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Abstract

Relaxometry with nitrogen-vacancy (NV) centers in diamond is an innovative and non-invasive technique

that has been increasingly used for characterizing magnetic materials. Because of their exceptional quan-

tum coherence and capability to be manipulated optically, it is possible to measure their relaxation time

and, from this quantity, probe physical characteristics of the environment. This technique is the so-called

called relaxometry. During the last few years, NV centers have been used for measuring magnetic prop-

erties in ferromagnetic materials, and a few times for antiferromagnetic systems with easy-axis anisotropy.

In this work, we develop a complete theoretical description of NV center relaxometry for several types of

magnetic materials (ferromagnetic and antiferromagnetic systems), we indicate what physical parameters

can be measured in each situation, when this technique will experimentally work, and how it depends on

the sample anisotropy. We found that relaxation rates using ferromagnetic systems peak at certain values

of the external magnetic field, where both NV center and sample resonate simultaneously, something that

does not happen when using antiferromagnets because of their high resonance frequency. In this way,

NV center relaxometry allows us to extract information about the spin waves of the system. Finally,

we discuss prospects to non-intrusively probe magnetic properties and phase transitions in ferrimagnetic

systems, in triangular-lattice antiferromagnets, such as Cs2CuCl4 and in 2D materials.
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Chapter 1

Introduction

1.1 Motivation

During the last decades, the development of electronic devices has been focused in finding out al-

ternative and efficient ways of transport information [1]. Spintronics is the branch of condensed matter

physics that deals with possible ways to generate, transport and detect polarized currents of spin angular

momentum (spin currents).

Up to date, ferromagnetic systems have been widely used for spin currents generation, due to their

capability of naturally presenting spin waves [2]. Ferromagnetic materials produce a spontaneous magne-

tization, due to the microscopic fact that spins tend to align parallelly to each other [2] (see Figure 1.1a).

An exemplary material that is commonly treated as a ferromagnetic system is Y3Fe5O12, also known as

“YIG”, which stands out for its low spin waves damping [3].

a

(a) Ferromagnetic system

a

(b) Antiferromagnetic system

Figure 1.1: Comparison between ferromagnetic and antiferromagnetic basic structures. Blue and red

arrows represent spin directions.

On the other hand, recent research [4] have proved the big potential that antiferromagnetic materials

have in spintronics. In these systems, spins tend to align anti-parallelly, cancelling all net magnetization

[5] (see Figure 1.1b). For this reason, such materials are robust against external magnetic perturbations.
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CHAPTER 1. INTRODUCTION 5

Another advantage of these materials is the ultra-fast dynamics given by their resonance frequency, which

is in the order of THz (while ferromagnetic frequencies are in the order of GHz) [5]. An intermediate

situation between both cases are the ferrimagnetic systems: just like antiferromagnets, they also have

spins pointing in opposite directions, but one direction dominates over the other, producing a net mag-

netization [6].

Due to the above, the development of new storage and processing technologies seeks to incorporate

the use of antiferromagnetic materials, with an increasingly protagonist role [7, 8, 9]. However, when

studying a new magnetic material, it is necessary to determine if it is ferromagnetic, ferrimagnetic or

antiferromagnetic. In addition, it would be useful to determine magnetic properties of the sample, such

as its (an)isotropy, magnetization, spin waves dissipation, etc. There exist appropriate techniques for

every type of measurement [10, 11, 12, 13], but none of them is transverse; they tend to vary according

to which parameter to measure and the type of material. Also, most of these techniques can only take

global measurements of the sample, but not point-to-point.

A reliable method to deal these problems is using nitrogen-vacancy centers (NV− centers, or NV for

short), which are point defects in a diamond lattice [14], as illustrated in Figure 1.2, and whose optical

properties make it a desirable sensor to probe environment fluctuations (electric, magnetic or thermal)

[15]. In the next section we will explain more deeply how this can be done, but the main idea is to locate

the NV center on the sample and measure the relaxation time a NV center takes to decay from one spin

state to another, in a given external magnetic field. Such decay has an exponential form, and can be

measured as photoluminiscence in a photon detector.

V
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Figure 1.2: (a) Diamond lattice with a NV center and the coordinate system used attached to it. Here,

the z′ axis coincides with the anisotropy direction, which joins the nitrogen and the vacancy. From now

on, NV centers will be represented as an arrow indicating its ẑ′ direction.
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Measuring the photoluminiscence decay as a function of time directly gives us how the spin occupation

probability evolves in time. When a magnetic sample is located near to the NV center, this exponential

decay becomes steeper (as illustrated in Figure 1.3), and one can obtain information of the sample from

this faster decay. Particularly, the NV center has the big advantage that it can be initialized in one of its

spin states (namely |0⟩), almost with full probability, as will be explained in the next section.
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Figure 1.3: Occupation probability of the |0⟩ spin state versus time, with and without a sample near to

the NV center. In this case, these measurements were made using a paramagnetic GdCl3 salt [16].

This molecule has been already used for measuring magnetic properties of YIG [17], and has demon-

strated to be a good alternative to the conventional characterization techniques, such as ferromagnetic

resonance. It also has been used a few times for similar measurements in antiferromagnetic systems [18],

but only for a specific type of material, with uniaxial anisotropy (easy-axis anisotropy). For instance,

there is still no experimental or theoretical characterization of antiferromagnetic materials with biaxial

anisotropy (easy-plane anisotropy), even though their striking magnetic properties, like presenting two

different resonances even at zero magnetic field [19].

The main goal of this work is to describe theoretically the interaction between a nitrogen-vacancy

center and a magnetic material, developing with this an experimental method applicable to several types of

samples. Specifically, we want to compare how NV center relaxation rates react against both ferromagnetic

and antiferromagnetic materials, and determine the practical conditions the last materials must satisfy

for these relaxation rates to be detected.
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1.2 Description of this thesis

In this thesis, we describe theoretically the interaction between a magnetic sample and NV center

relaxation times, as a method to measure physical quantities for magnetic materials. First, Chapter 2

introduces NV center dynamics. A three-level model is presented to describe how NV spin probabilities

evolve in time, and how one can obtain the relaxation rates from this model. Also, we introduce NV cen-

ter’s electronic hamiltonian and explain mathematically how a time-dependent perturbation, generated

by spin fluctuation in the sample, can be used to calculate the relaxation rates.

Chapter 3 describes the magnetic noise produced by the sample and how it is connected with the

NV center via fluctuation-dissipation theorem. We model the sample as a 2D disk of magnetic dipoles

with spin, displayed continuously. Using classical electrodynamics, we relate the spin fluctuations in the

sample with the magnetic field detected by the NV center, and therefore obtain a general formula for the

desired relaxation rates. This expression is given by the spin-spin correlation functions, so describing how

spins statistically correlate in the sample plays a crucial role in this work.

Chapter 4 introduces the physical parameters of a ferromagnetic sample, necessary to calculate the

relaxation rates. We describe here spin waves, their quanta (magnons) and how magnon energies are al-

tered when anisotropies are present. Chapter 5 does the same but for antiferromagnetic materials. Both

Chapters 4 and 5 are almost fully dedicated to introducing the required concepts of magnetic materials,

without talking so much about NV centers.

Finally, Chapter 6 shows explicit calculations for the required spin-spin correlations, considering the

materials introduced in previous chapters. Using these correlation functions, we obtain simulations for

the relaxation rates, both for ferromagnetic and antiferromagnetic samples.

1.3 NV centers

The nitrogen-vacancy center is a point-defect in a diamond lattice, consisting of a nitrogen atom

replacing a carbon, and therefore creating a vacancy next to it (as shown in Figure 1.2). Such molecule

can be typically found in two charge states: NV0 o NV−, with different optical properties and angular

momentum between them [14]. For our proposal, we use the NV−, which we are going to write simply as

NV. This charge configuration has a spin quantum number 1, so its energy ground state |g⟩ is presented

as a triplet |g;−⟩, |g; 0⟩ and |g; +⟩, which from now on will be written as |−⟩, |0⟩ and |+⟩, unless otherwise
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indicated. Experimentally, it is known that between the states |0⟩ and |±⟩ exists a zero-field splitting,

which in angular frequency units has the value DNV = 2π× 2.87 GHz [20], as shown in Figure 1.4. When

an external magnetic field BNV is applied, the degenerate spin states |±⟩ split their energies via Zeeman

effect. When BNV = BNVẑ
′, this energy difference is 2ℏγNVBNV, where ℏ is the reduced Planck’s constant

and γNV = 2µB/ℏ is the molecule gyromagnetic factor, being µB the Bohr magneton.

Valence band

Conduction band

5.5 eV

ms = 0

ms = ±1

|g⟩

ms = 0

ms = ±1

|e⟩

1.94 eV

|0⟩

|±⟩

BNV = 0

ℏDNV

|0⟩

|−⟩

|+⟩
BNV ̸= 0

2ℏγNVBNV

Figure 1.4: Energy levels of the NV center [20]. For the ground-state |g⟩, there exists a zero-field splitting

energy ℏDNV = 2πℏ × 2.87 GHz between the spin states |0⟩ and |−⟩, while the spin states |+⟩ and |−⟩

are degenerate. The orange box indicates how this degeneracy is lifted when an external magnetic field

(in the z′ direction) is applied.

Between the ground state |g⟩ and the first excited state |e⟩, there exists a dark state |s⟩ of intermediate

energy, whose transitions |e⟩ → |s⟩ and |s⟩ → |g⟩ do not irradiate visible light (see Figure 1.5). This state

plays a crucial role for the optical manipulation of NV centers, due to its strong spin-selectivity and

meta-stability. NV centers in the spin states |e;±⟩ tend to pass through this meta-stable state instead of

directly returning to |g;±⟩. However, |s⟩ is a singlet with spin state ms = 0, so |s⟩ → |g; 0⟩ is the allowed

transition. As a result, NV center’s occupation is completely polarized in its |g; 0⟩ state, almost with full

probability, after exciting it into its |e⟩ triplet.
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|s⟩ (ms = 0, singlet)

ms = 0

ms = −1
ms = +1

|g⟩

ms = 0

ms = −1
ms = +1

|e⟩

π

Figure 1.5: Allowed transitions between the states |g⟩, |e⟩ and the dark state |s⟩ (meta stable). A NV

center in the |e;±⟩ state won’t decay immediately to |g;±⟩, but it passes through the meta stable |s⟩,

and then it decays to |g; 0⟩, without emitting visible light. Dashed arrows between the |g; 0⟩ and |g;±⟩

states illustrate how a microwave (MW) of half-period (π-pulse) and resonant frequency ωMW exchanges

the occupation probabilities of |g; 0⟩ and |g;±⟩, depending on which spin state resonates.

The energy difference between the ground state |g⟩ and the first excited state |e⟩ is ∆Eeg = 1.94 eV,

which is equivalent to a radiation wavelength1 of λeg ≈ 640 nm. So, the necessary energy to excite a NV

center (and therefore, to set it in the |g; 0⟩ spin state) can be obtained from a typical green laser pulse2

(532 nm) [20]. In this way, when this kind of pulse is received at instant t = 0, the initial condition of

probability P0 (t = 0) = 1 is guaranteed. After some time t, the system will lose coherence due to the

energetic exchange with its environment, as illustrated in Figure 1.6.

Moreover, one can measure this probability P0 (t) at any time t by applying again a green laser pulse.

As explained in Figure 1.4, NV centers excited from |g;±⟩ spin states won’t irradiate visible light when

turning back to |g⟩. In fact, the radiation given by the green laser is absorbed and re-emitted as non-visible

radiation, resulting in less reply photons to count. This doesn’t happen for NV centers in |g; 0⟩ state. As

a result, there is a direct relation between the photoluminiscence probed by a photon detector and the

occupation probability of the |0⟩ state. Indeed, the normalized photoluminiscence, with respect to this

counting at t = 0, coincides with P0 (t). One can also measure P± (t) (the occupation probability of the

respective |g;±⟩ spin states) at a given time t by applying a π-pulse microwave (MW) before reading out.

1Here we use the relation ∆Eeg = hνeg = hc/λeg, being h the Planck’s constant and c the speed of light.
2Actually, the green laser pulse gives the NV center an energy greater than ∆Eeg, as can be seen from their respective

wavelengths (532 nm < λeg). Fast, phonon-mediated relaxation takes the NV center into the electronic excited state |e⟩,

without emitting visible light.
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As illustrated in Figure 1.5, this π pulse exchanges P0 ↔ P+ (if the microwave frequency resonates with

the |0⟩ ↔ |+⟩ transition) or P0 ↔ P− (if the microwave frequency resonates with |0⟩ ↔ |−⟩). In this

way, one can measure all three probabilities P0 (t), P+ (t) and P− (t) and analyze their exponential decay

to obtain information about NV center’s environment. This experimental technique is the so-called NV

center relaxometry.

πInitialize Readout

Time

t
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Figure 1.6: Photoluminiscence versus time t. Top panel: optical and microwave (MW) sequence for

NV relaxometry measurements. An initial green laser pulse (addressed as “Initialize”) is given to the

NV center. After some variable time t, other green laser pulse is used for probing (“Readout”) the

spin occupation probability (P0 (t) if no microwave; P± (t) if the π-microwave angular frequency ωMW

coincides with the respective resonance frequencies ω±) as photoluminiscence. Bottom panel: occupation

probabilities P0, P+ and P− as functions of time t. In this case, external factors provoke the probability

P− to increase faster than P+, but the constraint P0 (t) + P+ (t) + P− (t) = 1 is satisfied for each t.

Summarizing, the NV center has three interesting properties that makes it a great candidate for optical

manipulation:

� Its occupation probability can be coherently initialized as P0 (t = 0) = 1, just by giving it the

necessary excitation energy.

� The later excitation energy can be obtained from a typical, nonresonant green laser radiation
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(532 nm).

� The returning transition |e; 0⟩ → |g; 0⟩ irradiates visible light while |e;±⟩ → |s⟩ → |g; 0⟩ don’t, so

one can also use green laser pulses for reading |g; 0⟩ state’s occupation.

1.4 NV center relaxometry

The central quantities in this work are the NV center relaxation rates Γ±, associated with the tran-

sitions |0⟩ ↔ |±⟩. In a three-level poblational model (see Figure 1.7), those Γ± are the transition rates

that relate the occupation probabilities of each level.

|0⟩

|−⟩

|+⟩

Γ−

Γ+

λ

Figure 1.7: Energy-level diagrams with their respective transitions and relaxation rates. Transitions

between |+⟩ and |−⟩ states are negligible up to first order. Also, we consider Γ+ as the same factor both

for absorption and decay (the same for Γ−).

Based on the three-level diagram, we write

dP0

dt
= −Γ+P0 − Γ−P0 + Γ+P+ + Γ−P−

dP+

dt
= Γ+P0 − (Γ+ + λ)P+ + λP−

dP−
dt

= Γ−P0 + λP+ − (Γ− + λ)P−,

In matrix form,

d

dt


P0

P+

P−

 = ΓP =


− (Γ+ + Γ−) Γ+ Γ−

Γ+ −Γ+ − λ λ

Γ− λ −Γ− − λ



P0

P+

P−

. (1.1)

The probabilities P0 (t), P+ (t) and P− (t) can be measured directly in the experiment, as photolu-

miniscence. The relaxation rates Γ± define how these probabilities evolve, and during the last years, there

has been a huge research topic to find how these rates depend on the physical properties of the sample,

so one can measure the sample just analyzing NV photoluminiscences. This experimental technique is
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the so-called NV center relaxometry. Its application to magnetic samples was first reported in 2015 by

Van der Sar et al. [21] using a permalloy sample, and six years later it was used to measure the effective

magnetization Meff of a YIG sample [17], giving excellent agreement with the ferromagnetic resonance

technique. In both situations, they had to fit the relaxation rates Γ± (BNV,Meff ) to experimental data of

photoluminiscence. Chapters 2 and 3 are fully dedicated to show a derivation for this explicit formula, and

in Chapter 4 and in Chapter 5 we adjust it for the ferromagnetic and antiferromagnetic cases, respectively.



Chapter 2

NV center dynamics

The nitrogen-vacancy center is a point-defect in a diamond lattice, consisting of a nitrogen atom

replacing a carbon, and therefore creating a vacancy next to it (as shown in Figure 1.2). As a spin-1

molecule, its ground state |g⟩ is disposed as a triplet of spin states |0⟩ and |±⟩, with a zero-field-splitting

energy ℏDNV between |0⟩ and |±⟩, as introduced in Section 1.3. In this chapter, we explain more deeply

the NV dynamics and how it reacts against an external magnetic perturbation (caused, for example, by

spin fluctuations in a near magnetic system). Considering these perturbations, we calculate the needed

relaxation rates Γ± that appear in relaxometry techniques. Finally, we explain some technical details and

limitations given by the NV center one must consider when doing the experiment.

2.1 Three-level model

In Section 1.4 was introduced the system of differential equations that describes the time evolution of

the probabilities P0 (t), P+ (t) and P− (t) for the spin states |0⟩, |+⟩ and |−⟩, respectively, given by (1.1)

in the form dP/dt = ΓP, with P =
[
P0 P+ P−

]⊤
and

Γ =


− (Γ+ + Γ−) Γ+ Γ−

Γ+ −Γ+ 0

Γ− 0 −Γ−

. (2.1)

Up to first order, the relaxation rate λ between the |+⟩ and |−⟩ spin states is unaffected by the magnetic

noise [21], so λ ≪ Γ± and we can set λ → 0. The resulting differential equations bring a useful relation

for Γ±:
dP±
dt

∣∣∣∣
t=0

= Γ±P (t = 0) . (2.2)

Diagonalizing Γ, we find

Γ = ΛΓ′Λ⊤

13
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where

Λ =


1 A+ A−

1 B+ B−

1 1 1

,
being these coefficients given by

A± = −
Γ2
− + Γ2

+ − (Γ+ + Γ−)λ± (Γ+ + Γ−)σ

Γ2
− − Γ+λ± Γ−σ

,

B± = −
∓Γ2

+ ± Γ−λ− Γ+σ

±Γ2
− ∓ Γ+λ+ Γ−σ

,

with

σ =
√

Γ2
− − Γ+Γ− + Γ2

+ − Γ−λ− Γ+λ+ λ2,

and

Γ′ =


0 0 0

0 −Γ+ − Γ− − λ− σ 0

0 0 −Γ+ − Γ− − λ+ σ


is the diagonal matrix of eigenvalues. The general solution of the equation system (1.1) can be written in

terms of these elements:

P = c1


1

1

1

+ c2


A+

B+

1

 exp(−Γ+ − Γ− − λ− σ)t+ c3


A−

B−

1

 exp(−Γ+ − Γ− − λ+ σ)t

We know that NV centers can initialize in its |0⟩ spin state by giving them a green laser pulse (532

nm), so we can realistically state the initial condition P(t = 0) =
[
1 0 0

]⊤
. In this case, the coefficients

c1, c2 and c3 are given by

c1 +A+c2 +A−c3 = 1

c1 + B+c2 + B−c3 = 0

c1 + c2 + c3 = 0

For instance, the first component is

P0 (t) =− B− − B+

A− −A+ − B− +A+B− + B+ −A−B+

− 1− B−
A− −A+ − B− +A+B− + B+ −A−B+

A+ exp(−Γ+ − Γ− − λ− σ)t

+
1− B+

A− −A+ − B− +A+B− + B+ −A−B+
A− exp(−Γ+ − Γ− − λ+ σ)t.
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In the special case where Γ+ = Γ− = Γ (e.g, BNV = 0, without external magnetic field), the transformation

matrix Λ reduces to

Λ =


1 0 −2

1 −1 1

1 1 1

.
and the solution for P is enormously simplified:

P0 (t) =
1

3
+

2

3
exp(−3Γt).

Note that this probability evolution considers the spontaneous emission and radiation absorption of the NV

center. These are the mechanisms that allows the molecule to move from one state to another throughout

the time t in this model. This time t is what one can actually measure through the experiment, and in

that sense, it is a macroscopic time.

2.2 NV center electronic hamiltonian

Negatively charged nitrogen-vacancy (NV−) centers can be seen as a pair of electrons, interacting

between them as two magnetic dipoles. This gives rise to an interaction potential [22] of the form (see

Appendix A)

Ĥint =
1

ℏ
Ŝ†DŜ (2.3)

where Ŝ = Ŝxx̂
′ + Ŝyŷ

′ + Ŝzẑ
′ is the spin angular momentum vector (considering spin 1) and D matrix

representation of the zero-field splitting tensor. This matrix is symmetric and diagonalizable, so one can

always choose a coordinate system for the spatial coordinates such that

Ĥint =
1

ℏ

(
DxŜ

2
x +DyŜ

2
y +DzŜ

2
z

)
. (2.4)

This matrix representation uses the three principal axes as canonical basis, being one of them the sym-

metry axis ẑ′. The other two elements are the x̂′ and ŷ′ directions.

Putting this interaction together with the Zeeman effect term, the total electronic NV hamiltonian is

built:

Ĥ = γNVBNV · Ŝ+
1

ℏ

(
DxŜ

2
x +DyŜ

2
y +DzŜ

2
z

)
(2.5)

where γNV = 2π × 2.86 MHz/G is the NV center gyromagnetic factor and BNV is the magnetic field

detected by the molecule. Note that other energy contributions, like electron-nuclei interaction or nuclear

Zeeman effect, were neglected. From now on, we will consider only electronic energies. It is possible to
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reduce even more this expression by defining DNV = 3Dz/2 and ENV = (Dx −Dy) /2, obtaining

Ĥ = γNVBNV · Ŝ+
DNV

ℏ

(
Ŝ2
z +

2

3

)
+

ENV

ℏ

(
Ŝ2
x − Ŝ2

y

)
(2.6)

Here, DNV = 2π × 2.87 GHz is the same zero-field splitting factor mentioned in Chapter 1, while the

ENV anisotropy factor introduces a splitting between the |+⟩ and |−⟩ energies. This anisotropy in the

x′y′ plane appears due to strain in the diamond lattice. However, compared to DNV, this factor ENV is

relatively small; it is just of a few MHz, and rarely exceeds 2π × 5 MHz [23]. For this reason, we can

neglect this term, too, resulting finally

Ĥ = γNVBNV · Ŝ+
DNV

ℏ
Ŝ2
z . (2.7)

where the constant term 2D/3 was omitted. If we choose the spin state representation

|+⟩ =


1

0

0

 |0⟩ =


0

1

0

 |−⟩ =


0

0

1

 (2.8)

the spin operators are written in matrix form as

Ŝx =
ℏ√
2


0 1 0

1 0 1

0 1 0

 Ŝy =
ℏ√
2


0 −i 0

i 0 −i

0 i 0

 Ŝz = ℏ


1 0 0

0 0 0

0 0 −1

. (2.9)

Using this representation, one can build a 3 × 3 square matrix for Ĥ in equation (2.7). The eigenvalues

E+, E0 and E− of this matrix represent the eigenenergies, and the NV resonance frequencies are defined

as ω± = (E± − E0) /ℏ. In this way, a NV center, initially in its spin state |0⟩, can take two possible

transitions: |0⟩ ↔ |+⟩ or |0⟩ ↔ |−⟩, whose respective resonance frequencies ω± depend on the external

magnetic field BNV, as illustrated in Figure 2.1. In the simplest case, when the external magnetic field is

aligned with the direction ẑ′ of the NV center (BNV = BNVẑ
′), we have ω± = DNV ± γNVBNV. On the

other hand, if BNV is not parallel to ẑ′, it is necessary to find ω± = ω± (BNV) by solving the eigenvalues

of the hamiltonian operator (2.7).
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Figure 2.1: NV resonance frequencies ω± versus external magnetic field BNV, using several angles θ′B

between BNV and ẑ′ [23]. For each angle, ω+ ≥ ω−, and both frequencies converge to DNV/(2π) =

2.87GHz as BNV → 0.

