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Thermal Pions at Finite Isospin Chemical Potential
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Abstract

The density corrections, in terms of the isospin chemical potential µI , to the mass of the pions

are studied in the framework of the SU(2) low energy effective chiral lagrangian. The pion decay

constant fπ(T, µI) is also analized. As a function of temperature for µI = 0, the mass remains

quite stable, starting to grow for very high values of T , confirming previous results. However, there

are interesting corrections to the mass when both effects (temperature and chemical potential) are

simultaneously present. At zero temperature the π± should condensate when µI = ∓mπ. This is

not longer valid anymore at finite T . The mass of the π0 acquires also a non trivial dependence on

µI due to the finite temperature.

PACS numbers: 12.39.Fe, 11.10.Wx, 11.30.Rd, 12.38.Mh
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Pions play a special role in the dynamics of hot hadronic matter since they are the

lightest hadrons. Therefore, it is quite important to understand not only the temperature

dependence of the pion’s Green functions but also their behavior as function of density,

through the chemical potential. The dependence of the pion mass and decay constant

on temperature mπ(T ), fπ(T ) has been studied in a variety of frameworks, such as thermal

QCD-Sum Rules [1], Chiral Perturbation Theory (low temperature expansion) [2], the Linear

Sigma Model [3], the Mean Field Approximation [4], the Virial Expansion [5], etc. In fact,

the pion propagation at finite temperature has been calculated at two loops in the frame of

chiral perturbation theory [6, 7]. There seems to be a reasonable agreement that mπ(T ) is

essentially independent of T , except possibly near the critical temperature Tc where mπ(T )

increases with T and that fπ(T ) vanishes for the critical temperature.

The introduction of in-medium processes via isospin chemical potential has been studied

at zero temperature [8, 9, 10] in both phases (|µI | ≶ mπ) at tree level. The problem with

both, temperature and density, has been worked out for barionic chemical potential with

Chiral Perturbation Theory [12]. It is also possible to find certain region of the stable pion

gas in which the pion number is locally conserved [13].

Usually, there are two procedures to extract the information of mπ and fπ in the frame

of chiral perturbation theory. The first one is to compute the Axial-Axial correlator which

provides us with the decay constant and the mass corrections. [2, 6, 18]
∫

d4xeip·x〈0|Aa
µ(x)A

b
ν(0)|0〉 = δab

pµpνf
2
π

p2 −m2
π

(1)

In the second method, radiative corrections to the propagators are considered together

with the realization of PCAC, 〈0|Aa
µ|πb(p)〉 = ipµδ

abfπ making then use of appropriate

counterterms. The use of counterterms is not necessary in the Axial-Axial correlator method.

We have checked that both methods leave the same answers. Let us proceed in the frame

of the SU(2) chiral perturbation theory. The most general chiral invariant expression for a

QCD-extended lagrangian, [18, 19] under the presence of external hermitian-matrix auxiliary

fields, has the form

LQCD(s, p, vµ, aµ) = L0
QCD

+ q̄γµ(vµ + γ5aµ)q

− q̄(s− iγ5p)q, (2)
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where vµ, aµ, s and p are vector, axial, scalar and pseudoscalar fields. The vector current is

given by

Ja
µ =

1

2
q̄γµτ

aq. (3)

When v, a, p = 0 and s = M , being M = diag(mu, md) the mass matrix, we obtain the

usual QCD lagrangian. This procedure is formal, in the sence that we reproduce the usual

QCD lagrangian with current masses. However, we would like to notice that a scalar field in

chiral lagrangian models the spontaneus break of chiral symmetry through a non vanishing

vacuum expectation value. In this sense if we take for s = M , these masses should be

actually constituent quark masses, while in the QCD lagrangian we have current masses.

Nevertheless this is a formal step which tries only to motivate what follows in the context

of effective pion lagrangian.

The effective action with finite isospin chemical potential is given by

LI
QCD = LQCD(M, 0, 0, 0) + µauµJa

µ

= LQCD(M, 0, µuµ, 0) (4)

where µa = (0, 0, µI) is the third isospin component, µ = µaτa/2 and uµ is the 4-velocity

between the observer and the thermal heat bath. This is required in order to describe in a

covariant way this system, where the Lorentz invariance is broken since the thermal heath

bath represents a privileged frame of reference.

Proceeding in the same way, now in the low-energy description where only pion degrees of

freedom are relevant, let us consider the most general chiral invariant lagrangian ordered in

a series of powers of the external momentum. We will start with the O(p2) chiral lagrangian

L2 =
f 2

4
Tr

[

(DµU)†DµU + U †χ+ χ†U
]

(5)

with

DµU = ∂µU − i[vµ, U ]− i{aµ, U}

χ = 2B(s+ ip)

U = Ū
1

2 (eiπ
aτa/f )Ū

1

2 (6)

Ū is the vacuum expectation value of the field U and B in the previous equation is an

arbitrary constant which will be fixed when the mass is identified setting (mu+md)B = m2.

