figure 2-8, with the purpose of illustration rather than 

comprehensiveness. 
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Figure 2-8 Depiction of the multidimensionality and complexity of TEP, when related to strategies and performance measures from varied sources of 

uncertainty. 
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2.5. Optimization approaches to TEP under uncertainty 

Optimization approaches to TEP under uncertainty are currently unable to deal with 

multiple and varied uncertainties. Despite increasing research efforts on both 

methodological and conceptual contributions, no model is currently successful in 

simultaneously addressing short, medium and long term uncertainties from varied sources. 

Hence, practical TEP studies often rely on heuristics, simplified analysis and manual 

search for solutions based on production cost simulations, in spite of optimization models. 

More research and industrial applications of optimization are required to appropriately aid 

TEP decision making. However, future works should consider the main advantages and 

limitations of existing modeling approaches, assessed under the conceptual framework 

proposed here. Three main research lines are identified next: stochastic programming, 

robust programming and scenario planning. 

Stochastic programming (SP) and robust optimization (RO) are, to a great extent, 

alternative approaches to deal primarily with medium term and relatively well-structured 

uncertainties. SP is the most powerful but scope-limited optimization tool available. It 

deals with Known uncertainties for which probability distributions are completely 

specified for their temporal evolution.  The successive revelation of uncertainty allows SP 

to exploit the trade-off between decisions to be made here-and-now and wait-and-see 

decisions that can be postponed to later stages. More importantly, SP can easily adopt 

expected utility as its objective function, resting on von Neumann and Morgenstern’s 

economic theory of rational choice which constitutes the “correct” quantification and 

valuation of risks. However, tractability issues counterweight these theoretical 

advantages, because of the large number of discrete probability-weighted scenarios 

required for SP. On contrast, RO reduces tractability issues by modeling uncertainty by 

sets and not individual realizations. It has proven to be a powerful tool for addressing 

some decision-making problems involving uncertainty parameters whose true probability 

distribution is difficult to predict. RO's objective is constructing solutions that are feasible 

against every likely realization of uncertainty within the prescribed set, possibly resulting 

in overly conservationist solutions. Although conservationism of RO can be controlled, 

the fact remains that avoiding probabilities and a large number of discrete scenarios comes 
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at the price of a rather extreme valuation of risk, since worst-case objective functions or 

uncertainty realizations are considered when optimizing. 

Although SP and RO may be applied to long term TEP, the traditional – and mostly 

implemented - approach assumes divergent strategic scenarios for bounding long term 

outcome. Instead of assuming probabilities or intervals to describe uncertainty, between 3 

and 6 strategic scenarios are usually constructed to represent plausible divergent futures, 

relying more on expert knowledge and discussion than on quantitative forecasting tools. 

Because of the long term and qualitative nature of these scenarios, it is hard to assign 

probabilities to each scenario, also due to the practical difficulty on conveying consensus 

among stakeholders whom objectives and expectations are different and potentially in 

conflict. On the other hand, over-conservationism of RO may be more critical in the face 

of divergent scenarios. 

Many alternative approaches, none of which is reliable on itself, are available to deal 

with Unknowable uncertainties in the form of strategic scenarios. Because strategic 

scenarios lack mathematical structure there is no theoretical criterion for rational decision 

making. Instead, generic properties of robustness and flexibility often guide the 

construction of expansion plans. Robustness can be defined as the ability of a plan to 

withstand multiple futures preserving near-optimality of the solution among these futures. 

Flexibility is the ability of a plan to be adapted quickly and at low costs to multiple futures. 

Many criterions have been developed in order to construct robust and flexible plans, most 

notably minimization of maximum regrets or adjustment cost. However, none of the 

available criterions, neither combinations of them, have extensively been proved to be 

reliable for applications in a wide variety of situations. Minimax regret is affected by 

known issues such as high sensitivity to extreme scenarios and forgoing significant 

benefits on several scenarios in exchange of a minor improvement in the regret on one 

particular scenario. Other less known or discussed issues include insensitivity to relative 

opportunity losses and the lack of coherence, in decision analytic terminology, because 

valuation of alternatives depends on considering all possible alternatives (more precisely, 

considering the truly optimal alternative for each scenario). On the other hand, issues and 

advantages of flexibility have not been extensively assessed, since few applications are 

available to this date. 
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In conclusion, no criterion or approach is currently widely accepted for long term 

scenario TEP, but rather conflicting evidence and arguments are presented in the literature. 

The hope is for a solid approach to be developed by researchers. However, we must admit 

the possibility that a reliable approach to find one "optimal" solution is simply never 

reached, acknowledging the lack of mathematical structures and solid theories to aid 

decision making under scenarios. 
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3. LITERATURE REVIEW OF TRANSMISSION EXPANSION PLANNING 

UNDER UNCERTAINTY 

Transmission Expansion Planning (hereinafter TEP) is clouded by uncertainties. 

Timely and cost-effective transmission expansion is vital for ensuring secure and reliable 

electricity service to customers, enhancing competition and ensuring market efficiency in 

electricity markets. Given the irreversibility and long lifetimes of transmission 

investments, TEP necessarily requires addressing uncertainties on future system 

conditions years ahead. Because of these fundamental properties of transmission, the 

importance of developing tools and models to assist power system planning under 

uncertainty has long been recognized. More specifically, as any decision under uncertainty 

is made before the uncertainty is revealed, addressing uncertainties allows hedging against 

risks caused by the outcomes of decisions taken under uncertainty. 

However, restructuring of the electricity sector increased and diversified the sources 

of uncertainty primarily regarding generation expansion, since it is no longer coordinated 

with transmission expansion. New sources of uncertainty include generation expansion 

plans but also bidding behavior of firms. More recently, higher integration of variable 

power sources such as wind farms and solar parks increased uncertainty in an operating 

timescale. Also, growing environmental concerns introduce uncertainty regarding public 

policy such as Renewable Portfolio Standards and CO2 Emissions Allowance. Finally, 

growing trends on the electricity sector such as electric vehicles, distributed generation, 

smart grids, demand response and resiliency against natural disasters have also become 

important for long term planning. 

A wide variety of modeling approaches have been applied to TEP under uncertainty. 

We discuss these approaches organized on three categories based on their underlying 

assumption on uncertainty quantification, namely: probabilistic assumption (including 

stochastic programming, real options and probabilistic TEP), limited quantification 

(mainly robust programming), and scenarios for large uncertainties (including minimax 

regret criterion and flexibility measures).  

A comprehensive literature review on the optimization approaches to transmission 

expansion planning under uncertainty is presented next. Sections 3.1, 3.2, and 3.3 
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synthesize and analyze stochastic / probabilistic, robust, and robustness / flexibility 

approaches to TEP under uncertainty. For each approach we briefly describe the general 

characteristics; identify journal articles which apply each approach to TEP; describe 

uncertainty modeling; discuss dis/advantages both in modeling and solution; and suggest 

future work in TEP applications (Table 3-1). Section 3.4 discusses and summarizes some 

of the gaps in the literature and the contributions of this thesis in bridging those gaps. 

Table 3-1 Summary of Modeling approaches to TEP under uncertainty. 

Underlying 

assumption 
Approach 

Uncertainty 

modeling 
Key Advantages  Main Disadvantages 

Uncertainty is 

described by 

probability 

distributions. 

Stochastic 

programming 
Stochastic process’ 

including GBM and 

mean-reverting 

process’ for nodal 

load and fuel prices. 

Detailed modeling of 

temporal evolution of 

uncertainties. 

Curse of dimensionality. 

Requires discrete uncertainty 

description. 

Real options 

analysis 

Detailed modeling of 

option value and 

timing of 

investments. 

Often applied to valuation of 

specific individual 

transmission projects. 

Limited 

quantification 

of uncertainty 

is available. 

Robust 

programming 

Uncertain parameters 

belong to a bounded 

set. Robust TEP 

focuses on 

description of nodal 

load and wind 

production as 

intervals. 

Allows direct 

handling of 

continuous 

uncertainty. 

Requires statistical 

analysis instead of 

complete probability 

distributions. 

Set description substantially 

affects tractability and 

conservationism. 

Unable to directly handle 

multistage problems. 

Treating over-

conservationism via budget 

parameters is an ad-hoc 

approach. 

Uncertainty is 

unknown but 

knowable 

Robustness 

analysis 

Multiple plausible 

future scenarios. 

Dealing with 

divergent futures and 

structural changes in 

electricity markets. 

No single theoretical 

decision criterion has proven 

to be sufficient. 

 

3.1. Stochastic and probabilistic programming 

Describing uncertainty by means of probability distributions allows the application of 

many different statistical, modeling and optimization techniques grounded on a solid body 

of literature. However, the solid foundation of the aforementioned techniques comes at 

the price of assuming well-structured uncertainties for which probability distributions (or 

stochastic processes) are known. Therefore, the applicability of such approaches is limited 

to a narrow subset of uncertainties, and arguably precluded for long-term strategic 

analysis. 
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Stochastic programming seeks to optimize sequential decisions under uncertain 

parameters that are revealed on the future, following a known probability distribution or 

stochastic process (Sen, 2013; Shapiro, Dentcheva, & Ruszczyński, 2009). Applications 

of stochastic programming to power systems planning and TEP often focus on nodal load 

uncertainty by setting a two-stage framework, where integer investment variables are 

solved before the realization of uncertainty (here-and-now decisions) while operation 

variables are fixed after the realization of uncertainty (wait-and-see decisions). Therefore, 

algorithms based on Generalized Benders Decomposition may be applied to solve the 

resulting optimization problem (Alvarez Lopez, Ponnambalam, & Quintana, 2007; 

Baughman, Siddiqi, & Zarnikau, 1995; Bustamante-Cedeño & Arora, 2008; Park & 

Baldick, 2013). Multistage stochastic TEP models have also been recently developed 

(Konstantelos & Strbac, 2015; Loureiro, Claro, & Pereira, 2015; Seddighi & Ahmadi-

Javid, 2015). Multistage models are capable of capturing the option value of waiting for 

more information before committing to an expansion project, whether it is a transmission 

investment or other flexible alternative that allows further postponement of commitment 

(e.g. storage) (Konstantelos & Strbac, 2015). However, the detail of multistage dynamic 

models comes at the price of increased problem scale, thus requiring the application of 

decomposition algorithms. 

Stochastic programming’s solid economic foundation should be stressed. According 

to expected utility theory, rational decision makers should seek to maximize expected 

utility functions that explicitly incorporate risk preferences (von Neumann & 

Morgenstern, 1944). Therefore, neither “probabilistic choice” nor stochastic programming 

are inherently risky as opposed to the assertion of Miranda & Proenca (Miranda & 

Proenca, 1998a, 1998b), since rational risk-averse decision makers should not minimize 

expected costs disregarding risk. Moreover, the availability of probabilities, whether 

objective or subjective, mandates a rational decision maker to use such probabilities to 

maximize expected utility (Lindley, 1971; Raiffa, 1968). On the grounds of expected 

utility, mean-variance models inspired by Markowitz theory of financial portfolios 

(Markowitz, 1959) have been applied to TEP (Alvarez Lopez et al., 2007; Bae, Son, & 

Kim, 2010; Malcolm & Zenios, 1994), as well as constant risk-aversion functions (van 

der Weijde & Hobbs, 2012). However, risk-averse decision making on multistage 
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stochastic problems is not that simple, and several techniques are available, mostly based 

on CVaR (Homem-de-Mello & Pagnoncelli, 2016). 

Stochastic TEP models uncertain parameters as simple probability distributions or 

more complex stochastic models. Given that most available stochastic programming 

approaches can only handle discrete uncertainties, discretization of continuous uncertainty 

models is often required (Birge & Louveaux, 2011, Chapter 2; Sen, 2013). Modeling of 

load, fuel prices and other uncertainties in TEP comprises diffusion processes taken from  

financial literature (Hull, 2012), Markov chains, and simple probability distributions. 

Nodal load has been modeled as a Inhomogeneous Geometric Brownian Motion 

(Chamorro et al., 2012), and as normal distribution. Regarding fuel prices, (Seddighi & 

Ahmadi-Javid, 2015) modeled natural gas prices as Geometric Brownian Motion, and 

(Chamorro et al., 2012) modeled coal and natural gas prices as an Inhomogeneous 

Geometric Brownian Motion. It should be noted that forecasting and statistical analysis of 

historical data is a tool used to model uncertainty. Using a point-estimate based on 

forecasts is a deterministic model of uncertainty, while fitting a probability distribution or 

stochastic process to historical data is a modeling approach. Little effort has been made to 

validate forecast and stochastic models for load uncertainty, inherent to power systems 

and thus, not addressed in other fields (as opposed to fuel prices). 

Other approaches to TEP under probabilistic uncertainty are real options analysis 

(ROA) and chance-constrained programming. ROA attempts to replace net present value 

as a valuation framework by emphasizing the option value of postponing, modifying or 

abandon investment projects (Dixit & Pindyck, 1994). ROA has been applied to 

transmission expansion only as a valuation framework for specific projects (Hedman & 

Sheble, 2005; Osthues, Rehtanz, Blanco, & Negnevitsky, 2014; Pringles, Olsina, & 

Garces, 2014), using detailed diffusion models (Chamorro et al., 2012). Chance-

constrained programming admits a given probability of violating certain constraints 

instead of enforcing constraint satisficing in every possible uncertainty realization 

(Shapiro et al., 2009, Chapter 4). mainly supplying nodal load and curtailment of wind 

power (Park & Baldick, 2013). 
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Whereas probabilities for a particular generation expansion may not be reliably 

assigned based on statistical analyses13, repetition of events may provide some insight of 

the structure of the uncertainty, for even though each generation expansion project is 

unique, they share common characteristics. Moreover, aggregation may provide a basis 

for probability estimation, which is important for distributed generation. However, each 

regulatory process is “more unique” that each generation expansion, and therefore analysis 

of past events may not provide any information on future outcomes, as opposed to 

generation expansion. 

3.2. Robust programming 

Robust programming comprises a wide range of mathematical techniques for 

optimization under uncertainty (Gabrel, Murat, & Thiele, 2014). Recent robust TEP 

applications have focused on optimization under hard constraints, i.e. those that must be 

satisfied in any possible realization of the uncertain parameters (Ben-Tal & Nemirovski, 

1999; Soyster, 1973). Uncertainty description is therefore deterministic and set-based, so 

no probability distribution is required (Bertsimas, Brown, & Caramanis, 2011). Allowing 

the decision maker to select a solution that is feasible for any realization of the uncertain 

parameter within the prescribed set (i.e. immunize the models against data uncertainty by 

solving the worst-case problem) has two important implications. First, hard-constraint 

satisficing for any realization of the uncertainty may produce overly conservative 

solutions. Consequently, robust programming models with adjustable conservationism 

levels have been developed (Bertsimas & Sim, 2004), and TEP applications have relied 

on uncertainty budget parameters to control this conservationism. Second, the 

construction of the set which describes and bounds uncertainty is crucial to the 

methodology and the final solution, and encompasses the tradeoff between over 

conservationism and guaranteeing that the uncertain parameter will effectively lie in the 

chosen set (Bertsimas et al., 2011). 

                                                 
13 Subjective probabilities may well be assigned to particular expansion projects, based on the beliefs of 

the decision maker (DM) regarding some event. Bayesian decision theory provides a theoretical 

foundation for decision analysis based subjective probabilities, which do not inherently lack mathematical 

formality nor theoretical foundations. Moreover, rationality of the DM requires subjective probabilities to 

be rigorously estimated and used as any other probability, given the DM has some notion of likelihood of 

the events (Pratt et al., 1995; Raiffa, 1968). However, we assume no such probabilities are available, since 

existing literature often precludes such possibility. 



33 

  

Robust TEP attempts to derive a robust plans in the sense of feasibility for any 

foreseeable load level in the medium or long term (Alizadeh, Dehghan, Amjady, Jadid, & 

Kazemi, 2013; Chen, Wang, Wang, He, & Wang, 2014; Jabr, 2013; Mínguez & García-

Bertrand, 2016; Ruiz & Conejo, 2015). Along load levels, uncertainties such as generation 

expansion / closure (Chen et al., 2014; Ruiz & Conejo, 2015), wind farm’s output (Jabr, 

2013), transmission investment costs (Alizadeh et al., 2013) and operational costs (Ng & 

Sy, 2014) have also been considered. In a different approach, (Sauma, Traub, & Vera, 

2015) consider only delays in connection of new power plants to the grid. 

All available models are static and, with the exception of (Ng & Sy, 2014; Sauma et 

al., 2015)14, describe each uncertain parameter by a bounded interval. Only Ruiz & Conejo 

(2015) briefly comment the importance of building uncertainty sets that ensure, within a 

given confidence level, that the random variable will be contained in the resulting set. 

Although the selection and construction of uncertainty sets is an active research area 

(Bertsimas et al., 2011; Gabrel et al., 2014), Ruiz & Conejo do not apply such techniques 

because of the complexity of the resulting formulations. Instead, based on hourly load 

levels and power production up to the year 2014, the authors suggest the application of 

statistical techniques and forecast models to derive upper and lower bounds for uncertain 

parameters in the target year 2020. 