2.3 Perturbed relaxation rates

One can find the relaxation rate coefficients Γ± by using time-dependent quantum perturbation theory

[24]. Considering magnetic field perturbations, the unperturbed hamiltonian in (2.7) turns out to be the

stationary part of the total hamiltonian

Ĥ (t) = Ĥ(0) + Ĥ ′ (t) ,

where

Ĥ ′ (t) = ℏγNV

3∑
j=1

B′
j (t) Ŝj (2.10)

is the time-dependent perturbation for the Zeeman term γ̂NVBNV · Ŝ. This fluctuation contains all time-

dependence of the magnetic field.

The ground state |g⟩ can be expanded [25] as

|g⟩ = c0 (t) exp

(
− iE0t

ℏ

)
|0⟩+ c+ (t) exp

(
− iE+t

ℏ

)
|+⟩+ c− (t) exp

(
− iE−t

ℏ

)
|−⟩

⇒ |g⟩ =
1∑

m=−1

cm (t) exp

(
− iEmt

ℏ

)
|m⟩ .

Time-dependent perturbation theory is useful for finding the coefficients c0 (t), c+ (t) and c− (t). These

coefficients allow us to calculate the transition probability Pℓn (t) of a NV center going from the |ℓ⟩ spin
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state to the |n⟩, within the time interval [0, t]. This probability can be formulated as follows: it’s the

probability of being in the state |n⟩ at instant t, given that it was initially in the state |ℓ⟩ at instant 0:

Pℓn (t) = |cn (t)|2
∣∣∣∣
cℓ(0)=1

, (2.11)

whose derivative,
dPℓn

dt
= c∗n

dcn
dt

+ cn
dc∗n
dt

(2.12)

can be used to obtain the relaxation rates Γℓn, where the case ℓ = 0 and n = + gives us Γ+, while n = −

returns Γ−.

Note that these transitions, unlike those shown in Section 2.1, are directly caused by the perturbation

Ĥ ′ (t), and have nothing to do with spontaneous emission or radiation absorption. When Bj (t) = 0, this

transition completely vanishes. In this way, these corrections caused by the perturbation are too fast when

compared to the macroscopic transitions from Section 2.1, which is to say, within the interval [0, t], only

transitions due to perturbations occur, and the radiative transitions will only appear if we take t → ∞.

So, as the measurement time t lies around the initial time t = 0 in equation (2.2),

Γℓn =

〈
dPℓn

dt

∣∣∣∣
t=0

〉
=

〈(
c∗n

dcn
dt

+ cn
dc∗n
dt

)
cℓ(t)=1

〉
(2.13)

where we used the definition (2.11) in the last identity and ⟨. . .⟩ is the canonical average. This average

comes out due to the fact we are macroscopically measuring this correction to the relaxation rate caused

by microscopic fluctuations {Bj (t)}3j=1.

According to Schrödinger’s equation,

iℏ
∂

∂t
|g⟩ = Ĥ |g⟩

⇒ iℏ
∂

∂t

1∑
m=−1

cm (t) exp

(
− iEmt

ℏ

)
|m⟩ = Ĥ

1∑
m=−1

cm (t) exp

(
− iEmt

ℏ

)
|m⟩

⇒
1∑

m=−1

{
iℏ
dcm
dt

exp

(
− iEmt

ℏ

)
|m⟩+ Emcm (t) exp

(
− iEmt

ℏ

)
|m⟩
}

=
1∑

m=−1

cm (t) exp

(
− iEmt

ℏ

)[
Ĥ(0) + Ĥ ′ (t)

]
|m⟩ .

Taking the inner product with |n⟩, using the fact that eigenstates are orthogonal and defining ωmn =

(Em − En) /ℏ, we get

dcn
dt

= − i

ℏ

1∑
m=−1

⟨n|Ĥ ′ (t)|m⟩ cm (t) exp(−iωmnt). (2.14)
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Up to first order (approximating cn (t) ≈ cn (0) in equation (2.14)),

cn ≈ cn (0)−
i

ℏ

1∑
m=−1

cm (0)

∫ t

0
⟨n|Ĥ ′ (t′)|m⟩ exp

(
−iωmnt

′) dt′ . (2.15)

So, inserting equations (2.14) and (2.15) into (2.13), for ℓ ̸= n, we obtain

dPℓn

dt
=

1

ℏ2

∫ t

0
⟨ℓ|Ĥ ′ (t′)|n⟩ ⟨n|Ĥ ′ (t)|ℓ⟩ exp iωℓn(t

′ − t) dt′

+
1

ℏ2

∫ t

0
⟨n|Ĥ ′ (t′)|ℓ⟩ ⟨ℓ|Ĥ ′ (t)|n⟩ exp iωℓn(t− t′) dt′ . (2.16)

Taking canonical average ⟨. . .⟩ and inserting this result into (2.13),

Γℓn =
1

ℏ2

∫ 0

−t

〈
⟨ℓ|Ĥ ′ (t+ τ)|n⟩ ⟨n|Ĥ ′ (t)|ℓ⟩

〉
exp iωℓnτ dτ

− 1

ℏ2

∫ 0

t

〈
⟨n|Ĥ ′ (t− τ)|ℓ⟩ ⟨ℓ|Ĥ ′ (t)|n⟩

〉
exp iωℓnτ dτ .

where the substitution τ = t′−t was performed in the first integral, while τ = t−t′ was used in the second

one. The quantity Gℓm (t, τ) =
〈
⟨ℓ|Ĥ ′ (t+ τ)|n⟩ ⟨n|Ĥ ′ (t)|ℓ⟩

〉
is a correlation function, and it must satisfy

the properties Gℓm (t, τ) = Gℓm (0, τ) = Gℓm (τ) and Gℓm (τ) = Gℓm (−τ). As usual for time-dependent

quantum perturbations theory, we consider t ≫ 1/ωℓn. So,

Γℓn =
1

ℏ2

∫ ∞

−∞

〈
⟨ℓ|Ĥ ′ (τ)|n⟩ ⟨n|Ĥ ′ (0)|ℓ⟩

〉
exp iωℓnτ dτ .

The next step is to replace the perturbation Ĥ ′ (t) using equation (2.10):

Γℓn =

∫ ∞

−∞

〈
⟨ℓ|γNV

3∑
j=1

ŜjB
′
j (τ)|n⟩ ⟨n|γNV

3∑
k=1

ŜkB
′
k (0)|ℓ⟩

〉
exp iωℓnτ dτ

⇒Γℓn = γ2NV

3∑
j=1

3∑
k=1

⟨ℓ|Ŝj |n⟩ ⟨n|Ŝk|ℓ⟩
∫ ∞

−∞

〈
B̂′

j (τ) B̂
′
k (0)

〉
exp iωℓnτ dτ︸ ︷︷ ︸

Ajk

Clearly Ajk = A∗
kj , so this sum can be rewritten1 as

Γℓn = γ2NV

3∑
j=1

3∑
k≥j

2Re(Ajk)

From the explicit spin matrices (2.9) one may notice that, for j ̸= z and k ̸= z, the product ⟨ℓ|Sj |n⟩ ⟨n|Sk|ℓ⟩

will always be an imaginary number without real part, unless j = k. On the other hand, if j = z or

k = z, the product ⟨ℓ|Ŝj |n⟩ ⟨n|Ŝk|ℓ⟩ will result immediately in 0 given that Ŝz is represented by a diagonal

matrix. Therefore, this double sum can be reduced to a single one:

Γℓn = γ2NV

∑
j ̸=z

| ⟨ℓ|Sj |n⟩|2
∫ ∞

−∞

〈
B̂′

j (τ) B̂
′
j (0)

〉
exp iωℓnτ dτ .

1Here, we have implicitly promoted the field fluctuations to operators: Bj (t) → B̂j (t) for j = x, y, z. How these are

related to other operators will be explained in the next chapter.
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Whether j = x or j = y, we have | ⟨ℓ|Sj |n⟩|2 = 1/2,

⇒ Γℓn =
γ2NV

2

∑
j ̸=z

∫ ∞

−∞

〈
B̂′

j (τ) B̂
′
j (0)

〉
exp iωℓnτ dτ .

As mentioned before, the coefficients Γ± are the central quantity of the relaxometry technique, and

finding them out gives us a complete description of the transitions between the spin states. If ℏω± is the

energy difference between the |±⟩ y |0⟩ eigenstates, we have

Γ± = Γ (ω±) =
γ2NV

2

∑
j ̸=z

∫ ∞

−∞

〈
B̂′

j (τ) B̂
′
j (0)

〉
exp(iω±τ) dτ . (2.17)

We observe that the relaxation rates Γ± are given by the temporal Fourier transform of the transverse

magnetic correlation functions, evaluated in the respective frequencies ω±.

2.4 NV center sensibility

One striking application of NV centers is its capability of measuring external magnetic fields at a

position r. The experimental setup has a very basic idea: a NV center is located at r and the external

magnetic field BNV we want to measure is turned on. At t = 0, the NV center receives a green laser pulse

(532 nm) in such a way that it is initialized in its spin |0⟩ state, emitting visible light due to the |e⟩ → |g⟩

transition (as explained earlier in Chapter 1). This light intensity is measured as photoluminiscence PL

in a photon detector.

As discussed before, the NV resonance frequencies ω± depend on BNV, so one can also apply a

microwave of angular frequency ω and sweep it around the zero field splitting DNV = 2π × 2.87GHz.

When ω = ω−, the molecule absorbs the electromagnetic radiation and uses it to perform a transition

|0⟩ → |−⟩, resulting in a lesser photoluminiscence PL. The same occurs when ω = ω+. As a result, the

curves of photoluminiscence PL versus frequency ω have two down peaks, as shown in Figure 2.2. Such

peaks have lorentzian forms, with a contrast C, typically below 0.3. The splitting between these two

minima gives us the field magnitude BNV. In fact, when BNV is aligned with the anisotropy axis ẑ′, we

have ω+ − ω− = 2γNVBNV. This technique is known as magnetometry.
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Figure 2.2: Photoluminiscence versus frequency, for an external magnetic field BNV. If BNV = BNVẑ
′,

the splitting between the two resonance frequencies is 2γNVBNV.

This technique has a maximum theoretical precision, which can be obtained by considering the contrast

C [20]. One can show that the minimum measurable difference between ω+ and ω− is

∆ω ≈ a

2C
√
I0∆t

(2.18)

where a is the half-width at half-maximum of the lorentzian bands, C is the optical contrast, I0 is the pho-

ton counting rate and ∆t is the measurement time. For instance, if a ≈ 9.5MHz, C ≈ 0.3, I0 ≈ 5×104 s−1

and ∆t ≈ 1 s, we get ∆ω ≈ 2π× 73 kHz. So, in this situation, the minimum measurable variation of mag-

netic field is ∆BNV ∼ 1 µT. This sensitivity can be improved measuring several NV centers simultaneously

(ensemble magnetometry), from structures like nanodiamonds, and one can even detect magnetic fields

of the order of nT [15].

In summary, Nitrogen-Vanacy centers are able to detect magnetic fields just by measuring their res-

onance frequencies ω± = ω± (BNV). This field-dependence not only allows us to probe the magnitude

BNV, but also it is possible to describe how the relaxation rates Γ± = Γ (ω±) = Γ± (BNV) depend on the

external magnetic field. So, the intuitive experiment proposed here is to create a graph of Γ± for several

values of BNV, and fitting that curve with the result (2.17) would determine the physical properties of

the sample, hidden in the field correlators
〈
B′

j (t)B
′
j (0)

〉
. What we have to do now is to expand this

correlation function in terms of the time-dependent spin fluctuations of the sample.



Chapter 3

Magnetic noise

The relaxation rates Γ = Γ (ω) of the NV center were expressed in Chapter 2 as functions of the

magnetic noise detected by the molecule. However, we hardly talked about where these magnetic pertur-

bations are generated. In this chapter, we consider a magnetic sample which generates this field variation

through spin fluctuations, and we will relate it with the spin-spin correlation functions of the sample,

using statistical mechanics tools.

3.1 Stray field generated by a magnetic sample

The main idea of the experimental setup consists of positioning a NV center at a distance z on the

sample (see Figure 3.1). We model the sample as a continuous two-dimensional (2D) disk of magnetic

dipoles. At each position r′′, there is a dipole and therefore a magnetization M (r′′). According to classical

electrodynamics, this magnetization generates a magnetic field B (r) (also known as stray field)1 at the

position r = zz and Maxwell’s equations offers us a way to relate B (r) and M (r′′). Moreover, the disk is a

continuous medium of dipoles with spin. In fact, M (r′′) is directly caused by the spin angular momentum

S (r′′), seen now as a continuous function of r′′. This is the so-called macrospin approximation, which

brings immediately the following expression to relate S (r′′) and M (r′′):

M
(
r′′
)
=

gµB

ℏ
n
(
r′′
)
S
(
r′′
)
,

where g is the Landè g-factor (typically, g ≈ 2), µB is the Bohr magneton and n (r′′) is the volumetric

density of dipoles. The last quantity can be expressed in terms of a surface density σ by using n (r′′) =

1Do not confuse B (r) (the stray field generated by the sample) with BNV (r) (the total magnetic field detected by the

NV center). The last one considers both the stray field B (r) and the external magnetic field H0. In this work, we assume

that |H0| ≫ |B (r)|, so BNV (r) ≈ H0.

22
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σδ (r′′). Therefore, the magnetization is related to a spin surface density s (r′′) = σS (r′′)

M
(
r′′
)
= γs

(
r′′
)
δ
(
r′′
)

(3.1)

where we have defined the sample gyromagnetic ratio γ = gµB/ℏ. In this way, a spin fluctuation s (r′′) →

s (r′′, t) at position r′′ and instant t in the sample is detected by the NV center as a time-dependent

magnetic field field BNV (r) → BNV (r) +B (r, t), which is exactly what we have discussed in Chapter 2

using quantum perturbation theory.

z

y

x

z′

θ

NVz

S (r′′)
r′′

Figure 3.1: Disk modelling the thin film sample, along with the used coordinate system xyz. Note that

this system is independent of the x′y′z′ axes used to describe the NV center.

We can relate both quantities (spin angular momentum and magnetic field) by using Maxwell’s equa-

tions. To begin with, the magnetic vector potential A and the magnetization M follow the relation (in

CGS units)

A (r) =

∫
M
(
r′′
)
× r− r′′

|r− r′′|3
d3r′′ .

Applying curl on both sides of this relation (knowing B = ∇×A), we get

B (r) =

∫
∇×

(
M
(
ρ′′)× r− r′′

|r− r′′|3

)
d3ρ′′

⇒B (r) =

∫ {
M

(
∇ · r− r′′

|r− r′′|3

)
− (M ·∇)

r− r′′

|r− r′′|3

}
d3ρ′′

⇒B (r) =

∫ {
4πδ3

(
r− r′′

)
M
(
ρ′′)− (M ·∇)∇′′ 1

|r− r′′|

}
d2ρ′′ , (3.2)

and using the macrospin approximation (3.1) in (3.2), for r ̸= r′′,

B (r) = γ

∫ {
− (s ·∇)∇′′ 1

|r− r′′|

}
d2ρ′′ .

In a more compact form, this integral can be written as

B (r) = γ

∫
D
(
r− r′′

)
· s
(
r′′
)
d2r′′ , (3.3)

being D (r− r′) = −∇∇′|r− r′|−1 the dipole tensor. In the Cartesian system of coordinates xyz, it can

be explicitly expressed as

Dαβ

(
r− r′′

)
= −∂α∂

′′
β

1

|r− r′′|
, (3.4)
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which is to say,

Dαβ

(
r− r′′

)
=

3 (xα − x′′α)
(
xβ − x′′β

)
[(x− x′′)2 + (y − y′′)2 + (z − z′′)2]5/2

if α ̸= β

Dαβ

(
r− r′′

)
=

3 (xα − x′′α)
(
xβ − x′′β

)
[(x− x′′)2 + (y − y′′)2 + (z − z′′)2]5/2

− 1

[(x− x′′)2 + (y − y′′)2 + (z − z′′)2]3/2
if α = β.

The elements Dαβ can be easily manipulated in the Fourier space, where differential operators just

transform to algebraic products (F {∂αf} = −ikαF {f} if α ̸= z). Considering that we will need the

two-dimensional Fourier transform Fr′′ , the needed identities here are

Fr′′

{
1

|r− r′′|

}
(k, z) = 2π

exp(−k|z − z′′|)
k

Fr′′

{
∂

∂z

1

|r− r′′|

}
(k, z) = −2π exp

(
−k
∣∣z − z′′

∣∣)
Fr′′

{
∂2

∂z2
1

|r− r′′|

}
(k, z) = 2πk exp

(
−k
∣∣z − z′′

∣∣)
so

(FDzz) (k, z) = 2πk exp(−kz),

(FDαz) (k, z) = −2πikα exp(−kz) if α ̸= z,

(FDαβ) (k, z) = −2πkαkβ
exp(−kz)

k
if α, β ̸= z,

where we have written the 2D Fourier transform just as F for short. Therefore,

F {D} (k, z) = 2πk exp(−kz)


−k2x

k2
−kxky

k2
−ikxk

−kxky
k2

−k2y
k2

−i
ky
k

−ikxk −i
ky
k 1

.
Or, in polar coordinates (defining cosϕk = kx/k y sinϕk = ky/k),

F {D} (k, z) = 2πk exp(−kz)


− cos2 ϕk − sin 2ϕk

2 −i cosϕk

− sin 2ϕk
2 − sin2 ϕk −i sinϕk

−i cosϕk −i sinϕk 1

. (3.5)

What we have in equation (3.3) is a convolution, whose Fourier transform results in a simple algebraic

product:

F {B} = γF {D}F {s} .

Finally, taking the inverse Fourier transform,

B (r) =
γ

(2π)2

∫
F {D} (k, z) · F {s} (k) · exp(ik · ρ) d2k , (3.6)
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where the components of F {D} are given by equation (3.5). Strictly speaking, this integral is performed

on the sample first Brillouin zone (1BZ). In the continuous limit, this 1BZ is the entire plane.

Result (3.6) shows how the spin density s (r′′) generates a stray magnetic field B (r) detected by

the NV center at position r. In particular, a spin fluctuation s (r′′, t) generates a time-dependent field

fluctuation B (r, t), whose components in the NV coordinate system x′y′z′ (remember that the z′ and the

z axes might form an angle θ) are exactly the ingredients that appear in equation (2.17). From now on,

for simplicity, we write F {D} (k, z) → D (k, z) and F {s} (k, t) → s (k, t) and promote this quantity to

quantum operator: s (r, t) → ŝ (r, t), which satisties angular momentum algebra. Therefore, according

to (3.6), field fluctuations
{
B̂j (r, t)

}
j=x,y,z

are also operators, whose components in the NV coordinate

system x′y′z′ are

B̂′ (t) =
γ

(2π)2

∫
RθD (k, z) · ŝ (k, t) · exp(ik · ρ) d2k , (3.7)

where Rθ is the rotation matrix needed for doing the rotation from the xyz coordinates to the z′y′z′.

Remember that the magnetic field correlation
〈
B̂′

j (t) B̂
′
j (0)

〉
requires the magnetic field components

expressed in the NV coordinate system. Explicitly,

Rθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

.

With this, one can calculate the field-field correlation
〈
B̂′

j (t) B̂
′
j (0)

〉
:

〈
B̂′

j (t) B̂
′
j (0)

〉
=

γ2

(2π)4

∫ ∫
RjℓDℓn (k)RjpDpm

(
k′) 〈ŝn (k, t) ŝm (k′, 0

)〉
exp
[
i
(
k+ k′) · ρ]d2k′ d2k .

(3.8)

where summation convention was used. It is possible to show that only the terms with m = n contribute

to the sum (see Appendix B), where (from now on, summation convention is no longer used)

〈
ŝn (k, t) ŝn

(
k′, 0

)〉
= (2π)2 δ(2)

(
k+ k′)FR=r−r′′

{〈
ŝn (r, t) ŝn

(
r′′, 0

)〉}
(k, t)

so, inserting this into equation (3.8), we obtain〈
B̂′

j (t) B̂
′
j (0)

〉
=

γ2

(2π)2

∑
n=x,y,z

∫
Njn (k)FR=r−r′

{
Cαβ

(
r, r′; t

)}
(k, t) d2k , (3.9)

where FR is the 2D Fourier transform operator with respect to the coordinateR, Njn (k, z) = |RjℓDℓn (k, z)|2

and Cαβ (r, r
′; t) = ⟨ŝα (r, t) ŝβ (r′, 0)⟩, for the coordinates α, β = x, y, z. The explicit form of this matrix
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N is

N =(2πk)2 exp(−2kz)

×


cos4 ϕk cos

2 θ + cos2 ϕk sin
2 θ sin2 2ϕk cos2 θ

4 + sin2 ϕk sin
2 θ cos2 ϕk cos

2 θ + sin2 θ

sin2 2ϕk
4 sin4 ϕk sin2 ϕk

cos4 ϕk sin
2 θ + cos2 ϕk cos

2 θ sin2 ϕk cos
2 θ + sin2 2ϕk sin2 θ

4 cos2 θ + cos2 ϕk sin
2 θ

. (3.10)

This is the desired expansion that relates the field correlation functions
〈
B̂′

j (t) B̂
′
j (0)

〉
with the spin-spin

correlations Cαβ (r, r
′; t) = ⟨ŝα (r, t) ŝβ (r′, 0)⟩. Particularly, Cxx and Cyy are known as the transverse

spin-spin correlations, while Czz is the longitudinal correlation.