The most general O(p4) chiral lagrangian has the form
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L4 = α1

(

Tr
[

(DµU)†DµU
])2

+ α2Tr
[

(DµU)†DνU
]

Tr
[

(DµU)†DνU
]

+ α3

(

Tr
[

χU † + Uχ†
])2

+ α4Tr
[

(DµU)†DµU
]

Tr
[

χU † + Uχ†
]

+ α5

[

LµνURµνU †
]

+ iα6Tr
[

LµνD
µU(DνU)† +Rµν(D

µU)†DνU
]

+ α7

(

Tr
[

χU † − Uχ†
])2

+ α8Tr
[

χU †χU † + Uχ†Uχ†
]

+ α9Tr [LµνL
µν +RµνR

µν ]

+ α10Tr[χ
†χ] (7)

with

Lµν = ∂µlν − ∂ν lµ + i[lµ, lν ], lµ = vµ − aµ

Rµν = ∂µrν − ∂νrµ + i[rµ, rν ], rµ = vµ + aµ (8)

The different coupling constants αiin the previous expression are related to the couplings

introduced by [11]. Here we use the prescription of [14].

The effective action with finite chemical potential in terms of pion degrees of freedom has

the same form as eq.4, where the different external fields are defined in eq.6. In this paper

we will consider one loop corrections, up to the fourth order in the fields, to the lagrangian

L2 and the free part, i.e the tree level part of L4 with renormalized fields. This procedure

is standard, [18, 20]. We will concentrate on the phase where µI < mπ, where the vacuum

expectation value Ū = 1. The interacting part L4 involves higher powers in the momentum

of the pion fields. The constants αi present in L4 are known from decay and scattering
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measurements. Therefore, we have the following lagrangians Li,j

L2,2 =
1

2

[

(∂π0)
2 −m2π2

0

]

+ |∂Iπ|2 −m2 |π|2

L2,4 =
1

4!

m2

f 2
π4
0 +

1

6f 2

[

−4 |∂Iπ|2 |π|2

+
(

∂ |π|2
)2

+m2
(

|π|2
)2
]

+
1

6f 2

[

−2 |∂Iπ|2 π2
0 − 2 (∂π0)

2 |π|2

+∂π2
0 · ∂ |π|2 +m2π2

0 |π|2
]

L4,2 = 2
m2

f 2

[

l4 |∂Iπ|2 −m2(l3 + l4) |π|2

+
1

2
l4 (∂π0)

2 − 1

2
m2(l3 + l4 − ǫ2udl7)π

2
0

]

(9)

with li the original parameters of Gasser & Leutwyler SU(2) lagrangian

l4 = 8α4

l3 = 16α3 + 8α8 − 8α4

l7 = −16α7 − 8α8 (10)

where the subindexes (i, j) in the lagrangian denote the order in powers of momentum and

fields, respectively, and

∂I± ≡ ∂ ± iµIu.

This definition of the covariant derivative is natural, since we know [21, 22] that the chemical

potential is introduced as the zero component of an external “gauge” field. In the previous

expression,

|π|2 ≡ π+π−, |∂Iπ|2 = (∂Iπ)+(∂Iπ)−.

We will neglect ǫ2ud = (mu −md)
2/(mu +md)

2 because it only shifts in a small quantity the

neutral pion mass and we are interested in the thermal and density evolution of the masses.

For renormalizing with counterterms we introduce the following decomposition

Leff = L2,2 + Lr
2,4 + Lr

4,2

L2,2 = Lr
2,2 + δL, (11)

where the r index denote the lagrangian with renormalized fields.
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Setting π0 =
√
Z0π

r
0 and π± =

√
Z±π

r
± in L2,2, we have

δL =
1

2
δZo

[

(∂πr
0)

2 −m2(πr
0)

2
]

+δZ±

[

|∂Iπr|2 −m2 |πr|2
]

(12)

with δZi
= Zi − 1.

First, let us consider the temperature and density corrections to the pion propagator.

Since our calculation will be at the one loop level, we do not need the full formalism of

thermo field dynamics, including thermal ghosts and matrix propagators. The propagator

D±(x) = D(x;±µI) +Dβ(x;±µI) (13)

for charged pions at the tree level will be given by an extension, for a non-vanishing chemical

potential, of the well known Dolan-Jackiw propagators for scalar fields [21]. Note that since

there is no chemical potential associated to the neutral pion, the thermal propagator D0 will

be the usual one

D0(x) = D(x; 0) +Dβ(x; 0) (14)

where, in momentum space

D(k;±µI) =
i

k2
± −m2 + iǫ

Dβ(k;±µI) = 2πnB(|k · u|)δ(k2
± −m2) (15)

with

k± ≡ k ∓ µIu, nB(x) =
1

eβx − 1

are the shifted momentum and the Bose-Einstein factor.