Robust programming does not directly address uncertainty valuation, since no trade-

off is considered as opposed to the probabilistic approaches. Ensuring feasibility against 

any possible realization of uncertain parameters does not directly measure the impact of 

each outcome. Robust programming approaches which consider uncertainty in objective 

function explicitly minimize the worst-case objective (Alizadeh et al., 2013; Ng & Sy, 

2014; Ruiz & Conejo, 2015). Conservationism level of the solution is controlled by an 

uncertainty budget parameter which restricts the maximum allowed uncertainty deviation 

with respect to a certain reference value. Jabr (2013) consider an integer parameter that 

restricts the number of uncertain parameters which may simultaneously attain its extreme 

                                                 
14 (Ng & Sy, 2014) assume load and operational costs to be equal to a nominal value plus a linear 

combination of some unspecified underlying factors called “primitive uncertainties”, which indirectly 

correlate load and operational costs based on historical data. (Sauma et al., 2015) consider discrete delays 

in connection-to-the-grid of new power plants. 
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values. Alizadeh, Dehghan, Amjady, Jadid & Kazemi (2013) also allow real budgets to 

permit one parameter to vary in a subset of the original interval. Chen, Wang, Wang, He 

& Wang (2014) consider upper and lower bounds on total new generation power as well 

as intervals for each parameter. Ruiz & Conejo (2015) restrict the absolute percent 

deviation of aggregate load or power produced in a given region of the network. After the 

decision maker provides an uncertainty set and budget, the model produces a robust 

solution which may be highly dependent on the uncertainty level set by the budget 

parameter (Ruiz & Conejo, 2015). However, only (Alizadeh et al., 2013) discuss the 

selection of the uncertainty budget, based on simple upper bounds for the chance of 

constraint violation in terms of the budget parameter. Solution techniques include Benders 

Decomposition (Jabr, 2013), primal cutting planes (Ruiz & Conejo, 2015), scenario 

generation (Chen et al., 2014; Sauma et al., 2015), and direct solution of the full robust 

counterpart (Alizadeh et al., 2013). (Mínguez & García-Bertrand, 2016) analyzes and 

improves computational performance of previous approaches. 

In the future, requirements of research on robust TEP are primarily related to 

uncertainty set construction and uncertainty budget selection; computational tractability 

of existing approaches; development of models and solution algorithms for multi-stage 

robust programming; and applications of other techniques such as distributional 

robustness or combinations of stochastic and robust programming to TEP (Gabrel et al., 

2014). 

Other approaches have been applied to TEP under unknown uncertainties, such as 

fuzzy programming (Andreoni, Garcia-Agreda, Strada, & Saraiva, 2006; Choi, El-Keib, 

& Tran, 2005; Da Rocha & Saraiva, 2013; Kamyab, Fotuhi-Firuzabad, & Rashidinejad, 

2012; Peng Wu, Haozhong Cheng, & Jie Xing, 2008; Tome Saraiva, Miranda, & Pinto, 

1996), information-gap decision theory (Dehghan, Kazemi, & Amjady, 2014; Sarhadi & 

Amraee, 2015; Taherkhani & Hosseini, 2015) and connection numbers with grey theory 

(Jin & Cheng, 2008). However, the practical validity of these approaches has not been 

confirmed, due to the scarce applications available in the literature. 

3.3. Robustness and flexibility analysis 

Scenario approaches together with decision criterions such as minimax regret and 

adjustment cost have been applied to TEP under Unknowable uncertainties, since both the 
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stochastic and robust approaches are unable to model multiple divergent futures produced 

by structural changes in electricity markets. Uncertainties are captured by a given set of 

future scenarios, all deemed plausible but without any information regarding likelihood 

of each scenario, let alone probabilities15. Although many authors abstract from the 

content of the assumed scenarios, a common approach to construction of scenarios in both 

academy and industry is based on intuitive logics school (van der Weijde & Hobbs, 

2012)16, which conceives scenarios as a mean to bound, understand and communicate 

uncertainty, rather than accurately predicting or forecasting future outcome (Bradfield, 

Wright, Burt, Cairns, & Van Der Heijden, 2005; Myers & Kitsuse, 2000). Each scenario 

should present a trajectory to some future state in a narrative and compelling fashion, 

outlining the interaction between the most important uncertainties in an internally 

consistent manner. The set of considered scenarios should also be diverse enough to 

appropriately represent the range of possible future outcomes (Schoemaker, 1993). 

Assigning subjective probabilities to these scenarios is a complex or even impossible task, 

since such probabilities will hardly convey consensus among the different stakeholders 

whom objectives are potentially in conflict (E. O. Crousillat, Dorfner, Alvarado, & 

Merrill, 1993; Linares, 2002). Moreover, the foundation of such subjective probabilities 

is not clear since scenarios are not necessarily mutually exclusive and collectively 

exhaustive. 

Since there is no theoretical method to aggregate the performance metric of a plan 

(e.g. total cost) under several possible future scenarios with no assigned probabilities, the 

objective becomes finding expansion plans that attain some generic desirable properties 

under uncertainty, such as robustness and flexibility (Andreoni et al., 2006; Maghouli, 

Hosseini, Oloomi Buygi, & Shahidehpour, 2011; W. Walker, Haasnoot, & Kwakkel, 

2013). Robustness can be defined as the ability of a plan to withstand multiple futures, 

either preserving feasibility or near-optimality of the solution among these futures 

(Mulvey, Vanderbei, & Zenios, 1995). On the other hand, flexibility is the ability of a plan 

                                                 
15 Assuming that all scenarios are plausible is not equivalent to assuming they’re equally likely and, 

therefore, having equal probabilities. 
16 A review study prepared by the Pontifical University Catholic of Chile for the Chilean National Energy 

Commision (CNE) found that planning processes on United States, Europe and Latin America often 

employs strategic scenarios to represent long term uncertainties (Watts & Rudnick, 2014). 
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to be adapted quickly and at low costs to multiple possible futures (Zhao, Dong, Lindsay, 

& Wong, 2009), and thus may be understood as dynamic robustness (W. Walker et al., 

2013). Other approaches to planning under such deep uncertainties have been proposed in 

the fields of military planning, policy making and sustainability, including assumption 

based planning that analyzes the impact of broken assumptions (Dewar, 2002; W. Walker 

et al., 2013), resilience and precautionary principles (Aven, 2015). 

Minimization of maximum regret is by far the most common criterion used to develop 

robust transmission expansion plans under scenarios (B. Cedeño & Arora, 2011; 

Bustamante-Cedeño & Arora, 2008; M O Buygi et al., 2004; Charlin, Rudnick, & 

Araneda, 2015; Chen et al., 2014; De la Torre, Feltes, Román, & Merrill, 1999; de Silva, 

Rider, Romero, & Murari, 2006; Fang & Hill, 2003; Maghouli et al., 2011), although 

several other criterions are available (Bunn, 1984, Chapter 2; M O Buygi et al., 2003). 

Minimax regret is an extreme measure of robustness, and thus is highly sensitive to the 

choice of extreme scenarios (Higle & Wallace, 2002). Moreover, it is insensitive to 

opportunity losses other than the maximum, thus potentially forgoing significant benefits 

in several scenarios in favor of a reduced advantage in one extreme scenario. Also, 

minimax regret is insensitive to relative losses of opportunities, so normalized or relative 

regret has been proposed instead (Bagajewicz, n.d.; Motamedi, Zareipour, Buygi, & 

Rosehart, 2010). Finally, minimax regret is not independent on irrelevant alternatives. 

Indeed, the performance metric of every plan may change in the case a new plan becomes 

available, that is optimal under a certain scenario but not necessarily optimal in a minimax 

regret sense, thus contradicting the coherence principle of decision analysis (Bunn, 1984; 

Lindley, 1971)17. These issues with minimax regret are explained in detail in annex B. 

Flexible TEP was introduced by (Zhao et al., 2009) by minimizing the maximum 

adjustment cost required to adapt a given plan to a change in the realized scenario. The 

authors implement goal programming to satisfice multiple conflicting objectives, 

therefore not optimizing but rather satisficing (Simon & A., 1956; Zeleny, 1982). 

Adjustment cost for a particular scenario is defined as the additional investment required 

                                                 
17 The discipline of decision analysis is based on subjective probability theory, heavily criticizing minimax 

regret. The main subjects of decision analysis are decision making under uncertainty and multiple 

objectives (Schum, 2013). 
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to adapt a plan in order to satisfice a given target in the given scenario. The measure of 

flexibility is then defined as the maximum adjustment cost across scenarios. (Mejia-

Giraldo & McCalley, 2014) extend the approach to a multistage framework combining 

strategic scenarios with uncertainty sets and adjustable robust programming to account for 

uncertainties within the boundaries of a given scenario, thus providing more flexible 

solutions that are also less dependent on the choice of scenarios. However, the model 

requires selecting an arbitrary parameter to include the adjustment cost directly in the 

objective function, thus requiring the decision maker to clearly quantify preferences on 

the property of flexibility, not on particular projects and its impact. Such quantification is 

an extremely difficult ex-ante requirement for a decision maker, who may be tempted to 

test different values of the parameter until achieving an acceptable solution. Therefore, 

the modified approach of (Mejia-Giraldo & McCalley, 2014) also remains in the field of 

satisficing, while a rational decision maker seeks to optimize its decisions. Moreover, the 

authors do not clearly state the difference between and adjustment cost and the traditional 

regret, and therefore both measures could be directly summed to provide a broader 

performance indicator. (Qiu et al., 2015; Zhao, Foster, Dong, & Wong, 2011) extended 

flexibility to expansion under stochastic and probabilistic uncertainties, although the 

flexibility approach is more valuable under scenarios without probabilities. 

A few hybrid models attempt to mix different approaches to TEP under uncertainty, 

mainly between scenarios and probabilistic or robust approaches. (M O Buygi et al., 2004; 

Gu & McCalley, 2010) use many probabilistic scenarios produced by Monte Carlo 

simulation along each strategic scenario. Multiple decision criterions are simultaneously 

used in a fuzzy multiobjective framework in (Maghouli et al., 2011) and (Majid Oloomi 

Buygi et al., 2006). (Maghouli et al., 2011) considers maximum regret and adjustment 

cost, while (Majid Oloomi Buygi et al., 2006) considers maximum regret, average regret 

and a custom metric called “degree of robustness”, based on relaxing maximum regrets. 

Attention should also be paid to the development of scenarios and their interactions to 

TEP models, even though TEP research correctly focuses on developing new optimization 

techniques. At least two main kinds of scenarios are considered in both academy and 

industry, case-driven and strategic. Case-driven scenarios describe many possible 

combinations of outcomes of some set of uncertainties such as winter / summer peak, 
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generation expansion or load growth rates (Bustamante-Cedeño & Arora, 2008; Majid 

Oloomi Buygi et al., 2006; Gorenstin, Campodonico, Costa, & Pereira, 1993; Mejia-

Giraldo & McCalley, 2014; PJM, 2015a), while strategic scenarios follow the intuitive 

logic approach previously explained, thus emphasizing internal consistency by analyzing 

interactions among several uncertainties, and selecting between three and six scenarios to 

broadly represent plausible uncertainty realizations (Gu & McCalley, 2010; Linares, 2002; 

F D Munoz, Hobbs, Ho, & Kasina, 2014; National Grid, 2015a, 2015b; PJM, 2015b; 

Sanchis et al., 2015; van der Weijde & Hobbs, 2012). In order to improve scenario 

construction methodologies and integration with optimization approaches, further 

research is required regarding strategic scenarios, for stochastic reduction techniques may 

be readily applied to case-driven scenarios (Growe-Kuska, Heitsch, & Romisch, 2003). 

For example, assessment on the divergence of scenarios would allow quantifying how 

broad the set of selected scenarios is, thus signaling scenarios that may represent 

uncertainty too narrowly, or identify potentially high impact scenarios not considered. 

Also, it is not clear that planning for a reduced set of strategic scenarios provides 

successful hedges against risk in case an intermediate scenario occurs. Moreover, 

methodologies for optimization under both medium term case-driven scenarios and long 

term strategic scenarios have not been developed, since most papers focus on one of the 

two timescales. 

3.4. Discussion, Gaps in the Literature and Contribution of this Thesis 

Current TEP models do not successfully fulfill the needs of real TEP processes. 

Tremendous efforts have been carried during the past two decades in order to develop 

tractable and useful transmission expansion planning models which can assist decision 

makers facing such a complex problem. Despite amazing advances in a wide variety of 

areas related to TEP modeling and solution methodologies, tractable, detailed and 

sophisticated TEP models are still missing in both the state-of-the-art and professional 

solutions. 

Furthermore, no one-size-fits-all approach to TEP under uncertainty is currently 

available in the literature. Instead, a variety of alternative modeling and solution 

approaches have been developed for dealing with particular kinds of uncertainties. The 
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three main branches of stochastic / probabilistic, robust, and robustness / flexibility 

assume different models of the underlying uncertainties and are therefore useful for 

different situations. Particularly, the tractability advantages of a robust formulation seem 

like a promising alternative for modeling a wide variety of medium and short term 

uncertainties (e.g. hourly wind output and load levels, and delays on connections of 

planned generation units). However, robust optimization does not currently seem 

appropriate for dealing with strategic long-term scenarios, since enforcing strict feasibility 

under the variety of these scenarios may be too costly. Furthermore, decision-makers often 

focus on the tradeoffs between multiple conflicting objectives under long-term strategic 

scenarios. 

From a techno-economic perspective, we have classified approaches to TEP under 

strategic scenarios as ranging between the two extremes of stochastic programming, and 

robustness / flexibility approaches. To date, the debate regarding stochastic 

programming and alternative approaches has been half-blind. Stochastic TEP is 

clearly the superior methodology when the probability structure is assumed to be available 

for scenarios (F D Munoz et al., 2014; Wallace, Nationale, & Industriel, 1998).18 

Advocates of alternative methods argue in favor of other approaches that assume no 

scenario-weighting probabilities are available (Miranda & Proenca, 1998b). Particularly, 

minimax regret has long been employed in TEP literature and keeps on being used in 

practical TEP processes, for example in PJM, UK and Chile.  

The issues affecting minimax regret criterion have not been thoroughly analyzed and 

discussed (Higle & Wallace, 2002) (those deficiencies are explained in appendix B). 

Therefore, it is currently unclear whether these theoretical deficiencies are relevant in 

practical TEP applications. On the other hand, despite theoretical robustness, the practical 

limitation of stochastic TEP regarding assumed scenario probabilities has only been 

pointed out but never before quantified nor analyzed. Instead, alternative methods have 

been proposed to manage risks without assuming probabilities, thereby abandoning 

                                                 
18 Stochastic or probabilistic does not necessarily imply optimizing expected value but rather a general 

utility function considering risk preferences (often risk aversion). Expected cost would be a superior 

criterion only for a risk neutral decision maker. 
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stochastic TEP without further analysis.19 Hence, it seems that no efforts have been made 

to bridge the gap between these two extreme approaches to TEP under long-term strategic 

scenarios. 

This thesis contributes to bridging the gap between stochastic programming and 

robustness approaches by quantifying and analyzing the relevance and the impact of 

weighting probabilities assumed for long-term strategic scenarios in the optimal 

transmission expansion plan. It is the first step in shedding lights regarding alternative 

decision-making criterions for TEP under uncertainty. 

Instead of simply avoiding probabilities, we assume these probabilities to be uncertain 

themselves. Therefore, we explicitly tackle the ambiguity that undermines decision-

maker’s confidence on scenario probabilities and on the methodologies that rely on such 

probabilities (Ellsberg, 1961). Explicitly modeling such ambiguity as a second-order 

probability distribution to describe the first-order probability distribution on scenarios has 

been proposed before but never applied to TEP (Borgonovo & Plischke, 2015). 

In modeling ambiguity in TEP under scenario uncertainty, the contributions of this 

thesis are threefold: 

 First, we quantify the practical relevance and impact of ambiguous scenario 

probabilities in stochastic TEP.  

 Second, we present a novel distributionally robust decision-making criterion 

for TEP under ambiguity.  

 Third, we compare the optimal solution under alternative TEP decision-

making criterions such as expected cost, minimax regret and distributional 

robustness, by both theory and simulation based on the theory on 

multiobjective decision-making and the well-established concept of Pareto 

efficiency. 

                                                 
19 It is worth mentioning that critiques to expected costs have been used to argue in favor of alternative 

methodologies, since expected costs do not account for risks (Miranda & Proenca, 1998a). The logic of 

the argument is flawed since other alternatives lie between expected cost and robustness criterions such as 

minimax regret. For example, considering risk-averse decision-making attitudes is possible in a stochastic 

TEP framework, and models in this direction have been developed (Alvarez Lopez et al., 2007). 

Therefore, the lack of explicit risk management in expected cost stochastic TEP does not necessarily argue 

in favor of minimax regret. 
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Hence, from a practical perspective this thesis allows for explicit quantification and 

analysis of the impact and relevance of scenario-weighting probabilities. Such novel 

analysis is without precedents in TEP literature. Also, from a theoretical perspective this 

thesis enables decision-makers to include more information in the model, thereby 

contributing to compliance with Savage’s axioms and the Subjective Expected Utility 

Theory (Pratt, Raiffa, & Schlaifer, 1995; Savage, 1951, 1954). Thus, the theoretical 

foundation of TEP models as tools to assist rational decision-making is enhanced.20 

The methodology developed to model ambiguity in TEP under scenario uncertainty is 

presented next. 