Finally, inserting the result (3.9) into the relaxation rates (2.17) found in Chapter 2, we obtain a first

formula that allows us to calculate Γ (ω), for a resonance frequency ω. From now on, unless otherwise,

we will refer to the (2+1)D Fourier transform of the spin-spin correlations F(R,t) {Cαβ (R, t)} (k, ω) just

as Cαβ (k, ω):

Γ (ω) =
(γγNV)

2

2 (2π)2

∫
{Nxx (k)Cxx (k, ω) +Nxy (k)Cyy (k, ω) +Nxz (k)Czz (k, ω)

+Nyx (k)Cxx (k, ω) +Nyy (k)Cyy (k, ω) +Nyz (k)Czz (k, ω)} d2k .

Replacing the explicit elements of the matrix N (k, z) found in equation (3.10),

Γ (ω) =
(γγNV)

2

2

∫
d2k k2 exp(−2kz){

(
cos4 ϕk cos

2 θ + cos2 ϕk sin
2 θ +

sin2 2ϕk

4

)
Cxx (k, ω)

+

(
sin2 2ϕk cos

2 θ

4
+ sin2 ϕk sin

2 θ + sin4 ϕk

)
Cyy (k, ω)

+
(
cos2 ϕk cos

2 θ + sin2 θ + sin2 ϕk

)
Czz (k, ω)} (3.11)

This is the most general form of the relaxation rates Γ (ω) in terms of the spin-spin correlation functions

Cαβ (k, ω) in the Fourier space. Symmetries are the key to reduce this expression. For instance, a U (1)-

symmetric system guarantees that the transverse spin-spin correlations are equal: Cxx = Cyy, which is

the case we treat during the following chapters. Also, we assume that Cαβ depend only on the wavevector

length k = |k|, which is always valid for isotropic systems and some anisotropic systems we will discuss

later.

With these assumptions in mind, we can write d2k = k dk dϕk and realize the integral over ϕk. Note
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that ∫ 2π

0
dϕk

(
cos4 ϕk cos

2 θ + cos2 ϕk sin
2 θ +

sin2 2ϕk

4

)
=

π

8
[11− 3 cos(2θ)]∫ 2π

0
dϕk

(
sin2 2ϕk cos

2 θ

4
+ sin2 ϕk sin

2 θ + sin4 ϕkθ

)
=

π

8
[9− cos(2θ)]∫ 2π

0
dϕk

(
cos2 ϕk cos

2 θ + sin2 θ + sin2 ϕk

)
=

π

2
[5− cos(2θ)] ,

so the sum of the first two integrals is exactly the last one. Therefore, the reduced expression for the

relaxation rate is [26]

Γ (ω) = f (θ)

∫ ∞

0
dk k3e−2kz [Cxx (k, ω) + Czz (k, ω)] (3.12)

where f (θ) = π (γγNV)
2 (5− cos 2θ) /4. Originally the integral in equation (3.11) is defined on the first

Brillouin zone (1BZ), but the filter function k3 exp(−2kz) in the integrand suppresses all the contributions

for large k ≫ 1/z, including those near the edges of the 1BZ (as a ∼ 1 nm and z ∼ 10 nm, we have

1/z ≫ π/a). Therefore, we are not making a significant error by extending the integration limits. Here,

Cαβ (k, ω) is the Fourier transform of the spin-spin correlation function Cαβ (r, r
′; t) = ⟨ŝα (r, t) ŝβ (r′, 0)⟩,

for the coordinates α, β = x, y, z. So far, all this procedure is general and does not depend on the physical

characteristics of the sample. All the information of the sample is implicitly content in the correlators

Cαβ.
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Figure 3.2: Filter function k3 exp(−2kz) versus wave number k in the 1BZ, for z = 100 nm = 0.1 µm.

Note that the correlations Cαβ are defined using the canonical average ⟨. . .⟩ out of equilibrium (con-

sidering also the time-dependent spin fluctuations), so equilibrium statistical mechanics tools, such as
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the use of the partition function, are no longer valid in this context. The strategy here is to use the

fluctuation-dissipation theorem [27], which establishes that, at temperature T > 0,

Cαβ (k, ω) =
2ℏ

1− exp
(
− ℏω

kBT

)χ′′
αβ (k, ω) , (3.13)

where kB is the Boltzmann constant and χ′′
αβ is the imaginary part of the linear response function χαβ,

given in the real space by the Kubo formula [28]

χαβ

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝα (r, t) , ŝβ

(
r′, 0

)]〉
eq
, (3.14)

being ⟨. . .⟩eq the canonical average in thermal equilibrium (without time-dependent fluctuations). In this

way, the calculation for correlators Cαβ can be reduced to finding the linear response function χαβ through

the spin-spin commutator. These spin density operators ŝ (r, t) contain the the physical information of

the magnetic sample.

In summary, we developed in this chapter a model to relate the time-dependent field fluctuations,

detected by the NV center, with spin fluctuations produced in the material. These spin fluctuations

can be produced, for example, by an external driving field that perturbates at a certain instant the

spin system. We modelled the sample as a 2D disk of spin magnetic dipoles displayed continuously

(macrospin approximation), and using classical electrodynamics, we related the detected stray field with

the spin density function s (r′′, t). As a result, the desired relaxation rates depend on the spin-spin

correlation functions, so finding these correlators is crucial in order to calculate Γ (ω±). These functions

can be calculated using the fluctuation-dissipation theorem, and to do that, it is necessary to describe

the physical parameters of the sample.



Chapter 4

Ferromagnetic systems

In this chapter, we introduce a first kind of materials to consider in the calculation of the relaxation rate

from equation (3.12). Ferromagnetic systems present long-range spin ordering, which can be explained

using the Heisenberg spin-spin hamiltonian [2]. In this way, spins interact between them, and oscillations

can propagate along the material through the so-called spin waves. In this chapter, we introduce spin

waves in ferromagnetic insulators, present their quanta (magnons) and find their dispersion relation. As

we are considering only insulator systems, we neglect presence of free electric charges in the material.

4.1 Ferromagnetic hamiltonian

According to Heisenberg’s model, two atoms, molecules or dipoles with spins (operators) Ŝ (r1) and

Ŝ (r2) can interact between them by electrostatic forces, whose energy, due to the anti-symmetry of

fermionic wave functions, can be expressed as a simple dot product −2J12Ŝ (r1) · Ŝ (r2) /ℏ2. Here, J12 is

the exchange parameter or coupling constant, and its sign determines if the interaction is ferro- (J12 > 0) or

antiferromagnetic (J12 < 0). In this chapter, we focus on ferromagnetic interactions, where all the possible

coupling constants are positive or zero. With this in mind, one can build the sample hamiltonian:

Ĥs = −γ
∑
ri

H0 · Ŝ (ri)−
∑
ri

∑
rj ̸=ri

Jij
ℏ2

Ŝ (ri) · Ŝ (rj) , (4.1)

where H0 is the external magnetic field, which for simplicity we will assume to be parallel to the sample

perpendicular axis ẑ. The first summation corresponds to the net Zeeman effect on the sample, while the

double summation comes from the spin-spin interaction. In this toy model, we won’t consider anisotropy

yet.

One can characterize spin waves in many ways [2]. Here, we treat the quantum approach consisting

29
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of diagonzalizing the hamiltonian (4.1) in the Fourier space. First, we introduce the raising and lowering

spin operators

Ŝ−
j = Ŝj,x − iŜj,y,

Ŝ+
j = Ŝj,x + iŜj,y,

where we used the subindex j enumerates the dipole located at rj . In this way, we used the simplified

notation Ŝ− (rj) → Ŝ−
j and Ŝ+ (rj) → Ŝ+

j . These operators transform the individual state |sjz⟩ of the j

particle as

Ŝ−
j |sjz⟩ = ℏ

√
s (s+ 1)− sjz (sjz + 1) |sjz − 1⟩

Ŝ+
j |sjz⟩ = ℏ

√
s (s+ 1)− sjz (sjz − 1) |sjz + 1⟩

where s is the spin quantum number of each dipole (for example, s = 1/2). In order to know which

creation-annihilation we should define here, it is convenient to establish the “spin deviation operator”

n̂j = s− Ŝjz/ℏ

with associated quantum number

nj = s− sjz.

In terms of n̂j , the action of Ŝ+
j and S−

j on |nj⟩ is

Ŝ+
j |nj⟩ = ℏ

√
2s
√
nj

√
1− nj − 1

2s
|nj − 1⟩ (4.2)

Ŝ−
j |nj⟩ = ℏ

√
2s
√
nj + 1

√
1− nj

2s
|nj + 1⟩ (4.3)

We know that the raising and lowering operators â†j y âj must satisfy

[âi, â
†
j ] = δij

[âi, âj ] = [â†i , â
†
j ] = 0

â†j |nj⟩ =
√

nj + 1 |n1 + 1⟩

âj |nj⟩ =
√
nj |n1 − 1⟩

So, equations (4.2) and (4.3) suggest to define the operators â†j and âj such that

Ŝ+
j = ℏ

√
2s

(
1−

â†j âj

2s

)1/2

âj

Ŝ−
j = ℏ

√
2sâ†j

(
1−

â†j âj

2s

)1/2

Ŝjz = ℏ
(
s− a†j âj

)
(4.4)
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These are the Holstein-Primakoff transformations [29]. Explicitly, these square roots are expanded in

power series as

Ŝ+
j = ℏ

√
2s

(
1−

â†j âj

4s
+ . . .

)
âj ≈ ℏ

√
2sâj

Ŝ−
j = ℏ

√
2sâ†j

(
1−

â†j âj

4s
+ . . .

)
≈ ℏ

√
2sâ†j

Ŝjz = ℏ
(
s− â†j âj

)
Here, the approximations were used at room temperature (T ≈ 300 K), where one can assume that all

spin states have similar occupation probability.

With the latest formalism, we can write the sample hamiltonian (4.1) as

Ĥs = −ℏγH0

∑
j

(
s− â†j âj

)
− 1

2

∑
j

∑
i ̸=j

Jij
ℏ2
(
ŜjŜ

†
i + Ŝ†

j Ŝi + 2ŜjzŜiz

)
⇒ Ĥs = −ℏγH0

∑
j

(
s− â†j âj

)
− 1

2

∑
j

∑
i ̸=j

Jij

[
2sâ†j âi + 2sâj â

†
i + 2

(
s− â†j âj

)(
s− â†i âi

)]
⇒ Ĥs = −ℏγH0

∑
j

(
s− â†j âj

)
− s

∑
j

∑
i ̸=j

Jij

(
â†j âi + âj â

†
i − â†i âi − â†j âj + s

)
.

Now we return to the original notation â†j → â† (rj) and âj → â (rj), being rj the position of the dipole j.

This field notation is useful for considering only interaction between nearest neighbors, which is to say:

Jij =


J > 0 if |ri − rj | = a,

0 any other case.

With this in mind, the hamiltonian is

Ĥs = −ℏγH0

∑
r

[
s− â† (r) â (r)

]
− s

∑
r

∑
δ

J [â† (r) â (r+ δ) + â (r) â† (r+ δ)

− â† (r+ δ) â (r+ δ)− â† (r) â (r) + s] (4.5)

The idea is to diagonalize this hamiltonian. To do that, we use the periodicity of the sample lattice to

expand the operators âj y â†j in the Fourier space (as if they were classical quantities)

â†j =
1√
N

∑
k∈1BZ

exp(−ik · rj)â†k

âj =
1√
N

∑
k∈1BZ

exp(ik · rj)âk,
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where the coefficients âk are given by

âk =
1√
N

∑
j

âj exp(−ik · rj).

The commutation relations of these new ak are

[âk, â
†
k] =

1

N

∑
j

âj exp(−ik · rj)
∑
p

â†p exp(ik · rp)−
1

N

∑
p

â†p exp(ik · rp)
∑
j

âj exp(−ik · rj)

⇒ [âk, â
†
k] =

1

N

∑
j

∑
p

[
âj â

†
p exp ik · (rp − rj)− â†pâj exp ik · (rp − rj)

]
⇒ [âk, â

†
k] = 1,

so we have a bosonic commutation relation:

[âk, â
†
k′ ] = δkk′ . (4.6)

To diagonalize the hamiltonian (4.5), it is necessary to write each summation on r as summations on

k:

Ĥs = −ℏγH0Ns− JNZs2 −
∑

k∈1BZ

{
−ℏγH0 + Js

[∑
δ

exp ik · δ − 2z +
∑
δ

exp(−ik · δ)

]}
â†kâk,

where Z =
∑

δ 1 is the number of nearest neighbors of each dipole. If we define the lattice structure factor

γk =
1

Z

∑
δ

exp ik · δ

and the dispersion relation

ℏωk = 2JZs (1− γk) + ℏγH0 (4.7)

we obtain finally

Ĥs =
∑

k∈1BZ

â†kâkℏωk

where the residual constant terms were omitted, and we have assumed central symmetry (γk = γ−k).

This is the desired diagonal form of the hamiltonian (4.1), in terms of number operators â†kâk. This form

is interpreted as follows: for each normal mode k of spin oscillations, we have â†kâk bosonic-type particles,

namely magnons, and each of them contributes to the system an energy ℏωk, given by the dispersion

relation (4.7). The operator â†k creates a magnon associated to the normal mode state |k⟩1 (interpreted

as a state with momentum ℏk)1

â†k |0⟩ = |k⟩
1The subindex 1 in the state |k⟩1 refers to an individual state, which characterizes the state of one particle at a time.

Don’t confuse with |k⟩ (without subindex), which actually should be written as |0 0 . . . 1 0 0 . . . ⟩, where that 1 locates

at the slot of the k mode state and indicates that the individual state |k⟩1 is being occupied by exactly 1 particle. By the

way, the vacuum state |0⟩ (without subindex) refers to |0 0 0 . . .⟩, being all its inner numbers 0.
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while the operator âk annihilates it:

âk |k⟩ = |0⟩

As bosons, magnon creation and annihilation operators satisfy the commutation relation (4.6).

As a practical example for calculating the dispersion relation, consider a 3D cubical lattice (Z = 6)

with lattice constant a,

ℏωk = 2JZs

[
1− 1

6
· (2 cos kxa+ 2 cos kya+ 2 cos kza)

]
+ ℏγH0.

For small wave vectors (ka ≪ 1), we have a parabolic dispersion relation

ℏωk ≈ 2Jsa2k2 + ℏγH0 (4.8)

which can be written as a non-relativistic energy with external potential ℏγH0:

ℏωk ≈ ℏ2k2

2m
+ ℏγH0

where m = ℏ2/
(
4Jsa2

)
is the magnon effective mass. This individual energy presents a gap ℏγH0, which

is increases as the magnetic field H0 does (see Figure 4.1). When H0 ∼ 100Oe, this gap is of the order of

GHz.
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Figure 4.1: Magnon dispersion relation ωk/(2π) versus ka in one dimension (k = kx), according to

equations (4.7) (solid line, exact relation) and (4.8) (dashed line, quadratic approximation). Here, we

used J = 2.42meV and H0 = 100Oe.
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4.2 Anisotropy in ferromagnetic systems

In the previous section, we only considered the simplest magnetic system, whose energy contributions

were the Zeeman effect and the electrostatic coupling between spins. Here, the Zeeman effect tells us that

the macroscopic magnetization vector M tend to align parallelly to the external magnetic field H0, which

is expressed in the energy per unit volume (in CGS units) as a dot product, which has to be minimum at

equilibrium

uZeeman = −M ·H0. (4.9)

However, we completely ignored the fact that magnetic dipoles can also interact magnetically between

them, giving raise to a new term in the total energy density. This energy was already deduced for the case

of NV centers; the zero-field-splitting term in the hamiltonian (2.7) has its origins just in dipole-dipole

magnetic interaction (see Appendix A), so one can anticipate that this energy has to be proportional to

M2
z :

uD = 2πM2
z . (4.10)

In magnetic materials, this term is often known as the demagnetizing energy.

Besides the demagnetizing term, one can also find intrinsic uniaxial anisotropy terms that are pretty

common in thin films and can be induced by the substrate on which they are grown. These terms tend

to create an easy-axis of anisotropy [30], and have the form

uA = −K⊥

M2
S

M2
z , (4.11)

being K⊥ > 0 and MS the saturation magnetization. Putting together the contributions (4.9), (4.10) and

(4.11), one gets the total energy per unit volume, in the macrospin approximation:

u = −M ·H0 +
1

2MS

(
4πMS − 2K⊥

MS

)
M2

z

Here, we define the effective magnetization 4πMeff = 4πMS − 2K⊥/MS . Also, keeping the module of

M as |M| = MS , one can identify the angle θM between the vectors M and the sample normal, and the

angle θH of H0. In this way, the previous equation is written as

u (θM )

MS
= −H0 cos(θM − θH) + 2πMeff cos

2(θM ) (4.12)

One can predict the equilibrium value of the magnetization angle θM minimizing this expression, which

is to say, by solving the equation

du

dθM

∣∣∣∣
θM=θ∗M

= 0

⇒H0 sin(θ
∗
M − θH)− 4πMeff cos(θ

∗
M ) sin(θ∗M ) = 0.
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In fact, this equation can be easily solved when θH = 0 (magnetic field H0 parallel to ẑ):

θ∗M = arccos
H0

4πMeff
.

In this way, the effective magnetization Meff defines if this quantity is truly a minimum or not. For

instance, if Meff > 0, this value of θ∗M minimizes equation (4.12), and for H0 = 0 we obtain θ∗M = π/2,

which is to say, at zero field the magnetization is parallel to the sample plane. However, if Meff < 0,

this θ∗M is not the global minimum of the function. One can check that u (θM = 0) < u (θM = θ∗M ), so

the actual situation that minimizes the energy is when the magnetization M points perpendicular to the

sample plane.

The main effect of the magnetization is the modification of the magnetic field that is detected by each

dipole inside the sample. This magnitude is not H0 anymore, but it is now an internal field BM given

by the system of equations [31]

BM cos(θM ) = H0 cos(θH)− 4πMeff cos(θM ) (4.13)

BM sin(θM ) = H0 sin(θH), (4.14)

where θM is the angle between M and the normal axis z (see Figure 4.2).

z
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H0

k

θM

θH

ϕk

Figure 4.2: Magnetization vector M and external magnetic field H0 in the Cartesian xyz coordinate

system. The wavy line on the xy represents an arbitrary magnon with momentum ℏk in the thin film.

Equations (4.13) and (4.14) correspond to a system of equations with unknown variables θM and BM .

It is possible to reduce them into only one trigonometric relation H0 cot(θM ) sin(θH)+4πMeff cos(θH) =

H0 cos(θH) by dividing (4.13) with (4.14). Taking as variable x = cos(θM ) and rewriting sin(θM ) =
√
1− x2, one obtains a polynomial equation of fourth grade for x. Numerical solutions of this equation

are calculated for each H0, and the associated values for θM = θM (H0, θH) and BM = BM (H0, θH)

are illustrated in Figure 4.3. We observe that, if Meff > 0, the magnetization vector M tends to point

parallelly (θ0 = π/2 rad) to the film plane, but if Meff < 0, the vector M points perpendicular to the

thin film at zero magnetic field, as expected.
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Figure 4.3: Graphic solution of the system of equations (4.13)−(4.14), taking the field angle as θH = 2π/5

and the effective magnetization such that 4π|Meff | = 456 G. (a) Magnetization angle θM versus external

magnetic field H0, both for positive effective magnetization and for negative. (b) Internal field BM versus

external magnetic field H0, using here the found solution for θM = θM (H0, θH).

When anisotropy and demagnetizing effects are added to the ferromagnetic hamiltonian in equation

(4.1), one must realize some extra steps in order to diagonalize this new hamiltonian and to find the

modified magnon energies ℏωk [31]. In this case, the dispersion relation turns out to be

ℏωk =
√
(2Jsa2k2 + ℏγBM ) (2Jsa2k2 + ℏγBM + 4πℏγMeffF (k, ϕk)), (4.15)

where ϕk is the angle between the wave vector k and the x axis (as shown in Figure 4.3). Similarly to

what we have done in equation (4.8), a 3D cubical lattice (Z = 6) was assumed and ka ≪ 1. Note that,

when Meff = 0, this expression reduces to the simplified form (4.8), as expected. In the demagnetizing

term 4πγMeffF (k, ϕk), the anisotropy correction factor F (k, ϕk) is given by

F (k, ϕk) = P (k) + sin2(θ0)

[
1− P (k)

(
1 + cos2 ϕk

)
+ 4πℏγMeff

P (k) (1− P (k)) sin2 ϕk

2Jsa2k2 + ℏγBM

]
with

P (k) = 1− 1− exp(−ktfilm)

ktfilm
.

being tfilm the film thickness. This expression is useful for describing magnons in typical anisotropic

materials like Y3Fe5O12 (Yttrium-Iron-Garnet, or YIG for short) [17], which is commonly treated as a

ferromagnetic system and stands out for its low dissipation of spin waves.
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To sum up, ferromagnetic materials are good candidates to take place of the dipole system model

developed in Chapter 3. The goal here was to indicate how spins interact between them in this kind of

systems, and we did it using the hamiltonian (4.1) which involucrates Heisenberg’s spin-spin interaction

and Zeeman effect. A collective deviation of spins is propagated in ferromagnetic systems as spin waves,

whose quanta (magnons) are bosonic-type quasiparticles which obey the commutation relation
[
âk, â

†
k′

]
=

δkk′ . Spin densities and magnon creation-annihilation operators are related by the HP transformations.

All this information about magnon operators is useful to calculate the spin-spin correlation function

introduced in Chapter 3, using the fluctuation-dissipation theorem –which requires to compute a spin-

spin commutator. Also, we discussed about the magnon energies ℏωk, whose gap is of the order of GHz (in

frequency units), and how they are altered when anisotropies are present. We expect the desired relaxation

rates to depend on these magnon energies, and therefore one may experimentally obtain parameters like

the effective magnetization Meff , the saturation magnetization MS or the spin-spin exchange constant J

just by fitting the theoretical relaxation rates in a graph of Γ± versus external magnetic field H0.