We will use the MS-scheme, and we renormalize as usual at T = 0, since the thermal cor-

rections are finite. The self energy for charged and neutral pions including the counterterms

has the form

Σ±(p) = [A± − δZ±
]p2± − [A′

± − δZ±
]m2 + A′′

±u · p±
Σ0(p) = [A0 − δZ0

]p2 − [A′
0 − δZ0

]m2 (16)
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with

A± =
1

3f 2
[D±(0) +D0(0)]− 2

m2

f 2
l4

A′
± =

1

6f 2
[2D±(0)−D0(0)]− 2

m2

f 2
(l3 + l4)

A′′
± =

2

f 2
u · ∂D±(0)

A0 =
2

3f 2
D±(0)−

m2

f 2
l4

A′
0 =

1

6f 2
[3D0(0)− 2D±(0)]−

m2

f 2
(l3 + l4) (17)

Our prescription to fix the counterterm δZ±
is to impose that Σ does not depend on p2,

so, δZi
= Ai. In this way, the renormalized propagators will take the form

iDr
±(p)

−1 = p2± − A′′
±u · p± −m2[1−A′

± + A±]

iDr
0(p)

−1 = p2 −m2[1−A′
0 + A0] (18)

where αi terms absorbs the divergences

li =
γi

32π2

[

l̄i + ln
4πm2

Λ2
− 2

d− 4
− γ + 1

]

(19)

in which the γi terms are tabulated [18, 20], being Λ a scale factor.

We identify mπ+ and mπ− from the solution of Dr
±(p)

−1|p=0 = 0 in the frame where the

heath bath is at rest (u = (1, 0)). We get the well known result for T = µI = 0

mπ = m
(

1− απ l̄3/4
)

(20)

is identified with the physical mass. απ = (mπ/4πfπ)
2 is the perturbative term that fixes

the scale of energies in the theory (for energies below 4πfπ) so we neglect the O(g2) factors.

This allows us to set m ≈ mπ in all radiative corrections (and also f ≈ fπ). The procedure

is the same for mπ0

It is important to remark that radiative corrections will leave a dependence on the chem-

ical potential for the pion mass only for finite values of temperature. In a strict sense, this

procedure does not allow us to say nothing new for an eventual chemical potential depen-

dence of the masses at T = 0 (cold matter) which is already included in L2. In this case,

T = 0, we have to follow the usual procedure, [8, 9], of computing the minimum of the effec-

tive potential in L2 when the chemical potential is taken into account, without considering
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radiative corrections. This enables to identify a phase structure where a non trivial vacuum

appears for higher values of µI , |µI | > mπcharacterized by the appearance of a condensate

〈π−〉. (The opposite occurs for negative values of the chemical potential, where the vacuum

state is a condensate 〈π+〉). At T = 0 when µI = mπ, the mass of π− vanishes.

For finite T and µI , we find the following expression for the masses

mπ±(T, µI) =mπ [1 + απI0 ± (µI/mπ − 4απJ)]

mπ0(T, µI) =mπ [1 + απ (2I − I0)] (21)

with

I =

∫ ∞

1

dx
√
x2 − 1[nB(mπx− µI) + nB(mπx+ µI)]

J =

∫ ∞

1

dxx
√
x2 − 1[nB(mπx− µI)− nB(mπx+ µI)]

I0 = I(µI = 0) (22)

Note that our convention for the chemical potential sign is contrary to the one adopted in

the paper by Kogut and Toublan [9], who extended previous results by Son and Stephanov

[8].

If the chemical potential of the charged pions vanishes, i.e for symmetric matter, at finite

T we get the well known result for mπ(T ) due to chiral perturbation theory [2], see also [3].

However, due to radiative corrections to the neutral pion propagator, its mass will acquire a

non trivial chemical potential dependence for finite values of temperature. In the approach

where the minimum of the effective potential is calculated (for finite µI and T = 0), the

mass of the neutral pion remains constant.

We show in Fig.1 a tridimensional picture for the behavior of the mass of the neutral

pion. Note that when µI = 0, mπ0
(T ) = mπ±(T ).

From Fig.2 we see that at zero temperature, we agree with the usual prediction, m+
π =

mπ+µI . In fact, at zero temperature the π+ should condensate when µI = −mπ (the inverse

situation occurs for π−). Now, this situation changes if temperature starts to grow. The

condensation point disappear at µI = −mπ; in µI = mπ the mass start to decrease. For

small T (for example inside an neutron star), this effect is neglegible.