                                                 
20 The purpose of this thesis is to shed lights on the prescriptive role of TEP models (i.e. recommending 

what should be rationally done) instead of the descriptive role of decision criterions (i.e. how people 

actually make decisions). 
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4. METHODOLOGY 

The methodology proposed for this thesis is partly based on a two-stage stochastic 

TEP model. Our simplified model assumes commitment to transmission investment 

decisions must be made today (i.e. here-and-now), whilst the benefits of such decisions 

are realized when operating the system in the future (i.e. wait-and-see). Uncertainty on 

future conditions is captured by a reduced number of probability-weighted scenarios that 

describe the long-term trends in the power market (e.g. fuel and technology costs, 

disruptive technologies, and regulation). An example of such a model is studied in (F D 

Munoz et al., 2014). 

However, unlike any previous work we explicitly model the inaccuracy of 

probabilities assigned to long-term scenarios by assuming that such probabilities are 

themselves uncertain and described by a probability distribution, which we call second-

order probability distribution.21 Therefore, no single transmission expansion plan can be 

readily identified as optimal, but rather a set of efficient expansion alternatives can be 

built and further analyzed. Such set of Pareto efficient alternatives is obtained by 

interpreting the costs under each scenario as a different objective of a multi-objective 

optimization problem (Miranda & Proenca, 1998b). 

Also unlike any previous work, we quantify the robustness of each expansion plan 

with respect to the probabilities assumed for long-term scenarios (i.e. the scenario 

probabilities). Assuming a second-order probability distribution that describes the 

probabilities for scenarios, we define a new "second-order probabilistic robustness" 

measure as the likelihood that a given expansion plan is optimal.22 To efficiently evaluate 

the second-order robustness we integrate the second-order probability density function on 

the set of probabilities for which a given expansion alternative remains optimal. Such a 

calculation is repeated for each expansion alternative in the convex hull of the efficient 

set of expansion alternatives. 

                                                 
21 Hereinafter, we refer as “scenario probabilities” as the set of probabilities assigned to each scenario, i.e. 

the set of numbers {𝑝𝑖 ∶ ∑ 𝑝𝑖 = 1 ∧   𝑝𝑖 ∈ [0,1]𝑆
𝑖 }. 

22 Note that such an approach is conceptually and practically different to a local sensitivity analysis. 
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In turn, the Pareto frontier of expansion plans is obtained by applying the specialized 

genetic algorithm NSGA-II, commonly used in multi-objective TEP literature (Arabali, 

Ghofrani, Etezadi-Amoli, Fadali, & Moeini-Aghtaie, 2014; Majid Oloomi Buygi et al., 

2006; Maghouli et al., 2011) (Figure 4-1 depicts the proposed methodology). Explicit 

optimal solutions to the stochastic TEP are also used to seed the genetic algorithm in order 

to ensure at least attainment of the exact convex part of the Pareto frontier, and also 

improve the convergence rate of the genetic algorithm (section 4.6). 

 

Figure 4-1 Summary of the proposed solution methodology. 

Finally, the optimal solution under alternative decision-making criterions is compared. 

We consider stochastic programming with expected cost (thus assuming risk-neutral 

decision-makers), minimax regret, minimax cost, and two novel criterions: the 

aforementioned second-order stochastic robustness, and also a novel distributional 

robustness criterion. Since we prove that the optimal solution under these alternative 

criterions lies in the Pareto frontier, we first obtain the frontier and then obtain optimal 

solutions by evaluation of the reduced set of efficient alternatives. 
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After defining the nomenclature to be used, the methodology is explained in further 

detail in the rest of this section. 

4.1. Nomenclature 

4.1.1. Sets and Indices (Italic Font) 

𝑆 Scenarios, indexed s. 

𝐻 Hours of system operation, indexed h. 

𝐵 Buses, indexed b. 

𝐺 Generators, indexed k. 

𝐺𝑏 Generators at bus 𝑏. 

𝐿 Transmission lines, indexed 𝑙. 

𝐿𝐸 Existing transmission lines. 

𝐿𝐶 Candidate transmission lines. 

𝛺𝑙 Pair of nodes connected to line 𝑙. 

4.1.2. Parameters (Normal Font) 

MCk,s Generation marginal cost. 

VOLL Value of Lost Load. 

ICl Investment cost in candidate transmission line.  

Db Demand at bus b. 

Sl Line susceptance. 

Ml Large positive number. 

Gk Installed generation capacity.  

N1 
Target planning year (when the scenarios realize and system 

operation is simulated). 

N2 Final year of planning horizon. 

dh Duration of load block (or representative hour) h. 

Φb,l Element of node-line incidence matrix. 

4.1.3. Variables (Italic Font) 

𝑦𝑙 Transmission investment decision. 

𝑔𝑘,𝑠,ℎ Generation. 

𝑟𝑙,𝑠,ℎ Load curtailment. 
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𝑓𝑙,𝑠,ℎ Power flow in transmission lines. 

𝜃𝑏,𝑠,ℎ Phase angle. 

𝑂𝐶𝑠 Operating cost. 

𝐼𝐶 Total investment cost. 

𝑇𝐶𝑠 Total cost. 

𝑝𝑠 Scenario probability of occurrence. 

4.2. Two-stage Stochastic Transmission Expansion Planning under Scenario 

Uncertainty based on Mixed Integer Linear Programming 

A two-stage stochastic TEP model is presented next. The model is based on a linear 

approximation of the power flow equations (e.g. the DC power flow). Transmission 

investments as well as a full year of system operation is optimized. A set of system states 

is used to represent system operation. These states can represent blocks of a load duration 

curve (Wood, Wollenberg, & Sheblé, 2013), or hours in a full 8760-hour model. The 

assumptions of this model (e.g. DC power flow, no unit-commitment constraints, among 

others) are often adopted by academic references on long-term TEP. 

The mathematical optimization model presented next is an always-feasible linear-

programming problem based on the classical disjunctive formulation of two-stage 

stochastic TEP (Alguacil, Motto, & Conejo, 2003; Alvarez Lopez et al., 2007; Bahiense, 

Oliveira, Pereira, & Granville, 2001; Binato, Pereira, & Granville, 2001). 

min
{𝑦,𝑔,𝑟,𝑓,𝜃}

 ∑ p̃s ⋅ 𝑇𝐶𝑠

𝑠∈𝑆

 (1) 

subject to:  

𝑇𝐶𝑠 = 𝐼𝐶 + 𝑂𝐶𝑠  ∀𝑠 (2) 

𝐼𝐶 = ∑ ICl𝑦𝑙

𝑙

 (3) 

𝑂𝐶𝑠 = ∑ dh ⋅ [∑ MCk,s𝑔𝑘,𝑠,ℎ

𝑘∈𝐺

+ ∑ VOLL ⋅ 𝑟𝑏,𝑠,ℎ

𝑏∈𝐵

]

ℎ

 (4) 

∑ 𝑔𝑘,𝑠,ℎ

𝑘∈𝐺𝑏

+ 𝑟𝑏,𝑠,ℎ + ∑ Φ𝑏,𝑙 𝑓𝑙,𝑠,ℎ

𝑙

= Db,s,h  ∀𝑏, ℎ, 𝑠 (5) 

𝑓𝑙,𝑠,ℎ = Sl(𝜃𝑏,𝑠,ℎ − 𝜃𝑝,𝑠,ℎ)   ∀ (𝑏, 𝑝) ∈ 𝛺𝑙 , 𝑙 ∈ 𝐿𝐸 , ℎ, 𝑠 (6) 

|𝑓𝑙,𝑠,ℎ − Sl(𝜃𝑏,𝑠,ℎ − 𝜃𝑝,𝑠,ℎ)| ≤ Ml(1 − 𝑦𝑙)  ∀ (𝑏, 𝑝) ∈ 𝛺𝑙 , 𝑙 ∈ 𝐿𝐶 , ℎ, 𝑠 (7) 
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|𝑓𝑙,𝑠,ℎ| ≤ Fl       ∀ 𝑙 ∈ 𝐿𝐸 , ℎ, 𝑠 (8) 

|𝑓𝑙,𝑠,ℎ| ≤ Fl𝑦𝑙   ∀ 𝑙 ∈ 𝐿𝐶 , ℎ, 𝑠 (9) 

0 ≤ 𝑔𝑘,𝑠,ℎ ≤ Gk    ∀𝑘, 𝑠, ℎ (10) 

0 ≤ 𝑟𝑏,𝑠,ℎ ≤ Db   ∀𝑏, 𝑠, ℎ (11) 

𝑦𝑙 ∈ {0,1}  ∀𝑙 ∈ 𝐿𝐶 (12) 

 

The objective is to minimize total investment and expected operation costs (eq. 1, 2, 3 

and 3). Both investment and operation costs are weighted by the scenario probability p̃s 

for notational clarity with the following parts of the methodology. However, the 

expectation is only applied to operation costs since investment costs do not depend on the 

realized scenario (because investment decisions are taken before the realization of 

uncertainty). Indeed, note that the objective function is equivalent to the following: 

∑ p̃s ⋅ 𝑇𝐶𝑠

𝑠∈𝑆

= 𝐼𝐶 ⋅ (∑ p̃s

𝑠∈𝑆

) + ∑ p̃s ⋅ 𝑂𝐶𝑠

𝑠∈𝑆

= 𝐼𝐶 + ∑ p̃s ⋅ 𝑂𝐶𝑠

𝑠∈𝑆

 (13) 

 

Technical constraints, described next, must be met for a transmission expansion plan 

to be feasible in terms of the physical operation of the power system. Equation 4 is the 

nodal power balance, which ensures that power is conserved in each bus of the system. 

Indeed, the total power incoming to a bus (composed of local generation and incoming 

power flow from transmission lines) plus load-shedding equals total power consumption 

in the same bus. Load-shedding enables some or all of the load in a given bus to be unmet, 

although at a high penalty cost given by the term with VOLL (set in this thesis to $10,000 

per MWh of load unmet) in operating costs (eq. 4). 

Power flow through existing and candidate transmission lines is given by the linear 

approximation of Kirchoff’s laws (eqs. 4 and 5). Note that a sufficiently large disjunctive 

parameter 𝑀𝑙 ensures that equation 5 for candidate transmission laws collapses to equation 

4 if the corresponding candidate transmission line is built (i.e. 𝑦𝑙 = 1), whereas the 

constraint is free otherwise (refer to (Bahiense et al., 2001) for further discussion).  

Equations 6 and 7 enforce thermal limits on existing and candidate transmission lines. 

Equations 8 and 9 bound generation and load curtailment, while equation 10 states the 

integrality of transmission investment decisions. 
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4.3. TEP under Scenarios with no Weighting Probabilities 

The problem described in section 4.2 assumes that probabilities for long-term 

scenarios are known and accurate. If no weighting probabilities are available, (Miranda & 

Proenca, 1998b) suggests reinterpreting the transmission expansion planning problem as 

a multiobjective optimization problem where the decision maker seeks a solution which 

simultaneously minimizes total costs under each possible future scenario. The 

mathematical statement of the multiobjective problem is: 

min {

𝑇𝐶𝑠1
= 𝐼𝐶 + 𝑂𝐶𝑠1

⋮
𝑇𝐶𝑠𝑆

= 𝐼𝐶 + 𝑂𝐶𝑠𝑆

} (14) 

 

subject to constraints (2) through (12). 

In such multiobjective optimization problem the decision maker would like to 

implement a solution that simultaneously attains the minimum total costs for each scenario 

(i.e. an ideal or utopia solution). However, such an ideal solution does not exist in general, 

especially in problems with conflicting objectives such as long-term transmission 

expansion planning under various scenarios.  

Instead, a set of efficient expansion alternatives (also known as Pareto frontier) can be 

identified for multiobjective optimization problems (Zeleny, 1982).23 The decision maker 

can then further analyze efficient expansion alternatives in order to choose one alternative 

for implementation. Although there are various approaches for solving multiobjective 

optimization problems (Marler & Arora, 2004; Zeleny, 1982), TEP literature often focuses 

on identifying the efficient set of expansion alternatives (M O Buygi et al., 2004; 

Maghouli et al., 2011; Motamedi et al., 2010). Such an approach enables greater decision-

making flexibility by presenting a set of possible decision alternatives, which also contains 

the optimal solution under a variety of decision criterions (i.e. stochastic, minimax regret, 

minimax cost, minimum distance to the utopia point under several distance metrics). 

Assuming scenario probabilities, a single optimal transmission expansion plan can be 

identified by solving problem (1) – (12). It can be shown that using scenario weighting 

                                                 
23 An efficient alternative is defined as one for which no other alternative exists that is not inferior in any 

of the objectives, and that is strictly superior in at least one of the objectives. 
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probabilities the optimal solution will always belong to the convex hull of the Pareto 

frontier (see Figure 4-2 for an illustration). Furthermore, the convex hull of the Pareto 

frontier provides the set of all expansion alternatives that are the optimal solution of the 

stochastic problem (1) – (10), for any possible set of scenario probabilities.  

Nevertheless, the decision maker may also be interested in further analyzing efficient 

solutions which are not optimal under any set of weighting probabilities. These solutions 

(such as solution C in Figure 4-2) cannot be discovered by minimizing a probability 

weighted sum of the objectives (hence they are called unsupported solutions), or solutions 

in the concave part of the Pareto frontier (Ehrgott & Gandibleux, 2003). Although 

irrelevant for a stochastic decision criterion, efficient but unsupported alternative may be 

selected by ex-ante decision criterions such as minimax regret (see appendix B.5). 

 

Figure 4-2 Depiction of a concave Pareto frontier for TEP under two scenarios, and the optimal solutions 

when minimizing a probability weighted-sum of the objectives. 

Hence, discovering the full set of Pareto efficient solutions can enable more decision 

making flexibility and also allow easy comparison of alternative decision making 

criterions. Furthermore, such a Pareto frontier of solutions enables the analysis of 

alternative solutions under different sets of probabilities, an important analysis since these 

probabilities for long-term scenarios are unlikely to be readily available, or to be accurate 

and convey the consensus of all the stakeholders involved in the transmission expansion 
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planning process. A novel decision making criterion is introduced next in order to account 

for the ambiguity in scenario probabilities. 

4.4. Second-Order Probabilistic Robustness Criterion 

A second-order probabilistic robustness measure is defined next, as a measure of the 

robustness of a given expansion plan to the probabilities of the scenarios. Scenario 

probabilities are assumed to be uncertain themselves. We further assume that a joint 

probability distribution function is available to describe scenario probabilities. We call 

such joint PDF the second-order PDF. We then calculate the likelihood that a given 

expansion plan is the stochastic optimal, since the probabilities of the scenarios are not 

known precisely. The likelihood that an expansion plan is optimal is what we call the 

second-order robustness measure of an expansion plan. 

We proceed now to the formal definition of the problem. Denote 𝑆𝑇𝐸𝑃(𝑝) as the 

stochastic optimization problem defined by equations (1) through (12), given a set of 

scenario probabilities 𝑝. For a given 𝑝, at least one (and potentially more) stochastically 

optimal expansion plan 𝜒 can be identified by solving: 

𝜒 = argmin (𝑆𝑇𝐸𝑃(𝑝)) (15) 

Denote the set of all stochastically optimal expansion plans as Λ. We call these 𝑋 the 

stochastically optimal plans. Formally: 

Λ = {χ: χ = argmin 𝑆𝑇𝐸𝑃(𝑝),   ∀ 𝑝 ∈ ℝ𝑆 / 1𝑇𝑝 = 1 ∧ 0 ≤ 𝑝 ≤ 1} (16) 

The optimal expansion plan should be robust against the uncertainty in scenario 

probabilities 𝑝, since these probabilities are not accurately known. We quantify the 

relative robustness of each stochastically optimal plan against probability uncertainty, in 

order to understand the importance and the impact of the scenario probabilities in the 

optimal plan. Furthermore, a new decision criterion is proposed whereby the plan which 

is more robust against uncertainty on the scenario probabilities is chosen. 

We assume scenario probabilities to be described by some known joint probability 

distribution function, which we call the second-order PDF. Formally, the second-order 

PDF is defined as: 

𝑓 ∶ 𝑝 ∈ Γ → ℝ0
+ (17) 
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 ∧     ∫𝑓(𝑝) 𝑑𝑝
Γ

= 1 

where 𝑝 is a vector with the probabilities of 𝑆 − 1 scenarios, and Γ is the set of all possible 

probabilities.24 Hence, 𝑓(𝑝) describes the relative likelihood that the scenario probabilities 

are determined by 𝑝. Furthermore, the absolute likelihood that the scenario probabilities 

belong to some set Ξ can be obtained as Pr{𝑝 ∈ Ξ} = ∫ 𝑓(𝑝) 𝑑𝑝
Ξ

. 