Chapter 5

Antiferromagnetic systems

In this chapter, we introduce a second kind of materials to consider in the calculation of the relaxation

rate from equation (3.12). As mentioned in Chapter 1, antiferromagnetic systems have no net magneti-

zation, but can present spin fluctuations in the form of spin waves. Here, we describe those spin waves,

their quantization (magnons) and how they differ according to the anisotropy the material has.

5.1 Antiferromagnetic magnons

Ferromagnetic material scanning has already been developed by other authors [17, 32], so this work

we focuses especially in antiferromagnetic insulators (AFI). The most common way to model a sample

like that is to consider it as a two-sublattice system [19]: a L1 sublattice with its spins tending to point

parallelly to ẑ, and the other L2 with its spins parallel to −ẑ. In general, a hamiltonian describing such

system is of the form

Ĥs =
∑

k∈1BZ

(
ℏωαkα̂

†
kα̂k + ℏωβkβ̂

†
kβ̂k

)
, (5.1)

where 1BZ is the first Brillouin zone. This hamiltonian can be interpreted in the usual way: spin waves

are carried by bosonic-type quasiparticles, namely magnons, with two modes α and β. The first mode

contributes α̂†
kα̂k magnons, each one contributing an energy ℏωαk to the system. Similarly, the other

mode β adds up a gas of β̂†
kβ̂k magnons, each one with energy ℏωβk.

The dispersion relations ωαk and ωβk in antiferromagnetic systems have typically values of the order

of THz in frequency units, and have a minimum value (a gap) even at zero magnetic field. In fact, for

small wave vector k, those energies can be reduced to a relativistic form

ℏωα(β)k =
√
ℏ2c2α(β)k2 +m2

α(β)c
4
α(β) + U . (5.2)

38
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where cα(β) is the spin wave phase speed of the α (β) mode (both of the order of km/s), mα and mβ

are the magnon effective masses, which depend on the physical parameters of the sample, and U is an

external gap not considered in the mass term. Typically, antiferromagnets have mass terms mα(β)c
2
α(β)/ℏ

of the order of THz.

5.2 Easy-axis anisotropy antiferromagnet

One possible case of antiferromagnetic system is when it presents easy-axis anisotropy. Materials like

MnF2 [33], FeF2 [5] and RbMnF3 [34] present anisotropy along the z axis (see Figure 5.1), in such a way

they present an easy axis of magnetization. The hamiltonian that allows us to describe such system is

Ĥs = −γ
∑
ri

H0 · Ŝ (ri)−
∑
ri

∑
rj ̸=ri

Jij
ℏ2

Ŝ (ri) · Ŝ (rj)−
Dz

ℏ2
∑
ri

Ŝz (ri)
2 , (5.3)

where Dz > 0 is the anisotropy coefficient and Jij is the exchange parameter that couples the dipoles

i and j. Typically, in antiferromagnetic systems, the negative interaction (Jij < 0, which we’ll call J2)

dominates over the positive one J1 > 0. For example, for MnF2, the nearest-neighbors coupling constants

are J1 = 0.028meV and J2 = −0.152meV [35], and the anisotropy parameter is Dz = 0.019meV [33].

z

x

y

Mn

Mn

J1

J3

J2

az

a

a

Figure 5.1: Crystal structure of MnF2 [5]. Big blue circles represent Mn atoms, while small yellow circles

represent fluorine. J1, J2 and J3 are the exchange parameters, with J1 > 0 and J2, J3 < 0.

When an external magnetic fieldH0 = H0ẑ is applied on the sample, it will transport spin waves carried

by magnons. Mathematically, this can be determined through the Holstein-Primakoff (HP) transformation



CHAPTER 5. ANTIFERROMAGNETIC SYSTEMS 40

[29] for Ŝ+ = Ŝx + iŜy and Ŝ− = Ŝx − iŜy:

Ŝ−
1 (ri) ≈ ℏ

√
2sâ†i ,

Ŝ+
1 (ri) ≈ ℏ

√
2sâi,

Ŝz (ri) = ℏ
(
s− â†i âi

)
(5.4)

for ri ∈ L1, and

Ŝ−
2 (rj) ≈ ℏ

√
2sb̂j ,

Ŝ+
2 (rj) ≈ ℏ

√
2sb̂†j ,

Ŝz (rj) = ℏ
(
b̂†j b̂j − s

)
(5.5)

if rj ∈ L2. The index i enumerates the magnetic dipole of each sublattice, and here was used to write

âi = â (ri) and b̂i = b̂ (ri). In this transformation, s is the spin quantum number of the particles (s = 5/2

for MnF2 [35]). Next, expanding âi and b̂i in the Fourier space with variable k, and using Bogoliubov

transformations

âk = ukα̂k − vkβ̂
†
−k,

b̂†−k = −vkα̂k + ukβ̂
†
−k,

we obtain the diagonal form (5.1) of the hamiltonian. The necessary coefficients uk and vk for this are

uk =

√
ω̃ + ωk

2ωk
vk =

√
ω̃ − ωk

2ωk
(5.6)

with ωk = ωαk(H0 = 0) = ωβk(H0 = 0) and we have defined ℏω̃ = 2s (Z|J2|+Dz).

In this case, the magnon frequencies are

ωα(β)k =

√
ω̃2 − Ω̃2

k ± γH0. (5.7)

where the positive sign is used for the α magnonic mode, while the negative is used for β. Also, γ is the

gyromagnetic ratio of the sample, ℏΩ̃k = 2sZ|J2|γk and

γk =
1

Z

∑
δ

exp(ik · δ) (5.8)

is a crystal structure factor, whose sum over δ is effectuated over the Z first neighbors of each point inside

the lattice. For tetragonal structures like MnF2 or FeF2 [5], one has

γk = cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kza

2

)
(5.9)

The dispersion relation for this situation is illustrated in Figure 5.2, where is clearly shown the difference

between the two modes.
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Figure 5.2: Magnon dispersion relation (in linear frequency units) versus wave vector in one dimension

(k = kx), for easy-axis antiferromagnet MnF2, using equations (5.7). (a) With magnetic fieldH0 = 500Oe.

(b) When no external magnetic field is applied, both magnon modes have the same energy.

In this case, and for cubic structures in general, this structure factor for small k ≪ π/a reduces to

γk ≈ 1− (ka)2

8
(5.10)

with k = |k| =
√
k2x + k2y. Inserting this into equation (5.7), expanding ℏω̃ = 2s (Z|J2|+Dz) and

ℏΩ̃k = 2sZ|J2|γk, we have

ℏωα(β)k ≈ 2s
√

D2
z + 2ZJ2Dz + Z2J2

2a
2k2/4± ℏγH0

⇒ ℏωα(β)k ≈
√

4s2D2
z + 8s2Z|J2|Dz + s2Z2J2

2a
2k2 ± ℏγH0. (5.11)

Comparing with the relativistic-like energy (5.2), we read a spin wave speed

c =
sZ|J2|a

ℏ
(5.12)

and a magnon effective mass

m =
ℏ2

s2Z2J2
2a

2

√
4s2D2

z + 8s2Z|J2|Dz, (5.13)

for both modes α and β. For even smaller k, this takes the form of a non-relativistic particle:

ℏωα(β)k ≈ ℏ2k2

2m
+mc2 ± ℏγH0. (5.14)

Note that the magnon frequency gap is mainly given by the mass term mc2/ℏ, which goes to 0 as Dz → 0.

From Figure (5.2b) can be seen that the magnon frequency gap, given by the mass term mc2/ℏ, is of the
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order of THz, something pretty common for easy-axis AFI such as MnF2 and FeF2. Few exceptions, like

RbMnF3 (s = 5/2 [36]), present a gap of the order of ∼ 20GHz because of to their low anisotropy [34].

Such gap, however, is still being greater than the NV resonance frequencies ω±.

5.3 Easy-plane antiferromagnet

Some other materials like NiO [37], CoCl2 [38] and FeBO3 [39] are antiferromagnetic systems with a

hard anisotropy axis besides from the easy-axis mentioned in the previous section. Such configuration is

the so-called easy-plane anisotropy. The crystal structure of the typical easy-plane antiferromagnet, NiO,

is shown in Figure 5.3, where the z axis is, as before, the easy-axis, while the x axis is the hard axis.

These anisotropies can be expressed in the hamiltonian as two anisotropy terms with constants Dx > 0

and Dz > 0, respectively:

Ĥ = −γ
∑
ri

H0 · Ŝ (ri)−
∑
ri

∑
rj ̸=ri

Jij
ℏ2

Ŝ (ri) · Ŝ (rj) +
Dx

ℏ2
∑
ri

Ŝx (ri)
2 − Dz

ℏ2
∑
ri

Ŝz (ri)
2 . (5.15)

There exist samples, like α−Fe2O3, that are easy-plane antiferromagnets, but behave as easy-axis an-

tiferromagnets for temperatures below the so-called Morin transition point. For α−Fe2O3, this critical

temperature is TM = 263 K [18].

z

x

y

Ni+2

O−2

a

a

a

Figure 5.3: Lattice structure of NiO in AF phase. Arrows represent orientations of spins. The small

yellow circles represent O2− ions and the large circles are Ni2+ ions.

In a similar fashion to MnF2, NiO’s hamiltonian can be expressed in the diagonal form (5.1). The

procedure is analogous, being the only difference that the Bogoliubov transformations âk = uαkα̂k −
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vβkβ̂
†
−k and b̂†−k = −vαkα̂k + uβkβ̂

†
−k need now four coefficients [40]:

uα(β),k =

√
ω̃ + ωα(β),k (0)

2ωα(β),k (0)
,

vα(β),k =

√
ω̃ − ωα(β),k (0)

2ωα(β),k (0)
, (5.16)

with ℏω̃ = 2s (ZJ2 +Dz +Dx/2) in this case.

An interesting result of this procedure is that the dispersion relations for magnonic modes α and β

are different even with no external magnetic field (see Figure 5.4). These are given by

ω2
α(β)k = ω̃2 + γ2H2

0 − ω̃2
x − Ω̃2

k ± 2

√
γ2H2

0

(
ω̃2 − Ω̃2

k

)
+ Ω̃2

kω̃
2
x, (5.17)

with ℏΩ̃k = 2sZ|J2|γk and ℏω̃x = sDx. As in equation (5.7), the α mode uses the positive sign, while

the β takes the negative one. It’s a common practice to take a spherical first Brillouin zone, so that the

structure factor γk is

γk = cos

(
ka

2

)
, (5.18)

and for small k, it reduces to the same form as equation (5.10).
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(b) H0 = 0
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Figure 5.4: Magnon dispersion relation (in linear frequency units) versus wave vector in one dimension

(k = kx), using equations (5.17), for easy-plane antiferromagnet NiO. (a) With magnetic field H0 =

500Oe. (b) With H0 = 0.

Dispersion relations for easy-plane anisotropic systems can be approximated in the same relativistic-

way form of equation (5.2). However, unlike the easy-axis case, the magnetic term ℏγH0 is not out of the
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square root, but it’s inside of it. This means the effective masses mα(β) and the spin wave phase speeds

cα(β) will depend on the magnetic field H0, and therefore, they’ll be different according to which mode α

or β we are evaluating. After some approximations in (5.17), we find

cα(β) =
sZ|J2|a

ℏ

√
1± (H2

0 − ℏ2γ2
4s2

D2
x/4)

h2γ2

4s2E2
α(β)

mα(β)c
2
α(β) = 2s

√
D2

z + ZDx|J2|+ 2Z|J2|Dz +DxDz ± 2E2
α(β)

with E2
α(β) =

√
ℏ2γ2H2

0
4s2

(D2
x/4 +D2

z + Z|J2|Dx + 2Z|J2|Dz +DxDz) + Z2J2
2D

2
x/4. This reproduces the

relativistic form

ℏωα(β)k =
√
ℏ2c2α(β)k2 +m2

α(β)c
4
α(β), (5.19)

with Uα(β) = 0 in equation (5.2). For even smaller k, we obtain

ℏωα(β)k ≈ ℏ2k2

2mα(β)
+mα(β)c

2
α(β). (5.20)

5.4 Phase transitions in antiferromagnets

In general, antiferromagnetic materials may lose their antiferromagnetic behavior passing through

some temperatures or critical points. A well-known situation is the Neel temperature TN , above which

the antiferromagnetic system behaves as paramagnetic (similar to the Curie temperature in ferromag-

netic materials). In this work, we only consider materials at lower temperatures than their respective

Neel temperatures.

Other common phase transition is spin-flop. One can find the points where this transition occurs, by

considering the energy per unit volume, based on the hamiltonian (5.3) in the macrospin approximation

u (M1,M2) = −H0(M1z +M2z) +
HE

M
M1 ·M2 +

HAx

2M

(
M2

1x +M2
2x

)
− HAz

2M

(
M2

1z +M2
2z

)
(5.21)

where

HE =
2sZ|J2|

ℏγ
, HAx =

2sDx

ℏγ
, HAz =

2sDz

ℏγ
(5.22)

are convenient parameters (effective fields) that are commonly defined in this context [5], while M1 =

ℏγn ⟨S (ri ∈ L1)⟩, M2 = ℏγn ⟨S (rj ∈ L2)⟩, n is the volume dipole density and M = M1 (T = 0) =

M2 (T = 0). Note that, if the external magnetic field is applied along the easy-axis of magnetization

(H0 = H0ẑ), we have M1x = M2x = 0 and the easy-plane case reduces to easy-axis. Therefore, it is

enough to analyze only the easy-axis system energy. In terms of the angles θ1 and θ2 that vectors M1

and M2 form with the ẑ axis, we have

u (θ1, θ2)

M
= −H0(cos θ1 + cos θ2) +HE cos(θ1 − θ2)−

HAz

2

(
cos2 θ1 + cos2 θ2

)
. (5.23)
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One can find the equilibrium condition by minimizing this volumetric energy u (θ1, θ2), which results in

the equations ∂u/∂θ1 = ∂u/∂θ2 = 0 with two possible solutions, depending on the value of the field H0:
θ1 = 0, θ2 = π if H0 < HSF ,

θ1 = θ2 = arccos[H0/ (2HE −HAz)] if H0 ≥ HSF ,

(5.24)

where HSF :=
√

2HEHAz −H2
Az ≈

√
2HEHAz. The first case (θ1 = 0, θ2 = π) is the typical antifer-

romagnetic (AF) phase we have been discussing so far. The other situation with θ1 = θ2 is known as

spin-flop (SF), and this configuration defines a phase for antiferromagnets that can only be reached when

H0 exceeds the critical magnetic field HSF ∝
√

|J2|Dz. This critical field can be extremely high. For

instance, considering MnF2, we have HE = 526 kOe and HAz = 8.2 kOe, so HSF ≈ (2HEHA)
1/2 = 93 kOe

[5].

S (r1)S (r2)

(a) Antiferromagnetic (AF) phase

S (r1) S (r2)

(b) Spin-flop (SF) phase

Figure 5.5: Spin orientations in different phases.

Other interesting transition, already mentioned before for α−Fe2O3, is the Morin transition, which

consists of a sudden rotation of the easy-axis ẑ, creating an easy-plane anisotropy. For example, in

α−Fe2O3, for a temperature T less than TM = 263 K, the system has only uniaxial anisotropy, with

easy-axis ẑ. But for T > TM , this easy axis turns out to be parallel to the xy plane, which is to say, the

basis of directions for representing spins operators transforms as x̂1 → ẑ2 and ẑ1 → x̂2 (see Figure 5.6).

Note that this coordinate transformation means a change in the way we express the magnetic field:

H0 =


H0ẑ1 if T ≤ TM ,

H0x̂2 if T > TM ,
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T
TM = 263 K
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S(r2)
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ŷ2

Figure 5.6: Morin transition in hematite (α-Fe2O3), indicating the spin orientations relative to the external

magnetic field H0.

Here, ẑ1 and x̂2 are essentially the same vector (as the magnetic field direction remains constant),

but they differ in which will be selected as element of the basis. With this in mind, the new anisotropy

direction (ẑ2) and the magnetic field are now perpendicular. In this canted phase, the Zeeman effect term

in the hamiltonian (5.3) must be expanded as γH0 · Ŝ (r) = γH0Ŝx (r), where x here is our old anisotropy

direction. Doing the same procedure as the previous sections to diagonalize the hamiltonian Ĥs, we find

the dispersion relations in the canted phase:

ω2
α(β)k =γ

(
H0 cos θc −HE cos(2θc) +HA

(
2 sin2 θc − cos2 θc

)
/2∓ γkHE(1 + cos 2θc)/2

)2
− γ

(
γkHE sin2 θc ∓HA cos2 θc/2

)2
, (5.25)

where HE and HAz are defined as before in (5.22), and θc = arccos[H0/ (2HE +HAz)] (do not confuse

with the spin-flop angle introduced in (5.24), which has a minus sign).

To sum up, antiferromagnetic insulators (AFI) materials are also interesting candidates to represent

the dipole system model introduced in Chapter 3. As for the ferromagnetic case, the goal here was to

indicate how spins interact between, and we did for both easy-axis and easy-plane anisotropy cases. Both

situations involucrate Heisenberg’s spin-spin interaction, Zeeman effect, and anisotropy terms. Antiferro-

magnetic systems present spin waves and magnons, too, but they have some practical differences compared

to ferromagnetic materials. To begin, their frequency gap is of the order of THz, while the ferromagnetic

gap is just of a few GHz. This is also greater than the NV center resonance frequencies ω± ∼ GHz.

Second, magnons have two modes of energy (α and β), which will eventually result in a more complex
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expansion of the spin density operators ŝ (r, t) in terms of the magnon creation-annihilation operators α̂†
k

(α̂k) and β̂†
k (β̂k). Anyway, bosonic commutation relations

[
α̂k, α̂

†
k′

]
= δkk′ and

[
β̂k, β̂

†
k′

]
= δkk′ are still

valid, and can be used to calculate the spin-spin correlation functions using the fluctuation-dissipation

theorem mentioned in Chapter 3, and therefore, the desired relaxation rates Γ (ω±). Experimentally, one

can measure these rates versus the external magnetic field H0, and by fitting the theoretical expression for

Γ± (H0) it is possible to extract the intersublattice spin-spin coupling constant J2 < 0 and the anisotropy

parameters Dz and Dx. We also discussed phase transitions that are typically present in AFI, like spin-

flop transition and the Morin transition of α-Fe2O3. We expect the NV center to detect these transitions,

reflected in the relaxation rates.



Chapter 6

Relaxometry simulations

In order to calculate the NV center relaxation rates Γ (ω±), we utilize equation (3.12). For each

material, it was necessary to calculate the spin-spin correlators Cxx and Czz. Thanks to the fluctuation-

dissipation theorem (3.13), the problem of calculating the correlation functions is reduced to find the

commutators shown in equation (3.14), in this case,

χαβ

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝα (r, t) , ŝβ

(
r′, 0

)]〉
eq
.

In this chapter, we calculate the spin-spin correlation functions, for each type of ferromagnetic and anti-

ferromagnetic (AF) samples described in the last two chapters, using the fluctuation-dissipation theorem.

With these correlators Cαβ (k, ω), we present simulations for the desired relaxation rates Γ (ω±) as func-

tions of the external magnetic field H0. In general, the field dependence of Γ (ω±) is contained in the NV

resonance frequencies ω± = ω± (BNV), as explained in Chapter 2, being BNV the magnetic field detected

by the NV center. If the sample produces a low magnetic field compared to H0, we may simply take

BNV ≈ H0.

6.1 Spin-spin correlations in ferromagnetic systems

6.1.1 Transverse spin-spin correlation for ferromagnetic systems

First, we calculate the transverse spin-spin correlation functions Cxx = Cyy, which by fluctuation-

dissipation theorem (3.13) is given by

Cxx (k, ω) ≈
2kBT

ω
χ′′
xx (k, ω) , (6.1)

48
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where the linear response function in real space is

χxx

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝx (r, t) , ŝx

(
r′, 0

)]〉
eq

⇒χxx

(
r, r′; t

)
=

iσ2

ℏ
θ (t)

〈[
Ŝx (r, t) , Ŝx

(
r′, 0

)]〉
eq
.

Here, σ is the dipole surface density Ŝx = (Ŝ+ + Ŝ−)/2 and Ŝy = (Ŝ+ − Ŝ−)/(2i), so we may write the

linear response function as

χxx

(
r, r′; t

)
=
iσ2

4ℏ
θ (t) ⟨

[
Ŝ+ (r, t) , Ŝ+

(
r′, 0

)]
+
[
Ŝ+ (r, t) , Ŝ− (r′, 0)]

+
[
Ŝ− (r, t) , Ŝ+

(
r′, 0

)]
+
[
Ŝ− (r, t) , Ŝ− (r′, 0)]⟩eq

As these commutators are evaluated at different instants, it is not trivial to get rid off them. The strategy

here is to use the simple time evolution that obey annihilation operators âk (t) = âk (0) exp(−iωαkt− ηt),

with η > 0 a damping parameter. Therefore, it is convenient to use the Holstein-Primakoff transformations

defined in equation (4.4), obtaining

χxx

(
r, r′; t

)
=
isℏσ2

2
θ (t) ⟨

[
â (r, t) , â

(
r′, 0

)]
+
[
â (r, t) , â†

(
r′, 0

)]
+
[
â† (r, t) , â

(
r′, 0

)]
+
[
â† (r, t) , â†

(
r′, 0

)]
⟩eq

Now, expanding every raising and lowering operator in the Fourier space, we have

χxx

(
r, r′; t

)
=
isℏσ2

2N
θ (t)

∑
k′∈1BZ

∑
k′′∈1BZ

⟨[âk′ (t) , âk′′ (0)] exp i
(
k′ · r+ k′′ · r′

)
+
[
âk′ (t) , â†k′′ (0)

]
exp i

(
k′ · r− k′′ · r′

)
+
[
â†k′ (t) , âk′′ (0)

]
exp i

(
−k′ · r+ k′′ · r′

)
+
[
â†k′ (t) , â

†
k′′ (0)

]
exp i

(
−k′ · r− k′′ · r′

)
⟩eq

and taking the Fourier transform for the relative position vector R = r − r′ (or equivalently1, for r

evaluating r′ = 0), in the convenient limit
∫
d2R → 1

σ

∑
R, we obtain

χxx (k, t) =
isℏσ
2

θ (t)
∑

k′∈1BZ

〈
[âk (t) , âk′ (0)] +

[
âk (t) , â

†
k′ (0)

]
+
[
â†−k (t) , âk′ (0)

]
+
[
â†−k (t) , â

†
k′ (0)

]〉
eq

(6.2)

Now it is possible to use the time evolution of the operators âk and â†k in Heisenberg picture:

dâk
dt

=
i

ℏ
[Ĥs, âk]− ηâk =

i

ℏ

[ ∑
k′∈1BZ

â†k′ âk′ℏωk′ , âk

]
− ηâk

⇒ âk (t) = âk (0) exp(−iωkt− ηt).