In connection with the behavior of fπ(T, µI) when µI < mπ, we have make used of PCAC,

which provides us with a relation between the renormalized propagator and the pion decay

constant.
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The Axial current is obtained as the functional derivative of the action with respect to

aaµ, with aµ = aaµτ
a/2

Aa
µ =

δS
δaaµ

(M, 0, µuµ, 0) (23)

The axial current is

A±
(1,1)µ = −f(∂I

µπ)
±

A±
(1,3)µ =

2

3f

{

π0
[

π0(∂I
µπ)

± − π±∂µπ
0
]

+π±
[

π∓(∂I
µπ)

± − π±(∂I
µπ)

∓
]}

A±
(3,1)µ = −m2

f
2l4(∂

I
µπ)

±

A0
(1,1)µ = −f∂µπ

0

A0
(1,3)µ =

2

3f

{

2|π|2∂µπ0 − π0∂µ|π|2
}

A0
(3,1)µ = −m2

f
2l4∂µπ

0 (24)
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Now, the effective axial current at O(p3) will be

Ai
µ ≡ Ai

(1,1)µ + Air
(1,3)µ + Air

(3,1)µ

=
√

ZiA
ir
(1,1)µ + Air

(1,3)µ + Air
(3,1)µ (25)

with i = {±, 0}. We will take

√

Zi =
√

1 + δZi
≃ 1 +

1

2
δZi

+O(δ2Zi
).

The value of the δZi
are the same as those obtained in the mass renormalization.

After taking into account the different tadpole diagrams which correct the coupling of

the current to one pion states, we find

〈0|A±
µ |π∓(p)〉 = ip±µ [fπ − f2απ(I + I0)]

±iuµfαπ8J

〈0|A0
µ|π0(p)〉 = ipµ [fπ − f4απI] (26)

with

fπ = f
(

1 + απ l̄4
)

(27)

Now, we can set f ≃ fπ, m ≃ mπ in all O(απ) terms, since any correction will be of order

α2
π (including απ), then we define the effective decay constant as the part proportional to

pµ, so

fπ±(T, µI) ≡ fπ[1− 2απ(I + I0)]

fπ0(T, µI) ≡ fπ[1− 4απI] (28)

For µI = 0 we agree with the well known results of Gasser and Leutwyler [2]. For

an increasing finite chemical potential, the fπ(T ) couplings decrease faster. This effect is

enhanced for fπ0
(T ) and is related to the fact that fπ0

(T )only receives radiative corrections

from charged pion tadpoles.

In heavy ion collisions, a finite value of µI means that, at least locally, we would expect

more pions with definite charge than in the symmetric case. According to this picture,

the production rate of dileptons from pion annhilation should be supressed. Probably, the

detection of such kind of effects will demand a higher center of mass energy.
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In order to explore the region where |µI | > mπ, associated to a new phase where the

condensates occur, we need to redefine our fields as fluctuations around the configuration

corresponding to a minima of the effective potential in L2. At present we are working

on it, but it is possible to extrapolate, for T ≪ mπ and µI ∼ mπ the condensation

point in such a way that we actually remain in the first phase. However the curve in

the µI − T plane that separates both phases is only reliable in the parameters region

mentioned before where in the thermal factors in eq.(22), we have taken the approximation
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FIG. 5: T ,µI phase diagram for pion condensation
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nB(mπx±µI) ≃ exp[−β(mπx±µI)]. A complete analysis of the phase can be found in [23].

The phase diagram is shown in Fig. 5 in accordance with [8]. However, for higher values of

µI changes abruptly and our approximation is no longer valid.
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[12] R. Alvarez-Estrada and A. Gómez Nicola, Phys Lett. B 355 288 (1995)

[13] A. Ayala, P. Amore, A. Aranda, Phys. Rev. C 66, 045205 (2002). A. Ayala, hep-ph/0212320

[14] S. Scherer, hep-ph/0210398

[15] R. D. Pisarski, Phys. Lett. B 110 155 (1982).

[16] H. Leutwyler and A. V. Smilga, Nucl. Phys. B 342 (1990) 302.

[17] C. A. Dominguez, M. Loewe, and J. C. Rojas, Z. Phys. C 59 63 (1993).

12

http://arxiv.org/abs/hep-ph/0212320
http://arxiv.org/abs/hep-ph/0210398


[18] J. Gasser and H. Leutwyler, Nucl. Phys. B 250 465 (1985).

[19] A. Pich, Introduction to Chiral Perturbation Theory, CERN-TH. 6978/93, Lectures given at

the V Mexican School of Particles and Fields.

[20] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the Standard Model (Cambridge

University Press, 1992).

[21] H. A. Weldon, Phys. Rev. D 26 1394 (1982), Nucl. Phys. B 270 79 (1986).

[22] A. Actor, Phys. Rev. D 27 2548 (1983), Phys. Lett. B 175 53 (1985).

[23] K. Splittorff, D Toublan, J.J.M. Verbaarschot, Nucl.Phys. B 639 524(2002)

13


	References