We define the second-order robustness measure 𝑟(𝜒) as the probability that 𝜒 ∈ Λ is 

the optimal solution to the stochastic TEP. The formal definition is: 

𝑟(𝜒) = ∫ 𝑓(𝑝) 𝑑𝑝
Ξ(χ)

 (18) 

where Ξ(𝜒) is the set of probabilities for which 𝜒 ∈ Λ remains the stochastically optimal 

plan. Formally: 

Ξ(𝜒) = {𝑝 ∶ 𝜒 = argmin (𝑆𝑇𝐸𝑃(𝑝))} (19) 

The second-order robustness measure 𝑟(𝜒) is a quantitative indicator of the robustness 

of the stochastically optimal plan 𝜒 against uncertainty in the scenario probabilities. 

Therefore, the new decision criterion for TEP under scenario uncertainty is to choose the 

expansion plan which maximizes the second-order robustness: 

𝜒∗ = argmax
𝜒∈Λ

 𝑟(𝜒) (20) 

For example, in the case of STEP under two scenarios, the only second-order uncertain 

variable is the probability of occurrence of the first scenario, denoted 𝑝𝑠1
. We assume a 

symmetrical triangular PDF for describing the uncertainty in 𝑝𝑠1
 (Figure 4-3). The peak 

of the triangular PDF is located in 𝑝𝑠1
= 0.5 (where 𝑝𝑠2

= 1 − 𝑝𝑠1
= 0.5). An 

stochastically optimal expansion plan 𝑋 can be identified by solving min (𝑆𝑇𝐸𝑃(0.5)). 

Such plan remains the optimal solution to 𝑆𝑇𝐸𝑃(𝑝) for all 𝑝 ∈ Ξ(𝜒) = [0.4, 0.75]. The 

robustness measure 𝑟(𝑋) is then the area under the triangular PDF in the interval [0.4, 

0.75]. We would like a solution to be the stochastic optimal plan for the most likely set of 

probabilities 𝑝𝑁𝑜𝑚, while simultaneously being robust against uncertainty in scenario 

probabilities. 

 

 

                                                 
24 Note that probabilities sum to one, hence 𝑆 − 1 independent probabilities can be chosen provided they 

sum less than one, i.e. Γ = {𝑝 ∶ 1𝑇𝑝 ≤ 1 ∧ 0 ≤ 𝑝 ≤ 1}. 
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Figure 4-3 Second-Order Probabilistic Robustness Measure. 

The second-order stochastic robustness measure defined previously is mostly useful 

for quantifying and analyzing the relevance and impact of scenario probabilities in the 

stochastic solution. Particularly, the proposed decision criterion which maximizes the 

second-order robustness measure is useful to identify the spread of the stochastic solutions 

in the Pareto frontier, with respect to a given second order probability distribution. For 

example, slight or significant differences between the equiprobable stochastic solution and 

the second-order robust solution can be readily identified by applying the second-order 

robustness criterion. 

4.5. Calculation Methodology for the Robustness Criterion 

The robustness measure is calculated by leveraging the geometry of the problem which 

allows us to use traditional KKT duality conditions for optimality (Figure 4-4). 
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Figure 4-4 Duality concepts applied to scenario probabilities of a stochastically optimal transmission 

expansion plan. 

By geometric arguments based on convex-cones it can be shown that the robustness 

measure 𝑟(𝜒) can be calculated by taking the integral (18) in the convex combination of 

the probabilities which define the adjacent facets of the convex hull of the Pareto frontier. 

In other words, the set of optimality Ξ(𝜒) comprises all probabilities which are a convex 

combination of the probabilities for which the solution 𝜒 ceases to be optimal. Although 

the underlying problem 𝑆𝑇𝐸𝑃(𝑝) is non-convex due to the integrality of investment 

variables, the arguments in this case are analogous to the duality conditions of linear 

programming, since a polytope describes the alternative solutions to the stochastic TEP 

(see Figure 4-4). 

4.6. Distributional Robustness and other Decision Criterions 

We propose a novel distributionally robust decision making criterion, which is also 

analyzed in this thesis for TEP under scenario uncertainty and ambiguity. Such a criterion 

assumes that scenario probabilities are known to belong to some ambiguity set. Then, the 

performance of each alternative transmission expansion plan is measured by calculating 

the worst possible expected cost that can result from scenario probabilities within this 

ambiguity set. Finally, the solution which minimizes the worst possible expected cost 

(within the ambiguity set) is selected by the decision maker for implementation.  
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This is a distributional robustness formulation since the scenario probabilities 

distribution is not known exactly. Instead, it is known that the scenarios probabilities 

distribution lies within the ambiguity set. The criterion proceeds to select the optimal 

solution based on a worst-case scenario analysis within the ambiguity set. It is worth 

noting that the distributionally robust criterion assumes a less structured ambiguity than 

the second-order robustness criterion proposed previously, since scenario probabilities are 

only assumed to lie within some set without specifying the likelihood of particular 

realizations of those scenario probabilities. 

Distributional robustness is an approach developed in the context of the increasing 

literature on robust optimization (Gabrel et al., 2014), and has recently been applied to 

model wind farm uncertainty in the unit commitment problem (Xiong, Jirutitijaroen, & 

Singh, 2016). To our knowledge, distributional robustness has never before been applied 

to TEP under scenario uncertainty. 

Two other alternative decision making criterions are also considered for comparison, 

namely minimax cost and minimax regret. Minimax cost is a worst-case approach, 

equivalent to the distributional robustness criterion when the ambiguity set of scenario 

probabilities is assumed to be unconstrained (i.e. the decision maker wishes to hedge 

against the worst case under any possible coherent set of probabilities). Minimax regret is 

a widely used decision making criterion for TEP under uncertainty. Minimax regret aims 

at minimizing the maximum regret or opportunity loss, with respect to the optimal solution 

that would have been implemented by the decision maker, had he known beforehand what 

scenario was going to occur. Both criterions –minimax cost and minimax regret– are 

defined precisely and analyzed in depth in appendix B. 

All of the minimax-like criterions –distributional robustness, minimax cost and 

minimax regret– are minimized by efficient solutions (proofs in appendices B and C). This 

fact allows us to build the Pareto frontier and then select the optimal solution under each 

criterion from among the set of Pareto efficient solutions, simply by selecting the highest 

performing solution (i.e. an enumeration within the Pareto efficiency set). This approach 

is theoretically sound and also simple to implement and fast to calculate. The approach is 

effective in practical experiments since very few efficient solutions are often obtained, 
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and the alternative criterions are easily calculated from the information produced by the 

Pareto frontier production methodology. 

4.7. Proposed Model and Solution Methodology for Finding Pareto-Efficient 

Transmission Expansion Plans 

The methodology developed to compare alternative decision making criterions and to 

analyze the relevance and impact of scenario probabilities is a mixture of a multiobjective 

optimization genetic algorithm (NSGA-II) and the stochastic TEP formulation. The 

genetic algorithm allows full discovery of the Pareto frontier, including unsupported plans 

(i.e. plans in the concave part of the frontier). The stochastic model is used to seed the 

genetic algorithm, thus enhancing convergence rates. Moreover, optimizing the MILP 

stochastic model ensures efficiency for stochastic solutions, whereas our unsupported 

solutions are not ensured to be efficient due to the heuristic nature of genetic algorithms. 

Both procedures are briefly discussed next. 

The full (approximate) set of Pareto-efficient expansion plans is built with Non-

Dominated Sorting Genetic Algorithm – II (Deb, Pratap, Agarwal, & Meyarivan, 2002), 

which is commonly used in multiobjective TEP applications. NSGA-II is a genetic 

algorithm specialized for multiobjective optimization problems. Being a genetic 

algorithm, NSGA-II is easy to implement. Particularly in this problem, NSGA-II only 

requires simulation of the system operation, which is a continuous always-feasible linear 

program instead of the more complex and time consuming Mixed Integer Linear 

Programming TEP problem. The lack of binary investment decision variables results in a 

simpler problem which is easier to solve, therefore allowing for the simulation of more 

complex operation problems (e.g. (Maghouli, Hosseini, Buygi, & Shahidehpour, 2009; 

Maghouli et al., 2011; Motamedi et al., 2010)). However, being metaheuristics, genetic 

algorithms do not ensure convergence to globally optimal solutions (which always exist 

for the stochastic TEP model described by equations (1) – (12)) nor to the true Pareto 

frontier. Moreover, slow convergence to the Pareto frontier can occur in middle and large-

scale problems. Genetic algorithms also rely on heuristics which must be chosen by the 

user, with no clear criterions to choose among alternative heuristics or parameters for 

those heuristics (e.g. whether to include random individuals in all generations, and the 
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probabilities of random mutation). More importantly, there is no clear termination 

criterion for multiobjective genetic algorithms, and the original NSGA-II simply 

terminates after a fixed number of generations despite the possibility of being stuck in the 

same (or very similar) Pareto frontier for many generations.25 

The stochastic TEP optimization model is also solved in order to ameliorate some of 

the aforementioned weaknesses of NSGA-II. Solutions of the stochastic TEP model are 

fed to NSGA-II as the initial population. Thereafter, NSGA-II allows for easy discovery 

of Pareto efficient alternatives in the concave part of the Pareto frontier (whereas the 

stochastic TEP model only renders efficient alternatives in the convex part of the frontier). 

Our experiments show that seeding efficient solutions to NSGA-II significantly improves 

convergence rates. To our knowledge, this is the first attempt to seed NSGA-II with 

proven optimal solutions to the underlying TEP objective-weighted problem. 

Apart from NSGA-II, many other methods exist for building Pareto efficient frontiers 

of multiobjective optimization problems (Ehrgott & Gandibleux, 2003; Marler & Arora, 

2004). However, alternative methods are not further considered since NSGA-II seems 

sufficient to fulfill the objectives of this thesis. Nevertheless, in the future it might be 

worthwhile to implement alternative methods. One such alternative is the ε-constraint 

method, which optimizes a single objective whilst constraining all of the other objectives. 

Thus, efficient solutions in both the concave and convex part of the Pareto frontier can be 

discovered by exploring a grid within the feasible objective space. The ε-constraint 

method is an interesting alternative to NSGA-II since it allows for non-heuristic 

construction of the Pareto frontier whilst preserving simplicity and ease of 

implementation. Of course, more complicated methodologies might be interesting in the 

future as well. 

A comparison among alternative decision-making criterions is also carried. The 

minimax regret solution is obtained among the Pareto efficient solutions, as discussed in 

                                                 
25 Our experiments with the test cases described in section 5 suffered from these issues of a pure NSGA-II 

methodology, particularly slow convergence and the need to adjust parameters and parts of the algorithm 

itself in order to improve performance of the method. 
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appendix B. The solution which minimizes the maximum cost is also obtained among the 

efficient solutions. 

The solution methodology is implemented in Python interfacing with the Gurobi 

MILP solver26, and run on a PC with Intel Core i5 of 3.33 GHz CPU and 4 GB RAM. 

Operation simulation models (OPF) are used by NSGA-II, while stochastic transmission 

expansion optimization models (TEP) are also formulated and solved to seed initial 

individuals to NSGA-II. 

                                                 
26 All the source codes developed and used in this thesis are publicly available online in 

http://github.com/csvelasq/TepUnderScenarios, under the free and open source MIT license. 

http://github.com/csvelasq/TepUnderScenarios
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5. RESULTS AND DISCUSSION 

The methodology developed for this thesis and described in section 4 is applied to two 

test cases commonly used in TEP literature: Garver 6-bus system (section 5.1) and IEEE 

24 bus Reliability Test System (section 5.2). Two scenarios are used in each case, and the 

second-order probability distribution is a triangular distribution centered on the 

equiprobable point (identical to the distribution depicted in Figure 4-3). 

5.1. Small Scale Case Study: Garver 6 bus 

Garver’s 6 bus case study system was introduced by Len Garver in 1970 and has been 

used ever since as a small-scale case study for TEP models. The system, depicted in Figure 

5-1, is composed of 5 interconnected buses, and one disconnected bus. 

 

Figure 5-1 Garver 6 bus test-case system. 

Source: (Garver, 1970). 
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Details of the transmission system, transmission investment alternatives and costs, and 

generation costs and capacities, were obtained from (Alguacil et al., 2003) and (Alvarez 

Lopez et al., 2007) (full details of this case study are found in Appendix A.1). Two 

scenarios were considered, one with the base load levels by Garver, and one with a 30% 

increase in load levels on each node. On the second scenario, additional generators were 

added in nodes 4 and 5, for a total of 300 additional MW. For each scenario, two load-

blocks were considered for system operation in a whole year: peak, with a duration of 760 

hours; and valley, with a duration of 8000 hours and a load equal to 75% of peak load. 

Investment costs are annualized to 15 years with a discount rate of 7%. 

Each corridor is assumed to hold a maximum of 3 parallel transmission lines. 

However, for the sake of solution times, a subset of 12 transmission candidate lines was 

considered. The reduced number of candidate lines allowed full enumeration of all 

possible transmission expansion plans, thus allowing us to validate both the NSGA-II 

methodology as well as the TEP optimization model. The methodology was also applied 

to the full set of alternative transmission expansion plans, only to discover the same Pareto 

frontier found by restricting the set of candidate lines. 

The results of this test case are depicted in Figure 5-2 and summarized in Table 5-1. 

Four efficient alternatives were found in this case. In this particular test case, the same 

alternative expansion plan (the second blue alternative in the figure, from left to right) is 

the optimal solution under our new second-order robustness criterion, under minimax 

regret, and is also the solution to the expected cost TEP with equally likely scenarios 

(however, the solution with the minimax cost criterion was the optimal solution to scenario 

1). Furthermore, that optimal alternative was the only alternative under which no load-

shedding occurred under either scenario. Hence, it is safe to say that, in this particular test 

case, there is one clear alternative expansion plan to be chosen under scenario uncertainty. 
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Figure 5-2 Pareto frontier for Garver 6-bus test case. 
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Table 5-1 Summary of results for Garver 6-bus test case. 

Built Lines* 

Investment 

Cost 

[MMUS$] 

Operation 

Costs S1 

[MMUS$] 

Total 

Costs S1 

[MMUS$]† 

Operation 

Costs S2 

[MMUS$] 

Total 

Costs S2 

[MMUS$] 

Probability range 

S1** 

Robustness 

Measure 

[%]*** 

['TC3(B2-B3)', 

'TC5(B2-B6)', 

'TC6(B2-B6)', 

'TC8(B3-B5)'] 

$100.00 $190.17 $201.92 $86.75 $98.50 [0.0% , 4.9%] - 

['TC3(B2-B3)', 

'TC5(B2-B6)', 

'TC6(B2-B6)', 

'TC7(B2-B6)', 

'TC8(B3-B5)'] 

$130.00 $118.51 $133.78 $86.75 $102.02 [4.9% , 9.7%] 1.4% 

['TC3(B2-B3)', 

'TC8(B3-B5)', 

'TC10(B3-B6)', 

'TC11(B4-B6)', 

'TC12(B4-B6)'] 

$148.00 $96.31 $113.70 $86.79 $104.17 [9.7% , 68.0%] 77.6% 

['TC3(B2-B3)', 

'TC5(B2-B6)', 

'TC8(B3-B5)', 

'TC11(B4-B6)', 

'TC12(B4-B6)'] 

$130.00 $96.31 $111.58 $93.39 $108.66 [68.0% , 100.0%] - 

 
†
Optimal costs for deterministic TEP under each scenario are emphasized in bold font. 

*See details of the test case in Annex A.1 for visualizing built transmission lines. 

**Details the range of probabilities for scenario 1, for which each expansion plan is the optimal stochastic solution. Probabilities for scenario 2 are implied (since they both sum to unity). 
***Robustness measure is not calculated for border solutions (i.e. optimal solutions for the deterministic TEP of each scenario). 
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The previously described test case is rather particular since load-shedding occurs in 

Pareto efficient solutions, and also because of the lack of discrepancies between multiples 

decision making criterions. However, the following observations can be made: 

 The Pareto efficient frontier can be extremely small and, moreover, fully 

convex, in particular cases were alternative scenarios are very similar. In this 

case, only four solutions were efficient, and all of them lied in the convex part 

of the Pareto frontier. This lack of diversity on the Pareto frontier is obviously 

due to the similarity of the two scenarios considered, which results in a reduced 

subset of transmission candidate lines to be good projects. Indeed, the set of 

efficient alternatives is very similar in terms of candidate lines built. We know 

the similarity of optimal expansion plans is not valid in general. Moreover, 

transmission lines built in optimal determinist expansion plans may not even 

be part of the optimal stochastic solution (F D Munoz et al., 2014). However, 

it is interesting to see a toy case in which this similarity and simplicity of the 

problem does occur. 

 A single, extremely robust solution can emerge in particular test cases, 

although this cannot be guaranteed in general. In this case, the criterions of 

minimax regret, expected cost, max second-order robustness and max 

reliability (i.e. minimizing loss-of-load across all scenarios) happened to agree. 

However, the minimax cost criterion suggested the decision-maker to choose 

another alternative. 