1In the long run, the result will be the same as using R = r− r′, since the system has translational symmetry.
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Using this result into equation (6.2), one clearly observes that the first and the last commutators vanish,

while the rest reduce to the bosonic relation
[
âk, â

†
k′

]
= δkk′ , so

⇒ F {χyy} (k, t) =
isℏσ
2

θ (t) [exp(−iωkt)− exp(iωkt)] exp(−ηt).

Next, taking temporal Fourier transform,

χ′
xx (k, ω) + iχ′′

xx (k, ω) =
isℏσ
2

∫ ∞

0
exp(iωt) [exp(−iωkt)− exp(iωkt)] exp(−ηt) dt

⇒χ′
xx (k, ω) + iχ′′

xx (k, ω) = −sℏσ
2

1

(ω − ωk) + iη
+

sℏσ
2

1

(ω + ωk) + iη

Therefore, the imaginary part of the linear response function is

χ′′
xx (k, ω) =

ℏσs
2

η

(ωk − ω)2 + η2
− ℏσs

2

η

(ωk + ω)2 + η2
.

which corresponds to a sum of lorentzians; one of them peaks at ω = ωk (see Figure 6.1), while the other

does at ω = −ωk. However, as both the dispersion relation ωk and the frequency ω are positive, the last

lorentzian is negligible. With this result, it is possible to use the fluctuation-dissipation theorem (3.13)

and obtain the transverse spin-spin correlation function

Cxx (k, ω) =
ℏσskBT

ω

η

(ωk − ω)2 + η2
(6.3)

ωk=0 ω
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Figure 6.1: Normalized transverse spin-spin correlation function Cxx (k, ω) /C
(0)
xx (ω) versus frequency ωk,

being C
(0)
xx (ω) = ℏσskBT/ (ωη). Here, η ∼ 2π × 0.5GHz and ω ∼ DNV. The shaded region corresponds

to the forbidden values for ωk due to the gap in the dispersion relation.

This correlation has the following interpretation: normal modes of spin wave whose frequency ωk

coincides with the NV center resonance ω are those who contribute the most to the spin-spin correlation.
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In second quantization terms, as magnons are the quanta for the interaction between spins, creation-

annihilation processes with energy ℏω are the most relevant for the relaxation rate. In this way, the NV

center triggers the magnon creation-annihilation with energy ℏω, and this is a single-magnon process.

However, if ℏω < ℏωk=0, this single-magnon process cannot occur, and in this case the transverse

correlator decays to zero. This can be understood from Figure 6.1: if the peak at ω lies within the shaded

region (which is to say, ω < ωk=0), then ωk will never coincide with ω, and the one-magnon processes are

suppressed. In that case, two-magnon processes, contained in the longitudinal correlation Czz, become

relevant. This also can be explained graphically using the band diagram shown in Figure 6.2.

ℏω

∝ Czz

∝ Cxx (k, ω)

ω

k

ℏωk

(a) Cxx (k, ω) ≫ Czz (k, ω)

ℏω

ℏωk=0

∝ Czz

ω

k

ℏωk

(b) Czz (k, ω) ≫ Cxx (k, ω)

Figure 6.2: Magnon processes, depending on the values of ω. (a) If ω > ωk, then one-magnon events

(creation and annihilation of a magnon with energy ℏω) dominates, which mathematically means Cxx ≫

Czz. (b) If ω < ωk, two-magnon scattering dominates (magnons gaining or losing energy ℏω), which

implies that Czz ≫ Cxx.

6.1.2 Longitudinal spin-spin correlation for ferromagnetic systems

Finding the longitudinal spin-spin correlation function Czz is far more difficult, because its associated

linear response function

χzz

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝz (r, t) , ŝz

(
r′, 0

)]〉
eq

⇒χzz

(
r, r′; t

)
=

iσ2

ℏ
θ (t)

〈[
Ŝz (r, t) , Ŝz

(
r′, 0

)]〉
eq
.
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is a two-magnon correlator, as one can check by using the HP transformations (4.4), in this case, Ŝz (r, t) =

ℏ
(
s− â† (t) â (t)

)
:

χzz

(
r, r′; t

)
= iℏσ2θ (t)

〈[
â† (r, t) â (r, t) , â†

(
r′, 0

)
â
(
r′, 0

)]〉
eq
.

It is possible to calculate this commutator by splitting it up into four terms using the product rule:

χzz

(
r, r′; t

)
= iℏσ2θ (t) ⟨

[
â† (r, t) , â†

(
r′, 0

)]
â (r, t) â

(
r′, 0

)
+ â† (r, t)

[
â (r, t) , â†

(
r′, 0

)]
â
(
r′, 0

)
+ â†

(
r′, 0

) [
â† (r, t) , â

(
r′, 0

)]
â (r, t)

+ â†
(
r′, 0

)
â† (r, t)

[
â (r, t) , â

(
r′, 0

)]
⟩eq.

As before, it is convenient to expand the raising and lowering operators in the Fourier space. It is clear

that the first and the last term vanish, while[
â (r, t) , â†

(
r′, 0

)]
=

1

N

∑
k′∈1BZ

exp(−iωk′t− ηt) exp ik′ ·
(
r− r′

)
[
â† (r, t) , â

(
r′, 0

)]
= − 1

N

∑
k′∈1BZ

exp(iωk′t− ηt) exp ik′ ·
(
r′ − r

)
Also, we have to expand the canonical averages〈

â† (r, t) â
(
r′, 0

)〉
eq

=
1

N

∑
k′′∈1BZ

nB (ℏωk′′ − µ) exp(iωk′′t− ηt) exp ik′′ · (r′ − r)

〈
â†
(
r′, 0

)
â (r, t)

〉
eq

=
1

N

∑
k′′∈1BZ

nB (ℏωk′′ − µ) exp(−iωk′′t− ηt) exp ik′′ · (r− r′)

where we used
〈
â†k′ âk′′

〉
eq

= nB (ℏωk′′ − µ) δk′k′′ , being nB (ε) =
[
exp
(

ε
kBT

)
− 1
]−1

the Bose-Einstein

distribution and µ the chemical potential.

Therefore, taking Fourier transform with respect to R = r− r′ and with respect to time t,

χ′
zz (k, ω) + iχ′′

zz (k, ω) =
iℏσ
N

∑
k′∈1BZ

{
nB (ℏωk′−k − µ)

η̃ − i(ω − ωk′ + ωk′−k)
− nB (ℏωk′+k − µ)

η̃ − i(ω + ωk′ − ωk′+k)

}
with η̃ = 2η. In the summation associated to the first term, it is convenient to replace k′ − k → k′,

which can be thanks to the periodicity of the reciprocal lattice. Finally, taking the continuous limit

1
N

∑
k∈1BZ → a2

(2π)2

∫
1BZ d

2k′, and estimating a2σ → 1, we obtain the imaginary part of the linear response

function,

χ′′
zz (k, ω) =

ℏ
(2π)2

∫
1BZ

d2k′
{

nB (ℏωk′ − µ) η̃

η̃2 + (ω − ωk′+k + ωk′)2
− nB (ℏωk′+k − µ) η̃

η̃2 + (ω + ωk′ − ωk′+k)2

}
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which can be used in fluctuation-dissipation theorem (3.13) for obtaining the spin-spin correlation function

Czz. In the limit η̃ → 0, these lorentzians transform to Dirac deltas, thanks to the identity

lim
η̃→0+

1

π

η̃

η̃2 + (ω − ωk+k′ + ωk′)2
= δ (ω − ωk+k′ + ωk′) .

So,

Czz (k, ω) =
ℏkBT
2πω

∫
1BZ

d2k′ δ (ω − ωk+k′ + ωk′) [nB (ℏωk′ − µ)− nB (ℏωk′+k − µ)] (6.4)

It is possible to calculate this integral in an exact way using the non-relativistic approximation (4.8)

for the dispersion relation ωk. As this approximation is in the same order of magnitude as the original

frequency (as illustrated in Figure 4.1), this estimation will be reliable enough. Writing k = kŷ′′ and

k+ k′ = k′xx̂
′′ +

(
k′y + k

)
ŷ′′, for µ = 0, we obtain

Czz (k, ω) ≈
m (kBT )

2

2ω

 1√
(ℏω − ℏ2k2/(2m))2 + 2Uℏ2k2/m

− 1√
(ℏω − ℏ2k2/(2m))2 + 2(U + ℏω)ℏ2k2/m

 ,

(6.5)

where U = ℏγH0 and m is the magnon effective mass. Plots of this correlation function, for ω = ω+

and ω = ω−, are shown in Figure 6.3, where they also are compared with the transverse correlation Cxx

according to equation (6.3). We observe that, as expected, Cxx ≫ Czz, indicating the dominance of the

one-magnon processes due to the fact that the gap U is of the order of GHz, comparable with ω.
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Figure 6.3: Transverse and longitudinal spin-spin correlation functions for a ferromagnetic sample, using

equations (6.3) and (6.5). (a) Considering both transverse and longitudinal correlations. (b) Considering

only longitudinal correlation.
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6.2 Relaxation rates using ferromagnetic samples

In this section, we test the correlation functions found in last sections to compute the relaxation rates

Γ (ω±). Here, we take as sample Y3Fe5O12 (Yttrium-Iron-Garnet, or YIG for short) thin films, which is a

material commonly treated as a ferromagnet and stands out for its low dissipation of spin waves (meaning

a low η in equation (6.3)). For our simulations, we consider as reference the experimental results obtained

by Lee-Wong and co-authors [17] for this anisotropic material.

As the dispersion relation (4.15) depends on the angle ϕk, it is necessary to use the complete form

(3.11) for Γ (ω), but neglecting the terms with Czz for reasons already discussed in the previous sections.

So, writing the dipole density as

σ =
MStfilm
gµBs

=
MStfilm
ℏγs

,

being tfilm the film thickness, one obtains the relaxation rates for this situation:

Γ± =

∫ ∞

0
dk

∫ 2π

0
dϕk f (ϕk, θ) k

3 exp(−2kz)
MStfilm

γ

kBT

ω±

η

η2 + (ωk − ω±)
2 . (6.6)

with

f (ϕk, θ) = (γγNV)
2 ( sin4 ϕk +

sin2 2ϕk cos
2 θ

4
+ sin2 ϕk sin

2 θ

+ cos4 ϕk cos
2 θ + cos2 ϕk sin

2 θ +
sin2 2ϕk

4

)
(6.7)

the geometric function containing all the explicit angular dependence of the integration.

Considering this, the shape of the resulting curves is modulated by parameters like η, J and Meff ,

while its amplitude (its maximum value) is controlled by the saturation magnetization MS .

First, we realize these simulations for a YIG thin film of tfilm = 8 nm thick and effective magnetization

given by 4πMeff = −456 G. At room temperature (T = 300 K) and taking J = 2.42meV, we obtain

Figure 6.4. Note that the peak of Γ (ω) occurs at the intersection between the NV resonance frequency ω−

and the ferromagnetic resonance ωk=0, indicating the point where both materials resonate simultaneously.

This ferromagnetic resonance is given by the dispersion relation in equation (4.15) evaluated at k = 0.

In this case, the angle of the NV anisotropy axis, relative to ẑ, is θH = 2π/5, and it’s aligned with the

external magnetic field H0, which is to say, θ = θH and θ′B = 0.
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Figure 6.4: Relaxometry of a NV center located at distance z = 239 nm and with angle θ = 2π/5 on a

YIG (8 nm) sample with 4πMeff = −456 G. (a) Relaxation rates Γ (ω±) versus external magnetic field.

(b) NV and YIG resonance frequencies versus external magnetic field.

Our results are slightly different when we take a YIG film of tfilm = 12 nm thick with 4πMeff = −1489

G, as shown in Figure 6.5. Here, the ferromagnetic resonance ωk=0 intersects the ω+ frequency, instead

of ω−, resulting in a peak reached by Γ (ω+).
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Figure 6.5: Relaxometry of a NV center located at distance z = 114 nm and with angle θ = 61π/180 on

a YIG (12 nm) sample with 4πMeff = −1489 G. (a) Relaxation rates Γ (ω±) versus external magnetic

field. (b) NV and YIG resonance frequencies versus external magnetic field.
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Comparing with experimental data in the literature [17], we observe excellent agreement between

this model and the measured relaxation rates fits very well the measured points (see Figure 6.6). Doing

this experiment and fitting the curves of Γ (ω±), one can extract the saturation magnetization MS , the

effective magnetization Meff and the exchange constant J .

Figure 6.6: Experimental data for NV relaxation rates versus magnetic field H0, using both (a) YIG (8

nm) located at z = 239 nm with 4πMeff = −456 G, and (b) YIG (12 nm) located at z = 114 nm with

4πMeff = −1489 G [17].

6.3 Spin-spin correlations in antiferromagnetic systems

6.3.1 Transverse spin-spin correlation for AF systems

First, we calculate the transverse spin-spin correlation functions Cxx = Cyy, which by fluctuation-

dissipation theorem (3.13) is given by

Cxx (k, ω) ≈
2kBT

ω
χ′′
xx (k, ω) , (6.8)

where the linear response function in real space is

χxx

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝx (r, t) , ŝx

(
r′, 0

)]〉
eq

⇒χxx

(
r, r′; t

)
=

iσ2

ℏ
θ (t)

〈[
Ŝx (r, t) , Ŝx

(
r′, 0

)]〉
eq
. (6.9)

Here, σ is the dipole surface density Ŝx = (Ŝ+ + Ŝ−)/2 and Ŝy = (Ŝ+ − Ŝ−)/(2i), so we may write the

linear response function as

χxx

(
r, r′; t

)
=
iσ2

4ℏ
θ (t) ⟨

[
Ŝ+ (r, t) , Ŝ+

(
r′, 0

)]
+
[
Ŝ+ (r, t) , Ŝ− (r′, 0)]

+
[
Ŝ− (r, t) , Ŝ+

(
r′, 0

)]
+
[
Ŝ− (r, t) , Ŝ− (r′, 0)]⟩eq
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Note that the HP transformation for the spin operators Ŝ± (r, t) depends on the position r. For instance,

if r lies on the sublattice L1, we must expand Ŝ+ (r, t) as
√
2sâ (r, t), while if r ∈ L2, we use Ŝ+ (r, t) =

√
2sb̂† (r, t). Since Cαβ (k, ω) is the Fourier transform of Cαβ (r, t) (and therefore, an integral over all the

positions in the sample is performed), it is necessary to step on every case and sum them all. For example,

if r ∈ L1 and r′ ∈ L1, the needed HP transformations are for the sublattice L1, expressed in equation

(5.4):

χxx

(
r, r′; t

)
=
isℏσ2

2
θ (t) ⟨

[
â (r, t) , â

(
r′, 0

)]
+
[
â (r, t) , â†

(
r′, 0

)]
+
[
â† (r, t) , â

(
r′, 0

)]
+
[
â† (r, t) , â†

(
r′, 0

)]
⟩eq

Now, expanding every raising and lowering operator in the Fourier space, we have

χxx

(
r, r′; t

)
=
isℏσ2

2N
θ (t)

∑
k′∈1BZ

∑
k′′∈1BZ

⟨[âk′ (t) , âk′′ (0)] exp i
(
k′ · r+ k′′ · r′

)
+
[
âk′ (t) , â†k′′ (0)

]
exp i

(
k′ · r− k′′ · r′

)
+
[
â†k′ (t) , âk′′ (0)

]
exp i

(
−k′ · r+ k′′ · r′

)
+
[
â†k′ (t) , â

†
k′′ (0)

]
exp i

(
−k′ · r− k′′ · r′

)
⟩eq

and taking the Fourier transform for the relative position vector R = r − r′ (or equivalently2, for r

evaluating r′ = 0), in the convenient limit
∫
d2R → 1

σ

∑
R, we obtain

χxx (k, t) =
isℏσ2

2
θ (t)

∑
k′∈1BZ

〈
[âk (t) , âk′ (0)] +

[
âk (t) , â

†
k′ (0)

]
+
[
â†−k (t) , âk′ (0)

]
+
[
â†−k (t) , â

†
k′ (0)

]〉
eq

The first and the last commutators vanish, while the two remaining must be expanded using the Bogoli-

ubov transformations3

χxx (k, t) =
isℏσ2

2
θ (t)

∑
k′∈1BZ

⟨uαkuαk′

[
α̂k (t) , α̂

†
k′ (0)

]
− vαkvαk′

[
β̂−k′ (0) , β̂†

−k (t)
]

− uαkuαk′

[
α̂k′ (0) , α̂†

−k (t)
]
+ vαkvαk′

[
β̂k (t) , β̂

†
−k′ (0)

]
⟩eq

Now, using the characteristic raising and lowering operators evolution in the Heisenberg picture α̂k (t) =

α̂k (0) exp(−iωαkt− ηt) and β̂k (t) = β̂k (0) exp(−iωβkt− ηt), with η > 0, and remembering the commu-

tation relations
[
α̂k, α̂

†
k′

]
=
[
β̂k, β̂

†
k′

]
= δkk′ , we have

χxx (k, t) =
isℏσ2

2
θ (t) [u2αk exp(−iωαkt)− v2αk exp(iωβkt)

− u2αk exp(iωαkt) + v2αk exp(−iωβkt)] exp(−ηt)

2In the long run, the result will be the same as using R = r− r′, since the system has translational symmetry.
3One can check this by expanding âk and b̂k with the Bogoliubov transformation, in a similar fashion to the method

shown here, as the Bogoliubov coeficcients are defined such that [α̂k, α̂k] =
[
α̂†
k, α̂

†
k

]
=

[
β̂k, β̂k

]
=

[
β̂†
k, β̂

†
k

]
= 0, and the

mixed commutators are zero as well.
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Finally, taking the remaining temporal Fourier transform, considering ωαk > 0 and ωβk > 0, we finally

obtain

χ′′
xx (k, ω) =

sℏσ2

2

[
u2αk

η

(ω − ωαk)
2 + η2

+ v2αk
η

(ω − ωβk)
2 + η2

]
with η > 0 a damping parameter for the spin wave. The other cases, like r, r′ ∈ L2 or the mixed one

(r ∈ L1 and r′ ∈ L2) are developed in Appendix D. The general procedure idea is quite similar to the one

shown here. Adding up all the possible susceptibilities, we obtain

χ′′
xx (k, ω) =

sℏσ2

2

[
(uαk − vαk)

2 η

(ω − ωαk)
2 + η2

+ (uβk − vβk)
2 η

(ω − ωβk)
2 + η2

]
,

so, according to dissipation-fluctuation theorem (3.13), the transverse spin-spin correlation function

Cxx (k, ω) = Cyy (k, ω) for easy-plane anisotropic systems (like NiO) is:

Cxx (k, ω) =
ℏσskBT

ω

[
(uαk − vαk)

2 η

η2 + (ωαk − ω)2
+ (uβk − vβk)

2 η

η2 + (ωβk − ω)2

]
(6.10)

where σ is the dipole surface density, η is a spin-wave damping factor and the Bogoliubov coefficients

uα(β)k and vα(β)k are given by (5.16). For uniaxial anisotropy (like MnF2), the spin-spin transverse cor-

relators are analogous, being the only difference that uαk = uβk = uk and vαk = vβk = vk and they are

given by equations (5.6).

The transverse spin-spin correlators (6.10) corresponds to a sum of Lorentzians, one of them reaches

its peak at ω = ωαk, while the other one, at ω = ωβk (see Figure 6.1). Those limits can be interpreted as

NV-magnon resonances. Far away from both peaks, the correlator decays to 0. However, we mentioned

before that, for both MnF2 and NiO, the dispersion relation ωα(β)k is of the order of THz, while ω is just

of GHz, which is to say, ωα(β)k ≫ ω. Therefore, the spin-spin transverse correlator Cxx doesn’t contribute

significantly to the integral in equation (3.12). This is just the opposite as the ferromagnetic case, for

materials like YIG [17], whose magnon frequencies are of similar order to the NV resonance frequency.

6.3.2 Longitudinal spin-spin correlation for AF systems

A realistic calculation of Γ (ω) needs the longitudinal correlation Czz (k, ω). Doing this by equation

(3.14) is a much longer procedure, due to the bi-linear form of the HP transformations (5.4) and (5.5).

Here, the desired spin-spin correlator is

Czz (k, ω) ≈
2kBT

ω
χ′′
zz (k, ω) (6.11)
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where the response linear function is given by

χzz

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝz (r, t) , ŝz

(
r′, 0

)]〉
eq

⇒χzz

(
r, r′; t

)
=

iσ2

ℏ
θ (t)

〈[
Ŝz (r, t) , Ŝz

(
r′, 0

)]〉
eq
.

As in the transverse correlator computation, it is necessary to split the procedure in several cases for the

positions r and r′, and finally sum them all. So, we have to calculate the linear response functions in four

parts, after applying the HP (5.4) and (5.5) transformations for each case:

χ(11)
zz

(
r, r′; t

)
= iℏσ2θ (t)

〈[
â† (r, t) â (r, t) , â†

(
r′, 0

)
â
(
r′, 0

)]〉
eq

χ(12)
zz

(
r, r′; t

)
= −iℏσ2θ (t)

〈[
â† (r, t) â (r, t) , b̂†

(
r′, 0

)
b̂
(
r′, 0

)]〉
eq

χ(21)
zz

(
r, r′; t

)
= −iℏσ2θ (t)

〈[
b̂† (r, t) b̂ (r, t) , â†

(
r′, 0

)
â
(
r′, 0

)]〉
eq

χ(22)
zz

(
r, r′; t

)
= iℏσ2θ (t)

〈[
b̂† (r, t) b̂ (r, t) , b̂†

(
r′, 0

)
b̂
(
r′, 0

)]〉
eq
.

Each of these response functions is associated with a many-particle correlation function. The required

steps to calculate these terms are similar to those explained in Section 6.1.2, being the only difference that

now it is necessary to expand the raising and lowering operators using the Bogoliubov transformations.

The full procedure can be found in Appendix D. For example, we can split χ
(11)
zz in four terms using the

product rule. Next, expanding the operators â and â† in the Fourier space, and using the Bogoliubov

transformations, we obtain the imaginary part of the response function in k space. The final susceptibility

in Fourier space is the sum of all the possible cases for r, r′:

χ′′
zz = χ′′(11)

zz + χ′′(12)
zz + χ′′(21)

zz + χ′′(22)
zz .

After finding all of these terms and reducing them in the limit η → 0+, thanks to the identity

lim
η→0+

1

π

η

η2 + (ω − ω0)
2 = δ (ω − ω0) ,

and taking the continuous limit
∑

k′∈1BZ → N
σ(2π)2

∫
d2k′, we obtain

χ′′
zz (k, ω) =

ℏ
4π

∫
1BZ

d2k′ {

[u2αk′δ
(
ω − ωα(k′+k) + ωαk′

)
+ v2αk′δ

(
ω − ωαk′ + ωα(k′+k)

)
]

×
[
nB (ℏωαk′ − µα)− nB

(
ℏωα(k′+k) − µα

)]
+[u2βk′δ

(
ω − ωβ(k′+k) + ωβk′

)
+ v2βk′δ

(
ω − ωβk′ + ωβ(k′+k)

)
]

×
[
nB

(
ℏωβk′ − µβ

)
− nB

(
ℏωβ(k′+k) − µβ

)]
},



CHAPTER 6. RELAXOMETRY SIMULATIONS 60

being µα and µβ the chemical potentials for the respective modes α and β. In general, α and β magnons

behave statistically similar to particle-antiparticle couples, in the sense that µα = −µβ = µ [41]. These

chemical potentials increase in magnitude as the drive magnetic field BAC (t), used to generate spin

excitations and control the NV spin state, does. So, the longitudinal spin-spin correlator, according to

dissipation-fluctuation theorem (3.13), is

Czz (k, ω) =
ℏkBT
2πω

∫
1BZ

d2k′ {

[u2αk′δ
(
ω − ωα(k′+k) + ωαk′

)
+ v2αk′δ

(
ω − ωαk′ + ωα(k′+k)

)
]

×
[
nB (ℏωαk′ − µα)− nB

(
ℏωα(k′+k) − µα

)]
+[u2βk′δ

(
ω − ωβ(k′+k) + ωβk′

)
+ v2βk′δ

(
ω − ωβk′ + ωβ(k′+k)

)
]

×
[
nB

(
ℏωβk′ − µβ

)
− nB

(
ℏωβ(k′+k) − µβ

)]
} (6.12)

This is the quantity that dominates the relaxation rates in antiferromagnetic systems. Note that the

Dirac deltas cancel out one of the two integrals present here. Those deltas represent energy conservation

for the possible magnon pairs, exchanging energy ℏω along with the NV center.

Unfortunately, computing the integral (6.12) might not be easy. In fact, for the dispersion relations

of antiferromagnetic magnons, this integral cannot be exactly calculated, and numerical methods are

required. However, dispersion relations of the form

ℏωα(β)k =
ℏ2k2

2mα(β)
+mα(β)c

2
α(β) + Uα(β)

allow the integral to be explicitly solved, giving the result

Czz (k, ω) =
(kBT )

2

2ω
{mα[

ℏω̃
µα

(

1√(
ℏω −Aα(β)k2

)2
+ 4(Vα − µα)Aα(β)k2

− 1√(
ℏω −Aα(β)k2

)2
+ 4VαAα(β)k2

)

(µα → µα − ℏω) (6.13)

+
1√(

ℏω −Aα(β)k2
)2

+ 4(Vα − µα)Aα(β)k2
− 1√(

ℏω −Aα(β)k2
)2

+ 4(Vα + ℏω − µα)Aα(β)k2

(ω → −ω)]}+ (α ↔ β) (6.14)

being Vα(β) = mα(β)c
2
α(β) + Uα(β) the full energy gap (considering both mass term and magnetic field

isolated term, if any) and Aα(β) = ℏ2/
(
2mα(β)

)
. So, it is possible to realize the approximations (5.14)

and (5.20) already presented in Chapter 5. In Figure 6.7 we plot both correlation functions (transverse
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and longitudinal) of an easy-axis antiferromagnet, using this non-relativistic approximation (5.14), and

how this is compared to the numerical calculation (which uses the exact dispersion relation (5.7)).
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Figure 6.7: Spin-spin correlation function for an easy-axis antiferromagnetic sample, using numerical

methods for the dispersion relation (5.7), and using the non-relativistic approximation which leads to

equation (6.14). (a) Graph using as domain [0, π/a]. (b) The same graph, but using a zoomed domain

[0, 10/z].

We note that Czz ≫ Cxx, which confirms our hypothesis that Czz dominates the relaxation rates. The

approximation (6.14) is in the same order of magnitude than the numerical simulation, being the first one

smaller in general (because the dispersion relation is bigger). However, the numerical simulation reveals

an interesting behavior that the approximation formula does not: for small k, the correlation function is

exactly 0. This means that spins with small wave vectors k does not correlate, or more precisely, won’t

contribute to the real spin-spin correlation.

The numerical simulations for the longitudinal correlation were done in Python with the following

procedure:

1. In equation (6.12), we evaluate at k = kŷ′′ (in this way, we choose the y′′ direction so that it

coincides with k). Therefore, k+ q = qxx̂
′′ + (qy + k)ŷ′′.

2. We separate the expression in four terms with integrals. For example, one of the four terms is∫ π/a

−π/a

∫ π/a

−π/a
dqx dqy u

2
αqδ

(
ω − ωα(q+k) + ωαq

)
[nB (ℏωαq)− nB (ℏωαq + ℏω)]
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For each term, we find numerically the roots of the expression inside the Dirac delta, in this case,

ω−ωα(q+k) +ωαq. Let one of these roots to be q∗y and q∗ = qxx̂
′′ + q∗yŷ

′′, so the integral previously

shown reduces to∫ π/a

−π/a
dqx

∑
q∗y

u2αq∗

∣∣∣∣∣∂ωαq

∂qy

∣∣∣∣
qy=q∗y

−
∂ωα(q+k)

∂qy

∣∣∣∣
qy=q∗y

∣∣∣∣∣
−1

[nB (ℏωαq∗)− nB (ℏωαq∗ + ℏω)]

In this program, we divide the one-dimensional projection of the first Brillouin zone
[
−π

a ,
π
a

]
in 10

subintervals, and if a change of sign in the total energy ℏ
(
ω − ωα(q+k) + ωαq

)
is detected in one of

those subintervals, Brent’s method is used to find the respective root (scipy.optimize.brentq) [42].

3. Finally, we realize the integral in qx. Particularly, graphs in Figure 6.7 were created by doing

the integration with the function scipy.integrate.quad of Python. For each value of k and ω, this

calculation of Czz (k, ω) takes approximately 10 seconds. Therefore, each subfigure (a) and (b) in

Figure 6.7 took several minutes to generate, as we used 100 different values of k to plot (50 for ω+,

and the other 50 for ω−).
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Figure 6.8: Two-magnon total energy ℏω − ℏωα(q+k) + ℏωαq restricted to be zero in the Dirac deltas

of equation (6.12), versus qy. α mode only. (a) Plot generated using qx = 0 and k = 5/z, one can see

two roots. (b) Plot generated using qx = 0, k = 0.1/z, no roots at all. For both cases, z = 50 nm and

ω = DNV + γH0 (H0 = 500 G).
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6.4 Relaxation rates using antiferromagnetic samples

In the antiferromagnetic case, the relaxation rates is dominated by the longitudinal spin-spin correla-

tion function Czz given by equation (6.12). As none of the dispersion relations mentioned in Chapter 5

depend on the magnon angle ϕk, using the simplified version (3.12) of Γ (ω), with Cxx → 0, is enough.

Creating the simulations for Γ (ω±) is already a highly demanding computational task if we use the nu-

merical methods mentioned in previous sections; it may take hours or even full days to plot a single graphic.

In the model of this work, it is enough to indicate the parameters of anisotropy Dz and Dx and the

exchange constant J2 to give a full description of the sample. It is a common practice in literature to

directly report the effective fields

HE =
2sZ|J2|

ℏγ
, HAx =

2sDx

ℏγ
, HAz =

2sDz

ℏγ

defined in Chapter 5. First, we evaluate the obtained expression for Γ (ω±) in (3.12) considering the

easy-axis antiferromagnet MnF2, as its parameters HE = 526 kOe, HAz = 8.2 kOe and HAx = 0 are well-

known [5]. Simulations for these relaxation rates were done numerically using the procedure mentioned

in the previous sections to compute Czz, and the results are shown in Figure (6.9a), for temperature4

T = 50K and neglecting chemical potential. These relaxation rates are of the order or 10 s−1, which can

be barely detected using relaxometry. NV centers have intrinsic relaxation rates whose magnitude order

oscillate around 10 s−1. Effects in diamond like strain, temperature and accumulation of NV centers can

reduce or elevate even more this intrinsic relaxation rate [43], but hardly it goes down to the order of

1 × 10−1 s−1. Thus, MnF2 is almost out of the sensitivity limits of NV centers, even using a relatively

short NV-to-sample distance of z = 30nm.

Nevertheless, it is possible to elevate relaxation rates’ orders of magnitude by manipulating the magnon

chemical potential µ. Experimentally, this can be done by applying a drive magnetic field BAC (t) [32].

This radiation, if resonates with one of the antiferromagnetic resonance frequencies, either ωα,k=0 = Vα

or ωβ,k=0 = Vβ, pumps respectively α or β magnons into the sample [41], and therefore more intense spin

fluctuations. In this case, we assume the drive field to be left-handed circularly polarized5 and transverse

4According to (6.12) and (6.14), higher temperatures would result in higher relaxation rates Γ (ω±). However, MnF2

presents a Neel temperature of TN = 66.5K [33], so making these simulations at room temperature T = 300K would be

unrealistic.
5A left-handed polarized, frequency ωβ,k=0 microwave triggers β-magnon creation with µ > 0, while right-handed polarized

drive fields with frequency ωα,k=0 pump α-magnons with µ < 0. Here, we consider only the first case as ωβ,k=0 < ωα,k=0.
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to the equilibrium orientation of the spins, so

BAC (t) = BAC [cos(ωβ,k=0t)x̂− sin(ωβ,k=0t)ŷ] .

Given this microwave, it is possible to show that µ ∝ B2
AC [32, 41]. Thus, the greater drive magnetic

field, the greater µ. Particularly, if µ is near the magnon condensation point (µ ≈ Vβ for µ < Vβ), the

orders of magnitude of the relaxation rates increase drastically, as shown in Figure (6.9b), where we have

evaluated6 MnF2 at µ = 0.985mc2. Elevating the drive magnetic field is the key for obtaining measurable

relaxation rates using antiferromagntic systems.
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Figure 6.9: Relaxation rates Γ (ω±) versus external magnetic field H0, at temperature T = 50K, using

a MnF2 sample at distance z = 30nm from the NV center. (a) For chemical potential µ = 0. (b)

µ = 0.985mc2. For both cases, equation (6.12) was used for the longitudinal spin-spin correlation and

numerical integration was performed.

The only problem of this drive field technique is that we require µ close to mc2, whose values may

be extremely large. For instance, mc2/ℏ ∼ THz for MnF2, so reaching a chemical potential of 0.985mc2

would require a field amplitude of BAC ∼ mc2/(ℏγ) > 5T. However, for easy-axis antiferromagnets with

low anisotropy, such as RbMnF3 [34], using drive fields would be a good addition to increase Γ (ω±).

On the other hand, using as a sample the easy-plane antiferromagnet NiO, whose parameters are

also well-known (exchange field HE = 9684 kOe, easy-axis anisotropy field HAz = 0.11 kOe and hard-axis

6Actually, β-magnon energy gap is Vβ = mc2 − ℏγH0. However, for MnF2, ℏγH0 is smaller than 0.015mc2 even at

H0 = 1000Oe, so 0.985mc2 is a good choice for the chemical potential, near to mc2 and does not intersect the magnon

dispersion relations ℏωα(β)k
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anisotropy field HAx = 6.35 kOe) [19], we obtain a similar graph, but with extremely low relaxation rates,

as illustrated in Figure (6.10b). These values for Γ (ω±) are definitely unreadable and will be overshadowed

by the NV intrinsic relaxation rate, whose magnitude order oscillates around 10 s−1, and increasing the

relaxation rates controlling chemical potencial is unpractical because of the high drive fields required. We

conclude that NiO is not a material that can be used for this experiment. In terms of the sample, these

problems occur mainly because NiO has a very high effective exchange field HE , which freezes the system

dynamics, making it inert against the NV center.
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Figure 6.10: Relaxation rates Γ (ω±) versus external magnetic field H0, at temperature T = 300K, using a

NiO sample at a distance z = 100 nm. Equation (6.12) was used for the longitudinal spin-spin correlation

and numerical integration was performed.

A valid question that now arises is: for what kind of antiferromagnetic materials will this technique

work. One can conclude that antiferromagnetic materials should have a low |J2|, and therefore, a low

exchange field HE = 2sZ|J2|/(ℏγ) defined in equation (5.22). In fact, this is the main influence on

the values that Γ (ω) takes (see Figure 6.11). Other parameter that one should be careful about is the

anisotropy constant Dz which defines how big the gap mα(β)c
2
α(β) is in the dispersion relation ℏωα(β)k. So,

the product
√
J2Dz, which defines the spin-flop field HSF :=

√
2HEHAz −H2

Az ≈
√
2HEHAz should not

be so big. A material that stands out for its relatively low spin-flop (which can be smaller than 1 T [44])

is the hematite α−Fe2O3, already mentioned in Chapter 5 when discussed phase transitions, specifically

Morin transition.
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Figure 6.11: Relaxation rates Γ (ω±) versus effective exchange field HE , using NV-to-sample distance

z = 50nm. (a) Both relaxation rates, using fixed anisotropy fields HAz = 2sDz/(ℏγ) = 500Oe and

HAx = 0. (b) Only Γ (ω−), for several values of HAz and fixed HAx = 0. Both graphs are shown in

log10− log10 scale, as we want to analyze changes in the relaxation rates order of magnitude.

The Morin temperature TM = 263K defines a phase transition from which the system rotates its

easy-axis, as explained in Chapter 5. For T < TM , the system behaves as a easy-axis antiferromagnet,

while for T > TM , it is in a canted phase. For this material in the antiferromagnetic (AF) phase, we take

the parameters HAz = 0.5 kOe and HE = 130 kOe, so that HSF ≈
√
2HEHAz ≈ 1.1T coincides with the

value we take as reference for the spin-flop field [18]. In general, this Morin transition may change the

value of the anisotropy field HAz, so we took H ′
Az = 5Oe for T > TM . Simulations for the relaxation

rates Γ (ω±) are shown in Figure (6.12a), for temperature T < TM .
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Figure 6.12: Relaxation rates Γ (ω±) simulations for a NV center located at z = 50nm from a hematite

α−Fe2O3 sample. (a) Relaxation rates versus magnetic fieldH0 at temperature T = 250K. (b) Relaxation

rates versus temperature T in a fixed magnetic field H0 = 500Oe. Here, equation (5.7) was used for

the dispersion relation in the antiferromagnetic phase (T < TM ), while (5.25) was used in canted phase

(T > TM ). For both graphs, numerical integration was performed for the longitudinal spin-spin correlation

(6.12).

The previous plot was created considering a fixed temperature. An interesting question is: how the

NV center reacts as T approaches to the Morin transition at T = TM . Figure (6.12b) responds to this

question by displaying a plot of the relaxation rates Γ (ω±) taking T as a variable. We observe that Γ (ω−)

increases drastically when T = TM , while Γ (ω+) barely reacts. In this way, NV centers can detect phase

transitions of antiferromagnetic materials, and quantitatively measuring their relaxation rates one can

determine at which temperature these transitions occur, as well as the fitting parameters HE ∝ J2 and

HAz ∝ Dz.

In summary, relaxation rates can be calculated for both ferromagnetic and antiferromagnetic systems.

The main goal of this chapter to calculate the relaxation rates Γ (ω) using these systems as samples, and

we did it using the equation (3.12) found in Chapter 3, along with the formalism presented in Chapters 4

and 5 to describe magnetic materials. We calculated the spin-spin correlation functions for each case. In

ferromagnets, as the resonance frequency ωk=0 is of the order of GHz (similar to ω±), the relaxation rates

Γ (ω±) are dominated by the transverse spin-spin correlation Cxx, and therefore Γ± (H0) peaks at the
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magnetic field H0 where ω+ = ωk=0 or ω− = ωk=0. In this way, it is possible to characterize ferromagnetic

samples by reading their dispersion relation via relaxometry, obtaining with this fitting parameters like

the effective magnetization Meff , the saturation magnetization MS and the spin-spin exchange constant

J > 0. On the other hand, antiferromagnetic systems have typically resonance frequencies of the order

of THz, so the relaxation rates are dominated by the longitudinal spin-spin correlation function Czz. We

observed that not always it is possible to characterize antiferromagnetic samples using NV center relax-

ometry. Some materials with extremely high effective exchange field HE , like NiO, are inert against the

NV center.

Relaxometry with nitrogen-vacancy centers is a novel technique and its possibilities are still being

studied. For future work, it would be interesting to study the interaction between a NV center and

antiferromagnetic material with other types of geometry. For instance, triangular-lattice antiferromagnets,

like Cs2CuCl4 (see Figure 6.13) [45], present non-trivial spin orientations and can form what is called a

“frustrated system”. We expect the relaxometry technique to detect this sample, as s = 1/2 and its

exchange constants J and J ′ are of the order of J = 0.37meV and J ′/J = 0.34 [46]. In general, the

interaction between NV centers and low-dimension systems (quasi-1D and 2D materials) is a whole open

world.

J

J ′

y
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z

Figure 6.13: Crystal structure and spin orientation in the trangular-lattice antiferromagnet Cs2CuCl4.

Other interesting topic that arises from the analysis of hematite (α-Fe2O3) is the temperature de-

pendence of the relaxation rates. We have already seen that a plot of Γ (ω±) versus temperature T

is able to reveal phase transitions (in this case, Morin transitions). Some materials, like ferrimagnets,

present magnetic properties with interesting temperature dependences. Particularly, ferrimagnets exhibit

two spin sublattices, just as antiferromagnets, but with one spin orientation dominating over the other

(in terms of equations (5.3) and (5.15), S (r1) > S (r2)), producing a net magnetization [6]. However,

there exists a compensation temperature where both magnetic moments are equal and cancel each other,
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creating a similar system to antiferromagnets, but with lower resonance frequencies that can intersect

ω±. In this way, NV center relaxometry would be able to differenciate between a natural antiferromagnet

and a compensated ferrimagnet, just by characterizing their resonance frequencies. In general, this is the

quality that makes relaxometry a powerful characterization technique.



Chapter 7

Conclusions and outlook

As conclusion, nitrogen-vacancy centers provide an excellent way for measuring physical quantities of

magnetic materials. The main goal of this work was to describe theoretically how the NV center reacts

against several types of magnetic materials (either ferro or antiferromagnetic). This was done by calcu-

lating the relaxation rates Γ (ω±) using quantum perturbation theory, in such a way those Γ (ω±) were

expressed as a function of the magnetic perturbations. These perturbations are actually produced by

spin perturbations, whose correlation functions are purely determined by the physical properties of the

sample. In this way, the work of calculating Γ (ω±) was reduced to finding spin-spin correlation functions.

We found that, for ferromagnetic systems whose resonance was of the order of GHz, the transverse

spin-spin correlation dominates over the longitudinal, so the relaxation rates peak at the field where

the NV center and the sample resonate simultaneously, occurring one-magnon creation-annihilation pro-

cesses. On the other hand, in antiferromagnetic systems, whose magnon energy gap was of the order of

THz, the main contribution to Γ (ω±) was the longitudinal spin-spin correlation. Unlike using ferromag-

netic systems, relaxometry with antiferromagnetic does not exhibit a characteristic peak in its relaxation

rates, being this the main difference between both materials. An analytic and exact calculation of the

relaxation rates under these circumstances was not possible, and was necessary to develop approxima-

tions or numerical methods. Moreover, we found that not all materials produce readable relaxation rates.

Due to its extremely high spin coupling parameter, NiO is almost inert against this relaxometry technique.

Despite these difficulties, we found that hematite (α−Fe2O3) presents required parameters for using

as a readable sample. We developed simulations of how the relaxation rates vary as a function of both

the external magnetic field and the temperature, and found that NV centers can read phase transitions

(in this case, Morin transition) that occurs in this sample.

70



CHAPTER 7. CONCLUSIONS AND OUTLOOK 71

We achieved the goal of characterizing the relaxation of NV centers near ferromagnetic and anti-

ferromagnetic materials, finding the mentioned differences between both cases. It would be interesting

to see how this NV center reacts against ferrimagnetic materials, which exhibit interesting temperature

dependence, or other spin geometries in antiferromagnetic systems. For instance, triangular-lattice anti-

ferromagnets, like Cs2CuCl4, present non-trivial spin orientations and can form a frustrated system. In

general, the study of interaction between NV centers and magnetic materials like ferromagnets, ferrimag-

nets and antiferromagnets (in all of their possible geometries and dimensions) is an open and interesting

topic to explore.



Appendix A

Interaction between magnetic dipoles

Two magnetic dipoles, with dipolar magnetic moments µ1 and µ2, will have an interaction energy

[22] given by the well-known hamiltonian (in CGS units):

H12 =
µ1 · µ2

r3
− 3 (µ1 · r) (µ2 · r)

r5
,

where r is the vector joining µ2 and µ1. It is possible to use the macrospin approximation µ1 = gsµBS1/ℏ,

being gs ≈ 2, µB the Bohr magneton, ℏ the Planck’s constant and S1 is the spin angular momentum.

Similarly for µ2 = gsµBS2/ℏ.

⇒ H12 =
g2sµ

2
B

r5
(
r2S1 · S2 − 3 (S1 · r) (S2 · r)

)
.