 The proposed solution methodology is valid since the Pareto frontier coincides 

with full-enumeration. However, the proposed solution methodology can 

discover the Pareto efficient frontier in much less computation time than full 

enumeration. Moreover, full-enumeration is not even possible if more than 20 

candidate transmission lines are considered (in that case, 220 alternative 

expansion plans would need to be simulated). Nevertheless, improvements to 

the solution methodology are possible and may be interesting for future works, 

as discussed in section 4.6. 
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5.2. Medium Scale Case Study: IEEE 24 bus Reliability Test System 

The IEEE 24 bus Reliability Test System, depicted in Figure 5-3, is considered as a 

medium scale case system. 

 

Figure 5-3 System topology for IEEE 24 bus Reliability Test System. 
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Source: (Reliability Test System Task Force of the Application of Probability Methods Subcommittee, 

1979) 

Transmission expansion is optimized for operating the IEEE 24 bus RTS system 15 

years in the future (details in appendix A.2). Two scenarios were considered. In the high 

economic growth scenario, a 4% load growth per annum is assumed, yielding 5.1 GW in 

year 15. In the other scenario, characterized by low economic growth, 1% load growth per 

annum is assumed, yielding 3.3 GW in year 15. In both scenarios, the same load growth 

is assumed for each bus. Analogous to the small test case, two load-blocks were 

considered for system operation in the whole year in each scenario: peak, with a duration 

of 760 hours; and valley, with a duration of 8,000 hours and a load equal to 75% of peak 

load. 

Under both scenarios, the existing fleet of generating power plants is assumed to grow 

by a factor proportional to total load growth in the 15-year period. Moreover, wind and 

solar PV plants are included in the high-growth scenario, for a total average injection of 

650 MW of variable renewable energy sources in both load blocks (peak and valley). 

Hence, generating capacities of 4.7 GW and 8.0 GW are considered under the low and 

high growth scenarios, respectively. Solving the generation expansion planning problem 

under each scenario is a more sophisticate approach for determining the generating fleet 

to consider under each scenario. Moreover, endogenously determining the market’s 

response to transmission investment in terms of generation investment is a more 

comprehensive framework for TEP under uncertainty (van der Weijde & Hobbs, 2012). 

However, manually devising the generating fleet is sufficient for the purposes of this 

thesis, which focuses on transmission investment. In particular, the approach applied in 

this thesis taken from (Fang & Hill, 2003). 

Following (Fang & Hill, 2003), each corridor is assumed to hold a maximum of 3 

parallel transmission lines. Unit investment costs of 10 and 20 MUS$/km are considered 

for transmission lines in 138 and 230 kV, respectively. All transformers are assumed to 

cost 50 MUS$. All investment costs are annualized to 15 years with a discount rate of 7%. 

Synchronous condensers and reactors are not considered in this test case. 
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Figure 5-4 TEP Pareto frontier for the 24 bus test case under two scenarios. 

Results are depicted in Figure 5-4 and summarized in Table 5-2 and Table 5-3. The 

Pareto frontier comprises 16 efficient expansion plans, 9 of which are supported and 

therefore solutions to the stochastic TEP problem under some set of scenario 

probabilities.27 Total costs (hereinafter all costs are in millions of US dollars) of efficient 

                                                 
27 Three weakly Pareto optimal solutions are also included for illustration purposes. 
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solutions vary 15% for the low growth scenario (between $696 and $801) and 20% for the 

high growth scenario (between $1,251 and $1,496). Transmission investment ranges from 

no new lines (in the deterministic optimal solution to the low growth scenario) to $950 in 

three new lines (in the deterministic optimal solution to the high growth scenario), with 

intermediate solutions building up to six new lines across only six of the 45 available 

corridors (see Table 5-3 for details). It is worth noting that efficient solutions build lines 

in three corridors that are not optimal in a deterministic sense under either scenario 

(corridors (10-12), (7-8) and (9-12)). Also, only generation operational costs and 

transmission investment costs are in compromise in this test case, since none of the 

efficient solutions incurs in load shedding (as opposed to the small scale test case). 

In this case, all the evaluated criterions yielded different solutions. The stochastic 

solution with equiprobable scenarios (plan 12 in Table 5-2) remains optimal for 

probabilities between 46% and 60% for the low growth scenario28, yielding a robustness 

measure of 26%29. However, the second-order robustness criterion suggests implementing 

a neighboring solution (plan 15) with robustness measure of 30%. It is worth noting that 

a change of only 4% of the scenario probabilities results in a different stochastic solution. 

Nevertheless, the equiprobable stochastic solution and the second-order robust solution 

differ by less than 2% in total costs and only by two built transmission lines. 

Despite the similarity of the solutions suggested by the equiprobable stochastic and 

the second-order robustness criterion, the fact remains that both criterions diverge leaving 

the decision maker with no single solution alternative to implement with confidence in the 

face of irreversible and capital intensive transmission investments which raise electricity 

tariffs today in the hope that it will lower tariffs 15 years in the future. Moreover, one 

unsupported solution (plan 13) lies in between the equiprobable stochastic solution and 

the second-order robustness solution. Further examination of efficient solutions in the 

concave part of the Pareto frontier may well be worth. For example, a dynamic stochastic 

                                                 
28 A probability range of [46%, 60%] in the low growth scenario is equivalent to a range of [40%, 64%] in 

the high growth scenario, since both probabilities must sum to one. 
29 Recall that the robustness measure is not equal to the range of probabilities (14%) but rather equal to the 

integral of the probability distribution (triangular in this case) over the probability range (26%, since a 

triangular distribution implies that the decision maker deems equiprobable scenarios to be more likely that 

one scenario being more likely than the other. 
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model or a flexibility analysis might drive the decision maker to implement plan 13. Other 

analyses such as sustainability and reliability may also argue for implementing plan 13 or 

even other plans in the concave Pareto frontier. 

 

Figure 5-5 TEP solutions by alternative decision making criterions, for the 24 bus test case under two 

scenarios. 

Minimax regret and minimax cost criterions also yield different solutions. In this two 

scenario case the minimax cost criterion obviously recommends implementing the 

deterministic optimal solution to the high growth scenario, which is also the efficient 

solution with highest investments (MMUS$950). In turn, the minimax regret criterion 

suggests a nonsupported efficient solution (plan 10) which lowers investment costs at the 

expense of higher operation costs under the high growth scenario (see Table 5-3). Recall 

that such nonsupported solution would never result from a stochastic TEP model despite 

the set of scenario probabilities assumed. Yet, this solution might also be interesting for 

the decision maker.  
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However, the theoretical deficiency of minimax regret with respect to solution 

efficiency is illustrated here by a practical TEP case, for the first time in the over 3 decades 

that the minimax regret criterion has been in use (Bunn, 1984; E. Crousillat, 1989; 

Gorenstin et al., 1993; Miranda & Proenca, 1998b). Indeed, note that the minimax regret 

criterion suggests two alternative solutions with the same regret (plans 9 and 10). 

However, only one of those two solutions is efficient (plan 10), since the other plan incurs 

in 4% higher costs in the high growth scenario, while attaining the same total costs in the 

low growth scenario (see Figure 5-5). Since the minimax regret criterion considers only 

the costs in one particular scenario (the one with highest opportunity loss for each plan), 

it cannot distinguish between two alternative solutions with the same cost in one scenario 

but different costs in other scenarios.  

If guided by the minimax regret criterion, an inefficient solution could be implemented 

by the decision maker. Furthermore, the decision maker could be blind to the inefficiency 

of the implemented solution. For example, even if a MILP optimization model is used, 

such a model could find the inefficient plan first and stop having proved optimality. Yet, 

the decision maker would never know that the implemented solution incurs in gratuitous 

opportunity loss, since another solution with the same maximum regret but in the efficient 

set could be implemented instead. 

In practice, minimax regret criterion is often applied to a restricted set of solution 

alternatives, such as the set of optimal deterministic solutions under each scenario. 

However, even an optimization procedure which endogenously builds the plan which 

minimizes the maximum regret could incur in myopic opportunity loss. The relevance of 

this finding can be fully appreciated by noting that practical transmission expansion 

planning processes worldwide employ minimax regret as the ex-ante criterion to choose a 

single solution under long-term uncertainty (e.g. National Grid in Great Britain, ENTSO-

E in the European Union, PJM in USA, and the National Energy Commission in Chile). 
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Table 5-2 Summary of Pareto frontier for TEP under two scenarios in the IEEE 24 bus RTS test case. 

Plan

* 

Total Costs 

Low 

Growth 

Scenario 

[MMUS$] 

Relative 

Regret Low 

Growth 

Scenario 

[%] 

Total Costs 

High 

Growth 

Scenario 

[MMUS$] 

Relative 

Regret High 

Growth 

Scenario 

[%] 

Probability 

Range Low 

Growth 

Scenario 

Robustness 

Measure 

[%] 

2nd order 

Robustness 

Solution 

Myopic 

Stochastic 

Solution 

Minimax 

Regret 

Solution 

1 $     696.3 0.0% $    1,495.8 19.6% [92%, 100%] 1%    

2 $     701.8 0.8% $    1,483.9 18.6%      

3 $     701.8 0.8% $    1,434.2 14.6% [86% , 92%] 3%    

4 $     706.4 1.5% $    1,405.5 12.3% [72% , 86%] 12%    

5 $     711.9 2.2% $    1,396.1 11.6%      

6 $     717.4 3.0% $    1,395.3 11.5%      

7 $     741.3 6.5% $    1,381.4 10.4%      

8 $     746.0 7.1% $    1,345.9 7.6%      

9 $     751.5 7.9% $    1,344.3 7.4% - - - - X 

10 $     751.5 7.9% $    1,296.3 3.6% - - - - X 

11 $     757.0 8.7% $    1,278.6 2.2% [60% , 72%] 16% - - - 

12 $     762.4 9.5% $    1,270.3 1.5% [46% , 60%] 26% - X - 

13 $     767.9 10.3% $    1,269.2 1.4%      

14 $     774.5 11.2% $    1,267.5 1.3%      

15 $     774.5 11.2% $    1,260.0 0.7% [25% , 46%] 30% X - - 

16 $     800.6 15.0% $    1,251.2 0.0% [0%, 25%] 13% - - - 

 

*Column “Plan” is a numeric index of alternative expansion plans to allow comparison of Figure 5-4, Table 5-2 and Table 5-3. Note that alternative expansion plans are 

presented in decreasing order of totals costs in the low growth scenario (which translates in left to right ordering in Figure 5-4). 

  



69 

  

Table 5-3 Details of Pareto efficient transmission expansion plans. 

Plan 

Total 

Built 

lines 

Number of Lines Built in Each Corridor 
Investment 

Cost 

Operation 

Costs S1 

Operation 

Costs S2 Supported? 

(10-12) (3-24) (7-8) (16-17) (9-12) (14-16) [MMUS$] [MMUS$] [MMUS$] 

1 0 . . . . . . $0 $696.3 $1,495.8 Supported 

2 1 1 . . . . . $50 $696.3 $1,478.4 Inefficient 

3 1 . 1 . . . . $50 $696.3 $1,428.7 Supported 

4 1 . . 1 . . . $160 $688.9 $1,387.9 Supported 

5 2 . 1 1 . . . $210 $688.9 $1,373.0 Non-Supported 

6 3 . 2 1 . . . $260 $688.9 $1,366.8 Non-Supported 

7 2 . 1 . 1 . . $410 $696.3 $1,336.4 Non-Supported 

8 2 . . 1 1 . . $520 $688.9 $1,288.8 Non-Supported 

9 3 . . 1 1 1 . $570 $688.9 $1,281.7 Inefficient 

10 3 . 1 1 1 . . $570 $688.9 $1,233.7 Non-Supported 

11 4 . 2 1 1 . . $620 $688.9 $1,210.5 Supported 

12 5 1 2 1 1 . . $670 $688.9 $1,196.7 Supported 

13 6 2 2 1 1 . . $720 $688.9 $1,190.1 Non-Supported 

14 5 1 1 2 1 . . $780 $688.9 $1,181.9 Inefficient 

15 5 . 2 2 1 . . $780 $688.9 $1,174.4 Supported 

16 3 . 1 . 1 . 1 $950 $696.3 $1,146.9 Supported 
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Finally, we calculate the solution to the distributionally robust criterion. Given two 

scenarios, the ambiguity set of plausible scenario probabilities is always a one dimensional 

range in the scenario probabilities in one single scenario, due to the constrain that 

probabilities sum to unity. For example, if the probability of low-growth scenario is 

assumed to be between 30% and 60%, then the probability of the high-growth scenario 

will be between 70% and 40%. 

In this case, the distributionally robust solution can be obtained by selecting the 

efficient alternative which minimizes the worst of two expected cost, each one with an 

extreme of the assumed probability range.30 For example, assuming a low-growth scenario 

probability between 30% and 60%, expected cost must be calculated with both these 

probabilities for each efficient expansion alternative. Then, for each efficient alternative 

the maximum of both expected cost is selected. Finally, the optimal solution is the efficient 

alternative which minimizes this maximum cost, from among all efficient alternatives. 

The following table details the optimal solution under alternative probability ranges. 

We see that the same solution to our robustness criterion (solution 15) is optimal for ranges 

accumulating around equiprobability, a result which seems consistent with our assumed 

triangular distribution which weighs more cases near the 50% / 50% case. However, the 

minimax cost plan (plan 16) is obtained by weighing more the high growth scenario (range 

20% , 50%) or by requiring distributional robustness under almost all possible cases (range 

10% , 90%). These results seem reasonable and consistent with previous results. 

 Table 5-4 Details of Pareto efficient transmission expansion plans. 

Low growth scenario 

probability range 

Optimal 

plan ID 

Minmax Expected Cost 

[MMUS$] 

45% , 55% 15 $1,041.5 

30% , 70% 15 $1,114.3 

30% , 90% 15 $1,114.3 

20% , 50% 16 $1,161.1 

10%, 90% 16 $1,206.1 

                                                 
30 The robust solution can be obtained by enumerating extreme vertex of the ambiguity set due to the 

geometry of such set, which under two scenarios is always a special case of a polytope, as discussed in the 

appendix. 
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6. CONCLUSIONS 

Timely and efficient provision of transmission investment is vital for ensuring an 

affordable and sustainable electricity service whilst providing high levels of service 

reliability. In seeking to intensify competition in its electricity generation sector and also 

to facilitate the scale-up of renewable energy integration, Chile enacted in 2016 a new 

transmission law which allows the regulator to plan a transmission system with capacity 

slackness for long-term (i.e. more than 20 years in the future) demand requirements and 

hypothetical potential generation hubs. Furthermore, new transmission investments are 

now to be fully charged to demand, instead of allocating a portion of investment costs to 

generators. Hence, concerns have raised regarding the effectiveness of planning processes 

and the methodologies that assist decision making, so as to ensure that expected future 

savings do offset higher electricity tariffs today. Indeed, under the recently enacted law 

there are serious risks of overbuilding the transmission system and even building 

infrastructure which will never be used, in the case of generation hubs. 

This thesis contributes to the ongoing debate regarding transmission expansion 

planning under uncertainty both in Chile and abroad. First, a comprehensive analysis of 

the state-of-the-art on transmission expansion planning (TEP) under uncertainty was 

developed in this thesis. A novel framework for TEP under uncertainty was developed, 

based on well agreed upon theoretical foundations but focused mostly on serving practical 

purposes by policymakers, practitioners and researchers alike. In the light of the proposed 

conceptual framework, methodologies for assessing TEP under uncertainty developed in 

the literature and in practice were analyzed in depth by characterizing the philosophy, 

advantages and disadvantages of alternative modeling approaches as well as identifying 

gaps in the literature. 

Second, a novel decision making criterion was proposed and analyzed in this thesis, 

hoping to lay the first step in bridging the gap between stochastic androbustness / 

flexibility approaches to TEP under long term strategic scenario uncertainty. While 

stochastic TEP rests on solid theoretical foundations (namely von Neumann and 

Morgenstern’s expected utility theory), advocates of alternative methods point to the lack 

of precise and reliable probabilities for long term strategic scenarios as a downside of 
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stochastic TEP which, in turns, argues in favor of employing alternative and less 

understood approaches such as minimax regret.  

The novel theoretical analyses and optimization results developed in this thesis 

indicate that scenario probabilities do alter the optimal stochastic TEP solution but only 

slightly, while the minimax regret criterion suffers from theoretical deficiencies never 

before thoroughly studied, and those deficiencies do arise in practice yielding inefficient 

results (from a Pareto perspective).  Thus, this thesis proves that neither the very 

theoretical foundations of TEP under strategic scenario uncertainty, nor the practical 

implications of alternative decision making criterions, are thoroughly understood today. 

Further examination of tools for assisting TEP under strategic scenario uncertainty is 

thus needed. A key question to address (related to our hypothesis) is whether the stochastic 

criterion remains relatively insensitive to scenario probabilities under high scale test cases 

with improved modeling of hourly generation resources. Furthermore, the analysis 

developed in this thesis might be particularly valuable for analyzing planning practices 

for efficiently integrating generation hubs to real power systems. As pointed out in this 

thesis, this is an important issue for policymakers and planning practitioners alike. For 

example, planning practices have been discussed for efficiently scaling-up off-shore wind 

generation in UK’s north seas, and for integrating renewable generation hubs in Chile 

(Strbac, Moreno, Konstantelos, Pudjianto, & Aunedi, 2014). Analyzing the optimal 

expansion patterns yielded by alternative decision-making criterions could help in 

shedding light workable planning practices for practitioners and policymakers to 

efficiently integrate renewable generation hubs to power markets. 