Expanding S1 = S1xx̂+ S1yŷ + S1zẑ, S2 = S2xx̂+ S2yŷ + S2zẑ and r = xx̂+ yŷ + zẑ, we get

⇒ H12 =
g2sµ

2
B

r5
[
r2(S1xS2x + S1yS2y + S1zS2z)− 3 (S1xx+ S1yy + S1zz) (S2xx+ S2yy + S2zz)

]

⇒ H12 =
g2sµ

2
B

r5
[S1xS2x(r

2 − 3x2) + S1yS2y(r
2 − 3y2) + S1zS2z(r

2 − 3z2)

− 3xy (S1xS2y + S1yS2x)− 3xz (S1xS2z + S1zS2x)− 3yz (S1yS2z + S1zS2y)]

In terms of the total spin angular momentum S = S1 + S2,

⇒ H12 =
g2sµ

2
B

r5
1

2
[S2

x(r
2 − 3x2) + S2

y(r
2 − 3y2) + S2

z (r
2 − 3z2)

− 3xy (SxSy + SySx)− 3xz (SxSz + SzSx)− 3yz (SySz + SzSy)]

⇒ H12 =
g2sµ

2
B

r5
1

2

[
Sx Sy Sz

]
(r2 − 3x2)Sx − 3xySy − 3xzSz

−3xySx + (r2 − 3y2)Sy − 3yzSz

−3xzSx − 3yzSy + (r2 − 3z2)Sz
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⇒ H12 =
g2sµ

2
B

2r5

[
Sx Sy Sz

]
r2 − 3x2 −3xy −3xz

−3xy r2 − 3y2 −3yz

−3xz −3yz r2 − 3z2



Sx

Sy

Sz


Using expectation values (as x, y and z are random variables), and re-writing this as a matricial product,

Ĥ12 =
1

ℏ
Ŝ†DŜ.

Here, Ŝ is the array containing the spin operators Ŝx, Ŝy y Ŝz while D is the matrix formed by the average

values of the projections (x, y y z) of the relative positions between the two magnetic dipoles. In the

chosen coordinate system, this is the so-called zero-field splitting tensor.



Appendix B

Spin-spin correlation in Fourier space

In Chapter (3), one needs to calculate a factor in the form ⟨δsα (k, t) δsβ (k′, 0)⟩ and express it in

terms of the spin-spin correlation functions Cαβ (r, r
′; t) = ⟨ŝα (r, t) ŝβ (r′, 0)⟩. For simplicity, we will use

summation convention within this Appendix, only for latin letters (like n or m). First, we expand this

product as Fourier transforms

〈
ŝn (k, t) ŝm

(
k′, 0

)〉
=

∫ ∫ 〈
ŝn
(
r′, t
)
ŝm
(
r′′, 0

)〉
exp
(
−ik · r′

)
exp
(
−ik′ · r′′

)
d2r′ d2r′′

Inside the integral, this average should not depend on the separate positions r′ and r′′, but the difference

r− r′′, which we will call R. Therefore,

〈
ŝn (k, t) ŝm

(
k′, 0

)〉
=

∫ ∫ 〈
ŝn
(
r− r′′, t

)
ŝm (0, 0)

〉
exp
(
−ik · r′

)
exp
(
−ik′ · r′′

)
d2r′ d2r′′

and one can realize the substitution r′ = R+ r′′, obtaining

〈
ŝn (k, t) ŝm

(
k′, 0

)〉
=

∫ ∫
⟨ŝn (R, t) ŝn (0, 0)⟩ exp(−ik ·R) exp

[
−i
(
k+ k′) · r′′]d2Rd2r′′

⇒
〈
ŝn (k, t) ŝm

(
k′, 0

)〉
=

∫ ∫
⟨ŝn (R, t) ŝm (0, 0)⟩ exp(−ik ·R) exp

[
−i
(
k+ k′) · r′′]d2r′′ d2R

⇒
〈
ŝn (k, t) ŝm

(
k′, 0

)〉
=

∫
⟨ŝn (R, t) ŝm (0, 0)⟩ exp(−ik ·R)

∫
exp
[
−i
(
k+ k′) · r′′]d2r′′ d2R

The internal integral with variable r′′ corresponds to a 2D Dirac delta, while the other one with R is a

Fourier transform. So,

〈
ŝn (k, t) ŝm

(
k′, 0

)〉
= (2π)2 δ(2)

(
k+ k′)FR {⟨ŝn (R, t) ŝm (0, 0)⟩} (k) ,

or, in terms of the 2D Fourier transform Cnm (k, t) of the spin-spin correlation function,

〈
ŝn (k, t) ŝm

(
k′, 0

)〉
= (2π)2 δ(2)

(
k+ k′) Cnm (k, t) . (B.1)
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Now, let’s suppose that we have to calculate terms of the form

fℓp
(
k,k′) = Dℓn (k)Dpm

(
k′) 〈ŝn (k, t) ŝm (k′, 0

)〉
, (B.2)

being Dαβ (k) a complex matrix with Dαβ (−k) = D∗
αβ (k), which is exactly what we have in Chapter 3,

specifically in equation (3.8). Using the result (B.1) in this definition,

fℓp
(
k,k′) = Dℓn (k)Dpm (−k) (2π)2 δ(2)

(
k+ k′) Cnm (k, t) ,

⇒ fℓp
(
k,k′) = Dℓn (k)D

∗
pm (k) (2π)2 δ(2)

(
k+ k′) Cnm (k, t)

Let α, β = x, y, z two fixed coordinate indexes. If m ̸= n, we have two terms (one with n = α and m = β,

and the other with n = β and m = α):

fℓp
(
k,k′) = (2π)2 δ(2)

(
k+ k′) {Dℓα (k)D

∗
pβ (k) Cαβ (k, t) +Dℓβ (k)D

∗
pα (k) Cβα (k, t)

}
(B.3)

If both α and β are x or y (which is to say, the transverse coordinates), then D∗
αβ (k) = Dαβ (k) and the

correlation Cαβ (k, ω) (in Fourier space-time, with frequency ω) can be calculated using the fluctuation-

dissipation theorem

Cαβ (k, ω) =
2ℏ

1− exp
(
− ℏω

kBT

)χ′′
αβ (k, ω) , ≈

2kBT

ω
χ′′
αβ (k, ω)

where χ′′
αβ is the imaginary part of the linear response function χαβ, given in the real space by

χαβ

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝα (r, t) , ŝβ

(
r′, 0

)]〉
eq

⇒χαβ

(
r, r′; t

)
=

iσ2

ℏ
θ (t)

〈[
Ŝα (r, t) , Ŝβ

(
r′, 0

)]〉
eq
.

So, expanding Ŝx =
(
Ŝ+ + iŜ−

)
/2 and Ŝy =

(
Ŝ+ − iŜ−

)
/(2i), we found

χxy

(
r, r′; t

)
=

σ2

4
θ (t)

〈[
Ŝ+ (r, t) + iŜ− (r, t) , Ŝ+

(
r′, 0

)
− iŜ− (r′, 0)]〉

eq

⇒ χxy

(
r, r′; t

)
=

σ2

4
θ (t) ⟨

[
Ŝ+ (r, t) , Ŝ+

(
r′, 0

)]
− i
[
Ŝ+ (r, t) , Ŝ− (r′, 0)]

+ i
[
Ŝ− (r, t) , Ŝ+

(
r′, 0

)]
+
[
Ŝ− (r, t) , Ŝ− (r′, 0)]⟩eq

Clearly,
[
Ŝ+ (r, t) , Ŝ+ (r′, 0)

]
=
[
Ŝ− (r, t) , Ŝ− (r′, 0)

]
= 0; they commute at t = 0, and they will do

at every time. One can prove this by using Holstein-Primakoff transformations (4.4), (5.4) or (5.5) as

appropriate. So,

χxy

(
r, r′; t

)
=

iσ2

4
θ (t)

〈[
Ŝ− (r, t) , Ŝ+

(
r′, 0

)]
−
[
Ŝ+ (r, t) , Ŝ− (r′, 0)]〉

eq



APPENDIX B. SPIN-SPIN CORRELATION IN FOURIER SPACE 76

In a similar way, and using the same recent arguments,

χyx

(
r, r′; t

)
=

iσ2

4
θ (t)

〈[
Ŝ+ (r, t) , Ŝ− (r′, 0)]− [Ŝ− (r, t) , Ŝ+

(
r′, 0

)]〉
eq

Thus, we observe that χxy = −χyx, and consequently, Cxy (k, ω) = −Cyx (k, ω) and Cxy (k, t) = −Cyx (k, t),

which in equation (B.3) results fℓp (k,k
′) = 0 when both α and β are x or y.

On the other hand, if one of the coordinates (namely α) is z and the other β = x, y, we have to

calculate

χzβ

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝz (r, t) , ŝβ

(
r′, 0

)]〉
eq

⇒χαβ

(
r, r′; t

)
=

iσ2

ℏ
θ (t)

〈[
Ŝz (r, t) , Ŝβ

(
r′, 0

)]〉
eq
.

Again, expanding Ŝx =
(
Ŝ+ + iŜ−

)
/2 or Ŝy =

(
Ŝ+ − iŜ−

)
/(2i),

χzβ

(
r, r′; t

)
=

σ2

4
θ (t)

〈[
Ŝz (r, t) , Ŝ

+
(
r′, 0

)
± Ŝ− (r′, 0)]〉

eq

and by Holstein-Primakoff transformations (in any of their forms), it is clear that χzβ (r, r
′; t) = 0. In

general, correlators with an odd numer of annihilation operators always result 0.

Finally, we conclude that identity (B.1) holds, and only diagonal terms with n = m contribute to the

sum in (B.2).



Appendix C

Fluctuation-dissipation theorem

In this work, we define a fluctuation δÂ (t) as every slight, time-dependent deviation of a quantity A

respect to its equilibrium, time-independent canonical average
〈
Â
〉
eq
, which is to say, δÂ (t) = Â (t) −〈

Â
〉
eq
. Correlation functions in the form F (t, τ) =

〈
δÂ (t) δÂ (t+ τ)

〉
are also constantly used here,

where the variable t might represent time, position vectors, or even space-time events x, just as in the

case of the so-mentioned spin-spin correlation function Czz (x, x
′) = ⟨δŝz (x) δŝz (x′)⟩ of the main text.

Some of the most important properties of those correlation functions are [27]:

1. In steady state, systems acquire time translation symmetry, which for correlators implies that

F (t, τ) =
〈
δÂ (t) δÂ (t+ τ)

〉
= F (τ) for each t.

2. In steady state, F (0) =
〈
δÂ (t)2

〉
> 0.

3. The correlation F is an even function:

F (τ) =
〈
δÂ (t) δÂ (t+ τ)

〉
⇒F (τ) =

〈
δÂ (t− τ) δÂ (t− τ + τ)

〉
⇒F (τ) = F (−τ) .

4. For each t, we have |F (t)| ≤ F (0). Proof: consider

〈∣∣∣δÂ (t1)± δÂ (t2)
∣∣∣2〉 =

〈
δÂ2 (t1)

〉
+〈

δÂ2 (t2)
〉
± 2

〈
δÂ (t1) δÂ (t2)

〉
, so〈∣∣∣δÂ (t1)± δÂ (t2)

∣∣∣〉 = 2 [F (0)± F (t)] ,

but

〈∣∣∣δÂ (t1)± δÂ (t2)
∣∣∣2〉 ≥ 0, so

|F (t)| ≤ F (0) .
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5. Fluctuations in general have a characteristic time τ∗ in which they occur. For τ ≫ τ∗, fluctuations

δÂ (t) and δÂ (t+ τ) become statistically independent, which is to say,〈
δÂ (t) δÂ (t+ τ)

〉
≈
〈
δÂ (t)

〉〈
δÂ (t+ τ)

〉
= 0, for τ ≫ τ∗.

In general, fluctuations produce time-dependence in system’s hamiltonian, which is not studied in

stationary ensemble theory (like canonical ensemble with partition function). That’s why using the

partition function to calculate averages ⟨. . .⟩, including correlations, won’t work. Our primary aim in this

Appendix is to state a general way to calculate out-of-equilibrium (perturbed) expectation values ⟨. . .⟩,

like
〈
Â (t)

〉
. The fundamental theory that enables us to study and calculate these quantities is the linear

response theory, which defines what is called the linear response function. Let two observables, with their

respective self-adjoint operators Â and B̂ in Scrödinger picture. This last observable operator B̂ is what

gives time-dependence to the hamiltonian Ĥ, modulated by an external agent f (t) adiabatically switched

on at t → −∞, such that the hamiltonian takes the form

Ĥ (t) = Ĥ(0) − f (t) B̂,

where Ĥ(0) is the time-independent part of the hamiltonian, without considering fluctuations. Therefore,

the linear response function χAB is defined in a way such that1〈
Â (t)

〉
=
〈
Â
〉
eq

+

∫ ∞

−∞
χAB

(
t− t′

)
f
(
t′
)
dt′ . (C.1)

This response function plays a similar role to Green’s function in inhomogeneous linear differential equa-

tions: it allows us to determine how Â evolves in presence of an external agent f . In this case, f (t)

connects Â and B̂. What we pretend here is to determine this linear response function χAB.

To begin with, we expand the canonical average〈
δÂ (t)

〉
=
〈
Â (t)

〉
−
〈
Â
〉
eq

= Tr Âρ̂ (t)− Tr Âρ̂eq = Tr Âδρ̂ (t) , (C.2)

where ρ̂ (t) = ρeq + δρ̂ (t) is the perturbed density operator and δρ̂ (t) its fluctuation with respect to the

equilibrium operator ρeq, caused by the coupling term −f (t) B̂. In order to determine δρ̂ (t), we utilize

1One may write the first term either
〈
Â
〉
eq

or
〈
Â (t)

〉
eq
, explicitly evaluated at time t. As Â (t) =

exp
(

iH(0)t
ℏ

)
Â exp

(
− iH(0)t

ℏ

)
and

[
Ĥ(0), ρ̂eq

]
= 0, we have Tr Â(t)ρ̂eq = Tr Âρ̂eq and it is enough to use operators in

Schrödinger picture in ⟨. . .⟩eq. By the way, if explicit time dependence is written along the operators Â (t) or B̂ (t), we

assume they are in the interaction picture.
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Liouville-von Neumann equation:

iℏ
∂ρ̂

∂t
=
[
Ĥ (t) , ρ̂ (t)

]
⇒ ∂

∂t
[ρ̂eq + δρ̂ (t)] =

1

iℏ

([
Ĥ(0), ρ̂eq

]
− f (t)

[
B̂, ρ̂eq

]
+
[
Ĥ(0), δρ̂ (t)

]
− f (t)

[
B̂, δρ̂ (t)

])
⇒ ∂

∂t
[δρ̂ (t)] ≈ 1

iℏ

([
Ĥ(0), δρ̂ (t)

]
− f (t)

[
B̂, ρ̂eq

])
,

where we used iℏ ∂ρ̂eq/∂t = 0 (and consequently,
[
Ĥ(0), ρ̂eq

]
= 0) and the term f (t)

[
B̂, δρ̂

]
was neglected

at first order approximation. This results in a linear differential equation for δρ̂ (t), which can be solved

by multiplying the integrating factors exp
(
iĤ0t/ℏ

)
to right, and exp

(
−iĤ0t/ℏ

)
to left, obtaining

δρ̂ (t) =
i

ℏ

∫ t

−∞
f
(
t′
)
exp

(
− iĤ(0) (t− t′)

ℏ

)[
B̂, ρ̂eq

]
exp

(
iĤ(0) (t− t′)

ℏ

)
dt′ .

Next, using (C.2), 〈
δÂ (t)

〉
=

i

ℏ

∫ t

−∞

〈[
Â (t) , B̂

(
t′
)]〉

eq
f
(
t′
)
dt′ ,

being Â (t) and B̂ (t) the operators in the interaction picture. Comparing this result with (C.1) we read

the linear response function to be

χAB

(
t, t′
)
=

i

ℏ
θ
(
t− t′

) 〈[
Â (t) , B̂

(
t′
)]〉

eq
,

where θ is the Heaviside theta function.

Usually (as just in the case of this work), one needs the Fourier transform of the linear response

function, given by

Ft

{〈
δÂ (t)

〉}
(ω) = Ft {χAB (t)} (ω)Ft {f (t)} (ω) =

[
χ′ (ω) + iχ′′ (ω)

]
Ft {f (t)} (ω) ,

where χ′ y χ′′ are the real and imaginary part of Ft {χAB (t)}, respectively. Physically, the imaginary part

indicates how much energy is being dissipating along the fluctuation process triggered by the external

agent f (t). Using the identity χ′′ = (Ft {χAB (t)} − Ft {χAB (t)}∗) /(2i), we obtain

χ′′
AB (ω) =

1

2ℏ

∫ ∞

−∞

〈[
Â (t) , B̂ (0)

]〉
eq
exp(iωt) dt . (C.3)

The last remaining question is: how this linear response function is related to the correlation func-

tion. One can answer this question by expanding the commutator
〈[

Â (t) , B̂ (0)
]〉

eq
using Boltzmann

distribution:

〈
Â (t) B̂

(
t′
)〉

eq
=

Tr
[
Â (t) B̂ (t′) exp

(
−βĤ(0)

)]
Z

=
Tr
[
Â (t) exp

(
−βĤ0

)
exp
(
βĤ(0)

)
B̂ (t′) exp

(
−βĤ(0)

)]
Z

,
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where Z is the canonical partition function and β = 1/ (kBT ), with T > 0 the temperature and kB the

Boltzmann constant. Now, we utilize the time evolution relation in Heisenberg picture2

exp
(
iĤ(0)τ/ℏ

)
B̂
(
t′
)
exp
(
−iĤ(0)τ/ℏ

)
= B̂

(
t′ + τ

)
(C.4)

with τ = −iℏβ, obtaining 〈
Â (t) B̂

(
t′
)〉

eq
=

Tr(B (t′ − iℏβ)A (t) exp(−βH))

Z

⇒
〈
Â (t) B̂

(
t′
)〉

eq
=
〈
B̂
(
t′
)
Â (t+ iℏβ)

〉
eq

Finally, inserting this result into (C.3),

χ′′
AB (ω) =

1

2ℏ
(1− exp(−βℏω))

∫ ∞

−∞

〈
Â (t) B̂ (0)

〉
eq
exp(iωt) dt ,

⇒χ′′
AB (ω) =

1

2ℏ

[
1− exp

(
− ℏω
kBT

)]
SAB (ω)

with SAB (ω) =

∫ ∞

−∞

〈
Â (t) B̂ (0)

〉
exp(iωt) dt. This is the so-called fluctuation-dissipation theorem.

2Actually, Heisenberg picture’s time evolution is described by exp
(
iĤτ/ℏ

)
B̂ (t′) exp

(
−iĤτ/ℏ

)
= B̂ (t′ + τ), using the

full hamiltonian Ĥ = Ĥ(0)+ Ĥ ′. If
[
Ĥ(0), Ĥ ′

]
= 0, we may separate exp

(
iĤτ/ℏ

)
= exp

(
i ˆH(0)τ/ℏ

)
exp

(
iĤ ′τ/ℏ

)
and cancel

the factors with Ĥ ′, because Ĥ ′ (t) and B̂ (t) commute at any given instant t by definition. Time evolution (C.4) is valid up

to first order in perturbations.



Appendix D

Spin-spin correlations in

antiferromagnets

According to dissipation-fluctuation theorem, it is possible to relate the correlation function Cαβ with

the susceptibility χαβ (k, ω), as

Cαβ (k, ω) =
2ℏ

1− exp(−βℏω)
χ′′
αβ (k, ω) ≈

2kBT

ω
χ′′
αβ (k, ω) , (D.1)

where χ′′ (k, ω) is the imaginary part of the Fourier transform of the response function. The most

straightforward method to calculate this type of susceptibilities is using the dissipation-fluctuation formula

in terms of the commutator

χαβ

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝα
(
r′, t
)
, ŝβ (r, 0)

]〉
eq
. (D.2)

To keep going, it is necessary to specify which coordinates α, β are we using. Each case will give us a

different susceptibility.

D.1 Transverse spin-spin correlator

In this case, the desired spin-spin correlator is

Cxx (k, ω) ≈
2kBT

ω
χ′′
xx (k, ω) (D.3)

where the linear response function in real space is given by

χxx

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝx (r, t) , ŝx

(
r′, 0

)]〉
eq

⇒χxx

(
r, r′; t

)
=

iσ2

ℏ
θ (t)

〈[
Ŝx (r, t) , Ŝx

(
r′, 0

)]〉
eq
. (D.4)
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Here, Ŝx = (Ŝ+ + Ŝ−)/2 and Ŝy = (Ŝ+ − Ŝ−)/(2i), so we may write the linear response function as

χxx

(
r, r′; t

)
=
iσ2

4ℏ
θ (t) ⟨

[
Ŝ+ (r, t) , Ŝ+

(
r′, 0

)]
+
[
Ŝ+ (r, t) , Ŝ− (r′, 0)]

+
[
Ŝ− (r, t) , Ŝ+

(
r′, 0

)]
+
[
Ŝ− (r, t) , Ŝ− (r′, 0)]⟩eq

Note that the HP transformation for the spin operators Ŝ± (r, t) depends on the position r; if r lies on

the sublattice L1, we must expand Ŝ+ (r, t) as
√
2sâ (r, t), while if r ∈ L2, we use Ŝ+ (r, t) =

√
2sb̂† (r, t).

Since C (k, ω) is the Fourier transform of C (r, t) (and therefore, an integral over all the positions in the

sample is performed), it is necessary to step on every case and sum them all.

D.1.1 First case: same sublattice (1)

In this situation, using the HP transformations for the sublattice L1, we may write the susceptibility

as

χxx

(
r, r′; t

)
=
isℏσ2

2
θ (t) ⟨

[
â (r, t) , â

(
r′, 0

)]
+
[
â (r, t) , â†

(
r′, 0

)]
+
[
â† (r, t) , â

(
r′, 0

)]
+
[
â† (r, t) , â†

(
r′, 0

)]
⟩eq

Now, expanding every raising and lowering operator in the Fourier space, we have

χxx

(
r, r′; t

)
=
isℏσ2

2N
θ (t)

∑
k′

∑
k′′

⟨[âk′ (t) , âk′′ (0)] exp i
(
k′ · r+ k′′ · r′

)
+
[
âk′ (t) , â†k′′ (0)

]
exp i

(
k′ · r− k′′ · r′

)
+
[
â†k′ (t) , âk′′ (0)

]
exp i

(
−k′ · r+ k′′ · r′

)
+
[
â†k′ (t) , â

†
k′′ (0)

]
exp i

(
−k′ · r− k′′ · r′

)
⟩eq

and taking the Fourier transform for the relative position vector R = r − r′ (or equivalently1, for r

evaluating r′ = 0), in the convenient limit
∫
d2R → 1

σ

∑
R, we obtain

χxx (k, t) =
isℏσ2

2
θ (t)

∑
k′

〈
[âk (t) , âk′ (0)] +

[
âk (t) , â

†
k′ (0)

]
+
[
â†−k (t) , âk′ (0)

]
+
[
â†−k (t) , â

†
k′ (0)

]〉
eq

The first and the last commutators vanish, while the two remaining must be expanded using the Bogoli-

ubov transformations2

χxx (k, t) =
isℏσ2

2
θ (t)

∑
k′

⟨uαkuαk′

[
α̂k (t) , α̂

†
k′ (0)

]
− vαkvαk′

[
β̂−k′ (0) , β̂†

−k (t)
]

− uαkuαk′

[
α̂k′ (0) , α̂†

−k (t)
]
+ vαkvαk′

[
β̂k (t) , β̂

†
−k′ (0)

]
⟩eq

1In the long run, the result will be the same as using R = r− r′, since the system has translational symmetry.
2One can check this by expanding âk and b̂k with the Bogoliubov transformation, in a similar fashion to the method

shown here, as the Bogoliubov coefficients are defined such that [α̂k, α̂k] =
[
α̂†
k, α̂

†
k

]
=

[
β̂k, β̂k

]
=

[
β̂†
k, β̂

†
k

]
= 0, and the

mixed commutators are zero as well.
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Now, using the characteristic raising and lowering operators evolution in the Heisenberg picture α̂k (t) =

α̂k (0) exp(−iωαkt− ηt) and β̂k (t) = β̂k (0) exp(−iωβkt− ηt), with η > 0, and remembering the commu-

tation relations
[
α̂k, α̂

†
k′

]
=
[
β̂k, β̂

†
k′

]
= δkk′ , we have

χxx (k, t) =
isℏσ2

2
θ (t) [u2αk exp(−iωαkt)− v2αk exp(iωβkt)

− u2αk exp(iωαkt) + v2αk exp(−iωβkt)] exp(−ηt)

Finally, taking the remaining temporal Fourier transform, considering ωαk > 0 and ωβk > 0, we finally

obtain

χ′′
xx (k, ω) =

sℏσ2

2

[
u2αk

η

(ω − ωαk)
2 + η2

+ v2αk
η

(ω − ωβk)
2 + η2

]
(D.5)

D.1.2 Second case: same sublattice (2)

This case is quite similar to the last one. Here, we need to use the HP transformations for the sublattice

L2, writing the susceptibility as

χxx

(
r, r′; t

)
=
isℏσ2

2
θ (t) ⟨

[
b̂† (r, t) , b̂†

(
r′, 0

)]
+
[
b̂† (r, t) , b̂

(
r′, 0

)]
+
[
b̂ (r, t) , b̂†

(
r′, 0

)]
+
[
b̂ (r, t) , b̂

(
r′, 0

)]
⟩eq

As before, we expand every raising and lowering operator in the Fourier space, we have

χxx

(
r, r′; t

)
=
isℏσ2

2N
θ (t)

∑
k′

∑
k′′

⟨
[
b̂†k′ (t) , b̂

†
k′′ (0)

]
exp i

(
−k′ · r− k′′ · r′

)
+
[
b̂†k′ (t) , b̂k′′ (0)

]
exp i

(
−k′ · r+ k′′ · r′

)
+
[
b̂k′ (t) , b̂†k′′ (0)

]
exp i

(
k′ · r− k′′ · r′

)
+
[
b̂k′ (t) , b̂k′′ (0)

]
exp i

(
k′ · r+ k′′ · r′

)
⟩eq

and taking the Fourier transform for the position for r evaluating r′ = 0, in the convenient limit
∫
d2R →

1
σ

∑
R, we obtain

χxx (k, t) =
isℏσ2

2
θ (t)

∑
k′

〈[
b̂†−k (t) , b̂

†
k′ (0)

]
+
[
b̂†−k (t) , b̂k′ (0)

]
+
[
b̂k (t) , b̂

†
k′ (0)

]
+
[
b̂k (t) , b̂k′ (0)

]〉
eq

The first and the last commutators vanish, while the two remaining must be expanded using the Bogoli-

ubov transformations:

χxx (k, t) =
isℏσ2

2
θ (t)

∑
k′

⟨uβkuβk′

[
α̂k (t) , α̂

−†
k′ (0)

]
− vβkvβk′

[
β̂k′ (0) , β̂†

−k (t)
]

− uβkuβk′

[
α̂−k′ (0) , α̂†

−k (t)
]
+ vβkvβk′

[
β̂−k (t) , β̂

†
−k′ (0)

]
⟩eq
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Now, using the characteristic raising and lowering operators evolution in the Heisenberg picture α̂k (t) =

α̂k (0) exp(−iωαkt− ηt) and β̂k (t) = β̂k (0) exp(−iωβkt− ηt), with η > 0, and remembering the commu-

tation relations
[
α̂k, α̂

†
k′

]
=
[
β̂k, β̂

†
k′

]
= δkk′ , we have

χxx (k, t) =
isℏσ2

2
θ (t) [u2βk exp(−iωαkt)− v2βk exp(iωβkt)

− u2βk exp(iωαkt) + v2βk exp(−iωβkt)] exp(−ηt)

Finally, taking the remaining temporal Fourier transform, considering ωαk > 0 and ωβk > 0, we finally

obtain

χ′′
xx (k, ω) =

sℏσ2

2

[
u2βk

η

(ω − ωαk)
2 + η2

+ v2βk
η

(ω − ωβk)
2 + η2

]
(D.6)

D.1.3 Third case: mixed sublattices

It is easy to see that both mixed cases give the same contribution to the total susceptibility, so we’ll

consider only r ∈ L1 and r′ ∈ L2 and count it twice. Here, this linear response function is expanded by

χxx

(
r, r′; t

)
=
isℏσ2

2
θ (t) ⟨

[
â (r, t) , b̂†

(
r′, 0

)]
+
[
â (r, t) , b̂

(
r′, 0

)]
+
[
â† (r, t) , b̂†

(
r′, 0

)]
+
[
â† (r, t) , b̂

(
r′, 0

)]
⟩eq

and doing the same procedure as before, we find

χ′′
xx (k, ω) =

sℏσ2

2

[
uαkuβk

η

(ω − ωαk)
2 + η2

+ vαkvβk
η

(ω − ωβk)
2 + η2

]
(D.7)

D.1.4 Final transverse spin-spin correlator

Adding up the results (D.7) (twice), (D.5) and (D.6), we obtain

χ′′
xx (k, ω) =

sℏσ2

2

[
(uαk − vαk)

2 η

(ω − ωαk)
2 + η2

+ (uβk − vβk)
2 η

(ω − ωβk)
2 + η2

]
,

so, according to disipation-fluctuation theorem (D.1),

Cxx (k, ω) =
ℏσskBT

ω
[(uαk − vαk)

2 η

η2 + (ωαk − ω)2
+ (uβk − vβk)

2 η

η2 + (ωβk − ω)2
]. (D.8)

D.2 Longitudinal spin-spin correlator

In this situation, the desired spin-spin correlator is

Czz (k, ω) ≈
2kBT

ω
χ′′
zz (k, ω)
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where the response linear function is given by

χzz

(
r, r′; t

)
=

i

ℏ
θ (t)

〈[
ŝz (r, t) , ŝz

(
r′, 0

)]〉
eq

⇒χzz

(
r, r′; t

)
=

iσ2

ℏ
θ (t)

〈[
Ŝz (r, t) , Ŝz

(
r′, 0

)]〉
eq
.

As in the transverse correlator computation, it is necessary to split the procedure in several cases for the

positions r and r′, and finally sum them all.

D.2.1 First case: same sublattice (1)

First, if r, r′ ∈ L1, the spin operators Ŝz can be expanded using HP transformations, so

χ(11)
zz

(
r, r′; t

)
= iℏσ2θ (t)

〈[
â† (r, t) â (r, t) , â†

(
r′, 0

)
â
(
r′, 0

)]〉
eq
.

This is a many-particle correlator. We can split it up in four terms using the product rule. Next,

expanding the operators â y â† in the Fourier space, and using the Bogoliubov transformations, we obtain

the imaginary part of the response function in k space:

χ′′(11)
zz (k, ω) =

ℏσ
N

∑
k′

{

|uαk′ |2
∣∣uα(k′−k)

∣∣2 2ηnB

(
ℏωα(k′−k)

)
4η2 +

(
ωαk′ − ωα(k′−k) + ω

)2
− |uαk′ |2

∣∣vβ(k′−k)

∣∣2 2ηnB

(
−ℏωα(k′−k)

)
4η2 +

(
ωαk′ + ωβ(k′−k) + ω

)2
−
∣∣vβk′

∣∣2∣∣uα(k′−k)

∣∣2 2ηnB

(
ℏωα(k′−k)

)
4η2 +

(
ωα(k′−k) + ωβk′ − ω

)2
+
∣∣vβk′

∣∣2∣∣vβ(k′−k)

∣∣2 2ηnB

(
−ℏωβ(k′−k)

)
4η2 +

(
ωβ(k′−k) − ωβk′ + ω

)2
+
∣∣vβk′

∣∣2∣∣uα(k′+k)

∣∣2 2ηnB

(
ℏωα(k′+k)

)
4η2 +

(
ωβk′ + ωα(k′+k) + ω

)2
−
∣∣vβk′

∣∣2∣∣vβ(k′+k)

∣∣2 2ηnB

(
−ℏωβ(k′+k)

)
4η2 +

(
ωβk′ − ωβ(k′+k) + ω

)2
− |uαk′ |2

∣∣uα(k′+k)

∣∣2 2ηnB

(
ℏωα(k′+k)

)
4η2 +

(
ωα(k′+k) − ωαk′ + ω

)2
+ |uαk′ |2

∣∣vβ(k′+k)

∣∣2 2ηnB

(
−ℏωβ(k′+k)

)
4η2 +

(
ωαk′ + ωβ(k′+k) − ω

)2 }
where we used

〈
α̂†
kα̂k

〉
eq

= nB (ℏωαk) and
〈
β̂†
kβ̂k

〉
eq

= nB (ℏωβk), with nB (ε) =
[
exp
(

ε
kBT

)
− 1
]−1

the

Bose-Einstein distribution.
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D.2.2 Second case: mixed sublattices

On the other hand, if r ∈ L1 and r′ ∈ L2, it is necessary to use the HP transformations (5.4) y (5.5)

in a mixed way. The needed commutator is

χ(12)
zz

(
r, r′; t

)
=− iℏσ2θ (t)〈[

â† (r, t) â (r, t) , b̂†
(
r′, 0

)
b̂
(
r′, 0

)]〉
The procedure to calculate χ

′′(12)
zz in Fourier space is analogous to χ

′′(11)
zz , obtaining

χ′′(12)
zz (k, ω) =

ℏσ
N

∑
k′

{

uα(k′−k)uβk′vα(k′−k)vβk′
2ηnB

(
−ℏωα(k′−k)

)
4η2 +

(
ω + ωα(k′−k) + ωβk′

)2
−uβk′uβ(k′−k)vβk′vβ(k′−k)

2ηnB

(
ℏωβ(k′−k)

)
4η2 +

(
ω + ωβk′ − ωβ(k′−k)

)2
−uαk′uα(k′−k)vαk′vα(k′−k)

2ηnB

(
−ℏωα(k′−k)

)
4η2 +

(
ω + ωα(k′−k) − ωαk′

)2
+uαk′uβ(k′−k)vαk′vβ(k′−k)

2ηnB

(
ℏωβ(k′−k)

)
4η2 +

(
ω − ωαk′ − ωβ(k′−k)

)2
+uαk′uα(k′+k)vαk′vα(k′+k)

2ηnB

(
−ℏωα(k′+k)

)
4η2 +

(
ω + ωαk′ − ωα(k′+k)

)2
−uαk′uβ(k′+k)vαk′vβ(k′+k)

2ηnB

(
ℏωβ(k′+k)

)
4η2 +

(
ω + ωαk′ + ωβ(k′+k)

)2
−uβk′uα(k′+k)vβk′vα(k′+k)

2ηnB

(
−ℏωα(k′+k)

)
4η2 +

(
ω − ωα(k′+k) − ωβk′

)2
+uβk′uβ(k′+k)vβk′vβ(k′+k)

2ηnB

(
ℏωβ(k′+k)

)
4η2 +

(
ω + ωβ(k′+k) − ωβk′

)2 }
In a similar way, if r, r′ ∈ L2, the needed HP transformations are entirely (5.5), because the many-particle

commutator now is

χ(22)
zz

(
r, r′; t

)
= iℏσ2θ (t)

〈[
b̂† (r, t) b̂ (r, t) , b̂†

(
r′, 0

)
b̂
(
r′, 0

)]〉
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In the Fourier space, what we get is

χ′′(22)
zz (k, ω) =

ℏσ
N

∑
k′

{

∣∣uβk′
∣∣2∣∣uβ(k′−k)

∣∣2 2ηnB

(
αℏωβ(k′−k)

)
4η2 +

(
ωβk′ − ωβ(k′−k) + ω

)2
−
∣∣uβk′

∣∣2∣∣vα(k′−k)

∣∣2 2ηnB

(
−αℏωβ(k′−k)

)
4η2 +

(
ωβk′ + ωα(k′−k) + ω

)2
− |vαk′ |2

∣∣uβ(k′−k)

∣∣2 2ηnB

(
αℏωβ(k′−k)

)
4η2 +

(
ωβ(k′−k) + ωαk′ − ω

)2
+ |vαk′ |2

∣∣vα(k′−k)

∣∣2 2ηnB

(
−αℏωα(k′−k)

)
4η2 +

(
ωα(k′−k) − ωαk′ + ω

)2
+ |vαk′ |2

∣∣uβ(k′+k)

∣∣2 2ηnB

(
αℏωβ(k′+k)

)
4η2 +

(
ωαk′ + ωβ(k′+k) + ω

)2
− |vαk′ |2

∣∣vα(k′+k)

∣∣2 2ηnB

(
−αℏωα(k′+k)

)
4η2 +

(
ωαk′ − ωα(k′+k) + ω

)2
−
∣∣uβk′

∣∣2∣∣uβ(k′+k)

∣∣2 2ηnB

(
αℏωβ(k′+k)

)
4η2 +

(
ωβ(k′+k) − ωβk′ + ω

)2
+
∣∣uβk′

∣∣2∣∣vα(k′+k)

∣∣2 2ηnB

(
−αℏωα(k′+k)

)
4η2 +

(
ωβk′ + ωα(k′+k) − ω

)2 }
The final susceptibility in Fourier space is the sum of all these contributions:

χ′′
zz = χ′′(11)

zz + χ′′(12)
zz + χ′′(21)

zz + χ′′(22)
zz .

Now, we take the limit η → 0+ in equation (D.2.2), in order to make it easier to reduce. This will

transform the lorentzian into Dirac delta distributions, by the identity

lim
η→0+

1

π

η

η2 + (ω − ω0)
2 = δ (ω − ω0) .

Note that, as ω > 0, as well as ωαk, factors like δ
(
ω + ωα(k′+k) + ωβk′

)
are always zero and terms that
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contain them vanish. This simplifies enormously the final expression for the susceptibility, resulting in

χ′′
zz (k, ω) =

πℏσ
N

∑
k′

{

|uαk′ |2
∣∣uα(k′−k)

∣∣2nB

(
ℏωα(k′−k)

)
δ
(
ωαk′ − ωα(k′−k) + ω

)
+
∣∣vβk′

∣∣2∣∣vβ(k′−k)

∣∣2nB

(
−ℏωβ(k′−k)

)
δ
(
ωβ(k′−k) − ωβk′ + ω

)
−
∣∣vβk′

∣∣2∣∣vβ(k′+k)

∣∣2nB

(
−ℏωβ(k′+k)

)
δ
(
ωβk′ − ωβ(k′+k) + ω

)
−|uαk′ |2

∣∣uα(k′+k)

∣∣2nB

(
ℏωα(k′+k)

)
δ
(
ωα(k′+k) − ωαk′ + ω

)
−uβk′uβ(k′−k)vβk′vβ(k′−k)nB

(
ℏωβ(k′−k)

)
δ
(
ω + ωβk′ − ωβ(k′−k)

)
−uαk′uα(k′−k)vαk′vα(k′−k)nB

(
−ℏωα(k′−k)

)
δ
(
ω + ωα(k′−k) − ωαk′

)
+uαk′uα(k′+k)vαk′vα(k′+k)nB

(
−ℏωα(k′+k)

)
δ
(
ω + ωαk′ − ωα(k′+k)

)
+uβk′uβ(k′+k)vβk′vβ(k′+k)nB

(
ℏωβ(k′+k)

)
δ
(
ω + ωβ(k′+k) − ωβk′

)
−uαk′uα(k′−k)vαk′vα(k′−k)nB

(
ℏωα(k′−k)

)
δ
(
ω + ωαk′ − ωα(k′−k)

)
−uβk′uβ(k′−k)vβk′vβ(k′−k)nB

(
−ℏωβ(k′−k)

)
δ
(
ω + ωβ(k′−k) − ωβk′

)
+uβk′uβ(k′+k)vβk′vβ(k′+k)nB

(
−ℏωβ(k′+k)

)
δ
(
ω + ωβk′ − ωβ(k′+k)

)
+uαk′uα(k′+k)vαk′vα(k′+k)nB

(
ℏωα(k′+k)

)
δ
(
ω + ωα(k′+k) − ωαk′

)
+
∣∣uβk′

∣∣2∣∣uβ(k′−k)

∣∣2nB

(
ℏωβ(k′−k)

)
δ
(
ωβk′ − ωβ(k′−k) + ω

)
+|vαk′ |2

∣∣vα(k′−k)

∣∣2nB

(
−ℏωα(k′−k)

)
δ
(
ωα(k′−k) − ωαk′ + ω

)
−|vαk′ |2

∣∣vα(k′+k)

∣∣2nB

(
−ℏωα(k′+k)

)
δ
(
ωαk′ − ωα(k′+k) + ω

)
−
∣∣uβk′

∣∣2∣∣uβ(k′+k)

∣∣2nB

(
ℏωβ(k′+k)

)
δ
(
ωβ(k′+k) − ωβk′ + ω

)
}

We simplify even more this formula by taking advantage of the reciprocal lattice periodicity. For instance,

for terms that depend on k′ − k, we replace k′ → k′ + k in the sums that contain them. Also, we take
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the continuous limit
∑

k′ → N
σ(2π)2

∫
d2k′, resulting

χ′′
zz (k, ω) =

ℏ
4π

∫
d2k′ {

|uαk′ |2
∣∣uα(k′+k)

∣∣2δ (ω + ωα(k′+k) − ωαk′
)

×
[
nB (ℏωαk′)− nB

(
ℏωα(k′+k)

)]
+
∣∣vβk′

∣∣2∣∣vβ(k′+k)

∣∣2δ (ω + ωβk′ − ωβ(k′+k)

)
×
[
nB

(
−ℏωβk′

)
− nB

(
−ℏωβ(k′+k)

)]
−uβk′uβ(k′+k)vβk′vβ(k′+k)δ

(
ω + ωβ(k′+k) − ωβk′

)
×
[
nB

(
ℏωβk′

)
− nB

(
ℏωβ(k′+k)

)]
−uαk′uα(k′+k)vαk′vα(k′+k)δ

(
ω + ωαk′ − ωα(k′+k)

)
×
[
nB (−ℏωαk′)− nB

(
−ℏωα(k′+k)

)]
−uαk′uα(k′+k)vαk′vα(k′+k)δ

(
ω + ωα(k′+k) − ωαk′

)
×
[
nB (ℏωαk′)− nB

(
ℏωα(k′+k)

)]
−uβk′uβ(k′+k)vβk′vβ(k′+k)δ

(
ω + ωβk′ − ωβ(k′+k)

)
×
[
nB

(
−ℏωβk′

)
− nB

(
−ℏωβ(k′+k)

)]
+
∣∣uβk′

∣∣2∣∣uβ(k′+k)

∣∣2δ (ω + ωβ(k′+k) − ωβk′
)

×
[
nB

(
ℏωβk′

)
− nB

(
ℏωβ(k′+k)

)]
+|vαk′ |2

∣∣vα(k′+k)

∣∣2δ (ω + ωαk′ − ωα(k′+k)

)
×
[
nB (−ℏωαk′)− nB

(
−ℏωα(k′+k)

)]
}

Finally, using the identity uαk′uαk′′ − vαk′vαk′′ = 1, we obtain

χ′′
zz (k, ω) =

ℏ
4π

∫
d2k′ {

[u2αk′δ
(
ω − ωα(k′+k) + ωαk′

)
+ v2αk′δ

(
ω − ωαk′ + ωα(k′+k)

)
]

×
[
nB (ℏωαk′ − µα)− nB

(
ℏωα(k′+k) − µα

)]
+[u2βk′δ

(
ω − ωβ(k′+k) + ωβk′

)
+ v2βk′δ

(
ω − ωβk′ + ωβ(k′+k)

)
]

×
[
nB

(
ℏωβk′ − µβ

)
− nB

(
ℏωβ(k′+k) − µβ

)]
},

where we have introduced the chemical potentials µα and µβ substracting them to every argument of

the nB functions. So, the longitudinal spin-spin correlator, according to dissipation-fluctuation theorem
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(D.1), is

Czz (k, ω) =
ℏkBT
2πω

∫
d2k′ {

[u2αk′δ
(
ω − ωα(k′+k) + ωαk′

)
+ v2αk′δ

(
ω − ωαk′ + ωα(k′+k)

)
]

×
[
nB (ℏωαk′ − µα)− nB

(
ℏωα(k′+k) − µα

)]
+[u2βk′δ

(
ω − ωβ(k′+k) + ωβk′

)
+ v2βk′δ

(
ω − ωβk′ + ωβ(k′+k)

)
]

×
[
nB

(
ℏωβk′ − µβ

)
− nB

(
ℏωβ(k′+k) − µβ

)]
}.
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