Conclusions on alternative decision making criterions for TEP under strategic scenario 

uncertainty are further discussed in section 6.1, while future works arising from this thesis 

are discussed in section 6.2. 

6.1. Inquiry on the efficiency of alternative decision making criterions 

The following conclusions can be drawn from both theoretical analyses and 

optimization results for the middle scale test case analyzed in this thesis. 

First, the rich diversity of efficient solutions arising in TEP is not fully seized by 

existing methods, including deterministic planning, minimax regret, and stochastic 



73 

  

methods. Efficient solutions are not a combination of deterministic solutions under each 

scenario, since half of the corridors that are built in efficient solutions do not arise in 

deterministic solutions. Stochastic TEP with a single set of probabilities is also blind to 

the diversity of efficient solution alternatives due to the non-convexity of the problem 

stemming from the integrality of investment decision variables. Exploring alternative 

efficient solutions can well be worth the additional computational effort since practical 

planning processes apply other criteria and conduct further assessments in order to finally 

determine the expansion plan to be implemented. 

Second, stochastic TEP is not immune to scenario probabilities and, in fact, 

variations of as little as 4% in the scenario probabilities can change the optimal solution. 

Although very slight variations distinguish the optimal expansion plans (i.e. two built 

transmission lines and less than 2% of total costs), the solution did change even in this 

simple case. Moreover, in our test case the robustness of the equiprobable solution to 

variations in the scenario probabilities hides the existence of efficient but unsupported 

solutions in the concave part of the Pareto frontier. Among these unsupported solutions 

lied the efficient solution to the minimax regret decision criterion. Hence, stochastic TEP 

is effectively blind to the set of efficient but unsupported solutions, as previously asserted 

by Miranda & Proenca for a different problem (1998a). 

Whether or not the optimal solution varies slightly with scenario probabilities is not 

currently clear, since larger test cases and more complex scenarios and optimization 

models may well produce a more densely populated Pareto frontier with many alternative 

plans being optimal for only small sets of scenario probabilities. For example, (F D Munoz 

et al., 2014) finds many more alternative expansion plans in a 240-bus / 448-transmission 

elements test case. 

Third, alternative decision criterions for TEP under scenario uncertainty diverge 

in general. Consequently, the decision maker faces a set of alternative expansion plans 

instead of a single optimal solution to the problem. Lacking a single theoretical decision 

criterion, the divergence of existing criterions in practice results in the inability to 

confidently choose a single transmission expansion plan to implement. In this study, 

minimax regret, minimax cost, equiprobable stochastic, and the novel second-order 

robustness criterion, all yielded different solutions. The irreversibility of transmission 
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investments requires firm commitments to be taken today. Unfortunately, it seems that 

TEP models are still unable to recommend a single transmission expansion planning. 

Hence, the dynamics of transmission investments are worth exploring (Konstantelos & 

Strbac, 2015), among other possible criterions for selecting the expansion plan to 

implement (ENTSO-E, 2015). Nevertheless, producing a set of efficient alternatives 

instead of one single solution can be itself advantageous since candidate expansion plans 

are assessed by multiple stages and models in practical transmission expansion planning 

processes, due to the inability of current optimization models to integrate the various 

dimensions which are relevant to TEP. 

Fourth, myopic minimax regret methodologies (with respect to Pareto efficiency) 

such as those applied in the industry can incur in gratuitous opportunity losses. 

Considering costs in only one scenario to assess the performance of a plan (in the minimax 

regret case, the scenario which yields the highest opportunity loss) can inefficiently forego 

opportunity gains in other scenarios, since the decision maker could implement an 

alternative solution with the same maximum regret but lower costs in other scenarios. 

Hence the term “myopic”, since minimax regret is blind to regrets other than the maximum 

and, in particular, can be blind to Pareto efficiency. Inefficient solutions could thus be 

recommended by optimization models and planning tools that fail to acknowledge the lack 

of solution efficiency in the minimax regret criterion. Moreover, the decision maker might 

never be aware about the inefficiency of the solution, even if an optimization model is 

solved to optimality in order to endogenously build the expansion plan which minimizes 

the maximum regret. Indeed, a MILP model would stop in an inefficient solution without 

necessarily identifying degenerate solutions and, in particular, the efficient solution that 

must exist for the minimax regret criterion. 

More complex test cases and extensions to the simple model developed in this thesis 

should be analyzed in order to further study the impact of scenario probabilities, as will 

be discussed in the following section.  

6.2. Future Works 

Enhancements to the proposed methodology and further analyses are possible. 

Regarding the methodology, it might be interesting to explore alternative methods for 



75 

  

building Pareto efficient frontiers, such as the ε-constraint method. This and other methods 

may provide exact efficient solutions in the concave part of the Pareto frontier, instead of 

solutions approximated by genetic algorithms (NSGA-II). While the methodology 

developed in this thesis ensures finding exact solutions in the convex Pareto frontier by 

means of the stochastic TEP model, efficient solutions found by NSGA-II in the concave 

Pareto frontier are not ensured to be efficient (although it is highly likely these solutions 

are indeed efficient, given a fine-tuned genetic algorithm). Moreover, other solution 

methodologies such as ε-constraint have the advantage of not requiring heuristics and 

parameters set arbitrarily (or by experimentation) by the user, as opposed to NSGA-II. 

Regarding the analyses performed in this thesis, in the future it might be interesting to 

study the behavior of the newly proposed second-order robustness criterion in real power 

systems, for example the Chilean or UK power grid, and under many scenarios (e.g. up to 

six scenarios). To study real and / or large-scale power systems require further work on 

data collection and scenario generation, as well as being more computationally 

challenging. No immediate modifications are required on the model nor on the solution 

methodology for these analyses to be developed. However, a methodology for calculating 

multidimensional integrals must be implemented to study more than two possible 

scenarios (e.g. sparse grids or Monte Carlo methods). Such extension is relatively simple 

since readily available software libraries exist that provide multidimensional integration. 

In the IEEE 24 bus RTS test case, alternative solutions are very similar in terms of 

total costs and built lines. However, larger test cases and more complex models may 

produce more diversity in the set of alternative solutions. We hypothesize that more 

diverse solutions could be obtained primarily by increasing the system’s size, since 

various tests with the IEEE 24 bus case produced little additional diversification of the 

efficient solutions with respect to the case presented in this thesis, despite the use of very 

different generation scenarios (in terms of operation costs, generation technologies and 

locations, and location of new generation hubs).  

Moreover, investment costs were annualized in this thesis, thus inappropriately 

balancing investment and operation costs, since commitments to transmission investments 

raise electricity tariffs today in the hope that these raises will be offset by operation savings 

in the future. Hence, a correct economic valuation of transmission investment (i.e. based 
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on net present value) is needed to improve the methodology developed in this thesis, for 

example adopting the framework developed by (F D Munoz et al., 2014; van der Weijde 

& Hobbs, 2012). However, the conclusions stated above are still valid from a theoretical 

perspective. 

Also, several extensions to this work are possible. First, the fundamental tradeoff 

between generation and transmission capacity expansions can be explored by extending 

the model in several ways. The simplest extension is to formulate a two-stage integrated 

generation and transmission expansion planning model, where system operation are the 

only second-stage decisions (Alvarez Lopez et al., 2007). A similar but more complex 

extension is to replicate the three-period proactive model proposed by (F D Munoz et al., 

2014), thus modeling the relation and the long lag between transmission and generation 

investment in competitive power markets, as well as the ability to adapt the system by 

means of recourse expansion decisions once the long-term uncertainty is realized. 

Second, further analyses on alternative decision making criterions are possible. For 

example, decisions under a variety of criterions may be compared by choosing among the 

Pareto efficient solutions, including Laplace or Hurwicz criterions (M O Buygi et al., 

2003), minimizing the distance (euclidian or not) to the multiobjective utopia point31, 

flexible expansion plans, mean-variance or CVaR-constrained stochastic TEP, among 

others. 

Third, other uncertainties may be included in the model by extending the scenario tree 

both vertically and horizontally, and solving the resulting model by means of Benders 

decomposition or Progressive Hedging. Vertically, thousands of scenarios may be 

considered under each long-term strategic scenario in order to account for short-term 

uncertainties in system operation (e.g. hourly wind availability and load levels, yearly 

hydrological inflows, fuel and carbon emissions costs, and forced outages). Attempts in 

the literature to integrate short and long-term uncertainties are currently scarce and limited 

                                                 
31 The utopia point is the point where the minimum possible value of each objective function is 

simultaneously attained. In the case of two-stage stochastic TEP, the utopia point would be the (often 

fictitious) solution where the deterministic optimal function value for each scenario is simultaneously 

attained. A plan which attains such a utopia point in the objective space does not exist for the problem 

studied in this thesis, unless the Pareto frontier is composed of only one expansion plan (which would be 

the optimal solution under all scenarios). 
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(Chamorro et al., 2012; Francisco D. Munoz & Watson, 2015). Hence, such an extension 

is likely to be computationally challenging but also a significant contribution to the state 

of the art.  

On the other hand, a horizontal extension of the scenario tree entails modeling the 

dynamics of the transmission expansion planning problem by considering multiple periods 

when commitments can be taken and later adjusted according to revealed information. 

Such multiperiod TEP models under uncertainty are also scarce and limited in the existing 

literature (Gorenstin et al., 1993; Konstantelos & Strbac, 2015). However, these models 

are interesting in their ability to include flexible alternatives that can defer risky 

transmission investments. It might be worth considering robust formulations for both the 

vertical and horizontal extension of the scenario tree, in order to deal with short and 

medium term uncertainties whilst rendering a tractable optimization model. Particularly, 

it is interesting to study the relation between medium and long-term investment dynamics 

under different discount rates (Weitzman, 2001), so as to determine whether higher tariffs 

today due to firm commitments to investment are worthwhile given the (uncertain) 

expectations of future operating savings, or whether it is better to defer investments. 

Fourth, multiple objectives can be considered in the transmission expansion planning 

problem, particularly maximizing reliability or security of supply, and maximizing the 

sustainability of the electricity industry. Considering these objectives along the 

minimization of total costs renders a multiobjective optimization model, since for each 

objective there are multiple possible scenarios and, hence, multiple objective values under 

each scenario. Therefore, the interaction between scenario probabilities and multiple non-

monetizable objectives could be simultaneously studied. It is worth noting that long-term 

expansion planning processes in EU (ENTSO-E’s TYNDP’s) and also in Chile (after the 

enactment of the 2016 Transmission Law) attempt to assess investment decisions with a 

multicriteria framework. Solving the energy trilemma of affordability, reliability and 

sustainability is a vital problem in modern economies. The literature on these 

multiobjective models is also scarce. 
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A. TEST CASES 

A.1. Garver 6 bus test case 

Table A-1 Nodal data for base scenario of Garver 6-bus case study. 

Node 
Load level 

(MW) 

Installed 

Generating 

Capacity (MW) 

Generation 

Marginal Cost 

(US$/MWh) 

B1 80 150 10 

B2 240 0 0 

B3 40 360 20 

B4 160 0 0 

B5 240 0 0 

B6 0 600 30 

 

Table A-2 Nodal data for second scenario of Garver 6-bus case study. 

Node 
Load level 

(MW) 

Installed 

Generating 

Capacity (MW) 

Generation 

Marginal Cost 

(US$/MWh) 

B1 104 150 10 

B2 312 0 0 

B3 52 360 20 

B4 208 200 5 

B5 312 100 10 

B6 0 600 30 

 

Table A-3 Existing transmission lines data for Garver 6-bus case study. 

Node 

From 

Node 

To 

Susceptance 

(pu) 

Thermal 

Capacity 

(MW) 

B1 B2 2.5 100 

B1 B4 1.67 80 

B1 B5 5 100 

B2 B3 5 100 

B2 B4 2.5 100 

B3 B5 5 100 
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Table A-4 Candidate transmission lines data for Garver 6-bus case study. 

Node 

From 

Node 

To 

Susceptance 

(pu) 

Thermal 

Capacity (MW) 

Investment 

Cost (MUS$) 

B1 B2 2.5 100 40 

B1 B5 5 100 20 

B2 B3 5 100 20 

B2 B4 2.5 100 40 

B2 B6 3.33 100 30 

B2 B6 3.33 100 30 

B2 B6 3.33 100 30 

B3 B5 5 100 20 

B3 B5 5 100 20 

B3 B6 2.08 100 48 

B4 B6 3.33 100 30 

B4 B6 3.33 100 30 

A.2. IEEE 24 bus RTS test case 

Table A-5 Bus and load data for IEEE 24 bus RTS test case. 

Bus 
Load Scenario 1 

Peak (MW) 

Load Scenario 1 

Valley (MW) 

Load Scenario 2 

Peak (MW) 

Load Scenario 2 

Valley (MW) 

1 125 94 226 169 

2 113 84 203 152 

3 209 157 376 282 

4 86 64 155 116 

5 82 62 148 111 

6 158 118 284 213 

7 145 109 261 196 

8 199 149 358 268 

9 203 152 366 274 

10 226 170 408 306 

11 0 0 0 0 

12 0 0 0 0 

13 308 231 554 416 

14 225 169 406 304 

15 368 276 663 497 

16 116 87 209 157 

17 0 0 0 0 

18 387 290 696 522 

19 210 158 378 284 
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20 149 111 268 201 

21 0 0 0 0 

22 0 0 0 0 

23 0 0 0 0 

24 0 0 0 0 

 3,309 2,482 5,959 4,469 

 

Table A-6 Generator data for IEEE 24 bus RTS test case. 

Bus 
Generator 

Type 

Generation 

Marginal Cost 

($/MWh)* 

Installed Generating 

Capacity Scenario 1 

(MW) 

Installed Generating 

Capacity Scenario 2 

(MW) 

1 Oil 150  40   86  

1 Coal 50  212   328  

2 Oil 150  56   86  

2 Coal 50  212   328  

7 Oil 150  418   648  

13 Oil 150  823   1,277  

15 Oil 150  84   130  

15 Coal 50  432   670  

18 Nuclear 6  1,115   1,729  

23 Coal 50  919   1,426  

7 CCGT 50  418   648  

24 Wind 0  -     216  

17 Solar PV 0  -     432  

    4,728   8,007  
*Marginal costs are taken from (Konstantelos & Strbac, 2015), in pounds per MWh. 

 

Table A-7 Transmission branches data for IEEE 24 bus RTS test case. 

Bus 

From 

Bus 

To 

Susceptance 

(pu) 

Thermal 

Capacity 

(MW) 

Total 

Investment 

Cost (M$) 

Existing 

Branches 

Maximum 

New 

Branches 

1 2 71.94 175 30 1 2 

1 3 4.73 175 550 1 2 

1 5 11.83 175 220 1 2 

2 4 7.89 175 330 1 2 

2 6 5.21 175 500 1 2 

3 9 8.40 175 310 1 2 

3 24 11.92 400 50 1 2 

4 9 9.64 175 270 1 2 

5 10 11.33 175 230 1 2 

6 10 16.53 175 160 1 2 

7 8 16.29 175 160 1 2 
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8 9 6.06 175 430 1 2 

8 10 6.06 175 430 1 2 

9 11 11.92 400 50 1 2 

9 12 11.92 400 50 1 2 

10 11 11.92 400 50 1 2 

10 12 11.92 400 50 1 2 

11 13 21.01 500 660 1 2 

11 14 23.92 500 580 1 2 

12 13 21.01 500 660 1 2 

12 23 10.35 500 1340 1 2 

13 23 11.56 500 1200 1 2 

14 16 25.71 500 540 1 2 

15 16 57.80 500 240 1 2 

15 21 20.41 500 680 2 1 

15 21 20.41 500 680 3 0 

15 24 19.27 500 720 1 2 

16 17 38.61 500 360 1 2 

16 19 43.29 500 320 1 2 

17 18 69.44 500 200 1 2 

17 22 9.50 500 1460 1 2 

18 21 38.61 500 360 2 1 

18 21 38.61 500 360 3 0 

19 20 25.25 500 550 2 1 

19 20 25.25 500 550 3 0 

20 23 46.30 500 300 2 1 

20 23 46.30 500 300 3 0 

21 22 14.75 500 940 1 2 

1 8 7.44 175 350 0 3 

2 8 7.89 175 330 0 3 

6 7 5.21 175 500 0 3 

13 14 22.37 500 620 0 3 

14 23 16.13 500 860 0 3 

16 23 12.17 500 1140 0 3 

19 23 16.50 500 840 0 3 
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B. DETAILED ANALYSIS OF THE MINIMAX REGRET AND MINIMAX 

COST DECISION CRITERIONS 

B.1. Definition of minimax regret decision criterion 

Consider the following notation: there are 𝑛 possible futures denoted {𝜃1, 𝜃2, … , 𝜃𝑛}, 

and 𝑚 possible decisions, denoted as {𝑎1, 𝑎2, … , 𝑎𝑚}. Let 𝑦𝑖𝑗 be the value of action 𝑗 

(denoted 𝑎𝑗 and hereinafter referred to as action, decision, choice, option or alternative, 

indistinctly) for the decision-maker, should scenario 𝜃𝑖 occur. The pay-off matrix 𝐴𝑛×𝑚 

has columns related to actions and rows related to future scenarios, describing 𝑦𝑖𝑗 as 

depicted next: 

 𝑎1 𝑎2 … 𝑎𝑚 

𝜃1 𝑦11 𝑦12  𝑦1𝑚 

𝜃2 𝑦21 𝑦22  𝑦2𝑚 

…    ⋱  

𝜃𝑛 𝑦𝑛1 𝑦𝑛2  𝑦𝑛𝑚 

The best decision under the future scenario 𝜃𝑖 is given by the action related to the 

highest entry 𝑦𝑖𝑗  in row 𝑖 of the pay-off matrix. The value of such an optimal decision is: 

𝑟𝑖
∗ = max

𝑗
𝑦𝑖𝑗  

Regret is a metric of the performance of an action under a given future scenario 

(known with certainty), and is defined as the opportunity loss that results from choosing 

the action 𝑎𝑗, when scenario 𝜃𝑖 occurs. This is: 

𝑟𝑒𝑔𝑟𝑒𝑡{𝑎𝑗, 𝜃𝑖} = 𝑟𝑖𝑗 = 𝑟𝑖
∗ − 𝑦𝑖𝑗 ≥ 0 

Note that this regret is zero if 𝑎𝑗 is the optimal alternative under scenario 𝜃𝑖. Choosing 

any other option yields a non-negative regret, since such an option is not optimal for the 

given scenario. 

Maximum regret is a metric of the performance of an alternative when the future is 

not known with certainty, and is defined as the maximum regret of an alternative 𝑎𝑗 across 
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all scenarios. Then, the minimax regret criteria result in choosing the action 𝑎𝑗 that 

minimizes the maximum regret, that is, choosing 𝑎𝑗
∗ such that: 

𝑎𝑗
∗ = {𝑎𝑗  |  𝑟𝑗 = min

j
{max 

𝑖
𝑟𝑖𝑗}} 

Hence, option 𝑎𝑞 is optimal in a minimax regret sense if and only if: 

𝑟𝑞
∗ ≤ 𝑟𝑗

∗   ∀ 𝑗 

where 𝑟𝑖𝑗 = max
𝑗

𝑦𝑖𝑗 − 𝑦𝑖𝑗   and   𝑟𝑖
∗ = max

𝑗
𝑦𝑖𝑗. 

The minimax regret decision criterion is particularly interesting when the decision-

maker is appraised with hindsight (Bunn, 1984, p. 20). However, minimax regret also 

possesses some theoretical weaknesses which are described next. 

B.2. Lack of Independence of Irrelevant Alternatives in the Minimax Regret 

Criterion 

The main theoretical critique to minimax regret criterion, developed by Lindley (1971) 

and explained by Bunn (1984), refers to the violation of the axiom of independence of 

irrelevant alternatives (one of the axioms required from a decision criterion in Arrow’s 

impossibility theorem). The independence of irrelevant alternatives refers to the 

prescription that a decision criterion should not alter the ranking of available decision 

alternatives should an additional decision become available, if such newly available 

decision is never preferred to previously available alternatives. In simple terms and to 

serve as example, if I do not prefer to go fishing rather than going to the movies or to a 

concert, then the decision of going to a movie or a concert should not depend on whether 

I consider (or have the possibility of) going fishing. Minimax regret violates such an axiom 

since deterministically optimal alternatives for particular scenarios may not be (and are 

not in general) optimal in a minimax regret sense. 

For a mathematical example given by Bunn, consider the following pay-off matrix: 

𝑦𝑖𝑗 𝑎1 𝑎2 

𝜃1 8 2 

𝜃2 0 4 
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The optimal alternative under scenario 𝜃1 is 𝑎1 (since 8 > 2), while the optimal 

alternative under scenario 𝜃2 is 𝑎2 (since 4 > 0). Then, if the decision-maker chooses 𝑎2 

but 𝜃1 occurs instead of 𝜃2, one obtains a payment of 2, when the best available decision 

𝑎1 would have provided a payment of 8. Hence, regret is 8 − 2 = 6. Therefore, the regret 

or opportunity loss matrix is: 

𝑟𝑖𝑗 𝑎1 𝑎2 

𝜃1 0 6 

𝜃2 4 0 

In such situation, the optimal decision in a minimax regret sense is 𝑎1. 

Now consider a new alternative (i.e. previously unavailable to the decision-maker) 𝑎3, 

which yields the following pay-off matrix:  

𝑦𝑖𝑗 𝑎1 𝑎2 𝑎3 

𝜃1 8 2 1 

𝜃2 0 4 7 

The regret matrix considering this new alternative is changed since under scenario 2 

the optimal alternative is no longer 𝑎2 but rather 𝑎3:  

𝑟𝑖𝑗 𝑎1 𝑎2 𝑎3 

𝜃1 0 6 7 

𝜃2 7 3 0 

In this new situation the minimax regret criterion results in choosing 𝑎2 instead of 𝑎1. 

The optimal decision changed due to the introduction of a new alternative which is optimal 

under one of the scenarios, thus altering the regret of all alternatives in such scenario and, 

in this case, altering the minimax regret valuation. However, option 𝑎3 is not optimal in 

the minimax regret sense32. 

Bunn points that a relaxation of the axiom of independence of irrelevant alternatives 

is equivalent to requiring that the valuation of alternatives is independent of dominated 

                                                 
32 , 𝑎3In this case, 𝑎3 is never preferred under the minimax regret criterion (without a priori knowledge of 

the future). 
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alternatives. In practical terms, we can conclude that a sound application of the minimax 

regret criterion requires considering the optimal alternative under each scenario (or 

a sufficiently close-to-optimal alternative so that maximum regrets are not altered should 

the truly optimal decision become available). 

At least in principle, the previous conclusion precludes using the minimax regret 

criterion when using any optimization method which does not ensure attainment of the 

optimal decision under each scenario, for example the commonly used methodology in 

TEP of genetic algorithms (Charlin et al., 2015). However, it is yet to be determined 

whether there exist conditions for ensuring that the search for a deterministically optimal 

solution can be stopped without altering the optimal minimax regret alternative 

significantly.  

B.3. Insensitivity to relative opportunity losses in the minimax regret criterion 

The minimax regret criterion is insensitive to relative opportunity losses since regret 

is a difference of pay-offs, therefore being possible that two pay-offs of different 

magnitude are deemed as equivalent. For example, $1.050 − $1.000 = $50 but also 

$150 − $100 = $50. Regret does not consider whether opportunity losses are more or 

less important relative to the magnitude of the optimal pay-off to which decision 

alternatives are compared (Bagajewicz, n.d.). 

An alternative for considering relative opportunity losses is using relative regret 

instead of absolute regret. Relative regret is defined as: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑟𝑒𝑡{𝑎𝑗} = 𝑟�̃� =
𝑟𝑖

∗ − 𝑦𝑖𝑗

𝑟𝑖
∗  

Then, the optimal alternative is that which minimizes the maximum relative regret. 

Such an approach has been applied to TEP by (Motamedi et al., 2010). However, it is not 

currently clear whether the optimal solution changes (and how much) when using relative 

instead of absolute regret in a minimax decision criterion. 
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B.4. Insensitivity to foregone opportunities other than the maximum loss in 

the minimax regret decision criterion 

Since minimax regret is defined in terms of the máximum regret across all posible 

future scenarios, such a decision criterion is insensitive to opportunity losses other than 

the maximum for each alternative. Consider for example the following pay-off matrix 

(Bagajewicz, n.d.):  

𝑟𝑖𝑗 𝑎1 𝑎2 𝑎3 𝑎4 

𝜃1 100 99 0 150 

𝜃2 0 95 100 85 

𝜃3 5 40 200 0 

max
𝑖

𝑟𝑖𝑗 100 99 200 150 

In this case, the optimal alternative in a minimax regret sense is 𝑎2 since its maximum 

regret, 99 (see last row of the matrix), is less than the maximum regret of 𝑎1, equal to 100. 

However, one unit of regret in scenario 𝜃1 is saved at the cost of 95 units of opportunity 

loss in scenario 2, and 40 units of regret in scenario 3, compared to an opportunity loss of 

0 and 5 for scenarios 2 and 3, respectively, when choosing 𝑎1. 

A proposal for overcoming this issue is to use the average regret across scenarios. 

However, it is easy to show that such an approach is equivalent to minimizing the expected 

value across future scenarios, considering all scenarios are equally likely (Miranda & 

Proenca, 1998b). Therefore, this methodology is only an unnecesary complication of the 

probabilistic criterion with equally-likely scenarios. 

Indeed, the weighted regret across scenarios (with weighs 𝑤𝑖 under each scenario) is: 

�̅�𝑗 = ∑ 𝑤𝑖 ⋅ 𝑟𝑖𝑗

𝑛

𝑖=1

= ∑ 𝑤𝑖 ⋅ (max
𝑗

{𝑦𝑖𝑗} − 𝑦𝑖𝑗)

𝑛

𝑖=1

 

= ∑ 𝑤𝑖 ⋅ max
𝑗

{𝑦𝑖𝑗}

𝑛

𝑖=1

− ∑ 𝑤𝑖 ⋅ 𝑦𝑖𝑗

𝑛

𝑖=1

 

Since the first sum is constant, then: 
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min
𝑗

�̅�𝑗 ⟺ max
𝑗

∑ 𝑤𝑖 ⋅ 𝑦𝑖𝑗

𝑛

𝑖=1

 

Therefore, this approach is only a reorder of terms of a probabilistic approach with 

weighing probabilities 𝑤𝑖 assigned to each scenario 𝜃𝑖
33. Despite the lack of a theoretical 

foundation or practical utility of weighted regrets, such a criterion has been applied in TEP 

literature (Motamedi et al., 2010), without any reference to or discussion of the previously 

described equivalence to expected value. 

B.5. Search methods for minimax regret solutions and the relation of minimax 

regret to multiobjective efficiency 

Different methods have been applied to find the transmission expansion plan which 

minimizes the maximum regret among scenarios. The most basic (and also the weakest) 

solution method is to choose the plan which minimizes the maximum regret, from among 

the optimal plans for each scenario. Other manual robustness criterions are possible and 

have been applied (e.g. in MISO), such as building transmission lines which 

simultaneously appear in multiple scenario deterministic optimal solutions. A further level 

of sophistication in the methodology are heuristic solutions to explore the decision space 

in search for diverse solutions (e.g. genetic algorithms (Charlin et al., 2015)). Both of the 

aforementioned solution methodologies can suffer from the lack of independence of 

irrelevant alternatives, discussed previously.  

The weakness of minimax regret relating to the independence of irrelevant alternatives 

can be partially removed by building an optimization model which explicitly devises a 

transmission expansion plans which minimizes the maximum regret (Strbac et al., 2014). 

Considering the MILP disjunctive formulation given by equations (1) – (10), an equivalent 

linear program for minimizing maximum regret can be formulated by using the well-

known transformation of the maximum function to linear programs, as follows: 

min
X

max
𝑠∈𝑆

𝑟𝑠(𝑋) ≡  min
X

𝑧   𝑠. 𝑡.  𝑟𝑠(𝑋) ≤ 𝑧  ∀ 𝑠 ∈ 𝑆 (21) 

                                                 
33 Across this section the decision-maker has been assumed to maximize value,. If costs are to be 

minimized instead, minimizing the weighted-regret is equivalent to minimizing the weighted-costs across 

escenarioscenarios. 
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However, this reformulation does not change the fact that the availability of new 

transmission projects may change the regrets of all solutions and change the solution that 

minimizes the maximum regret, even if the new alternative is not the one that minimizes 

the maximum regret. 

An important observation is that a solution that minimizes the maximum regret 

always lies in the Pareto efficient frontier of the multiobjective problem for 

alternative scenarios. Indeed, if a solution is not efficient then there exists some solution 

which dominates it and, hence, can only improve the regret across any scenario. Therefore, 

there is always an efficient solution which minimizes the maximum regret, even if there 

exists an inefficient solution which also minimizes the maximum regret. 

Before formally stating the proposition and providing a proof, we introduce the 

following propositions which will be used in the proof. 

Definition 1. A decision, alternative, choice, or solution, is a transmission expansion plan 

𝑥 ∈ Ω = {0,1}𝐿𝐶. 

Definition 2. The total costs of implementing decision alternative (transmission expansion 

plan) 𝑥, if scenario 𝑠 ∈ 𝑆 occurs, is 𝑇𝐶𝑠(𝑥) ∈ ℝ. The problem’s data ensures that  

𝑇𝐶𝑠(𝑥) ≥ 0 ∀𝑥 ∈ Ω 

The optimal total cost under each scenario is: 

𝑇𝐶𝑠
∗ = inf

𝑥∈Ω
𝑇𝐶𝑠(𝑥) = 𝑇𝐶𝑠(𝑥𝑠

∗) 

Then, 𝑥𝑠
∗  is said to be the deterministically optimal solution under scenario 𝑠. It can be 

easily shown that the optimal solution 𝑥𝑠
∗ for each scenario lies in the Pareto frontier (proof 

left to the reader). 

Definition 3. (Minimax Regret) The regret of alternative 𝑥 ∈ Ω under scenario 𝑠 ∈ 𝑆 is 

defined as: 

𝑟𝑠(𝑥) = 𝑇𝐶𝑠(𝑥) − 𝑇𝐶𝑠
∗ 

The maximum regret across scenarios is simply 𝑀𝑅(𝑥) = max
𝑠∈𝑆

𝑟𝑠(𝑥). The optimal 

solution in a minimax regret sense is then 𝑥𝑀𝑅
∗ = argmin

x∈Ω
𝑀𝑅(𝑥), and 𝑀𝑅∗ is the optimal 

(minimum) maximum regret. We say that 𝑥𝑀𝑅
∗  minimizes the function 𝑀𝑅. 

Proposition 1. Let 𝒙, 𝒚 ∈ ℝ𝑛 be two vectors such that 𝑥𝑖 ≤ 𝑦𝑖  ∀𝑖 = 1 … 𝑛. Then: 
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max
𝑖=1…𝑛

𝑥𝑖 ≤ max
𝑖=1…𝑛

𝑦𝑖 

Proof:  

𝑥𝑗 ≤ max
𝑖=1…𝑛

𝑥𝑖  ∀𝑗 = 1 … 𝑛 

𝑦𝑗 ≤ max
𝑖=1…𝑛

𝑦𝑖  ∀𝑗 = 1 … 𝑛 

Since 𝑥𝑖 ≤ 𝑦𝑖   ∀𝑖 = 1 … 𝑛, then: 

∃𝑗 ∈ [1, 𝑛]: max
𝑖=1…𝑛

𝑥𝑖 ≤ 𝑦𝑗   

⇒ max
𝑖=1…𝑛

𝑥𝑖 ≤ max
𝑖=1…𝑛

𝑦𝑖 

□ 

Definition 4. (Pareto dominance) Let 𝑥∗, 𝑥 ∈ Ω be two alternative decisions available to 

the decision maker. 𝑥∗ is said to dominate (in a Pareto sense) 𝑥 if and only if: 

𝑇𝐶𝑠(𝑥∗) ≤ 𝑇𝐶𝑠(𝑥)  ∀𝑠 ∈ 𝑆 

∧ ∃𝑠 ∈ 𝑆 ∶ 𝑇𝐶𝑠(𝑥∗) < 𝑇𝐶𝑠(𝑥) 

That is, 𝑥∗ performs equal to or better than decision 𝑥 in every scenario, and performs 

strictly better than 𝑥 in at least one scenario, where better performance corresponds to 

lower total costs. In this case we say that 𝑥∗ ≺ 𝑥, that is, 𝑥∗ is preferred over 𝑥. 

Proposition 2. (Transitivity of Pareto dominance) The partial order relation ≺ is 

transitive, that is, let 𝑥, 𝑦, 𝑧 ∈ Ω  such that 𝑥 ≺ 𝑦 and 𝑦 ≺ 𝑧, then 𝑥 ≺ 𝑧. 

Proof: Since 𝑥 ≺ 𝑦 and 𝑦 ≺ 𝑧, then: 

𝑇𝐶𝑠(𝑥) ≤ 𝑇𝐶𝑠(𝑦)  ∀𝑠 ∈ 𝑆 ∧ ∃𝑠1 ∈ 𝑆 ∶ 𝑇𝐶𝑠1
(𝑥) < 𝑇𝐶𝑠1

(𝑦) 

𝑇𝐶𝑠(𝑦) ≤ 𝑇𝐶𝑠(𝑧)  ∀𝑠 ∈ 𝑆 ∧ ∃𝑠2 ∈ 𝑆 ∶ 𝑇𝐶𝑠2
(𝑦) < 𝑇𝐶𝑠2

(𝑧) 

Therefore: 

𝑇𝐶𝑠(𝑥) ≤ 𝑇𝐶𝑠(𝑧) ∀𝑠 ∈ 𝑆  

Furthermore: 

𝑇𝐶𝑠(𝑥) ≤ 𝑇𝐶𝑠(𝑦)  ∀𝑠 ∈ 𝑆 ⇒  𝑇𝐶𝑠2
(𝑥) ≤ 𝑇𝐶𝑠2

(𝑦) < 𝑇𝐶𝑠2
(𝑧) 

Therefore: 

𝑇𝐶𝑠(𝑥) ≤ 𝑇𝐶𝑠(𝑧) ∀𝑠 ∈ 𝑆 ∧  ∃𝑠2 ∈ 𝑆 ∶  𝑇𝐶𝑠2
(𝑥) < 𝑇𝐶𝑠2

(𝑧) 

⇔ 𝑥 ≺ 𝑧 

□ 
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Definition 5. (Pareto efficiency) Let 𝑥∗ ∈ Ω be an available alternative for the decision 

maker. 𝑥∗ is said to be an efficient alternative, or equivalently, Pareto dominant 

alternative, if and only if there is no other decision alternative that dominates 𝑥∗, that is: 

∄𝑥 ∈ Ω ∶ 𝑥 ≠ 𝑥∗  

∧  𝑇𝐶𝑠(𝑥) ≤ 𝑇𝐶𝑠(𝑥∗)  ∀𝑠 ∈ 𝑆  

∧ ∃𝑠 ∈ 𝑆 ∶ 𝑇𝐶𝑠(𝑥) < 𝑇𝐶𝑠(𝑥∗) 

That is, there is no other decision 𝑥 that performs equal or better than decision 𝑥∗ in every 

scenario, and that performs strictly better than 𝑥∗ in at least one scenario. In any other 

case, 𝑥∗ is said to be an inefficient or Pareto dominated alternative. 

Definition 6. (Pareto efficiency) The set 𝐸 ⊆ Ω  that contains all efficient alternatives is 

called the Pareto dominant set, or Pareto efficient frontier. That is, an alternative 𝑥 is 

efficient if and only if 𝑥 ∈ 𝐸, while and alternative 𝑥 is inefficient if and only if 𝑥 ∉ 𝐸. 

Proposition 3. (Alternative definition of inefficiency) An alternative 𝑥 ∈ Ω is inefficient 

if and only if there exists an efficient alternative 𝑦∗ ∈ 𝐸 that dominates 𝑥. 

Proof: The sufficiency is proven by noting that if there exists an efficient 𝑦∗ ∈ Ω that 

dominates 𝑥, then 𝑥 is inefficient. 

Necessity is proven as follows. 𝑥 is inefficient if and only if there exists some 𝑦 ∈ Ω  

that dominates 𝑥. If 𝑦 is not efficient, then there exists 𝑦1 ∈ Ω  that dominates 𝑦 and that, 

by transitivity, also dominates 𝑥. Extending this argument we can always find an efficient 

alternative 𝑦∗ that dominates 𝑥, since in our problem there is a finite decision space 

(related to alternative transmission lines to be built).  

□ 

Proposition 4. An optimal solution in the minimax regret sense, that is efficient, always 

exists. 

Proof: If the optimal minimax regret solution is efficient, then the proposition is proven. 

However, we must prove that if the optimal minimax regret solution is inefficient, then 

there must exist another optimal minimax regret solution (i.e. which attains the same 

minimum maximum regret 𝑀𝑅∗) that is efficient. 

That is, we must prove that: 

{𝑥𝑀𝑅
∗  minimizes 𝑀𝑅 ∧  𝑥𝑀𝑅

∗  is inefficient} (22) 



110 

  

⇒ ∃𝑥0 ∈ 𝐸 ∶ 𝑥0 also minimizes 𝑀𝑅 

By proposition 3:  

𝑥𝑀𝑅
∗  is inefficient ⇔  𝑥𝑀𝑅

∗ ∉ E  

⇔ ∃𝑥0 ∈ 𝐸: 𝑇𝐶𝑠(𝑥0) ≤ 𝑇𝐶𝑠(𝑥𝑀𝑅
∗ ) ∀𝑠 

∧ ∃𝑗:       𝑇𝐶𝑗(𝑥0) < 𝑇𝐶𝑗(𝑥𝑀𝑅
∗ ) 

(23) 

⇔ ∃𝑥0 ∈ 𝐸: 𝑇𝐶𝑠(𝑥0) − 𝑇𝐶𝑠
∗ ≤ 𝑇𝐶𝑠(𝑥𝑀𝑅

∗ ) − 𝑇𝐶𝑠
∗ ∀𝑠 

∧ ∃𝑗:        𝑇𝐶𝑗(𝑥0) − 𝑇𝐶𝑠
∗ < 𝑇𝐶𝑗(𝑥𝑀𝑅

∗ ) − 𝑇𝐶𝑠
∗ 

(24) 

⇔ ∃𝑥0 ∈ 𝐸: 𝑟𝑠(𝑥0) ≤ 𝑟𝑠(𝑥𝑀𝑅
∗ ) ∀𝑠 

∧ ∃𝑗:        𝑟𝑗(𝑥0) < 𝑟𝑗(𝑥𝑀𝑅
∗ ) 

(25) 

By proposition 1: 

⇒ ∃𝑥0 ∈ 𝐸: 𝑀𝑅(𝑥0) ≤ 𝑀𝑅(𝑥𝑀𝑅
∗ )  (26) 

 

Note that this inequality can be strict (i.e. it is not always necessarily equal) due to the 

second strict inequality on regrets. 

⇔ ∃𝑥0 ∈ 𝐸: [{𝑀𝑅(𝑥0) = 𝑀𝑅(𝑥𝑀𝑅
∗ )}  ∨  𝑀𝑅(𝑥0) ≤ 𝑀𝑅(𝑥𝑀𝑅

∗ )]  (27) 

⇔ ∃𝑥0 ∈ 𝐸: [{     {𝑥0 ∈ 𝐸 and 𝑥𝑀𝑅
∗ ∉ 𝐸 both minimize 𝑀𝑅}

∨ {neither 𝑥0 ∈ 𝐸 nor 𝑥𝑀𝑅
∗ ∉ 𝐸 minimize 𝑀𝑅}}

∨ {𝑥𝑀𝑅
∗  does not minimize 𝑀𝑅}]  

(28) 

⇔ [∃𝑥0 ∈ 𝐸: {𝑥0 and 𝑥𝑀𝑅
∗ ∉ 𝐸 both minimize 𝑀𝑅} ] 

∨ [∃𝑥0 ∈ 𝐸: {neither 𝑥0 nor 𝑥𝑀𝑅
∗ ∉ 𝐸 minimize 𝑀𝑅} ] 

∨ [∃𝑥0 ∈ 𝐸: {𝑥𝑀𝑅
∗  does not minimize 𝑀𝑅} ] 

(29) 

⇒ [∃𝑥0 ∈ 𝐸: {𝑥0 and 𝑥𝑀𝑅
∗ ∉ 𝐸 both minimize 𝑀𝑅} ] 

∨ [𝑥𝑀𝑅
∗ ∉ 𝐸 does not minimize 𝑀𝑅 ] 

∨ [𝑥𝑀𝑅
∗ ∉ 𝐸 does not minimize 𝑀𝑅 ]  

(30) 

⇔ [∃𝑥0 ∈ 𝐸: {𝑥0 and 𝑥𝑀𝑅
∗ ∉ 𝐸 both minimize 𝑀𝑅} ] 

∨ [𝑥𝑀𝑅
∗ ∉ 𝐸 does not minimize 𝑀𝑅 ]  

(31) 

 

Then: 

{𝑥𝑀𝑅
∗  minimizes 𝑀𝑅 ∧  𝑥𝑀𝑅

∗  is inefficient} 

⇔ {𝑥𝑀𝑅
∗  minimizes 𝑀𝑅} 

∧ {𝑥𝑀𝑅
∗ ∉ E}  

(32) 
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⇒ {𝑥𝑀𝑅
∗  minimizes 𝑀𝑅} 

∧ {[∃𝑥0 ∈ 𝐸: {𝑥0 and 𝑥𝑀𝑅
∗ ∉ 𝐸 both minimize 𝑀𝑅} ] 

∨ [𝑥𝑀𝑅
∗ ∉ 𝐸 does not minimize 𝑀𝑅 ]}  

(33) 

  

⇔ [{𝑥𝑀𝑅
∗  minimizes 𝑀𝑅}

∧ {∃𝑥0 ∈ 𝐸: {𝑥0 and 𝑥𝑀𝑅
∗ ∉ 𝐸 both minimize 𝑀𝑅}}] 

∨ [{𝑥𝑀𝑅
∗  minimizes 𝑀𝑅} ∧ {𝑥𝑀𝑅

∗ ∉ 𝐸 does not minimize 𝑀𝑅 }]  

(34) 

 

Since 𝑝 ∧ ~𝑝 ⇔ 𝐹𝑎𝑙𝑠𝑒, and 𝐹𝑎𝑙𝑠𝑒 ∨ 𝑝 ⇔ 𝑝, then: 

 

⇔ {Both 𝑥𝑀𝑅
∗ ∉ 𝐸 and 𝑥0 ∈ 𝐸 minimize 𝑀𝑅} ∨ {𝐹𝑎𝑙𝑠𝑒}  (35) 

{𝑥𝑀𝑅
∗  minimizes 𝑀𝑅 ∧  𝑥𝑀𝑅

∗  is inefficient} 

⇔ {∃𝑥0 ∈ 𝐸 ∶  Both 𝑥𝑀𝑅
∗ ∉ 𝐸 and 𝑥0 ∈ 𝐸 minimize 𝑀𝑅} 

(36) 

□ 

 

Hence, a solution which minimizes the maximum regret can always be found in the 

Pareto frontier, but such a solution may also exist outside of the Pareto efficient frontier. 

Thus, it may be wise to first build he Pareto efficient frontier and then identify the solution 

that minimizes the maximum regret, instead of directly building the solution the 

minimizes the maximum regret (e.g. by the linear program presented in equation (19)). 

Such methodology ensures that the solution minimizes the maximum regret and is also 

efficient. 

B.6. Second-order robustness of the minimax cost decision criterion 

The minimax cost decision criterion selects the expansion alternative which minimizes 

the worst-case cost among scenarios, that is: 

𝑥𝑐
∗ = min

𝑥
max
s∈S

𝑇𝐶𝑠(𝑥) (37) 

The minimax cost solution 𝑥𝑐
∗ always lies in the Pareto efficient frontier. 

An interpretation of minimax cost is that the minimax cost solution is the most 

robust solution against variations in the scenario probabilities. Indeed, consider a 

solution 𝑥 and a set of probabilities 𝑝. In the face of second-order uncertainty, i.e. the 
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possibility of variations in the vector 𝑝 of scenario probabilities, the worst possible total 

cost for the solution 𝑥 due to variations in 𝑝 is given by:35 

(𝑃) max
p

𝑐𝑇𝑝  

s.t. 1𝑇𝑝 = 1 : 𝜋 

 0 ≤ 𝑝 ≤ 1 : 𝑦 
 

(38) 

where 𝑐𝑇 = 𝑇𝐶(𝑥) is the set of total costs under each scenario for the expansion plan 𝑥. 

The dual of the linear problem (P) is: 

(𝐷) min
π,y

𝜋 + 1𝑇𝑦  

s.t. 𝜋 1 + 𝑦 ≥ 𝑐  

 𝑦 ≥ 0, 𝜋 free  
 

(39) 

The dual solution {𝑦 = 0; 𝜋 = max
𝑠∈𝑆

𝑐𝑠} attains a cost of max
𝑠∈𝑆

𝑐𝑠, which is also attained in 

the primal problem with a solution where the probabilities are all zero except for the 

scenario with worst performance, whose probability is equal to one. By strong-duality, the 

solution to the primal is hence the worse possible total cost across scenarios, which is by 

definition the minimax cost. Hence, minimizing the maximum total cost is equivalent to 

finding the solution which is more robust against variations in the scenario probabilities. 

                                                 
35 In these equations, 1 stands for a vector of ones, of the size required for the corresponding matrix 

multiplication to be defined. 
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C. DISTRIBUTIONAL ROBUSTNESS CRITERION 

The distributionally robust solution to TEP under scenario uncertainty is the solution 

of the following optimization problem. 

min
{𝒚,𝒈,𝒓,𝒇,𝜽}

max
𝒑∈𝔽

∑ �̃�𝒔 ⋅ 𝑇𝐶𝑠

𝑠∈𝑆

 (40) 

subject to constraints (2) through (11), where 𝔽 is the ambiguity set. 

 This can be formulated as: 

min
{𝒚,𝒈,𝒓,𝒇,𝜽}

𝐸𝐶 (41) 

s.t. 

𝐸𝐶 ≥ ∑ �̃�𝒔 ⋅ 𝑇𝐶𝑠

𝑠∈𝑆

  ∀𝑠 ∈ 𝑆, ∀𝒑 ∈ 𝔽 (42) 

 

 The formulation and tractability of the robust counterpart will depend on the 

structure of the ambiguity set 𝔽 chosen to describe the uncertainty on scenario 

probabilities (i.e. the distribution). 

If the uncertainty set is a polytope described by a finite set of vertex points {𝒑𝒊} 

(i.e. the intersection of finitely-many half-spaces), then the distributionally robust 

formulation yields the following MILP: 

(𝑃𝐷𝑅)  min
{𝒚,𝒈,𝒓,𝒇,𝜽}

𝐸𝐶 (43) 

s.t. 

𝐸𝐶 ≥ ∑ �̃�𝒔 ⋅ 𝑇𝐶𝑠

𝑠∈𝑆

  ∀𝑠 ∈ 𝑆, ∀𝒑 ∈ {𝒑𝒊} (44) 

and to equations (2) through (12). 

Since 𝔽 = {𝒑 ∶ 𝒑 = 𝑐𝑜𝑛𝑣{𝒑𝒊}} (i.e. points within the convex hull of the vertex points 

𝒑𝒊), constraint (16) also holds for any point 𝒑 within the convex hull of those points (it 

suffices to take the convex combination of all inequalities across 𝒑𝒊 to prove this), thus 

ensuring that 𝐸𝐶 is the worst possible expected cost across all probability distributions 𝒑 

within the ambiguity set 𝔽. 

It is easy to show that the distributionally robust solution always lies in the Pareto 

efficient frontier (independent of the geometry of the ambiguity set). Indeed, let 𝜒∗ be the 

solution to the distributionally robust TEP (PDR), i.e. 𝜒∗ =
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argminχ max
𝑝∈𝔽

𝐸𝑝[𝑇𝐶𝑠(𝜒)]   𝑠. 𝑡.  (2) − (12), and 𝔽 be such that ∀𝒑𝟎 ∶  ∃𝑝𝑠
0 = 0 ⇒ 𝒑𝟎 ∉

𝔽 (i.e. probabilities in 𝔽 do not contain any corner of the probability space, meaning that 

no particular scenario is possibly conceived to be absolutely certain). If 𝜒∗ is non efficient, 

then: 

∃𝜒0, 𝑠0 ∶ 𝑇𝐶𝑠(𝜒0) ≤ 𝑇𝐶𝑠(𝜒∗) ∀𝑠 ∧ 𝑇𝐶𝑠0
(𝜒0) < 𝑇𝐶𝑠0

(𝜒∗) 

⇒ ∑ 𝑝𝑠𝑇𝐶𝑠(𝜒0)

𝑠≠𝑠0

≤ ∑ 𝑝𝑠𝑇𝐶𝑠(𝜒∗)

𝑠≠𝑠0

 ∧ 𝑝𝑠0
𝑇𝐶𝑠0

(𝜒0) < 𝑝𝑠0
𝑇𝐶𝑠0

(𝜒∗) 

⇒ 𝐸[𝑇𝐶𝑠(𝜒0)] < 𝐸[𝑇𝐶𝑠(𝜒∗)] 
⇒ max

𝑝∈𝔽
𝐸𝑝[𝑇𝐶𝑠(𝜒)] < max

𝑝∈𝔽
𝐸𝑝[𝑇𝐶𝑠(𝜒∗)]     →← 

 

(45) 

The result is hence proven by contraposition (we want to prove that if x is the optimal 

solution then it is efficient or 𝑝 ⇒ 𝑞, so we assume it is inefficient and prove that it cannot 

be optimal or ~𝑞 ⇒ ~𝑝). Since the solution 𝜒0 has strictly lower expected cost than 

solution 𝜒∗ under any possible 𝑝 ∈ 𝔽,36 then it also has strictly lower worse expected cost 

than solution 𝜒∗, arriving at a contradiction since then 𝜒∗ cannot be an optimal solution to 

(PDR). Hence, 𝜒∗ must be an efficient alternative. 

 

 

                                                 
36 Note that {𝑎 ≤ 𝑏 ∧ 𝑐 < 𝑑} ⇒ {𝑎 + 𝑐 < 𝑏 + 𝑑} since {{𝑎 < 𝑏 ∨ 𝑎 = 𝑏} ∧ 𝑐 < 𝑑} ⇔ {{𝑎 < 𝑏 ∧ 𝑐 < 𝑑} ∨

{𝑎 = 𝑏 ∧ 𝑐 < 𝑑}} ⇒ {{𝑎 + 𝑐 < 𝑏 + 𝑑} ∨ {𝑎 + 𝑐 < 𝑏 + 𝑑}}. 


